JP5130481B2 - 透明材料付半導体発光素子 - Google Patents
透明材料付半導体発光素子 Download PDFInfo
- Publication number
- JP5130481B2 JP5130481B2 JP2007262291A JP2007262291A JP5130481B2 JP 5130481 B2 JP5130481 B2 JP 5130481B2 JP 2007262291 A JP2007262291 A JP 2007262291A JP 2007262291 A JP2007262291 A JP 2007262291A JP 5130481 B2 JP5130481 B2 JP 5130481B2
- Authority
- JP
- Japan
- Prior art keywords
- light emitting
- particles
- single particle
- particle film
- semiconductor light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Led Devices (AREA)
Description
本発明の単粒子膜エッチングマスクの製造方法は、溶剤中に粒子が分散した分散液を水槽内の液面に滴下する滴下工程と、前記溶剤を揮発させることにより前記粒子からなる単粒子膜を形成する単粒子膜形成工程と、前記単粒子膜を半導体発光素子の光取り出し面上に移し取る移行工程とを有することを特徴とする。
本発明の輝度向上サブ波長微細構造体の製造方法は、半導体発光素子の光取り出し面上にコーティングされた上記単粒子膜エッチングマスクを用いたドライエッチングによって作成することを特徴とする。ドライエッチングは異方性エッチングであればどのような方式でもよい。
本発明の微細構造体が輝度向上である場合、前記製造方法により製造され、前記半導体発光素子の光取り出し面上に、高さが少なくとも50nm以上、好ましくは500nm以上で、アスペクト比が少なくとも0.4以上、好ましくは1以上、より好ましくは2以上の円錐状微細突起を形成することを特徴とし、発光効率を向上させる手段として好適である。
本発明の単粒子膜エッチングマスクは、半導体発光素子の光取り出し面上にコーティングされる粒子が2次元に最密充填した単粒子膜からなるエッチングマスクであって、下記式(1)で定義される粒子の配列のずれD(%)が10%以下であることを特徴とする。
D[%]=|B−A|×100/A・・・(1)
(式(1)中、Aは前記粒子の平均粒径、Bは前記単粒子膜における粒子間の平均ピッチを示す。
本発明の微細構造体は、前記単粒子膜エッチングマスクを用い、ドライエッチングで作成することを特徴とする微細構造体であって、下記式(2)で定義される構造の配列のずれD’(%)が10%以下であることを特徴とする。
D’(%)=|C−A|×100/A・・・(2)
(式(2)中、Aは前記粒子の平均粒径、Cは前記微細構造体における前記構造配列の平均ピッチを示す。)
[単粒子膜エッチングマスク]
本発明の単粒子膜エッチングマスクは、半導体発光素子の光取り出し面上にコーティングされる、図1に示す多数の粒子Pが2次元に最密充填した単粒子膜からなるエッチングマスクであって、下記式(1)で定義される粒子の配列のずれD(%)が10%以下のものである。
D[%]=|B−A|×100/A・・・(1)
ここで式(1)中、Aは単粒子膜を構成している粒子Pの平均粒径、Bは単粒子膜における粒子間の平均ピッチである。また、|B−A|はAとBとの差の絶対値を示す。
単粒子膜エッチングマスクにおける粒子間の平均ピッチBは、具体的には次のようにして求められる。
まず、単粒子膜エッチングマスクにおける無作為に選択された領域で、一辺が微細構造の繰り返し単位30〜40波長分の正方形の領域について、原子間力顕微鏡イメージまたは走査型電子顕微鏡イメージを得る。例えば粒径300nmの粒子を用いた単粒子膜の場合、9μm×9μm〜12μm×12μmの領域のイメージを得る。そして、このイメージをフーリエ変換により波形分離し、FFT像(高速フーリエ変換像)を得る。ついで、FFT像のプロファイルにおける0次ピークから1次ピークまでの距離を求める。こうして求められた距離の逆数がこの領域における平均ピッチB1である。このような処理を無作為に選択された合計25カ所以上の同面積の領域について同様に行い、各領域における平均ピッチB1〜B25を求める。こうして得られた25カ所以上の領域における平均ピッチB1〜B25の平均値が式(1)における平均ピッチBである。なお、この際、各領域同士は、少なくとも1mm離れて選択されることが好ましく、より好ましくは5mm〜1cm離れて選択される。
また、この際、FFT像のプロファイルにおける1次ピークの面積から、各イメージについて、その中の粒子間のピッチのばらつきを評価することもできる。
表面に円錐状微細突起からなる微細凹凸パターンが形成された微細構造体は、構造のピッチ、高さ、(アスペクト比)、形状等が後述する条件(光学的理由による)を満たす場合、非常に高性能な輝度向上表面構造として好適に使用される。
