JP5120696B2 - Polishing equipment - Google Patents

Polishing equipment Download PDF

Info

Publication number
JP5120696B2
JP5120696B2 JP2007321394A JP2007321394A JP5120696B2 JP 5120696 B2 JP5120696 B2 JP 5120696B2 JP 2007321394 A JP2007321394 A JP 2007321394A JP 2007321394 A JP2007321394 A JP 2007321394A JP 5120696 B2 JP5120696 B2 JP 5120696B2
Authority
JP
Japan
Prior art keywords
polishing
substrate
polishing pad
relative
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007321394A
Other languages
Japanese (ja)
Other versions
JP2009142924A (en
Inventor
進 星野
覚 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007321394A priority Critical patent/JP5120696B2/en
Publication of JP2009142924A publication Critical patent/JP2009142924A/en
Application granted granted Critical
Publication of JP5120696B2 publication Critical patent/JP5120696B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、基板を回転させる基板回転機構、基板よりも小径の研磨パッドを回転させるパッド回転機構、基板と研磨パッドとを当接させた状態で基板に対して研磨パッドを相対揺動させる揺動機構、及び基板の回転、研磨パッドの回転及び基板に対する研磨パッドの相対揺動を制御して基板の研磨加工を制御する制御装置とを備えて構成される研磨装置に関するものである。   The present invention includes a substrate rotation mechanism that rotates a substrate, a pad rotation mechanism that rotates a polishing pad having a smaller diameter than the substrate, and a rocking mechanism that swings the polishing pad relative to the substrate while the substrate and the polishing pad are in contact with each other. The present invention relates to a polishing apparatus including a moving mechanism, and a control device that controls the rotation of the substrate, the rotation of the polishing pad, and the relative swing of the polishing pad with respect to the substrate to control the polishing process of the substrate.

基板表面を研磨する研磨装置としてCMP装置が例示される。CMP装置は、化学機械研磨(CMP:Chemical Mechanical Polishing)により基板表面を超精密に研磨加工する技術として、シリコン基板やガラス基板、半導体ウェーハなどの基板の研磨加工に広く利用されている。このような研磨装置では、チャックに保持された基板と研磨ヘッドに装着された研磨パッドとを相対回転させて押接し、基盤と研磨パッドとの当接部に研磨内容に応じたスラリー(Slurry)を供給して化学的・機械的な研磨作用を生じさせ、基板表面を平坦に研磨加工する。   A CMP apparatus is exemplified as a polishing apparatus for polishing the substrate surface. A CMP apparatus is widely used for polishing a substrate such as a silicon substrate, a glass substrate, or a semiconductor wafer as a technique for polishing a substrate surface with high precision by chemical mechanical polishing (CMP). In such a polishing apparatus, the substrate held by the chuck and the polishing pad mounted on the polishing head are relatively rotated and pressed, and a slurry (Slurry) corresponding to the polishing content is brought into contact with the substrate and the polishing pad. Is supplied to cause a chemical and mechanical polishing action to polish the substrate surface flatly.

このような研磨装置は、主として基板と研磨パッドの大小関係から、研磨パッドの直径が基板の直径よりも大きなタイプと、研磨パッドの直径が基板の直径よりも小さいタイプの2種類に大別される。研磨パッドの直径が基板の直径よりも小さいタイプの研磨装置では、基板全面を均一に研磨加工するため、一般的に、基板に対して研磨パッドを相対揺動させる揺動機構が設けられている(例えば、特許文献1を参照)。   Such polishing apparatuses are roughly classified into two types, a type in which the diameter of the polishing pad is larger than the diameter of the substrate, and a type in which the diameter of the polishing pad is smaller than the diameter of the substrate, based on the size relationship between the substrate and the polishing pad. The In a polishing apparatus of a type in which the diameter of the polishing pad is smaller than the diameter of the substrate, a swinging mechanism for swinging the polishing pad relative to the substrate is generally provided to uniformly polish the entire surface of the substrate. (For example, see Patent Document 1).

特開2006−319249号公報JP 2006-319249 A

上記のように、研磨パッドの直径が基板の直径よりも小さく揺動機構により基盤と研磨パッドとを相対移動させる研磨装置では、研磨加工中において、研磨パッドと当接して研磨作用を受ける領域と、研磨パッドが離隔して研磨作用を受けない領域とが、(基板の回転角度位置と基板に対する研磨パッドの位置に応じて)瞬時・瞬時に変化する。そのため、研磨加工を行う際に設定する基板の回転速度や研磨パッドの回転速度、基板に対する研磨パッドの相対揺動速度などの加工条件の組み合わせ(研磨レシピと称される)によって、基板表面の研磨レートが領域ごとに異なって研磨量分布に非対称性が生じ、所望の平面度が得られない場合が発生する。   As described above, in the polishing apparatus in which the diameter of the polishing pad is smaller than the diameter of the substrate and the base and the polishing pad are moved relative to each other by the swing mechanism, the polishing pad is in contact with the polishing pad during the polishing process. The region where the polishing pad is separated and not subjected to the polishing action changes instantaneously and instantaneously (depending on the rotation angle position of the substrate and the position of the polishing pad with respect to the substrate). Therefore, the polishing of the substrate surface depends on a combination of processing conditions such as the rotation speed of the substrate, the rotation speed of the polishing pad, and the relative rocking speed of the polishing pad with respect to the substrate (referred to as a polishing recipe). The rate varies from region to region and asymmetry occurs in the polishing amount distribution, so that the desired flatness cannot be obtained.

このような場合に、従来では、研磨レシピのうち、どの条件をどの程度変更すれば良いかを判断することが困難であった。このため、研磨量分布の非対称性が生じた場合に、研磨レシピの各条件値を少しずつ変化させながら、モニター・ウェーハ(Monitor Wafer)を用いたテスト加工を繰り返し行う必要があり、時間的・コスト的に生産性を阻害する要因になるという課題があった。特に、類似する研磨装置を用いて過去に良好な研磨結果を得ていた場合や、基板直径は異なるが加工内容が近似しているような場合には、時間的・コスト的に負荷の大きいテスト加工や、研磨レシピの変更に伴う新たな問題発生を避けるため、できるかぎり実績のある研磨レシピを変更することなく研磨加工を行いたいという要望が強かった。   In such a case, conventionally, it has been difficult to determine how much of the polishing recipe should be changed. For this reason, when asymmetry of the polishing amount distribution occurs, it is necessary to repeatedly perform test processing using a monitor wafer while changing each condition value of the polishing recipe little by little. There was a problem that it became a factor that hinders productivity in terms of cost. In particular, when similar polishing equipment has been used to obtain good polishing results in the past, or when the substrate content is different, but the processing details are similar, this is a time-consuming and costly test. In order to avoid the occurrence of new problems associated with processing and changes in the polishing recipe, there has been a strong demand for polishing without changing the proven polishing recipe as much as possible.

本発明は、上記のような課題に鑑みてなされたものであり、研磨レシピに関する煩雑な作業を解消し生産性を向上できるような研磨装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a polishing apparatus capable of eliminating troublesome work related to a polishing recipe and improving productivity.

上記目的達成のため、請求項1に係る発明の研磨装置は、基板を保持して回転させる基板回転機構と、基板よりも小径に形成され基板と対向姿勢で配設される研磨パッドを回転させるパッド回転機構と、相対回転される基板の被研磨面と研磨パッドの研磨面とを当接させた状態で基板に対して研磨パッドを相対揺動させる揺動機構(例えば、実施形態におけるアーム揺動機構35)と、基板の回転、研磨パッドの回転及び基板に対する研磨パッドの相対揺動を制御して基板の研磨加工を制御する制御装置とを備えて構成される。そのうえで、この研磨装置における制御装置は、研磨加工の加工条件が入力されたときに、入力された加工条件における基板の回転速度、研磨パッドの回転速度、基板に対する研磨パッドの相対揺動範囲及び相対揺動速度、並びに揺動機構の制御条件として予め設定された既定の加減速パターンに基づいて、被研磨面上における研磨面の各部の走行軌跡を積算して被研磨面上における走行軌跡の分布密度を算出し、算出された分布密度の円周方向のばらつきが予め設定された所定の基準値を超えると判断されたときに、既定の加減速パターンを変化させた場合について被研磨面上における走行軌跡の分布密度を算出し、既定の加減速パターンを、分布密度の円周方向のばらつきが基準値以下となる加減速パターンに変更するように構成される。   To achieve the above object, a polishing apparatus according to a first aspect of the present invention rotates a substrate rotating mechanism that holds and rotates a substrate, and a polishing pad that is formed in a smaller diameter than the substrate and is disposed in a posture opposite to the substrate. A pad rotating mechanism and a swinging mechanism that swings the polishing pad relative to the substrate in a state where the surface to be polished of the substrate and the polishing surface of the polishing pad that are relatively rotated are in contact with each other (for example, arm swinging in the embodiment). And a controller for controlling the polishing process of the substrate by controlling the rotation of the substrate, the rotation of the polishing pad, and the relative oscillation of the polishing pad with respect to the substrate. In addition, when a polishing processing condition is input, the control device in the polishing apparatus is configured such that the rotation speed of the substrate, the rotation speed of the polishing pad, the relative swing range of the polishing pad with respect to the substrate, and the relative Based on a predetermined acceleration / deceleration pattern set in advance as a swing speed and a swing mechanism control condition, the travel locus of each part of the polishing surface on the surface to be polished is integrated to distribute the travel locus on the surface to be polished. When the density is calculated, and it is determined that the variation in the circumferential direction of the calculated distribution density exceeds a predetermined reference value, a predetermined acceleration / deceleration pattern is changed on the surface to be polished. It is configured to calculate the distribution density of the running trajectory and change the default acceleration / deceleration pattern to an acceleration / deceleration pattern in which the variation in the circumferential direction of the distribution density is below the reference value

請求項2に係る発明の研磨装置は、前記制御装置が、前記既定の加減速パターンのうち、基板に対する研磨パッドの相対移動方向が逆転する際に相対揺動速度がゼロとなる揺動停止時間を変化させるように構成される。   A polishing apparatus according to a second aspect of the present invention is the polishing stop time in which the relative swing speed becomes zero when the control device reverses the relative movement direction of the polishing pad with respect to the substrate in the predetermined acceleration / deceleration pattern. Is configured to change.

請求項3に係る発明の研磨装置は、前記制御装置が、前記既定の加減速パターンのうち、基板に対する研磨パッドの相対移動方向が逆転し相対揺動速度がゼロの状態から加工条件において設定された相対揺動速度に到達するまでの加速時間を変化させるように構成される。請求項4に係る発明の研磨装置は、前記制御装置が、前記既定の加減速パターンのうち、基板に対する研磨パッドの相対移動方向を逆転させるため加工条件において設定された相対揺動速度の状態から相対揺動速度がゼロになるまでの減速時間を変化させるように構成される。   In the polishing apparatus according to a third aspect of the present invention, the control device is set in processing conditions from a state in which the relative movement direction of the polishing pad with respect to the substrate is reversed and the relative rocking speed is zero in the predetermined acceleration / deceleration pattern. The acceleration time until the relative rocking speed is reached is changed. The polishing apparatus according to a fourth aspect of the present invention is the polishing apparatus according to the fourth aspect of the present invention, wherein the control device is configured to move from a state of relative rocking speed set in a processing condition for reversing a relative movement direction of the polishing pad with respect to the substrate in the predetermined acceleration / deceleration pattern. The deceleration time until the relative rocking speed becomes zero is changed.

本発明に係る研磨装置によれば、研磨レシピに基づいて、研磨面の各部の走行軌跡が積算されて被研磨面上における走行軌跡の分布密度が算出され、この分布密度の円周方向のばらつきが所定の基準値を超えると判断された場合に、円周方向のばらつきが基準値以下となる加減速パターンに自動変更され、研磨レシピを変更することなく非対称性の問題が生じないように自律制御される。このため、高額なモニター・ウェーハを多数消費したテスト加工を繰り返して非対称性が生じない加工条件を探し出す必要がなく、時間及びコストを低減できるとともに、所望の研磨レシピで研磨加工を実行することができる。   According to the polishing apparatus of the present invention, based on the polishing recipe, the travel locus of each part of the polishing surface is integrated to calculate the distribution density of the travel locus on the surface to be polished, and the distribution density varies in the circumferential direction. Is automatically changed to an acceleration / deceleration pattern in which the variation in the circumferential direction is less than or equal to the reference value, so that asymmetry problems do not occur without changing the polishing recipe. Be controlled. For this reason, it is not necessary to search for processing conditions that do not cause asymmetry by repeating test processing that consumes a large number of expensive monitor wafers, and it is possible to reduce time and cost and perform polishing processing with a desired polishing recipe. it can.

従って、本発明によれば、研磨レシピに関する煩雑な作業を解消し生産性を向上可能な研磨装置を提供することができる。   Therefore, according to this invention, the grinding | polishing apparatus which can eliminate the complicated operation | work regarding a grinding | polishing recipe and can improve productivity can be provided.

以下、本発明を実施するための形態について、図面を参照しながら説明する。本発明を適用した研磨装置1の概略構成を図2に示す。研磨装置1は、シリコンウェーハ等の基板Wを保持して回転させる基板回転機構10、研磨パッド23が装着された研磨ヘッド21を回転させるパッド回転機構20、基板Wに対して研磨パッド23を昇降及び相対揺動させるヘッド移動機構30、詳細図示を省略するが、研磨パッド23の中心部にスラリーを供給するスラリー供給機構40、基板Wや研磨パッド23の回転、基板Wに対する研磨パッド23の昇降及び揺動、研磨加工部へのスラリーの供給など、研磨装置の作動を制御して基板Wの研磨加工を制御する制御装置50など備えて構成される。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. A schematic configuration of a polishing apparatus 1 to which the present invention is applied is shown in FIG. The polishing apparatus 1 includes a substrate rotating mechanism 10 that holds and rotates a substrate W such as a silicon wafer, a pad rotating mechanism 20 that rotates a polishing head 21 on which a polishing pad 23 is mounted, and a polishing pad 23 that moves up and down relative to the substrate W. Further, although not shown in detail, the head moving mechanism 30 that relatively swings, the slurry supply mechanism 40 that supplies the slurry to the center of the polishing pad 23, the rotation of the substrate W and the polishing pad 23, the raising and lowering of the polishing pad 23 relative to the substrate W And a control device 50 for controlling the polishing process of the substrate W by controlling the operation of the polishing apparatus such as swinging and supplying the slurry to the polishing processing unit.