このような単粒子膜エッチングマスクは、エッチング対象物である半導体発光素子の光取り出し面上に配置されるものであって、いわゆるLB法(ラングミュア−ブロジェット法)の考え方を利用した方法により形成される。具体的には、溶剤中に粒子が分散した分散液を水槽内の液面に滴下する滴下工程と、溶剤を揮発させることにより粒子からなる単粒子膜を形成する単粒子膜形成工程と、単粒子膜を半導体発光素子の光取り出し面上に移し取る移行工程とを有する方法により製造できる。
単粒子膜エッチングマスクを製造する好ましい方法について、一例を挙げて以下に具体的に説明する。
まず、クロロホルム、メタノール、エタノール、メチルエチルケトンなどの揮発性の高い溶剤のうちの1種以上からなる疎水性の有機溶剤中に、表面が疎水性の粒子を加えて分散液を調製する。一方、水槽(トラフ)を用意し、これに、その液面上で粒子を展開させるための液体(以下、下層水という場合もある。)として水を入れる。
そして、分散液を下層水の液面に滴下する(滴下工程)。すると、分散媒である溶剤が揮発するとともに、粒子が下層水の液面上に単層で展開し、2次元的に最密充填した単粒子膜を形成することができる(単粒子膜形成工程)。
このように、粒子として疎水性のものを選択した場合には、溶剤としても疎水性のものを選択する必要がある。一方、その場合、下層水は親水性である必要があり、通常、上述したように水を使用する。このように組み合わせることによって、後述するように、粒子の自己組織化が進行し、2次元的に最密充填した単粒子膜が形成される。ただし、粒子および溶剤として親水性のものを選択してもよく、その場合には、下層水として、疎水性の液体を選択する。
界面活性剤としては、臭素化ヘキサデシルトリメチルアンモニウム、臭素化デシルトリメチルアンモニウムなどのカチオン性界面活性剤、ドデシル硫酸ナトリウム、4−オクチルベンゼンスルホン酸ナトリウムなどのアニオン性界面活性剤が好適に使用できる。また、アルカンチオール、ジスルフィド化合物、テトラデカン酸、オクタデカン酸なども使用できる。
液中で行う場合には、例えば、クロロホルム、メタノール、エタノール、イソプロパノール、アセトン、メチルエチルケトン、エチルエチルケトン、トルエン、ヘキサン、シクロヘキサン、酢酸エチル、酢酸ブチルなどの1種以上からなる揮発性有機溶剤中に、疎水化対象の粒子を加えて分散させ、その後、界面活性剤を混合してさらに分散を続ければよい。このようにあらかじめ粒子を分散させておき、それから界面活性剤を加えると、表面をより均一に疎水化することができる。このような疎水化処理後の分散液は、そのまま、滴下工程において下層水の液面に滴下するための分散液として使用できる。
疎水化対象の粒子と界面活性剤の比率は、疎水化対象の粒子の質量に対して、界面活性剤の質量が1/3〜1/15倍の範囲が好ましい。
また、こうした疎水化処理の際には、処理中の分散液を撹拌したり、分散液に超音波照射したりすることも粒子分散性向上の点で効果的である。
金属アルコキシシランとしては、モノメチルトリメトキシシラン、モノメチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシランなどが挙げられる。
疎水化対象の粒子と金属アルコキシシランの比率は、疎水化対象の粒子の質量に対して、金属アルコキシシランの質量が1/10〜1/100倍の範囲が好ましい。
超音波照射によって得られる利点は粒子の最密充填化(ランダム配列を6方最密化する)の他に、ナノ粒子分散液調製時に発生しやすい粒子の軟凝集体を破壊する効果、一度発生した点欠陥、線欠陥、または結晶転移などもある程度修復する効果がある。
特に、例えばコロイダルシリカのように、球形であって粒径の均一性も高い粒子が、水面上に浮いた状態で3つ集まり接触すると、粒子群の喫水線の合計長を最小にするように表面張力が作用し、図1に示すように、3つの粒子Pは図中Tで示す正三角形を基本とする配置で安定化する。仮に、喫水線が粒子群の頂点にくる場合、すなわち、粒子Pが液面下に潜ってしまう場合には、このような自己組織化は起こらず、単粒子膜は形成されない。よって、粒子と下層水は、一方が疎水性である場合には他方を親水性にして、粒子群が液面下に潜ってしまわないようにすることが重要である。
下層水としては、以上の説明のように水を使用することが好ましく、水を使用すると、比較的大きな表面自由エネルギーが作用して、一旦生成した粒子の最密充填配置が液面上に安定的に持続しやすくなる。
単粒子膜形成工程により液面上に形成された単粒子膜を、ついで、単層状態のままエッチング対象物である半導体発光素子の光取り出し面上に移し取る(移行工程)。本発明の単粒子膜は、対象物が平面でなくても2次元的な最密充填状態を維持しつつ凹凸のある表面形状に追従し、その面形状を変形させ、完全に被覆することが可能である。凹凸形状に追従する際、単粒子膜内では粒子結晶面での滑り現象が起き、その形状を2次元から3次元へ自在に変形させるものと考えられる。このような特徴から、輝度向上微細構造を作成する半導体発光素子の光取り出し面は必ずしも平面である必要はない。
バインダーを使用する方法では、単粒子膜エッチングマスクが形成された半導体発光素子の光取り出し面の該単粒子膜側にバインダー溶液を供給して単粒子膜エッチングマスクと半導体発光素子との間にこれを浸透させる。