基板回転機構10は、円盤状のチャック11と、このチャック11の下部から鉛直下方に延びるスピンドル14、スピンドル14に回転駆動力を伝達してチャック11を水平面内で回転させるチャック駆動モータ15などから構成される。チャック11は、セラミック等の高剛性材料を用いて平面度の高い円盤状に形成されたチャックプレート12と、このチャックプレート12の上面に貼られた吸着パッド13を有して構成される。チャックプレート11の内部には基板Wの下面を真空吸着する真空チャック構造が設けられて基板Wを着脱可能に構成されるとともに、チャック上部が加工テーブルTから露出して配設されており、チャック11に吸着保持された基板Wの研磨対象面(被研磨面)が上向きの水平姿勢で配設される。   The substrate rotating mechanism 10 includes a disk-shaped chuck 11, a spindle 14 extending vertically downward from the lower portion of the chuck 11, a chuck driving motor 15 that transmits a rotational driving force to the spindle 14, and rotates the chuck 11 in a horizontal plane. Composed. The chuck 11 includes a chuck plate 12 formed in a disk shape with high flatness using a high-rigidity material such as ceramic, and a suction pad 13 attached to the upper surface of the chuck plate 12. The chuck plate 11 is provided with a vacuum chuck structure that vacuum-sucks the lower surface of the substrate W so that the substrate W can be attached and detached, and an upper portion of the chuck is exposed from the processing table T. A surface to be polished (surface to be polished) of the substrate W attracted and held by 11 is disposed in an upward horizontal posture.

チャック駆動モータ15の作動は制御装置50により制御され、チャック11に吸着保持された基板Wの回転・停止、回転方向、回転速度などが、加工プログラムに応じて制御装置50により制御される。基板回転機構10と隣接して、ヘッド移動機構30が設けられており、このヘッド駆動機構30の研磨アーム32の先端にパッド回転機構20が設けられる。   The operation of the chuck drive motor 15 is controlled by the control device 50, and the control device 50 controls the rotation / stop, rotation direction, rotation speed, etc. of the substrate W attracted and held by the chuck 11 according to the processing program. A head moving mechanism 30 is provided adjacent to the substrate rotating mechanism 10, and a pad rotating mechanism 20 is provided at the tip of the polishing arm 32 of the head driving mechanism 30.

パッド回転機構20は、円盤状の研磨ヘッド21と、研磨ヘッド21の上部から鉛直上方に延びるスピンドル24、スピンドル24に回転駆動力を伝達して研磨ヘッド21を水平面内で回転させるパッド駆動モータ25などから構成される。   The pad rotating mechanism 20 includes a disk-shaped polishing head 21, a spindle 24 extending vertically upward from the upper portion of the polishing head 21, and a pad driving motor 25 that transmits a rotational driving force to the spindle 24 to rotate the polishing head 21 in a horizontal plane. Etc.

研磨ヘッド21は、チャック11と同様の高剛性材料を用いて平面度の高い円盤状に形成されたポリッシングプレート22と、このポリッシングプレート22の下面に貼られた研磨パッド23を有して構成される。研磨パッド23は、外径が研磨対象である基板Wの直径よりも幾分小さい(80〜95%程度の)円環状に形成されており、例えば、独立発泡構造を有する硬質ポリウレタンのシートを用いて構成され、ポリッシングプレート22の下面に貼り付けられて研磨面が下向きの水平姿勢で配設される。   The polishing head 21 includes a polishing plate 22 formed in a disk shape with high flatness using a high-rigidity material similar to that of the chuck 11, and a polishing pad 23 attached to the lower surface of the polishing plate 22. The The polishing pad 23 is formed in an annular shape whose outer diameter is somewhat smaller (about 80 to 95%) than the diameter of the substrate W to be polished. For example, a hard polyurethane sheet having an independent foam structure is used. The polishing surface is affixed to the lower surface of the polishing plate 22 and the polishing surface is disposed in a downward horizontal posture.

研磨ヘッド21の中心部に、スラリー供給機構40により供給されるスラリーを研磨パッド23の中央部に供給するためのスラリー供給構造が、ポリッシングプレート22の中心を上下に貫通して設けられている。また、研磨ヘッド21の内部に形成された加圧室にエアの供給を受けてポリッシングプレート22を下向きに加圧する、いわゆるエアバッグ式のパッド加圧機構が設けられており、研磨パッド23を基板Wに当接させた状態で加圧室の圧力を制御することにより基盤Wと研磨パッド23との当接圧力、すなわち研磨圧力を制御可能になっている。   A slurry supply structure for supplying the slurry supplied by the slurry supply mechanism 40 to the center of the polishing pad 23 is provided in the center of the polishing head 21 so as to penetrate the center of the polishing plate 22 vertically. Further, a so-called airbag-type pad pressurizing mechanism is provided in which air is supplied to a pressurization chamber formed inside the polishing head 21 to pressurize the polishing plate 22 downward, and the polishing pad 23 is attached to the substrate. By controlling the pressure in the pressurizing chamber while being in contact with W, the contact pressure between the substrate W and the polishing pad 23, that is, the polishing pressure can be controlled.

パッド駆動モータ25の作動及び加圧室の圧力は制御装置50によって制御され、研磨ヘッド21に装着された研磨パッド23の回転・停止、回転方向、回転速度、研磨圧力などが、加工プログラムに基づいて制御装置50により制御される。 The operation of the pad drive motor 25 and the pressure in the pressurizing chamber are controlled by the control device 50, and the rotation / stop, rotation direction, rotation speed, polishing pressure, etc. of the polishing pad 23 mounted on the polishing head 21 are based on the machining program. Are controlled by the control device 50.

ヘッド移動機構30は、加工テーブルTから上方に突出する基部31と、この基部31から水平に延びる研磨アーム32、基部31を通って上下に延びる揺動軸を中心として研磨アーム32を水平揺動させるアーム揺動機構35、および研磨アーム全体を垂直昇降させるアーム昇降機構(不図示)などからなり、上述したパッド回転機構20が研磨アーム32の先端部に設けられている。ヘッド移動機構30は、アーム揺動機構35により研磨アーム32を水平揺動させたときの研磨ヘッド21の揺動軌跡上に基板回転機構10が位置するように構成されており、研磨ヘッド21をチャック11と対向させた状態で研磨アーム全体を昇降させ、研磨パッド23の研磨面を基板Wの被研磨面に当接させた状態で基板Wに対して研磨パッド23を水平揺動可能に構成される。   The head moving mechanism 30 horizontally swings the polishing arm 32 around a base 31 protruding upward from the processing table T, a polishing arm 32 extending horizontally from the base 31, and a swinging shaft extending vertically through the base 31. An arm swinging mechanism 35 for moving the polishing arm, an arm lifting mechanism (not shown) for vertically moving the entire polishing arm, and the like. The pad rotating mechanism 20 described above is provided at the tip of the polishing arm 32. The head moving mechanism 30 is configured such that the substrate rotating mechanism 10 is positioned on the swing locus of the polishing head 21 when the polishing arm 32 is horizontally swinged by the arm swing mechanism 35. The entire polishing arm is moved up and down while facing the chuck 11, and the polishing pad 23 can be horizontally swung with respect to the substrate W while the polishing surface of the polishing pad 23 is in contact with the surface to be polished of the substrate W. Is done.

アーム揺動機構35及びアーム昇降機構の作動は、制御装置50によって制御され、チャック11に保持された基板Wに対する研磨パッド23の揺動開始点(研磨アーム32の揺動開始角度位置)、揺動ストローク(研磨アーム32の揺動角度範囲)、揺動速度などが、加工プログラムに基づいて制御装置50により制御される。   The operations of the arm swing mechanism 35 and the arm lifting mechanism are controlled by the control device 50, and the swing start point (the swing start angle position of the polishing arm 32) of the polishing pad 23 with respect to the substrate W held by the chuck 11 is swung. The movement stroke (the rocking angle range of the polishing arm 32), the rocking speed, and the like are controlled by the control device 50 based on the machining program.

制御装置50は、入力された加工プログラムから研磨レシピ(研磨加工の加工条件)を読み出す。加工プログラムには、研磨レシピとして研磨パッド23の回転速度、基板Wの回転速度、基板Wに対する研磨パッド23の揺動開始点及び揺動ストローク、研磨パッド23の揺動速度、研磨圧力、スラリーの種別、スラリーの供給流量などの条件値が含まれている。   The control device 50 reads a polishing recipe (a polishing processing condition) from the input processing program. In the processing program, as a polishing recipe, the rotation speed of the polishing pad 23, the rotation speed of the substrate W, the swing start point and swing stroke of the polishing pad 23 relative to the substrate W, the swing speed of the polishing pad 23, the polishing pressure, and the slurry Condition values such as type and slurry supply flow rate are included.

制御装置50は、研磨レシピから、研磨パッドの走行軌跡を規定するパラメータである研磨パッド23の回転速度、基板Wの回転速度、基板Wに対する研磨パッド23の揺動開始点及び揺動ストローク、研磨パッド23の揺動速度を取得し、これらの条件値に基づいて基板Wの被研磨面上における研磨パッド23の各部の走行軌跡を算出する。具体的に、加工プログラムにおいて設定された研磨パッド23の回転速度Vp=110[rpm]、基板Wの回転速度Vw=−60[rpm]、基板Wに対する研磨パッド23の揺動開始点を基板中心から30[mm]、揺動ストローク90[mm]、揺動速度Vs=60[mm/sec]について、研磨パッドの走行軌跡を算出する。ここで、基板Wに対して研磨パッド23の往復揺動は、平面視において時計廻りの揺動〜停止〜半時計廻りの揺動の繰り返しであり、研磨アーム32の揺動制御は、原則的に制御装置50内のメモリーに予め設定記憶された既定の加減速パターンPV(図4を参照)に基づいて実行される。そこで、この最初の走行軌跡の算出に際しては、研磨アーム32を既定の加減速パターンで往復揺動させた場合について算出される。なお、研磨アーム32の腕の長さは一定であり、研磨アーム32の揺動の加減速パターンと基板Wに対する研磨パッド23の相対揺動の加減速パターンとは同義である。 From the polishing recipe, the control device 50 determines the rotation speed of the polishing pad 23, the rotation speed of the substrate W, the rotation start point of the polishing pad 23 relative to the substrate W, the swing stroke, The rocking speed of the pad 23 is acquired, and the traveling locus of each part of the polishing pad 23 on the surface to be polished of the substrate W is calculated based on these condition values. Specifically, the rotational speed V p = 110 [rpm] of the polishing pad 23 set in the processing program, the rotational speed V w = −60 [rpm] of the substrate W, and the swing start point of the polishing pad 23 relative to the substrate W are set. The traveling locus of the polishing pad is calculated for 30 [mm] from the center of the substrate, a swing stroke of 90 [mm], and a swing speed V s = 60 [mm / sec]. Here, the reciprocating swing of the polishing pad 23 with respect to the substrate W is repeated from a clockwise swing to a stop to a counterclockwise swing in a plan view, and the swing control of the polishing arm 32 is basically performed. Is executed based on a predetermined acceleration / deceleration pattern P V (see FIG. 4) preset and stored in the memory in the control device 50. Therefore, when calculating the first traveling locus, the calculation is performed for the case where the polishing arm 32 is reciprocally swung with a predetermined acceleration / deceleration pattern. The length of the arm of the polishing arm 32 is constant, and the acceleration / deceleration pattern of oscillation of the polishing arm 32 is synonymous with the acceleration / deceleration pattern of relative oscillation of the polishing pad 23 with respect to the substrate W.

図3は、研磨パッド23の任意点Pについて、上記条件での走行軌跡Lの時間的な変化を示したものであり、(a)(b)(c)の各図は、(a)研磨スタート時:t=0[sec]、(b)研磨スタート後3秒経過時:t=3[sec]、(c)研磨スタート後9秒経過時:t=9[sec]の状態を示している。   FIG. 3 shows the temporal change of the running locus L under the above conditions at an arbitrary point P of the polishing pad 23. FIGS. 3 (a), (b), and (c) are shown in FIG. Start: t = 0 [sec], (b) 3 seconds after polishing starts: t = 3 [sec], (c) 9 seconds after polishing starts: t = 9 [sec] Yes.

この図から理解されるように、任意点Pの走行軌跡Lはきわめて複雑であり、基板Wの被研磨面上では、走行軌跡Lの密度が高い領域と低い領域とが見られ、基盤Wの被研磨面から外れた外周領域を走行する軌跡も散見される。基板Wの被研磨面に形成された走行軌跡Lは、研磨パッド23の任意点Pによって研磨される研磨軌跡であることから、走行軌跡Lの密度が高い領域ほど研磨レート(Removal Rate)が高く、走行軌跡Lの密度が低い領域ほど研磨レートが低くなることを表す。   As can be understood from this figure, the traveling locus L of the arbitrary point P is extremely complex, and on the surface to be polished of the substrate W, a region where the density of the traveling locus L is high and a region where the density is low are seen. There are also some trajectories that run in the outer peripheral area outside the surface to be polished. Since the traveling locus L formed on the surface to be polished of the substrate W is a polishing locus that is polished by an arbitrary point P of the polishing pad 23, the higher the density of the traveling locus L, the higher the polishing rate (Removal Rate). The lower the density of the running locus L, the lower the polishing rate.