バインダーの使用量は、単粒子膜エッチングマスクの質量の0.001〜0.02倍が好ましい。このような範囲であれば、バインダーが多すぎて粒子間にバインダーが詰まってしまい、単粒子膜エッチングマスクの精度に悪影響を与えるという問題を生じることなく、十分に粒子を固定することができる。バインダー溶液が浸透した後に、スピンコーター等によってバインダー溶液の余剰分を除去する。
バインダーとしては、先に疎水化剤として例示した金属アルコキシシランや一般の有機バインダー、無機バインダーなどを使用でき、バインダー溶液が浸透した後には、バインダーの種類に応じて、適宜加熱処理を行えばよい。金属アルコキシシランをバインダーとして使用する場合には、40〜80℃で3〜60分間の条件で加熱処理することが好ましい。
このように単粒子膜エッチングマスクが片面に設けられた半導体発光素子の光取り出し面を気相エッチングして表面加工する(エッチング工程)ことにより、光取り出し面(基板)に円錐状微細突起を多数形成することができる。具体的には、気相エッチングを開始すると、まず図3(a)に示すように、単粒子膜Fを構成している各粒子Pの隙間をエッチングガスが通り抜けて基板11の表面に到達し、その部分に溝が形成され、各粒子Pに対応する位置にそれぞれ円柱11'が現れる。引き続き気相エッチングを続けると、各円柱11'上の粒子Pも徐々にエッチングされて小さくなり、同時に、基板11の溝もさらに深くなっていく(図3(b))。そして、最終的には各粒子Pはエッチングにより消失し、それとともに基板11の片面に多数の円錐状微細突起が形成される(図3(c))。
また、電場のバイアスを数十から数百Wに設定すると、プラズマ状態にあるエッチングガス中の正電荷粒子は、加速されて高速でほぼ垂直に基板に入射する。よって、基板に対して反応性を有する気体を用いた場合は、垂直方向の物理化学エッチングの反応速度を高めることができる。
基板の材質とエッチングガスの種類の組み合わせによるが、気相エッチングでは、プラズマによって生成したラジカルによる等方性エッチングも並行して起こる。ラジカルによるエッチングは化学エッチングであり、エッチング対象物のどの方向にも等方的にエッチングを行う。ラジカルは電荷を持たないためバイアスパワーの設定でエッチング速度をコントロールすることはできず、エッチングガスのチャンバー内濃度(流量)で操作することができる。荷電粒子による異方性エッチングを行うためにはある程度のガス圧を維持しなければならないので、反応性ガスを用いる限りラジカルの影響はゼロに出来ない。しかし、基材を冷却することでラジカルの反応速度を遅くする手法は広く用いられており、その機構を備えた装置も多いので、利用することが好ましい。
よって、このようにエッチングガスの種類を適宜選択するなどして、エッチング保護膜を形成しながらエッチング工程を行うことが、より理想的な形状の円錐状微細突起を形成できる点で好ましい。
D'[%]=|C−A|×100/A・・・(2)
ただし、式(2)中、Aは使用した単粒子膜エッチングマスクを構成する粒子の平均粒径である。
平均粒径が96.5nmで、粒径の変動係数が7.2%である球形コロイダルシリカの4.2質量%水分散体(分散液)を用意した。なお、平均粒径および粒径の変動係数は、Malvern Instruments Ltd 社製 Zetasizer Nano-ZSによる粒子動的光散乱法で求めた粒度分布をガウス曲線にフィッティングさせて得られるピークから求めた。
ついで、この分散液を孔径1.2μmφのメンブランフィルターでろ過し、メンブランフィルターを通過した分散液に濃度0.8質量%のフェニルトリエトキシシランの加水分解物水溶液を加え、約40℃で4時間30分反応させた。この際、フェニルトリエトキシシランの質量がコロイダルシリカ粒子の質量の0.02倍となるように分散液と加水分解水溶液とを混合した。
ついで、反応終了後の分散液に、この分散液の体積の4倍の体積のメチルエチルケトンを加えて十分に攪拌して、疎水化されたコロイダルシリカを油相抽出した。
その後、超音波(出力50W、周波数1500kHz)を下層水中から水面に向けて10分間照射して粒子が2次元的に最密充填するのを促しつつ、分散液の溶剤であるメチルエチルケトンを揮発させ、単粒子膜を形成させた。
ついで、この単粒子膜を可動バリアにより拡散圧が30mNm−1になるまで圧縮し、ウェハを5mm/分の速度で引き上げ、ウェハの電流拡散層面上に単粒子膜を移し取った。
ついで、単粒子膜が形成された化合物半導体ウェハ上にバインダーとして1質量%モノメチルトリメトキシシランの加水分解液を浸透させ、その後、加水分解液の余剰分をスピンコーター(3000rpm)で1分間処理して除去した。その後、これを100℃で10分間加熱してバインダーを反応させ、コロイダルシリカからなる単粒子膜エッチングマスク付きの化合物半導体ウェハを得た。
このような処理を合計25カ所の10μm×10μmの領域について同様に行い、各領域における平均ピッチB1〜B25を求め、これらの平均値を算出し、式(1)における平均ピッチBとした。なお、この際、隣り合う各領域同士が5mm程度離れるように各領域を設定した。
算出された平均ピッチBは97.2nmであった。
そこで、粒子の平均粒径A=96.5nmと、平均ピッチB=97.2nmを式(1)に代入したところ、この例の単粒子膜エッチングマスクにおける粒子の配列のずれDは7.2%であった。