制御装置50は、研磨パッド23の研磨面の各部について走行軌跡を積算し、基板Wの被研磨面上に形成される走行軌跡の密度分布を算出する。例えば、上記任意点Pを、周方向に5度ピッチ、径方向に5mmピッチの多数の走行点P1〜Pnとして設定し、これらP1〜Pnの各点の走行軌跡L1〜Lnを研磨加工時間分について積算して、被研磨面上における研磨面の走行軌跡の密度を算出する。こうして得た走行軌跡の密度分布は、実際に研磨加工を行った基板を形状測定して得た研磨レートの面分布の測定データと高い相関関係を有することが発明者による実験により確認されており、算出された走行軌跡の密度に所定の係数kを乗じたものが、研磨レートの面分布をシミュレートしたものとなる。 The control device 50 integrates the traveling locus for each part of the polishing surface of the polishing pad 23 and calculates the density distribution of the traveling locus formed on the surface to be polished of the substrate W. For example, the arbitrary point P, the circumferential direction in 5 degree pitch, set in the radial direction as a number of travel point P 1 to P n of 5mm pitch, running locus L 1 ~L of the points of P 1 to P n n is integrated over the polishing time, and the density of the running locus of the polished surface on the surface to be polished is calculated. It has been confirmed by experiments by the inventors that the density distribution of the running trajectory thus obtained has a high correlation with the measurement data of the surface distribution of the polishing rate obtained by measuring the shape of the substrate actually polished. Multiplying the calculated travel locus density by a predetermined coefficient k simulates the surface distribution of the polishing rate.

そして、研磨レートの面分布から、同一半径の円周上に位置する角度0〜360度の角度の研磨レートの分布として展開したものがポーラー研磨レート(Polar Removal Rate)である。横軸に角度をとったポーラー研磨レートのグラフが平坦でなく、研磨量分布の不均一性を表すポーラー・レンジ(Polar Range=(Max-Min)/Average)が大きいことは、基板の中心軸に対して研磨レートの分布が軸対称でないこと、すなわち非対称性の問題が生じることを意味する。   Then, from the surface distribution of the polishing rate, the one developed as the distribution of the polishing rate at an angle of 0 to 360 degrees located on the circumference of the same radius is the polar removal rate. The polar axis (Polar Range = (Max-Min) / Average) representing the non-uniformity of the polishing amount distribution is not flat in the graph of the polar polishing rate with an angle on the horizontal axis. This means that the polishing rate distribution is not axially symmetric, that is, a problem of asymmetry occurs.

本発明は、以上のような走行軌跡の密度分布と研磨レートの面分布との間の高い相関関係、及びポーラー・レンジと被研磨面の非対称性との関係に基づいて成されており、制御装置50は、複数の半径位置について走行軌跡の分布密度を算出し、算出された分布密度の円周方向のばらつきが予め設定された所定の基準値を超えるか否か、換言すれば、シミュレートしたポーラー・レンジの最大値(最大ポーラー・レンジ(Max Polar Range))が所定の基準値を超えるか否かを判断する。走行軌跡の分布密度が予め設定された所定の基準値を超えると判断されたときには、制御装置50内のメモリーに設定された研磨アーム32の既定の加減速パターンを変化させた場合について走行軌跡の密度分布を算出する。そして、既定の加減速パターンを、走行軌跡の密度の円周方向のばらつきが基準値以下となる加減速パターンに変更する。   The present invention is based on the high correlation between the density distribution of the running locus and the surface distribution of the polishing rate as described above, and the relationship between the polar range and the asymmetry of the surface to be polished. The device 50 calculates the distribution density of the travel locus for a plurality of radial positions, and in other words, simulates whether or not the variation in the circumferential direction of the calculated distribution density exceeds a predetermined reference value set in advance. It is determined whether or not the maximum value of the polar range (Max Polar Range) exceeds a predetermined reference value. When it is determined that the distribution density of the traveling locus exceeds a predetermined reference value set in advance, the traveling locus of the traveling locus is changed when the default acceleration / deceleration pattern of the polishing arm 32 set in the memory in the control device 50 is changed. Calculate the density distribution. Then, the predetermined acceleration / deceleration pattern is changed to an acceleration / deceleration pattern in which the variation in the circumferential direction of the density of the travel locus is equal to or less than the reference value.

図4に、研磨アームの加減速パターンPVを示す。図4において横軸が時間t、縦軸が研磨アーム32の揺動速度(基板Wに対する研磨パッド23の揺動速度)の絶対値|V|である。研磨アーム32は、平面視において時計廻りの揺動と半時計廻りの揺動とを交互に繰り返すことから、加減速パターンは、加速〜設定揺動速度Vs(VOscillation)〜減速を繰り返す。揺動方向が逆方向に反転する減速領域と加速領域との間には、アーム揺動機構35に作用するモーメントが無限大になることを防止するため、揺動速度がゼロとなる停止領域が設けられる。 FIG. 4 shows the acceleration / deceleration pattern P V of the polishing arm. In FIG. 4, the horizontal axis represents time t, and the vertical axis represents the absolute value | V | of the swing speed of the polishing arm 32 (the swing speed of the polishing pad 23 relative to the substrate W). Since the polishing arm 32 alternately repeats the clockwise swing and the counterclockwise swing in plan view, the acceleration / deceleration pattern repeats acceleration to a set swing speed V s (V Oscillation ) to deceleration. In order to prevent the moment acting on the arm swing mechanism 35 from becoming infinite between the deceleration region and the acceleration region where the swing direction is reversed, there is a stop region where the swing speed is zero. Provided.

ここで、加速・減速・停止の各領域にあっても、基板Wと研磨パッド23とはスラリー供給下の押接状態で相対回転しており被研磨面上に走行軌跡が形成される。従って、この加速・減速・停止領域のパターンを変化させれば、研磨レシピにおいて指定された揺動速度Vsを変更することなく、走行軌跡の密度分布を変化させることができ、ポーラー・レンジが所定の基準値以下となる加減速パターンを抽出することができる。 Here, even in each of the acceleration / deceleration / stop regions, the substrate W and the polishing pad 23 are relatively rotated in a pressing state under the supply of slurry, and a traveling locus is formed on the surface to be polished. Therefore, by changing the pattern of the acceleration-deceleration and stopping area, without changing the rocking speed V s designated in the polishing recipe, it is possible to change the density distribution of the traveling locus, it Polar Range An acceleration / deceleration pattern that is equal to or less than a predetermined reference value can be extracted.

具体的には、揺動速度がゼロの状態から設定速度Vsに到達するまでの加速時間をtup、設定速度Vsで等速揺動する等速領域の時間をtv、揺動速度が設定速度Vsからゼロになるまでの減速時間をtdown、揺動方向を反転する際に一時停止する揺動停止時間をtstopとしたときに、加速・減速・停止領域の各時間tup,tdown,tstopのうち少なくともいずれかを変化させて、等速領域以外の設定速度Vsに満たない領域の時間(揺動遅れ時間:Oscillation offset Timeという)toffsetを変化させる。ここに、toffset=tup+tdown+tstopである。 Specifically, the acceleration time until the set speed V s is reached from the state where the swing speed is zero is t up , the time in the constant speed region where the constant speed swing is performed at the set speed V s is t v , and the swing speed There set speed V s t a deceleration time until zero the down, the swing stop time to pause when inverting the swing direction when the t stop, each time the acceleration-deceleration and stopping region t At least one of up , t down , and t stop is changed to change the time t offset (oscillation delay time: referred to as Oscillation offset Time) of a region that does not satisfy the set speed V s other than the constant velocity region. Here, t offset = t up + t down + t stop .

いま、加速・減速領域における加速度の絶対値を同一値aとした場合には、
up=tdown=Vs/a
offset=tup+tdown+tstop=(2Vs/a)+tstop
If the absolute value of acceleration in the acceleration / deceleration region is the same value a,
t up = t down = V s / a
t offset = t up + t down + t stop = (2V s / a) + t stop

この式から、加速・減速領域の加速度の大きさaを変化させて加速時間tup及び減速時間tdownを変化させ、または揺動折り返しの揺動停止時間tstopを変化させることにより、走行軌跡の密度分布を変化させてポーラー・レンジの値を変化させることができる。 From this equation, by changing the acceleration magnitude a in the acceleration / deceleration region to change the acceleration time t up and the deceleration time t down , or by changing the swing stop time t stop for swing back, The value of the polar range can be changed by changing the density distribution.

上式から加速度aを求めると、
a=2Vs/(toffset−tstop
揺動停止時間tstopを求めると、
stop=(2Vs/a)+toffset
When the acceleration a is obtained from the above equation,
a = 2V s / (t offset −t stop )
When the oscillation stop time t stop is obtained,
t stop = (2V s / a) + t offset

制御装置50は、研磨装置の制御プログラムにパラメータとして設定されている加速度a(加速時間tup,減速時間tdown)を所定の加速度範囲内で変化させ、若しくは同様にパラメータ設定されている揺動停止時間tstopを変化させ、またはこれら両方を変化させることによって揺動遅れ時間toffsetを変化させた加減速パターンについて、走行軌跡の密度分布を算出し、これに基づいてシミュレートした研磨レートの面分布から、各条件ごとの最大ポーラー・レンジを算出する。 The control device 50 changes the acceleration a (acceleration time t up , deceleration time t down ) set as a parameter in the control program of the polishing device within a predetermined acceleration range, or similarly swings that are parameter-set. For the acceleration / deceleration pattern in which the oscillation delay time t offset is changed by changing the stop time t stop or both of them, the density distribution of the running trajectory is calculated and the polishing rate simulated based on this is calculated. The maximum polar range for each condition is calculated from the surface distribution.

図1は、上記のようにして算出した最大ポーラー・レンジの変化を示すグラフである。図1において、横軸が揺動遅れ時間(Oscillation offset Time)toffset、縦軸が最大ポーラー・レンジ(Max Polar Range)であり、揺動遅れ時間toffsetを0〜0.1[sec]の間で変化させた場合の最大ポーラー・レンジの変化を表している。 FIG. 1 is a graph showing changes in the maximum polar range calculated as described above. In FIG. 1, the horizontal axis is the oscillation offset time t offset , the vertical axis is the maximum polar range, and the oscillation delay time t offset is 0 to 0.1 [sec]. It shows the change of the maximum polar range when changing between.

この図1から、明らかなように、揺動遅れ時間toffsetを変化させることにより最大ポーラー・レンジを変化させることができる。例えば、既定の加減速パターンにおいて揺動遅れ時間toffsetが0.02[sec]であり、このとき算出される最大ポーラー・レンジが17%であった場合に、揺動遅れ時間toffsetを0.04[sec]以上に変更すれば、最大ポーラー・レンジを7%以下に抑制することができ、揺動遅れ時間toffsetを0.05[sec]に変更すれば最大ポーラー・レンジを2%以下とすることができる。 As is apparent from FIG. 1, the maximum polar range can be changed by changing the oscillation delay time t offset . For example, when the oscillation delay time t offset is 0.02 [sec] in the predetermined acceleration / deceleration pattern and the maximum polar range calculated at this time is 17%, the oscillation delay time t offset is set to 0. If it is changed to .04 [sec] or more, the maximum polar range can be suppressed to 7% or less, and if the oscillation delay time t offset is changed to 0.05 [sec], the maximum polar range is 2%. It can be as follows.

制御装置50は、上記のようなシミュレーション結果に基づき、走行軌跡の密度の円周方向のばらつきが基準値以下となる加減速パターンに変更する。例えば、ポーラー・レンジに換算したときの値が7%以下となる加減速パターンとし、その中の最小値である揺動遅れ時間toffset=0.05[sec]の加減速パターンに変更する。この場合において、変更する具体的なパラメータは、加速度の絶対値a(または加速時間tup,減速時間tdown)及び揺動停止時間tstopの何れであっても良い。 Based on the simulation results as described above, the control device 50 changes the acceleration / deceleration pattern so that the variation in the density of the travel locus in the circumferential direction is not more than the reference value. For example, an acceleration / deceleration pattern in which the value when converted to the polar range is 7% or less is changed to an acceleration / deceleration pattern of the oscillation delay time t offset = 0.05 [sec], which is the minimum value. In this case, the specific parameter to be changed may be either the absolute value of acceleration a (or acceleration time t up , deceleration time t down ) or swing stop time t stop .

制御装置50は、研磨加工の実行操作に応じて研磨加工をスタートさせ、基板回転機構10、パッド回転機構20、ヘッド移動機構30、アーム揺動機構35、及びスラリー供給装置40等の作動を制御し、研磨レシピに基づいた加工条件で研磨加工を実行する。変更された加減速パターンのパラメータは制御装置内のRAMに記憶され、同一の加工プログラムを実行する際に、既定の加減速パターンのパラメータと置換して研磨加工が実行される。   The control device 50 starts the polishing process according to the execution operation of the polishing process, and controls the operations of the substrate rotation mechanism 10, the pad rotation mechanism 20, the head moving mechanism 30, the arm swing mechanism 35, the slurry supply device 40, and the like. Then, the polishing process is executed under the processing conditions based on the polishing recipe. The parameter of the changed acceleration / deceleration pattern is stored in the RAM in the control device, and when executing the same machining program, the polishing process is executed by replacing the parameter of the default acceleration / deceleration pattern.

なお、研磨レシピにおいて設定された加工条件のままで、走行軌跡の密度分布に偏りが無くポーラー・レンジが比較的小さい場合もある。図5は、基板Wの回転速度Vw=−65[rpm]、基板Wに対する研磨パッド23の揺動速度Vs=62[mm/sec]、他の加工条件を同一とした場合において、揺動遅れ時間toffsetを変化させた場合の最大ポーラー・レンジの変化を三角印でプロットし、丸印でプロットする図1のデータと重ねて表示したグラフである。 In some cases, the processing range set in the polishing recipe remains the same, and the density distribution of the running locus is not biased and the polar range is relatively small. FIG. 5 shows a case where the rotation speed V w of the substrate W = −65 [rpm], the swing speed V s of the polishing pad 23 relative to the substrate W = 62 [mm / sec], and other processing conditions are the same. FIG. 3 is a graph displayed by superimposing the change of the maximum polar range when the dynamic delay time t offset is changed by plotting with triangle marks and overlapping the data of FIG. 1 plotted with circle marks.

この図5から理解されるように、研磨レシピにおいて設定された加工条件のままで最大ポーラー・レンジが比較的小さい場合であっても、揺動遅れ時間toffsetを変化させることにより最大ポーラー・レンジを最小化することができる。例えば、既定の加減速パターンにおいて揺動遅れ時間toffsetが0.02[sec]の場合、算出される最大ポーラー・レンジは4%弱であり十分に小さい値であるが、揺動遅れ時間toffsetを0.07[sec]に変更すれば、最大ポーラー・レンジをさらに低減して2%以下にすることができる。すなわち、走行軌跡の密度分布の円周方向のばらつきが比較的変化が小さい場合においても、前述同様の処理を行って加減速パターンを変更することにより、研磨レシピを変更することなく非対称性を最小化した条件で研磨加工を実行することができる。 As can be understood from FIG. 5, even when the maximum polar range is relatively small with the processing conditions set in the polishing recipe, the maximum polar range is changed by changing the oscillation delay time t offset. Can be minimized. For example, when the oscillation delay time t offset is 0.02 [sec] in the predetermined acceleration / deceleration pattern, the calculated maximum polar range is a little less than 4%, which is a sufficiently small value, but the oscillation delay time t If the offset is changed to 0.07 [sec], the maximum polar range can be further reduced to 2% or less. In other words, even when the variation in the circumferential direction of the density distribution of the running trajectory is relatively small, the asymmetry can be minimized without changing the polishing recipe by performing the same process as described above and changing the acceleration / deceleration pattern. Polishing processing can be executed under such conditions.

また、研磨レシピにおいて設定された加工条件のうち、基板の回転速度Vwと基板に対する研磨パッドの揺動速度Vsとを一定範囲で変化させ、これらの加工条件を変更した場合についてそれぞれ前述同様に走行軌跡の密度分布を算出し、研磨レシピを含めて条件の最適化を実行するように構成しても良い。このような構成によれば、例えば図5において丸印でプロットする特性から三角印でプロットする特性に変化させることができ、これにより揺動遅延時間toffsetの変化に対する最大ポーラー・レンジの変化を小さく(揺動遅延時間が変動した場合の対称性に与える影響を小さく)することができる。 Also, among the processing conditions set in the polishing recipe, the substrate rotation speed V w and the polishing pad swing speed V s with respect to the substrate are changed within a certain range, and these processing conditions are changed as described above. Alternatively, the density distribution of the travel locus may be calculated and the conditions may be optimized including the polishing recipe. According to such a configuration, for example, the characteristic plotted with a circle in FIG. 5 can be changed to the characteristic plotted with a triangle, thereby changing the maximum polar range with respect to the change in the oscillation delay time t offset. It can be made smaller (the influence on the symmetry when the oscillation delay time varies) can be reduced.

以上説明したように、本発明の研磨装置では、高額なモニター・ウェーハを多数消費したテスト加工を繰り返して非対称性が生じない加工条件を探し出したり、これに基づいて研磨レシピを変更設定したりする必要がなく、加工プログラムにおいて当初設定した研磨レシピで高品位の研磨加工を実行することができる。従って、本発明によれば、研磨レシピに関する煩雑な作業を解消して生産性を向上可能な研磨装置を提供することができる。   As described above, in the polishing apparatus of the present invention, test processing that consumes a large number of expensive monitor wafers is repeated to find processing conditions that do not cause asymmetry, and the polishing recipe is changed and set based on this. There is no need, and high-quality polishing can be performed with the polishing recipe initially set in the processing program. Therefore, according to this invention, the grinding | polishing apparatus which can eliminate the complicated operation | work regarding a grinding | polishing recipe and can improve productivity can be provided.

揺動遅れ時間に対する最大ポーラー・レンジの変化を示すグラフである。It is a graph which shows the change of the maximum polar range with respect to rocking | fluctuation delay time. 本発明を適用した研磨装置の構成を略示する説明図である。It is explanatory drawing which shows schematically the structure of the grinding | polishing apparatus to which this invention is applied. 基板に対する研磨パッドの任意点の走行軌跡を示す説明図である。It is explanatory drawing which shows the driving | running locus | trajectory of the arbitrary points of the polishing pad with respect to a board | substrate. 研磨アームの揺動制御における加減速パターンを示すグラフである。It is a graph which shows the acceleration / deceleration pattern in rocking | fluctuation control of a grinding | polishing arm. 揺動遅れ時間に対する最大ポーラー・レンジの変化を示すグラフである。It is a graph which shows the change of the maximum polar range with respect to rocking | fluctuation delay time.

符号の説明Explanation of symbols

1 研磨装置 10 基板回転機構
20 パッド回転機構 23 研磨パッド
30 ヘッド移動機構 35 アーム揺動機構(揺動機構)
50 制御装置 L 走行軌跡
V 加減速パターン W 基板
up 加速時間 tdown 減速時間
stop 揺動停止時間 toffset 揺動遅れ時間
DESCRIPTION OF SYMBOLS 1 Polishing apparatus 10 Substrate rotating mechanism 20 Pad rotating mechanism 23 Polishing pad 30 Head moving mechanism 35 Arm swing mechanism (swing mechanism)
50 Control device L Traveling track P V Acceleration / deceleration pattern W Substrate t up acceleration time t down deceleration time t stop oscillation stop time t offset oscillation delay time

Claims (4)

基板を保持して回転させる基板回転機構と、前記基板よりも小径に形成され前記基板と対向姿勢で配設される研磨パッドを回転させるパッド回転機構と、相対回転される前記基板の被研磨面と前記研磨パッドの研磨面とを当接させた状態で前記基板に対して前記研磨パッドを相対揺動させる揺動機構と、前記基板の回転、前記研磨パッドの回転及び前記基板に対する前記研磨パッドの相対揺動を制御して前記基板の研磨加工を制御する制御装置とを備えて構成される研磨装置において、
前記制御装置は、研磨加工の加工条件が入力されたときに、入力された前記加工条件における前記基板の回転速度、前記研磨パッドの回転速度、前記基板に対する前記研磨パッドの相対揺動範囲及び相対揺動速度、並びに前記揺動機構の制御条件として予め設定された既定の加減速パターンに基づいて、前記被研磨面上における前記研磨面の各部の走行軌跡を積算して前記被研磨面上における前記走行軌跡の分布密度を算出し、算出された前記分布密度の円周方向のばらつきが予め設定された所定の基準値を超えると判断されたときには、前記既定の加減速パターンを変化させた場合について前記被研磨面上における前記走行軌跡の分布密度を算出し、前記既定の加減速パターンを、前記分布密度の円周方向のばらつきが前記基準値以下となる加減速パターンに変更するように構成したことを特徴とする研磨装置。
A substrate rotating mechanism for holding and rotating the substrate, a pad rotating mechanism for rotating a polishing pad formed in a posture opposite to the substrate and having a smaller diameter than the substrate, and a surface to be polished of the substrate that is relatively rotated A swinging mechanism for swinging the polishing pad relative to the substrate in a state where the polishing pad is in contact with a polishing surface of the polishing pad, rotation of the substrate, rotation of the polishing pad, and the polishing pad with respect to the substrate In a polishing apparatus comprising a control device that controls the relative polishing of the substrate to control the polishing of the substrate,
When a processing condition for polishing is input, the control device is configured to input the rotation speed of the substrate, the rotation speed of the polishing pad, the relative swing range of the polishing pad with respect to the substrate, and the relative Based on a rocking speed and a predetermined acceleration / deceleration pattern set in advance as a control condition of the rocking mechanism, the traveling locus of each part of the polishing surface on the surface to be polished is integrated and the surface on the surface to be polished is integrated. When the distribution density of the travel locus is calculated, and it is determined that the variation in the circumferential direction of the calculated distribution density exceeds a predetermined reference value set in advance, the default acceleration / deceleration pattern is changed The distribution density of the travel locus on the surface to be polished is calculated for the predetermined acceleration / deceleration pattern, and the variation in the circumferential direction of the distribution density is equal to or less than the reference value. Polishing apparatus characterized by being configured to change the acceleration and deceleration patterns.
前記制御装置は、前記既定の加減速パターンのうち、前記基板に対する前記研磨パッドの相対移動方向が逆転する際に相対揺動速度がゼロとなる揺動停止時間を変化させるように構成したことを特徴とする請求項1に記載の研磨装置。   The control device is configured to change, in the predetermined acceleration / deceleration pattern, a swing stop time in which a relative swing speed becomes zero when a relative movement direction of the polishing pad with respect to the substrate is reversed. The polishing apparatus according to claim 1, wherein the polishing apparatus is characterized. 前記制御装置は、前記既定の加減速パターンのうち、前記基板に対する前記研磨パッドの相対移動方向が逆転し相対揺動速度がゼロの状態から前記加工条件において設定された相対揺動速度に到達するまでの加速時間を変化させるように構成したことを特徴とする請求項1または請求項2に記載の研磨装置。   The control device reaches a relative rocking speed set in the processing conditions from a state in which the relative movement direction of the polishing pad with respect to the substrate is reversed and the relative rocking speed is zero in the predetermined acceleration / deceleration pattern. The polishing apparatus according to claim 1, wherein the acceleration time is changed. 前記制御装置は、前記既定の加減速パターンのうち、前記基板に対する前記研磨パッドの相対移動方向を逆転させるため前記加工条件において設定された相対揺動速度の状態から相対揺動速度がゼロになるまでの減速時間を変化させるように構成したことを特徴とする請求項1から請求項3のいずれか一項に記載の研磨装置。



In the predetermined acceleration / deceleration pattern, the control device reverses the relative movement direction of the polishing pad with respect to the substrate, and the relative rocking speed becomes zero from the state of the relative rocking speed set in the processing conditions. The polishing apparatus according to any one of claims 1 to 3, wherein the deceleration time is changed.



JP2007321394A 2007-12-12 2007-12-12 Polishing equipment Active JP5120696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007321394A JP5120696B2 (en) 2007-12-12 2007-12-12 Polishing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007321394A JP5120696B2 (en) 2007-12-12 2007-12-12 Polishing equipment

Publications (2)

Publication Number Publication Date
JP2009142924A JP2009142924A (en) 2009-07-02
JP5120696B2 true JP5120696B2 (en) 2013-01-16

Family

ID=40914167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007321394A Active JP5120696B2 (en) 2007-12-12 2007-12-12 Polishing equipment

Country Status (1)

Country Link
JP (1) JP5120696B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118816A (en) * 1999-10-19 2001-04-27 Nikon Corp Chemical/mechanical polishing method
JP2001237206A (en) * 1999-12-15 2001-08-31 Matsushita Electric Ind Co Ltd Flattening method
JP2003205454A (en) * 2001-12-28 2003-07-22 Nagano Denshi Kogyo Kk Polishing method and device for thin plate
JP2004223636A (en) * 2003-01-21 2004-08-12 Nikon Corp Polishing method, polishing device, polishing simulation method, and semiconductor device and its manufacturing method
JP2005254416A (en) * 2004-03-15 2005-09-22 Okamoto Machine Tool Works Ltd Polishing method of square work

Also Published As

Publication number Publication date
JP2009142924A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
JP4658182B2 (en) Polishing pad profile measurement method
US8870625B2 (en) Method and apparatus for dressing polishing pad, profile measuring method, substrate polishing apparatus, and substrate polishing method
TWI681842B (en) Polishing apparatus, method for controlling the same, and method for outputting a dressing condition
JP5964262B2 (en) Method for adjusting profile of polishing member used in polishing apparatus, and polishing apparatus
US7357695B2 (en) Systems and methods for mechanical and/or chemical-mechanical polishing of microfeature workpieces
US20170216991A1 (en) Polishing-amount simulation method for buffing, and buffing apparatus
JP2011224680A (en) Polishing method and device
JP5120697B2 (en) Polishing equipment
JP2018001325A (en) Head height adjustment device and substrate processing apparatus including head height adjustment device
JP2008023674A (en) Dressing device adjustment method, dressing device and polishing device
JP2021065990A (en) Polishing method and polishing device
JP6121795B2 (en) Dressing apparatus, polishing apparatus equipped with the dressing apparatus, and polishing method
JP5120696B2 (en) Polishing equipment
JP2002343753A (en) Simulation method and apparatus thereof, machining apparatus, machining system, and semiconductor device manufacturing method
JP4384954B2 (en) Processing method, processing device, and rectangular flat plate processed product processed by this processing method
JPH10217102A (en) Dressing method for abrasive cloth and its device
JP2010172975A (en) Polishing apparatus
JP2021142628A (en) Thickness measurement device for polishing pad
JP5257752B2 (en) Polishing pad dressing method
JP2007318041A (en) Polishing device
JP5234403B2 (en) Polishing method and polishing apparatus
JP6712841B2 (en) Grinding method
JP2003022992A (en) Device and method for producing semiconductor
JP5170642B2 (en) Polishing equipment
JP5294054B2 (en) Polishing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5120696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250