電流拡散層表面にサブ波長微細構造を作成しない点を除いて、実施例1と全く同じ操作で作成した赤色発光ダイオードを用意した。したがって、この発光ダイオードの光取り出し面(電流拡散層表面)は平坦である。駆動電圧2.1V、駆動電流20mAで発光させて、積分球付き分光光度計で測定したところ、約6200mcdの光度が得られ、その外部発光効率は約8.2%であった。
F 単粒子膜
C 微細構造体
11 基板
12 下層水
Claims (2)
- 基板上に発光層を含む半導体多層膜を積層してなる半導体発光素子において、前記発光層で発生した光を外部に取り出す面の少なくとも一部に、微細突起の集合体であり、
前記微細突起の下部から先端に向かって、屈折率が基材の屈折率から空気の屈折率に連続的に変化している輝度向上に役立つ微細構造体が形成され、
前記微細突起は、前記突起の高さが50nm以上、かつアスペクト比が0.4以上、かつピッチが発光した光の波長以下の円錐状微細突起であり、前記微細構造体が、下記式(1)で定義される粒子の配列のずれD(%)が10%以下である単粒子膜からなるエッチングマスクを用い、エッチングで作成された微細構造体であり、前記光を外部に取り出す面の最表面に、前記半導体発光素子の材料とは異なる透明材料が形成されたことを特徴とする透明材料付半導体発光素子。
D(%)=|B−A|×100/A・・・(1)
(式(1)中、Aは前記粒子の平均粒径、Bは前記単粒子膜における前記粒子間の平均ピッチを示す。) - 前記粒径の変動係数(標準偏差を平均値で除した値)が20%以下である請求項1に記載の透明材料付半導体発光素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007262291A JP5130481B2 (ja) | 2007-10-05 | 2007-10-05 | 透明材料付半導体発光素子 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007262291A JP5130481B2 (ja) | 2007-10-05 | 2007-10-05 | 透明材料付半導体発光素子 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012124345A Division JP5114687B2 (ja) | 2012-05-31 | 2012-05-31 | 半導体発光素子の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009094219A JP2009094219A (ja) | 2009-04-30 |
JP5130481B2 true JP5130481B2 (ja) | 2013-01-30 |
Family
ID=40665930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007262291A Active JP5130481B2 (ja) | 2007-10-05 | 2007-10-05 | 透明材料付半導体発光素子 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5130481B2 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8207547B2 (en) | 2009-06-10 | 2012-06-26 | Brudgelux, Inc. | Thin-film LED with P and N contacts electrically isolated from the substrate |
JP5284300B2 (ja) | 2010-03-10 | 2013-09-11 | 株式会社東芝 | 半導体発光素子、およびそれを用いた照明装置、ならびに半導体発光素子の製造方法 |
JP5862354B2 (ja) * | 2011-04-15 | 2016-02-16 | 三菱化学株式会社 | 窒化物系発光ダイオード素子とその製造方法 |
JP5200194B2 (ja) | 2011-06-24 | 2013-05-15 | パナソニック株式会社 | 窒化ガリウム系半導体発光素子、光源および凹凸構造形成方法 |
CN102544289B (zh) * | 2012-03-06 | 2013-12-18 | 中国科学院半导体研究所 | 将氮化镓基发光二极管的外延结构表面粗化的方法 |
JP6118525B2 (ja) | 2012-09-03 | 2017-04-19 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子および電子機器 |
JP6256220B2 (ja) * | 2013-06-17 | 2018-01-10 | 王子ホールディングス株式会社 | 半導体発光素子用基板、半導体発光素子、半導体発光素子用基板の製造方法、および、半導体発光素子の製造方法 |
JP6206336B2 (ja) * | 2013-06-17 | 2017-10-04 | 王子ホールディングス株式会社 | 半導体発光素子用基板、半導体発光素子、半導体発光素子用基板の製造方法、および、半導体発光素子の製造方法 |
JP2015076108A (ja) * | 2013-10-07 | 2015-04-20 | 株式会社東芝 | パターン形成方法、及び磁気記録媒体の製造方法 |
TWI632696B (zh) * | 2013-10-11 | 2018-08-11 | 王子控股股份有限公司 | 半導體發光元件用基板之製造方法、半導體發光元件之製 造方法、半導體發光元件用基板、以及半導體發光元件 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3881472B2 (ja) * | 1999-04-15 | 2007-02-14 | ローム株式会社 | 半導体発光素子の製法 |
JP2001155623A (ja) * | 1999-11-30 | 2001-06-08 | Canon Inc | 突起状エミッタ及び電子放出素子の製造方法 |
JP4077312B2 (ja) * | 2001-12-28 | 2008-04-16 | 株式会社東芝 | 発光素子の製造方法および発光素子 |
JP4068074B2 (ja) * | 2004-03-29 | 2008-03-26 | 株式会社東芝 | 凸凹パターンの形成方法および凸凹パターン形成用部材 |
JP4843284B2 (ja) * | 2005-09-22 | 2011-12-21 | パナソニック電工株式会社 | 半導体発光素子およびその製造方法 |
-
2007
- 2007-10-05 JP JP2007262291A patent/JP5130481B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009094219A (ja) | 2009-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5130481B2 (ja) | 透明材料付半導体発光素子 | |
JP6036830B2 (ja) | 半導体発光素子用基板及び半導体発光素子、並びにこれらの製造方法 | |
JP5141506B2 (ja) | プラズモニック結晶面発光体、画像表示装置及び照明装置 | |
JP5157435B2 (ja) | 凹凸パターンシートの製造方法、及び光学シートの製造方法 | |
KR102208684B1 (ko) | 반도체 발광 소자 및 그 제조 방법 | |
JP6750713B2 (ja) | 半導体発光素子用基板、および、半導体発光素子 | |
JP4481894B2 (ja) | 半導体発光装置及びその製造方法 | |
US9915758B2 (en) | Mold for manufacturing optical element and production method for same, and optical element | |
JP2007273746A (ja) | 固体表面の微細加工方法および発光素子 | |
JP2009070933A (ja) | 単粒子膜エッチングマスクを有する表面微細凹凸構造体形成用基板とその製法及び表面微細凹凸構造体 | |
JP5114687B2 (ja) | 半導体発光素子の製造方法 | |
JP2013083997A (ja) | 凹凸パターンシート、及び光学装置 | |
JP5880587B2 (ja) | 光学装置 | |
JP2013030805A (ja) | 単粒子膜エッチングマスクを有する表面微細凹凸構造体形成基板の製法 | |
JPWO2020054792A1 (ja) | 突状構造体、基板、その製造方法、及び発光素子 | |
JP5720762B2 (ja) | 単粒子膜エッチングマスクを有する表面微細凹凸構造体形成用基板及び表面微細凹凸構造体。 | |
JP6256220B2 (ja) | 半導体発光素子用基板、半導体発光素子、半導体発光素子用基板の製造方法、および、半導体発光素子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100518 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120424 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120612 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120724 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120821 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120910 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120925 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121008 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151116 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5130481 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |