JP2004223636A - Polishing method, polishing device, polishing simulation method, and semiconductor device and its manufacturing method - Google Patents

Polishing method, polishing device, polishing simulation method, and semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2004223636A
JP2004223636A JP2003012686A JP2003012686A JP2004223636A JP 2004223636 A JP2004223636 A JP 2004223636A JP 2003012686 A JP2003012686 A JP 2003012686A JP 2003012686 A JP2003012686 A JP 2003012686A JP 2004223636 A JP2004223636 A JP 2004223636A
Authority
JP
Japan
Prior art keywords
polishing
conditions
polished
motion
relative speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003012686A
Other languages
Japanese (ja)
Inventor
Tatsuya Chiga
達也 千賀
Kajiro Ushio
嘉次郎 潮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003012686A priority Critical patent/JP2004223636A/en
Publication of JP2004223636A publication Critical patent/JP2004223636A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve polishing quality by reducing unevenness of a step eliminating property and polishing unevenness of a circumferential direction in CMP polishing. <P>SOLUTION: In this polishing method, a polishing object is polished by making a polishing body perform a relative motion in relation to the polishing object, while pressing the polishing body on the polishing object. In the method, polishing steps on a plurality of polishing conditions different one another are provided. The unevenness of the step eliminating property is reduced by canceling and reducing the size of deviation of a history of relative speed of the relative motion generated by polishing on one polishing condition of the plurality of polishing conditions by deviation of a history of the relative speed generated by polishing on other one or more polishing conditions of the plurality of polishing conditions. The polishing unevenness of the circumferential direction is reduced by making an oscillation period of an oscillating motion of the polishing body and a rotation period of the polishing object asynchronous. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウェハ等の研磨対象物を研磨加工するための研磨方法、研磨装置、研磨シミュレーション方法、半導体デバイス、及び半導体デバイスの製造方法に関する。
【0002】
【従来の技術】
半導体デバイスの製造工程に於いて、金属電極の埋め込みや多層配線、等の為に半導体デバイスの平坦化技術が必須になっており、その平坦化技術の中で化学的機械的研磨(Chemical Mechanical Polishing、又はChemical Mechanical Planarization、以下CMPと呼ぶ)技術が特に重要視されている。
【0003】
CMPは従来、図10に示されるようなCMP研磨装置を用いて行われる。この従来の研磨装置に於いて、半導体デバイスを作製するための半導体ウェハ13はウェハホルダ14に取り付けられ、半導体ウェハ13の径よりも大きな径の研磨体11はほぼ同寸の定盤12に貼り付けられている。研磨剤15を供給しながら、半導体ウェハ13を回転する研磨体11に押圧し、半導体ウェハ13を回転させながら揺動することにより、物理的作用と化学的作用とにより研磨が行なわれる。(例えば、特許文献1参照)
上記従来のCMP研磨装置は半導体ウエハの大口径化に伴って、ますます巨大化する定盤12を必要とするので、装置自体が大きくなり、設置の為に、広い、高価なクリーンルームスペースを必要とするばかりでなく、例えば、研磨パッドのような消耗部品の交換作業が、その大きさ故に非常に困難であることからも分かるように、装置の操作性が悪いという問題があった。又、半導体プロセスの成膜プロセスでは半導体ウェハ面上に成膜された膜に膜厚分布が生じることが多く、CMP工程では、この膜厚分布に対応させて所望の研磨量(研磨により除去される量)分布で研磨する必要が生じるが、従来のCMP研磨装置は巨大な研磨体に半導体ウェハを常時接触させて研磨を行なうので、研磨量分布を制御することが困難である。例えば、研磨量分布を持たせる為に、研磨体へ押圧する研磨対象物の圧力分布を半導体ウェハ面上で局所的に調節するという極めて複雑且つ困難な手段が考えられるが、これは実施が困難であるばかりでなく、研磨量分布の制御性が不充分であるという問題があった。
【0004】
従来のCMP研磨装置の以上の問題を解決するために、図3に示されるような半導体ウエハの径よりも径が小さい研磨体で研磨する研磨装置(以下小径パッド研磨装置と呼ぶ)が提案されている。この小径パッド研磨装置は、半導体ウェハ13がウェハホルダ14に取り付けられ、又、半導体ウェハ13よりも小径の研磨体11は定盤12に貼り付けられている。研磨剤15を供給しながら、研磨体11を回転する半導体ウェハ13に押圧し、研磨体11を回転させながら揺動することにより研磨が行なわれる。(例えば、特許文献2参照)
この小径パッド研磨装置は、研磨体11が小型であるので、研磨装置を小型化できるという利点を持っている。又、装置が小型である為に、研磨体等の消耗部品の交換作業が容易であることからも分かるように、小径パッド研磨装置は操作性が良い。
【0005】
更に、小径パッド研磨装置は、半導体ウェハよりも研磨体の径が小さいので、半導体ウエハ面上で研磨体の存在確率を変えることにより、自在に研磨量分布(研磨プロファイル)を制御することが可能である。
【0006】
小径パッド研磨装置は、半導体ウェハ面上で均一又は所望の除去量分布即ち研磨量分布を得る為に、半導体ウェハ13や研磨体11の回転速度や研磨体11の揺動等を適切に組み合わせた研磨条件で研磨を行なう。
【0007】
【特許文献1】
米国特許第3615955公報
【特許文献2】
特開平7−88759号公報
【0008】
【発明が解決しようとする課題】
しかしながら、近年、平坦化技術に要求される研磨品質は益々高くなり、図3に示されるような小径パッド研磨装置で研磨すると、研磨された半導体ウェハのデバイスパターンを構成するパターンの段差解消性にムラがあるという問題があった。具体的には、半導体ウェハ面上の凸状のパターンの研磨後に残る段差の大きさが、半導体ウェハ面上のパターン位置、又は、パターンの向きに依存して、残った段差が均一でないという問題があった。このように段差解消性にムラがある為に、半導体ウェハ面上の一つの位置にある一つのパターンで段差解消の最適なタイミングが見つかっても、その同じタイミングで半導体ウェハ面上の他の位置の同一形状のパターンでは例えば段差解消不足であったり過剰研磨であったりして最適なタイミングではない、又は、半導体ウェハ面上の同じ位置にあるパターンでもパターンの向きが変わると最適タイミングではないという問題があった。その為に、段差解消性にムラがある場合、凸状のパターンの段差を解消して研磨終了させる正確なタイミングが見つけられないという問題があった。
【0009】
又、図3に示されるような小径パッド研磨装置を用いた研磨は、研磨体11の径が研磨対象物13の径よりも小さく、回転する研磨対象物13の中心位置に対する研磨体11の相対位置を研磨体11の揺動によって変化させながら研磨を行なう。このような小径パッド研磨装置で研磨すると、円周方向に研磨ムラ、即ち、除去膜厚に円周方向のムラが生じることがあった。図11はこの研磨ムラの発生の様子を示す。▲1▼〜▲6▼は半導体ウェハ13面上の研磨ムラ(研磨量分布)を求める為の測定位置である。このように円周方向に研磨ムラが生じる場合、一部分が適切な研磨終了の最適なタイミングでも、その他の部分では研磨量が不足していたり、又は研磨量が過度であったりするために、研磨終了の正確なタイミングを見つけることができなかった。
【0010】
これら段差解消性のムラや円周方向の研磨ムラの問題は研磨品質を低下させていた。
【0011】
本発明は、上記課題を解決し、研磨品質が高い研磨方法、研磨装置、研磨品質が高い研磨方法を可能とする研磨シミュレーション方法、高品質の半導体デバイスの製造を可能とする半導体デバイスの製造方法、及び本半導体デバイスの製造方法で製造された半導体デバイスを提供することである。
【0012】
【課題を解決する為の手段】
以上の課題を解決する為に、本発明の第1の態様は、研磨体を研磨対象物に押圧しながら、前記研磨体を前記研磨対象物に対して相対運動させ、前記研磨対象物を研磨する研磨方法であって、互いに異なる複数の研磨条件で研磨する段階を具え、前記複数の研磨条件の内の一つの研磨条件で研磨することによって生じた前記相対運動の相対速度の履歴の偏りの大きさを、前記複数の研磨条件の内の他の一つ以上の研磨条件で研磨することによって生じた前記相対運動の相対速度の履歴の偏りによって相殺して低減するものである。
【0013】
本発明の第2の態様は、第1の態様に於いて、前記研磨体と前記研磨対象物が研磨中に各々回転され、前記複数の研磨条件の内の一つの研磨条件に於ける前記研磨体の回転方向が、前記複数の研磨条件の内の他の一つの研磨条件で反転されるものである。
【0014】
本発明の第3の態様は、第1の態様に於いて、前記研磨体と前記研磨対象物が研磨中に各々回転され、前記複数の研磨条件の内の一つの研磨条件に於ける前記研磨体と前記研磨対象物の回転方向が、前記複数の研磨条件の内の他の一つの研磨条件で両方共に反転されるものである。
【0015】
本発明の第4の態様は、前記第1〜第3何れかの態様に於いて、前記研磨を複数の研磨位置を有する研磨装置で行い、前記異なる複数の研磨条件の各々が、前記複数の研磨位置の各研磨位置に於ける研磨体と研磨対象物保持部の各運動に対して与えられ、前記複数の研磨位置の内の一つの研磨位置で前記複数の研磨条件の内の一つの研磨条件により研磨が終了した後に、前記複数の研磨位置の内の他の一つの研磨位置で前記複数の研磨条件の内の他の一つの研磨条件で研磨を行なう為に、前記一つの研磨位置から他の研磨位置へ前記研磨対象物を搬送する段階を具えるものである。
【0016】
本発明の第5の態様は、研磨体に回転運動を与える研磨体回転機構と研磨対象物に回転運動を与える研磨対象物回転機構とを具え、前記研磨体を前記研磨対象物に押圧しながら、前記研磨体を前記研磨対象物に対して相対運動させ、前記研磨対象物を研磨する研磨装置であって、前記研磨体回転機構と前記研磨対象物回転機構とが、各々時計回りと反時計回りの両方向に回転可能となるよう構成され、前記研磨加工の間に前記研磨体の回転運動の回転方向又は前記研磨対象物の回転運動の回転方向の片方または両方を反転させることにより、前記相対運動の偏りを低減させるものである。
【0017】
本発明の第6の態様は、研磨体を回転運動する研磨対象物に押圧しながら、前記研磨体の揺動運動によって前記研磨対象物の中心位置に対する前記研磨体の相対位置を変化させながら研磨する研磨方法であって、前記揺動運動の揺動周期と前記回転運動の周期とが研磨時間中には同期しないものである。
【0018】
本発明の第7の態様は、研磨体を回転運動する研磨対象物に押圧しながら、前記研磨体の揺動運動によって前記研磨対象物の中心位置に対する前記研磨体の相対位置を変化させながら研磨する研磨装置の研磨条件を決定する為のシミュレーション方法であり、前記揺動運動の揺動周期と、前記回転運動の周期とが研磨時間中には同期しないよう予め研磨条件を決定するものである。
【0019】
本発明の第8の態様は、半導体デバイスの製造方法であって、前記1〜4、5、6何れかの態様を用いて研磨対象物を研磨する段階を具えるものである。
【0020】
本発明の第9の態様は、半導体デバイスであって、前記第8の態様で製造されるものである。
【0021】
【発明の実施の形態】
本発明の研磨方法を説明する前に、本発明の理解を容易にする為に、本発明に到る経過を順に説明する。
[発明へのアプローチ]
先ず、発明者は、研磨量が研磨対象物に対する研磨体の相対速度の大きさに比例することから、図3に示される小径パッド研磨装置で段差解消性が低い原因が、相対速度(ベクトル)にあるのではないかと考え、研磨中の相対速度についての知見を得る為に、相対速度の履歴のシミュレーション計算をした。具体的には、図4に示されるように、12インチφの半導体ウェハ13面上に任意に選ばれた(0,0)、(60,0)、(120,0)の3点に於いて研磨体11が各々の点に与える相対速度Vの履歴をシミュレーション計算した。半導体ウェハ13の回転周期と研磨体11の揺動周期が研磨時間と較べて充分に短く、且つ、該回転周期と該揺動周期とが同期しない場合、半径60の円周上の任意の点はほぼ同一の相対速度の履歴を受け、半径120の円周上の任意の点もほぼ同一の相対速度の履歴を受ける。従って、以上の研磨条件の場合、このシミュレーション計算により、(0,0)、(60,0)、(120,0)の3点以外に、半径60、半径120の各円周上の相対速度Vの履歴をほぼ知ることができる。
【0022】
ここで(0,0)、(60,0)、(120,0)は、半導体ウエハ13において、シミュレーション開始時である、時間TがT=0での半導体ウエハ13面上の位置を示したものである。半導体ウェハ13は回転するので、この3点は、半導体ウエハ13の回転と研磨経過時間と共に見かけ上位置座標が変化する。半導体ウエハ13の回転角速度をωとすれば、例えば(120,0)の点のT秒後の座標は、(120cosωT、120sinωT)である。
【0023】
又、研磨体11は回転運動をすると共に、半導体ウエハ13との中心間距離が周期的に変化する揺動運動を行う。
【0024】
ここで、半導体ウェハ13面上の上記の3点の回転運動による速度をV、上記の3点に於ける研磨体11の回転運動による速度と揺動運動による速度との合成速度をVとすると、半導体ウェハ13に対する研磨体11の相対速度Vは、
V=V− Vで与えられる。
【0025】
本シミュレーションでは、研磨量と相対速度との関係をより詳しく理解する為に、相対速度Vを半導体ウェハ13の半径方向(r)成分であるVrと、回転方向(θ)成分であるVθとに分解し、この相対速度成分Vrと相対速度成分Vθの各々の様子を調べた。ここで、|V|=|Vr|+|Vθ|の関係がある。r方向は半導体ウェハ13の中心から外側に向かう方向を正とし、θ方向は時計回り方向を正とした。
【0026】
本シミュレーションは、以下の表1の条件で行なわれた。
【0027】
図5、図6、図7は、各々、半導体ウェハ13面上の計算点(0,0)、(60,0)、(120,0)に於ける相対速度の本シミュレーション結果を示す。尚、サンプリング間隔は10msecに取られた。
【0028】
このシミュレーション結果は、表1の条件で研磨するときの相対速度成分Vr、Vθの経過時間に対する移り変わり、即ち相対速度の上の3つの各計算点に於ける、相対速度の履歴そのものを示す。
[表1]
研磨体11の研磨面の有効径:外径268mmφ、内径84mmφ(リング状)
研磨体11の回転速度:時計回りに200rpm
半導体ウェハ13の回転速度:反時計回りに200rpm
揺動ストローク:38mm
揺動速度:40mm/秒
研磨開始時に於ける研磨体11の中心と半導体ウェハ13の中心との中心間距離は30mmであり、この中心間距離が30mmと68mmの範囲で研磨体11を揺動させた。
計算時間:10秒
とした。
【0029】
図5を参照して、計算点(0,0)に於けるVrは、時間と共に正側と負側の間を振動しており、正負均等に、即ち、正側と負側に同じ頻度で且つ同じ大きさで、出現している。
【0030】
今、一般に図3に示されるような研磨装置の研磨体11が研磨対象物13に与える相対速度Vの履歴を定量化する為に、該相対速度Vを研磨時間に渡って全部積算、又は積分したベクトルを累積相対速度と呼び、Vで示す。この累積相対速度Vは相対速度Vの履歴の偏り(ベクトル値)を表す。又、相対速度成分Vr、Vθを研磨時間に渡って全部積算、又は積分したものを累積相対速度成分と呼び、各々Vr、Vθで示す。累積相対速度成分Vrは、相対速度成分Vrの履歴の偏りを、又は相対速度Vの履歴の偏りのr方向成分を表す。又、累積相対速度成分Vθは、相対速度成分Vθの履歴の偏りを、又は相対速度Vの履歴の偏りのθ方向成分を表す。
【0031】
シミュレーション結果の検討に戻って、計算点(0,0)に於ける相対速度Vrの累積相対速度Vrの大きさはほぼ零となるので、相対速度Vrの履歴には偏りがないと言える。
【0032】
図5を参照して、計算点(0,0)に於けるVθもVrと同様に時間と共に正側と負側の間を振動しており、正負均等に、即ち、正側と負側に同じ頻度で且つ同じ大きさで、出現している。この相対速度Vθの累積相対速度Vθもその大きさがほぼ零となるので、相対速度Vθの履歴も相対速度Vrの履歴と同様に偏りがないと言える。従って、計算点(0,0)に於ける研磨は相対速度VrとVθの履歴に偏りが無く、均等研磨と言える。
【0033】
図6を参照して、計算点(60,0)に於けるVrは、計算点(0,0)に於けるVrと同様に正負均等に出現している。このVrの累積相対速度Vrはその大きさがほぼ零となるので、相対速度Vrの履歴には偏りがない。しかしながら、Vθは、負に偏った出現を見せている。このVθの累積相対速度Vθを計算すると、この累積相対速度Vθは負方向に無視できない大きさを持つ。図6の相対速度Vθの履歴は、負方向に大きな偏りVθを持つ。別の表現で、相対速度Vの履歴がθ方向に大きな偏りVθを持つ。従って、計算点(60,0)に於ける研磨は相対速度の履歴に偏りが有り、不均等研磨と言える。
【0034】
図7を参照して、計算点(120,0)に於けるVrは、計算点(0,0)に於けるVrと同様に正負均等に出現している。このVrの累積相対速度Vrはその大きさがほぼ零となるので、相対速度Vrの履歴には偏りがない。しかしながら、Vθは、計算点(60,0)に於けるVθ以上に負に偏った出現を見せている。このVθの累積相対速度Vθを計算すると、この累積相対速度Vθは、負方向の、計算点(60,0)に於けるVθ以上に大きな値を持つ。即ち、相対速度Vθの履歴は、計算点(60,0)に於ける以上に大きな偏りVθを持つ。別の表現で、相対速度Vの履歴が、計算点(60,0)に於ける以上にθ方向に大きな偏りVθを持つ。従って、計算点(120,0)に於ける研磨は相対速度に偏りが有り、計算点(60,0)に於ける以上に不均等な不均等研磨と言える。
【0035】
以上のシミュレーション結果で判明した、相対速度の履歴の偏りがある様子を図8に示す。図8に於いて、●は計算点(120,0)の位置3を、矢印は計算点(120,0)とほぼ等価な相対速度Vθの履歴を受ける位置にあるパターン1とパターン2に於ける相対速度Vθの履歴の偏り(累積相対速度Vθ)を示す。Vθは負であるので、反時計方向を向いている。Vrの履歴の偏り(累積相対速度Vr)はほぼ零となるので示されていない。
【0036】
次に、上記シミュレーションによって、相対速度の履歴に偏りがあることが判明した表1で示された研磨条件で、実際に半導体ウェハ13を研磨した。図8に於いて、上下左右の4個の長方形は計算点(120,0)と同じr方向の位置に配置され、実際に研磨された半導体ウェハのデバイスパターンを示す。図8に於いて、上のパターン1と左のパターン2とはほぼ同一円周上に配置されており、パターン1は長手方向をr方向に向けて、パターン2は長手方向をθ方向に向けている。パターン1に於ける研磨は長手方向(r方向)には相対速度の履歴の偏りがないが、その直角方向(θ方向)に相対速度の履歴の偏りVθがある。又、パターン2に於ける研磨は長手方向(θ方向)に相対速度の履歴の偏りVθがあるが、その直角方向(r方向)に相対速度の履歴の偏りがない。
【0037】
図9(a)は、パターン2の長手方向の横断面の方向A−A’とその方向の相対速度の履歴の偏りVθを、パターン1の長手方向の横断面の方向B−B’とその方向の相対速度の履歴の偏りVrを示す。Vrの大きさはほぼ零であるので、○で示されている。
【0038】
図9(b)は、パターン2のA−A’断面の、研磨前(左)、研磨後(右)の形状と、パターン1のB−B’断面の、研磨前(左)、研磨後(右)の形状を示す。
【0039】
パターン2のA−A’断面はA−A’方向に相対速度が偏って発生している影響を大きく受け、図9(b)上段のように、研磨の進行に伴い、段差が大きく傾いた傾向を持ちながら段差が低減する。
【0040】
一方、パターン1のB−B’断面はB−B’方向に相対速度が正負均等に発生しているので、図9(b)下段のように、研磨の進行に伴い、傾きがなく均一に段差が低減する。
【0041】
以上の事実から、半導体ウエハ13面上のパターンの配置の向きの違いにより、同一のパターン構造であっても、段差の解消の様子に大きな違いが現れることが明らかとなった。
【0042】
また、同時に、累積相対速度成分が小さい方向に置かれたパターンは、その方向において傾きが少ない段差解消研磨が可能であるということが明確となった。
【0043】
このことから、段差解消性を向上する為には、相対速度の履歴の偏りを低減することが有効ではないかとの発想に到った。
[本発明の実施の形態1]
図1、図2を参照して、本発明の実施の形態1の研磨方法を説明する。
【0044】
本発明の実施の形態の研磨方法は、図2に於いて、研磨対象物13の径よりも小さい研磨体11を研磨対象物13に押圧しながら、前記研磨体11を前記研磨対象物13に対して相対運動させ、前記研磨対象物13を研磨加工する研磨方法であって、互いに異なる複数の研磨条件で研磨する段階を具え、前記複数の研磨条件の内のどの一つの研磨条件での研磨によっても前記相対運動の相対速度の履歴が偏りを持ち、前記複数の研磨条件で研磨することによって前記偏りの大きさを低減させることを特徴とする。
【0045】
本発明の実施の形態の研磨方法の相対運動は、研磨体11と研磨対象物13の各々の運動5、6により与えられる。研磨体11は研磨体移動機構19により研磨体運動5を与えられ、研磨対象物13は研磨対象物移動機構20により研磨対象物運動6を与えられる。前記研磨体運動は、通常は、図2の研磨装置に示されるような回転運動と揺動運動との組み合わせ、又は回転運動のみであり、前記研磨対象物運動は、通常回転運動のみであるが、特に図2に示された運動に限定されるものではない。前記相対運動は、研磨対象物運動6に対する研磨体運動5である。
【0046】
本発明の実施の形態の研磨方法の相対速度Vは、研磨対象物13の研磨対象物運動6の速度に対する研磨体11の研磨体運動5の速度であり、研磨体11の速度をV、研磨対象物13の速度をVとすると、相対速度Vは、[発明へのアプローチ]欄で行なった定義と全く同様にV=V−Vで与えられる。
【0047】
本発明の実施の形態の研磨方法は、互いに異なる複数の研磨条件で研磨する。これら複数の研磨条件間に於いて、少なくとも前記相対速度の履歴が互いに異なる。前記互いに異なる相対速度の履歴は、各研磨条件間で互いに異なる前記研磨体運動又は前記研磨対象物運動により与えられる。
【0048】
本発明の実施の形態の研磨方法は、一つの研磨条件に於いて前記各相対速度の履歴に一つの偏り(ベクトル)を持つ。前記偏りは前記互いに異なる複数の研磨条件間で異なる方向と大きさを持つ。これら互いに異なる研磨条件間で、前記偏りを合成すると、合成された偏りは、一つの研磨条件に於ける前記偏りよりも低減されている。即ち、一つの研磨条件で発生する相対速度の履歴の偏りを、他の研磨条件で発生する相対速度の履歴の偏りで相殺して、相殺された結果の偏りの大きさが前記一つの研磨条件で発生する偏りよりも小さくなるよう、他の研磨条件を設定している。他の研磨条件は一つ以上、いくつであっても良い。
【0049】
以上のような本発明の実施の形態の研磨方法を行なうと、研磨体11の相対速度の履歴の偏りが低減するので、半導体ウェハ等の研磨対象物13面上の凸状のパターンを研磨したときに、パターンの向きに無関係に該パターン上で均一に段差を減らすことができ、又、研磨対象物13上のパターンの位置に関係なく均一に段差を減らすことができる。
【0050】
以上説明した本発明の実施の形態の研磨方法を図1(a)(b)を参照して具体的に説明する。図1(a)(b)に於いて、13は、図2に示された研磨装置の研磨対象物保持部14に取り付けられた研磨対象物、1、2は研磨対象物13の被研磨面上の凸状パターン、●で示される7は研磨対象物13上の任意の点である。
【0051】
この任意の点7の研磨対象物13の中心からの距離を半径とする同心円上の点は、一般に等価な研磨履歴(相対速度の履歴)を受ける。この同心円上にあるr方向に細長いパターン1とθ方向に細長いパターン2とに対して研磨体11が行なう研磨について説明する。
【0052】
第一の研磨条件での研磨体11の相対速度をV1とし、第一の研磨条件での研磨終了後の相対速度V1の履歴の偏りのr成分をV1r、θ成分をV1θとする。V1θは無視できない大きさを持つので、図1(a)に矢印で示されるが、V1rは通常は実質的に零となるので、図1(a)には示されない。第一の研磨条件での研磨が終わると、次に、第二の研磨条件で研磨体11の相対速度V2で研磨を行なう。相対速度V2の履歴の偏りのr成分をV2r、θ成分をV2θとすると、V2θは、図1(a)に矢印で示すように、V1θとは逆向きにV1θの大きさを相殺するように生じる。V2rは、V1rと同様に通常は実質的に零となるので、図1(a)には示されない。その結果、図1(b)に示すように、合成された偏りVθは単一の第一又は第二の研磨条件の研磨による偏りよりも小さくなる。ここで、Vθ=V1θ+V2θである。
【0053】
以上のように相対速度Vの履歴の偏りが減少するので、パターンの向きや研磨対象物上のパターンの位置に関係なく均一に段差を減らすことができる。
【0054】
具体的に、研磨体の相対速度Vの履歴の偏りは例えば以下のような方法で減少させることができる。
【0055】
第一の方法は、第一の研磨条件を、研磨体11を或る回転方向に或る回転速度で、研磨対象物13を或る回転方向に或る回転速度で回転しながら所定時間研磨する条件とし、第二の研磨条件を、研磨体11の回転方向のみを第一の研磨条件とは逆回転とし、他は第一の研磨条件から変えない条件とするものである。
【0056】
この方法によれば、第一の研磨条件の研磨で生じる相対速度の履歴の偏りを、第二の研磨条件の研磨で生じる偏りによって完全には相殺することができないが、研磨体11の相対速度の履歴の偏りを大幅に減らすことができる。
【0057】
第二の方法は、第一の研磨条件を、研磨体11を或る回転方向に或る回転速度で、研磨対象物13を或る回転方向に或る回転速度で回転しながら所定時間研磨する条件とし、第二の研磨条件を、研磨体11と研磨対象物13との回転方向を共に回転速度の大きさは変えないで逆回転とし、第一の研磨条件と同じ時間研磨する条件とするものである。
【0058】
この方法によれば、第一の研磨条件の研磨で生じる相対速度の履歴の偏りを、第二の研磨条件の研磨で生じる偏りによって完全に相殺することが可能である。この方法により、研磨体11の相対速度の履歴の偏りが零の実質的な均等研磨、理想的な研磨が可能である。
【0059】
第三の方法は、図16に示すように、第一の研磨位置と第二の研磨位置と必要に応じて第三以降の研磨位置を具える研磨装置を用いて研磨する方法である。これら複数の研磨位置には各々の研磨体と研磨対象物保持部とが設けられている。各研磨体と各研磨対象物保持部の回転等の運動条件は他の研磨体や他の研磨対象物の運動条件とは異なって設定されており、第一の研磨位置には研磨体の第一の相対速度の履歴の偏りを生じる運動条件が設定されており、第二の研磨位置には第一の研磨条件で生じた偏りを相殺する運動条件が設定されている。例えば、第一の研磨条件と第二の研磨条件との関係は、前述の第一の方法又は第二の方法で示した方法になっている。
【0060】
上記第三の方法では、先ず、第一の研磨位置で第一の研磨条件で研磨対象物の研磨を終了させると、この研磨対象物を第二の研磨位置に搬送し(図16に矢印で搬送方向を示す)、第二の研磨位置で第二の研磨条件で研磨する。本実施形態の研磨方法によると、第一の研磨位置で生じた相対速度の履歴の偏りを第二の研磨位置で生じた偏りによって低減することができる。又、第二の研磨位置で第二の研磨条件で第一の研磨対象物を研磨しながら、第一の研磨位置で第一の研磨条件で第二の研磨対象物を研磨ができるので、平均研磨時間を短縮することができ、生産量が多い。又、一つの研磨位置では一つの研磨条件を設定すれば良いので、異なる研磨条件を容易に設定できる。
【0061】
本発明の実施の形態の研磨方法は、研磨体11の径が研磨対象物13の径よりも小さいときにその効果を特に発揮するが、研磨体11の径が研磨対象物13の径以上のときにも有効である。
【0062】
図2は本発明の実施の形態の研磨装置を示す。図2を参照して本発明の実施の形態の研磨装置を説明する。本発明の実施の形態の研磨装置は、研磨体11と、研磨体11を貼りつける研磨定盤12と、研磨対象物保持部14と、研磨体11に回転運動(方向を矢印で示す)と揺動運動(方向を矢印で示す)とを与える研磨体移動機構19と、研磨対象物13に回転運動を与える研磨対象物移動機構20と、研磨体移動機構19と研磨対象物移動機構20とに制御信号21、22を送ってこれらの動作を制御する為の制御部17とを具える。
【0063】
ここで、本発明の実施の形態の研磨装置の研磨体移動機構19は、研磨体11に上記回転運動や上記揺動運動、等を与えるためのモータ等のアクチュエータ(不図示)等と、制御信号21を受けて該アクチュエータに所望の駆動をさせる為の、入出力部を含めた駆動部(不図示)とを具える。又、研磨体移動機構19は、研磨体11の回転を時計回り、反時計回りのどちら向きにも回転できるよう構成されている。
【0064】
又、研磨対象物移動機構20は、研磨対象物13に上記回転運動を与えるためのモータ等のアクチュエータ(不表示)等と、制御信号22を受けて該アクチュエータに所望の駆動をさせる為の、入出力部を含めた駆動部(不図示)とを具える。
又、本発明の実施の形態の研磨装置の研磨対象物移動機構20は、研磨対象物13の回転を時計回り、反時計回りのどちら向きにも回転できるよう構成されている。
【0065】
研磨は、研磨剤15を供給しながら、研磨体11を回転する研磨対象物13に押し付け、研磨体11を回転させながら揺動することにより研磨が行なわれる。
【0066】
本発明の実施の形態の研磨装置の制御部17は、異なる複数の研磨条件を設定することができる。制御部17は研磨に際して、次のように制御信号21、22を送る。
【0067】
制御部17は、研磨の第一の段階で、互いに異なる複数の研磨条件のうちの第一の研磨条件に対応して、制御信号21を研磨体移動機構19に、そして制御信号22を研磨対象物移動機構20に送る。制御信号21を受けて、研磨体移動機構19は研磨体11に第一の研磨体運動5をさせ、制御信号22を受けて、研磨対象物移動機構20は研磨対象物13に第一の研磨対象物運動6をさせる。これらの運動5、6に対応して研磨体11に第一の相対速度が生じ、研磨体11の相対速度の履歴に第一の偏りを生じる。
【0068】
制御部17は、研磨の第二の段階で、互いに異なる複数の研磨条件のうちの第二の研磨条件に対応して、第二の制御信号21を研磨体移動機構19に、そして第二の制御信号22を研磨対象物移動機構20に送る。第二の制御信号21を受けて、研磨体移動機構19は研磨体11に第二の研磨体運動5をさせ、第二の制御信号22を受けて、研磨対象物移動機構20は研磨対象物13に第二の研磨対象物運動6をさせる。これらの運動5、6に対応して研磨体11に第二の相対速度が生じ、研磨体11の相対速度の履歴に第二の偏りを生じる。
【0069】
本発明の実施の形態の研磨装置では、この第二の偏りが第一の偏りを相殺し、相殺された偏りの大きさは第一又は第二の偏りの大きさよりも低減される。研磨を異なる三種類以上の研磨条件で行なう場合は、第一の偏りは、第二の偏りと第三の偏り、等により相殺され、相殺された結果の偏りの大きさは第一又は第二又は第三の偏り、等の大きさよりも低減される。
【0070】
以上のことを別の言葉で表現すると、本発明の実施の形態の研磨装置では、互いに異なる複数の研磨条件の各研磨条件での研磨で生じた相対速度の履歴の偏りを、互いに異なる複数の研磨条件での研磨について合成することにより、各研磨条件で生じた偏りの大きさより低減される。
【0071】
以上、本発明の実施の形態の研磨方法、研磨装置によれば、複数の異なる研磨条件を適用することにより、一つの研磨条件で生じる相対速度の履歴の偏りVr、Vθの大きさが低減されるので、半導体ウェハ面上のパターンの段差解消性のムラが低減する。即ち、本発明の実施の形態の研磨方法、研磨装置によれば、パターンの方向や研磨対象物上のパターンの位置に関係なく均一に段差を減らすことができる。
【0072】
以上、相対速度Vのr成分Vrの履歴には実質的に偏りが無い場合についての説明をしたが、本発明はVrの履歴に偏りがある場合にも適用できることは言うまでもない。
[本発明の実施の形態2]
図2に示された研磨装置を用いて本発明の実施の形態の研磨方法を説明する。
【0073】
図2に示された、研磨体11の径が研磨対象物13の径よりも小さい研磨装置を用い、回転運動する研磨対象物13の中心位置に対する研磨体11の相対位置を研磨体11の揺動運動によって変化させながら研磨を行なう点は従来の研磨方法と同じである。
【0074】
本発明の実施の形態の研磨方法は、前記揺動運動の揺動周期と、前記研磨対象物の回転運動の回転周期とが研磨時間中は同期しないようにしている。より正確に表現すると、研磨時間中の同期を回避するように研磨条件を設定している。更に具体的に表現すると、本発明の実施の形態の研磨方法は、研磨時間をtとするときに、前記揺動運動の揺動周期と前記研磨対象物の回転運動の回転周期との同期周期Tを研磨時間tよりも長くなるように前記揺動周期と前記回転周期とを設定している。
【0075】
具体的に説明すると、前記揺動運動の平均速度(スカラー)をv(mm/秒)、揺動運動のストロークをL(mm)とすると、揺動周期T(秒)は、
式 T=2L/vにより与えられる。又、前記回転運動の回転速度をRrpmとすると、回転周期T(秒)は、式 T=60/Rにより与えられる。
【0076】
このとき、TとTとの最小公倍数であるTが、揺動周期Tと回転周期Tとが同期する周期である。例えばTを0.9秒、Tを10秒にする場合、これの同期周期Tは最小公倍数である90秒となる。
【0077】
この時間90秒が所望の研磨時間tよりも長ければ、この回転周期と揺動周期はそのまま採用される。この時間90秒が所望の研磨時間t以下の場合は、研磨体11の回転速度又は研磨対象物13の揺動ストローク又は揺動運動の平均速度を加減することにより、T又はTの大きさを調整して、同期周期Tが研磨時間tを超えるようにする。
【0078】
以上のように、本発明の実施の形態の研磨方法によれば、前記揺動運動の揺動周期と、前記研磨対象物の回転運動の回転周期とを非同期としているので、研磨対象物の円周方向(回転方向)の研磨ムラを大幅に低減させることが可能である。
【0079】
本発明の実施の形態のシミュレーション方法は、以下に図13を参照して説明され、図3で示されたような研磨装置の研磨条件を決定する為に事前に行なうシミュレーションの方法である。
【0080】
先ずステップS1で所望の研磨プロファイル(研磨量分布)に対する研磨条件を取得する。
【0081】
次にステップS2で上記研磨条件に対する研磨体の揺動周期と、研磨対象物の回転周期と、これら揺動周期と回転周期との同期周期を求める。
【0082】
次にステップS3で同期周期Tが研磨時間tよりも長いかどうかを判定する。同期周期Tが研磨時間tよりも長ければステップS5へ移行し、そうでなければステップS4へ移行する。
【0083】
次にステップS4で研磨体の揺動条件又は研磨対象物の回転条件を微調整し、ステップS2へ移行する。
【0084】
最後にステップS5で揺動条件と回転条件を含む確定した研磨条件を出力する。
【0085】
本実施の形態のシミュレーション方法によれば、この方法によりシミュレーションされた研磨条件で研磨する際に研磨体の揺動運動と研磨対象物の回転運動とが同期しないので、円周方向の研磨ムラ、即ち研磨量分布が小さく、中心対称の研磨量分布が得られる。
[本発明の実施の形態3]
図12は、本発明の実施の形態の半導体デバイス製造プロセスを示すフローチャートである。半導体デバイス製造プロセスをスタートして、まずステップS200で、次に挙げるステップS201〜S204の中から適切な処理工程を選択する。選択に従って、ステップS201〜S204のいずれかに進む。
【0086】
ステップS201は半導体ウェハの表面を酸化させる酸化工程である。ステップS202はCVD等により半導体ウェハ表面に絶縁膜を形成するCVD工程である。ステップS203は半導体ウェハ上に電極膜を蒸着等の工程で形成する電極形成工程である。ステップS204は半導体ウェハにイオンを打ち込むイオン打ち込み工程である。
【0087】
CVD工程もしくは電極形成工程の後で、ステップS209に進み、CMP工程を行うかどうかを判断する。行わない場合はステップS206に進むが、行う場合はステップS205に進む。ステップS205はCMP工程であり、この工程では、本発明の研磨方法又は研磨装置を用いて、層間絶縁膜の平坦化や、半導体デバイスの表面の金属膜の研磨によるダマシン(damascene)の形成等が行われる。
【0088】
CMP工程または酸化工程の後でステップS206に進む。ステップS206はフォトリソ工程である。フォトリソ工程では、半導体ウェハへのレジストの塗布、露光装置を用いた露光による半導体ウェハへの回路パターンの焼き付け、露光した半導体ウェハの現像が行われる。さらに次のステップS207は、現像したレジスト像以外の部分をエッチングにより削り、その後レジスト剥離を行い、エッチングが済んで不要となったレジストを取り除くエッチング工程である。
【0089】
次にステップS208で必要な全工程が完了したかを判断し、完了していなければステップS200に戻り、先のステップを繰り返して、半導体ウェハ上に回路パターンが形成される。ステップS208で全工程が完了したと判断されればエンドとなる。
【0090】
本発明の実施の形態の半導体デバイス製造方法では、CMP工程において本発明の研磨方法又は研磨装置を用いているため、CMP工程で、半導体ウェハの凸状のパターンの向き、パターンの半導体ウェハ面上での位置とは無関係に研磨後のパターンに残る段差を均一にできる。又は円周方向の研磨ムラ即ち研磨量分布を小さくすることができる。従って、本発明の実施の形態の半導体デバイス製造方法では、研磨によって段差解消するタイミング、又は所望の研磨量に達するタイミングを正確に掴むことができ、CMP工程での歩留まりが向上するとともに、研磨された半導体ウェハ、最終的には半導体デバイスの製造品質を高めることができる。これにより、従来の半導体デバイス製造方法に比べて低コストで且つ高品質の半導体デバイスを製造することができるという効果がある。
【0091】
なお、前記の半導体デバイス製造プロセス以外の半導体デバイス製造プロセスのCMP工程に本発明の実施の形態の研磨装置を用いても良い。
【0092】
本発明の実施の形態の半導体デバイスは、本発明の実施の形態の半導体デバイス製造方法により製造される。これにより、本発明の実施の形態の半導体デバイスは、従来の半導体デバイスに比べて低コスト且つ高品質であるという効果がある。
【0093】
以上、本発明の各実施の形態1〜3について説明したが、本発明はこれらの実施の形態に限定されるものではない。
【0094】
例えば、前記実施例はCMPに関して適用した例であったが、本発明は、ガラス等の光学部材などの研磨に適用することもできる。
【0095】
【実施例】
[実施例1]
本実施例では図14に示されるような格子パターンが全面に設けられた8インチSiウェハ13を、図2で示される研磨装置を用い、以下の、異なる第一と第二の研磨条件で段差解消の為の研磨を行なった。格子パターンは3mm×2mmであり、厚みが1.0μmのCu層が100μmピッチ、200μm周期の格子状に、段差0.5μmで配列されていた。
【0096】

Figure 2004223636
この第一と第二の条件でCu層を残膜厚0.4μmまで研磨したところ、Siウェハ13の任意の1点の相対速度の履歴の偏りが低減され、それによって段差解消性のムラをやや低減することができた。
[実施例2]
本実施例では図14に示されるような格子パターンが全面に設けられた8インチSiウェハ13を、図2で示される研磨装置を用い、以下の、異なる第一と第二の研磨条件で段差解消の為の研磨を行なった。格子パターンは3mm×2mmであり、厚みが1.0μmのCu層が100μmピッチ、200μm周期の格子状に、段差0.5μmで配列されていた。
【0097】
Figure 2004223636
上記研磨条件で、初めに第一の研磨条件で、次に第二の研磨条件で、累計60秒研磨を行なった。
【0098】
この第一と第二の条件での研磨によって、Siウェハ13の任意の1点の相対速度の履歴が偏りを持たなくなり、均等研磨が実現できた。その結果、Cu層の残膜厚を0.4μmまで研磨したところ、パターンの凸部の段差のSiウェハ13面全面に於けるムラ(段差の最大値と最小値との差)は0.05μmであった。
【0099】
以上のように、本実施例により段差解消性のムラを大幅に低減することができた。
[比較例1]
本実施例では図14に示されるような格子パターンが全面に設けられた8インチSiウェハ13を、図2で示される研磨装置を用い、以下の、一つの研磨条件で段差解消の為の研磨を行なった。格子パターンは3mm×2mmであり、厚みが1.0μmのCu層が100μmピッチ、200μm周期の格子状に、段差0.5μmで配列されていた。
【0100】
Figure 2004223636
以上の研磨条件で研磨を行ったところ、Siウェハ13の任意の1点の相対速度の履歴の偏りが大きく発生し、研磨後のパターン凸部の断面は、図9(b)に示されるようなクサビ状に偏った形状をしており、その形状はSiウェハ13内の位置によってばらついていた。
【0101】
本比較例による段差解消性のムラは大きかった。
[実施例3]
本実施例では、鏡面研磨された半導体ウェハ面上に全面にCu層が1.0μm形成されたパターンが無い半導体ウェハ13のCu層を、図2で示される半導体ウェハ13の径よりも小さい径の研磨パッド11を具えた研磨装置を用い研磨する。
【0102】
先ず所望の研磨プロファイルを達成できる条件として以下の研磨条件を設定した。
【0103】
Figure 2004223636
この研磨条件での研磨パッド11の揺動周期Tは、前記の式 T=2L/vに上記値を代入することにより求められ、4.0秒だった。又、半導体ウェハ13の回転周期Tは、前記の式 T=60/R に上記値を代入することにより求められ、0.3秒だった。研磨パッド11の揺動周期4.0秒と半導体ウェハ13の回転周期0.3秒の同期周期Tはこの4.0秒と0.3秒との最小公倍数である12.0秒となり、研磨時間60秒よりも短かった。
【0104】
そこで、半導体ウェハ13の回転速度Rを200rpmから199rpmに微調整し、再度同期周期を計算した。
【0105】
この研磨条件での半導体ウェハ13の回転周期Tは、始めの0.3秒から60/199秒に変わり、研磨パッド11の揺動周期4.0秒と半導体ウェハ13の回転周期60/199秒の同期周期Tはこの4.0秒と60/199秒の最小公倍数である1200秒となり、研磨時間60秒よりも大幅に長くなった。
【0106】
以上の条件で研磨したところ、この研磨時間中に同期が起こらなかった。
【0107】
以上の条件で研磨後に、研磨量(研磨膜厚)を測定したところ、図15中のa)に示されるように、研磨量は半導体ウェハ13の中心に対して対称になり、円周方向のムラは小さく、中心対称の研磨が可能であった。
[比較例2]
本実施例では、鏡面研磨された半導体ウェハ面上にCu層が1.0μm形成されたパターンが無い半導体ウェハ13のCu層を、図2で示される半導体ウェハ13の径よりも小さい径の研磨パッド11を具えた研磨装置を用い、以下の研磨条件で研磨した。
【0108】
Figure 2004223636
この研磨条件での研磨パッド11の揺動周期Tは、前記の式 T=2L/vに上記値を代入することにより求められ、4.0秒だった。又、半導体ウェハ13の回転周期Tは、前記の式 T=60/R に上記値を代入することにより求められ、0.3秒だった。研磨パッド11の揺動周期4.0秒と半導体ウェハ13の回転周期0.3秒の同期周期Tはこの4.0秒と0.3秒との最小公倍数である12.0秒となり、研磨時間60秒よりも短かった。
【0109】
以上の条件で研磨後に、研磨量(研磨膜厚)を測定したところ、図15中のb)に示されるように、半導体ウェハ13の中心に対して対称にならず、傾いた研磨量となっていて、円周方向の研磨ムラが大きかった。
【0110】
【発明の効果】
本発明によれば、段差解消性のムラを低減することができる研磨方法を提供することができる。
【0111】
又、本発明によれば、円周方向の研磨ムラを低減することができる研磨方法を提供することができる。
【0112】
又、本発明によれば、段差解消性のムラを低減することができる研磨装置を提供することができる。
【0113】
又、本発明によれば、円周方向の研磨ムラを低減できる研磨シミュレーション方法を提供することができる。
【0114】
又、本発明によれば、低コストで高品質の半導体デバイスを製造することができる半導体デバイス製造方法を提供することができる。
【0115】
又、本発明によれば、低コストで高品質の半導体デバイスを提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の研磨方法に於ける相対速度の履歴の偏りの低減を説明する。
【図2】本発明の実施の形態の研磨装置、又は、本発明の実施の形態の研磨方法を説明する研磨装置を示す。
【図3】小径研磨装置を示す。
【図4】研磨シミュレーションの計算位置を示す。
【図5】シミュレーションされた、点(0,0)上の相対速度の履歴を示す。
【図6】シミュレーションされた、点(60,0)上の相対速度の履歴を示す。
【図7】シミュレーションされた、点(120,0)上の相対速度の履歴を示す。
【図8】相対速度の履歴に偏りがある場合を示す。
【図9】相対速度の履歴に偏りがある場合の、研磨後の凸状パターンの断面形状を示す。
【図10】従来の研磨装置を示す。
【図11】従来の円周方向の研磨ムラの様子を示す。
【図12】本発明の実施の形態の半導体デバイスの製造方法を示す。
【図13】本発明の実施の形態のシミュレーション方法を示す。
【図14】実施例で研磨対象の格子状パターン付きSiウェハを示す。
【図15】実施例の研磨プロファイルを示す。
【図16】本発明の実施の形態の研磨方法を説明する図である。
【符号の説明】
1 パターン1
2 パターン2
3 計算点位置
4 段差
5 研磨体運動
6 研磨対象物運動
7 研磨対象物13上の任意の点
11 研磨体(研磨パッド)
12 研磨定盤
13 研磨対象物(半導体ウェハ、Siウェハ)
14 研磨対象物保持部(ウェハホルダ)
15 研磨剤
16 研磨剤供給部
17 制御部
18 研磨工具
19 研磨体移動機構
20 研磨対象物移動機構
21、22 制御信号[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polishing method, a polishing apparatus, a polishing simulation method, a semiconductor device, and a semiconductor device manufacturing method for polishing an object to be polished such as a semiconductor wafer.
[0002]
[Prior art]
2. Description of the Related Art In a semiconductor device manufacturing process, a flattening technique of a semiconductor device is indispensable for embedding of a metal electrode, a multilayer wiring, and the like, and in the flattening technique, chemical mechanical polishing (Chemical Mechanical Polishing) is required. , Or Chemical Mechanical Planarization (hereinafter referred to as CMP) technology is of particular importance.
[0003]
Conventionally, CMP is performed using a CMP polishing apparatus as shown in FIG. In this conventional polishing apparatus, a semiconductor wafer 13 for manufacturing a semiconductor device is attached to a wafer holder 14, and a polishing body 11 having a diameter larger than the diameter of the semiconductor wafer 13 is attached to a surface plate 12 having substantially the same size. Have been. The semiconductor wafer 13 is pressed against the rotating polishing body 11 while the abrasive 15 is supplied, and the semiconductor wafer 13 is swung while rotating, whereby polishing is performed by physical action and chemical action. (For example, see Patent Document 1)
The above conventional CMP polishing apparatus requires an ever-larger platen 12 as the diameter of the semiconductor wafer becomes larger, so the apparatus itself becomes larger, and a large and expensive clean room space is required for installation. In addition to this, there is a problem that the operability of the apparatus is poor, as can be seen from the fact that replacement of consumable parts such as a polishing pad is very difficult due to its size. Also, in a film forming process of a semiconductor process, a film formed on a semiconductor wafer surface often has a film thickness distribution. In a CMP process, a desired polishing amount (removed by polishing) corresponds to the film thickness distribution. However, it is difficult to control the distribution of the polishing amount because the conventional CMP polishing apparatus polishes the semiconductor wafer by constantly bringing the semiconductor wafer into contact with a huge polishing body. For example, in order to have a polishing amount distribution, an extremely complicated and difficult means of locally adjusting a pressure distribution of an object to be polished against a polishing body on a semiconductor wafer surface can be considered, but this is difficult to implement. In addition, there is a problem that the controllability of the polishing amount distribution is insufficient.
[0004]
In order to solve the above problems of the conventional CMP polishing apparatus, a polishing apparatus (hereinafter, referred to as a small-diameter pad polishing apparatus) for polishing with a polishing body having a diameter smaller than the diameter of a semiconductor wafer as shown in FIG. 3 has been proposed. ing. In this small-diameter pad polishing apparatus, a semiconductor wafer 13 is attached to a wafer holder 14, and a polishing body 11 having a smaller diameter than the semiconductor wafer 13 is attached to a surface plate 12. Polishing is performed by pressing the polishing body 11 against the rotating semiconductor wafer 13 while supplying the polishing agent 15 and swinging while rotating the polishing body 11. (For example, see Patent Document 2)
This small-diameter pad polishing apparatus has an advantage that the polishing apparatus can be downsized because the polishing body 11 is small. In addition, the small-diameter pad polishing apparatus has good operability, as can be seen from the fact that since the apparatus is small, it is easy to replace consumable parts such as abrasive bodies.
[0005]
Furthermore, since the diameter of the polishing body is smaller in the small-diameter pad polishing apparatus than in the semiconductor wafer, the polishing amount distribution (polishing profile) can be freely controlled by changing the existence probability of the polishing body on the semiconductor wafer surface. It is.
[0006]
The small-diameter pad polishing apparatus appropriately combines the rotation speed of the semiconductor wafer 13 and the polishing body 11, the swing of the polishing body 11, and the like in order to obtain a uniform or desired removal amount distribution, that is, a polishing amount distribution, on the semiconductor wafer surface. Polishing is performed under polishing conditions.
[0007]
[Patent Document 1]
U.S. Pat. No. 3,615,955
[Patent Document 2]
JP-A-7-88759
[0008]
[Problems to be solved by the invention]
However, in recent years, the polishing quality required for the flattening technology has become increasingly higher. When polishing is performed with a small-diameter pad polishing apparatus as shown in FIG. There was a problem that there was unevenness. Specifically, the size of a step remaining after polishing a convex pattern on a semiconductor wafer surface depends on the pattern position or pattern orientation on the semiconductor wafer surface, and the remaining step is not uniform. was there. Because of the unevenness in the step-elimination capability, even if the optimal timing for step-elimination is found in one pattern at one position on the semiconductor wafer surface, another position on the semiconductor wafer surface is found at the same timing. In the case of a pattern having the same shape, it is not optimal timing due to, for example, insufficient step resolution or excessive polishing, or even if a pattern at the same position on the semiconductor wafer surface changes pattern direction, it is not optimal timing. There was a problem. For this reason, when there is unevenness in the elimination of the step, there is a problem that an accurate timing for eliminating the step of the convex pattern and ending the polishing cannot be found.
[0009]
In the polishing using a small-diameter pad polishing apparatus as shown in FIG. 3, the diameter of the polishing body 11 is smaller than the diameter of the polishing target 13, and the relative position of the polishing body 11 with respect to the center position of the rotating polishing target 13. Polishing is performed while changing the position by the swing of the polishing body 11. When polishing is performed with such a small-diameter pad polishing apparatus, polishing unevenness in the circumferential direction, that is, circumferential unevenness in the removed film thickness may occur. FIG. 11 shows how the polishing unevenness occurs. (1) to (6) are measurement positions for obtaining polishing unevenness (polishing amount distribution) on the surface of the semiconductor wafer 13. In the case where polishing unevenness occurs in the circumferential direction in this manner, even when the polishing is partially completed at the optimal timing for appropriate polishing completion, the remaining portion is insufficiently polished or the polishing amount is excessive, so that polishing is performed. The exact timing of the end could not be found.
[0010]
These problems of unevenness in eliminating steps and polishing unevenness in the circumferential direction have reduced the polishing quality.
[0011]
The present invention solves the above problems, and provides a polishing method, a polishing apparatus, a polishing simulation method that enables a polishing method with high polishing quality, and a method of manufacturing a semiconductor device that enables production of a high-quality semiconductor device. And a semiconductor device manufactured by the method of manufacturing a semiconductor device.
[0012]
[Means for solving the problem]
In order to solve the above-described problems, a first aspect of the present invention is to move the polishing body relative to the polishing object while pressing the polishing body against the polishing object, thereby polishing the polishing object. Polishing method, comprising the step of polishing under a plurality of different polishing conditions, the deviation of the history of the relative speed of the relative movement of the relative movement caused by polishing under one of the plurality of polishing conditions. The magnitude is offset by the bias of the history of the relative speed of the relative motion caused by polishing under one or more other polishing conditions of the plurality of polishing conditions.
[0013]
According to a second aspect of the present invention, in the first aspect, the polishing body and the object to be polished are each rotated during polishing, and the polishing is performed under one of the plurality of polishing conditions. The rotation direction of the body is reversed under another one of the plurality of polishing conditions.
[0014]
According to a third aspect of the present invention, in the first aspect, the polishing body and the object to be polished are respectively rotated during polishing, and the polishing is performed under one of the plurality of polishing conditions. The rotation directions of the body and the object to be polished are both reversed under another one of the plurality of polishing conditions.
[0015]
In a fourth aspect of the present invention, in any one of the first to third aspects, the polishing is performed by a polishing apparatus having a plurality of polishing positions, and each of the plurality of different polishing conditions is the plurality of polishing conditions. One of the plurality of polishing conditions is provided for each movement of the polishing body and the polishing object holding unit at each of the polishing positions, and one of the plurality of polishing conditions is provided at one of the plurality of polishing positions. After polishing is completed by the conditions, in order to perform polishing at another one of the plurality of polishing conditions at another one of the plurality of polishing positions, polishing is performed from the one polishing position. Transporting the object to be polished to another polishing position.
[0016]
A fifth aspect of the present invention includes a polishing body rotating mechanism for giving a rotating motion to the polishing body and a polishing object rotating mechanism for giving a rotating motion to the polishing object, while pressing the polishing body against the polishing object. A polishing apparatus for moving the polishing body relative to the polishing object to polish the polishing object, wherein the polishing body rotating mechanism and the polishing object rotating mechanism are clockwise and counterclockwise, respectively. By rotating one or both of the rotational direction of the rotational movement of the polishing body or the rotational direction of the rotational movement of the object to be polished during the polishing process, the relative rotation is configured to be rotatable in both directions. This is to reduce the bias of movement.
[0017]
A sixth aspect of the present invention is directed to polishing while changing the relative position of the polishing body with respect to the center position of the polishing object by swinging movement of the polishing body while pressing the polishing body against the rotating polishing object. In this polishing method, the swing cycle of the swing motion and the cycle of the rotary motion are not synchronized during the polishing time.
[0018]
A seventh aspect of the present invention is directed to polishing while changing the relative position of the polishing body with respect to the center position of the polishing object by swinging movement of the polishing body while pressing the polishing body against the rotating polishing object. This is a simulation method for determining the polishing conditions of the polishing apparatus to be performed, and the polishing conditions are determined in advance so that the oscillation cycle of the oscillation motion and the cycle of the rotation motion are not synchronized during the polishing time. .
[0019]
An eighth aspect of the present invention is a method for manufacturing a semiconductor device, comprising a step of polishing a polishing object using any one of the above-described aspects 1, 4, 5, and 6.
[0020]
A ninth aspect of the present invention is a semiconductor device manufactured according to the eighth aspect.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Before describing the polishing method of the present invention, the process leading to the present invention will be described in order to facilitate understanding of the present invention.
[Approach to the invention]
First, the inventor of the present invention has found that, because the amount of polishing is proportional to the relative speed of the polishing body with respect to the object to be polished, the small-diameter pad polishing apparatus shown in FIG. In order to obtain knowledge about the relative speed during polishing, a simulation calculation of the history of the relative speed was performed. Specifically, as shown in FIG. 4, three points (0, 0), (60, 0), and (120, 0) are arbitrarily selected on the surface of the semiconductor wafer 13 having a diameter of 12 inches. The history of the relative velocity V given to each point by the polishing body 11 was calculated by simulation. If the rotation cycle of the semiconductor wafer 13 and the oscillation cycle of the polishing body 11 are sufficiently shorter than the polishing time, and the rotation cycle and the oscillation cycle are not synchronized, any point on the circumference of the radius 60 Receives almost the same history of relative speed, and any point on the circumference of the radius 120 also receives substantially the same history of relative speed. Therefore, in the case of the above polishing conditions, the simulation calculation shows that, in addition to the three points (0, 0), (60, 0), and (120, 0), the relative velocities on the circumferences of the radius 60 and the radius 120 are different. You can almost know the history of V.
[0022]
Here, (0,0), (60,0), and (120,0) indicate positions on the surface of the semiconductor wafer 13 at the time T = 0 when the simulation is started. Things. Since the semiconductor wafer 13 rotates, the apparent coordinates of these three points change with the rotation of the semiconductor wafer 13 and the elapsed polishing time. The rotational angular velocity of the semiconductor wafer 13 is ω W Then, for example, the coordinates of the point (120, 0) after T seconds are (120 cos ω) W T, 120 sin ω W T).
[0023]
In addition, the polishing body 11 performs a rotating motion and a swinging motion in which a center-to-center distance with the semiconductor wafer 13 periodically changes.
[0024]
Here, the speed due to the rotational movement of the above three points on the surface of the semiconductor wafer 13 is V W The composite speed of the rotational speed and the oscillating speed of the polishing body 11 at the above three points is V P Then, the relative speed V of the polishing body 11 with respect to the semiconductor wafer 13 is
V = V P −V W Given by
[0025]
In this simulation, in order to understand the relationship between the polishing amount and the relative speed in more detail, the relative speed V is converted into Vr which is a component in the radial direction (r) of the semiconductor wafer 13 and Vθ which is a component in the rotation direction (θ). The components were decomposed, and the state of each of the relative speed component Vr and the relative speed component Vθ was examined. Where | V | 2 = | Vr | 2 + | Vθ | 2 There is a relationship. In the r direction, the direction outward from the center of the semiconductor wafer 13 was defined as positive, and in the θ direction, the clockwise direction was defined as positive.
[0026]
This simulation was performed under the conditions shown in Table 1 below.
[0027]
FIGS. 5, 6, and 7 show the simulation results of the relative velocities at the calculation points (0, 0), (60, 0), and (120, 0) on the surface of the semiconductor wafer 13, respectively. The sampling interval was set at 10 msec.
[0028]
The simulation results show the transition of the relative speed components Vr and Vθ with respect to the elapsed time when polishing is performed under the conditions shown in Table 1, that is, the history of the relative speed itself at each of the three calculation points on the relative speed.
[Table 1]
Effective diameter of polishing surface of polishing body 11: outer diameter 268 mmφ, inner diameter 84 mmφ (ring shape)
Rotation speed of polishing body 11: 200 rpm clockwise
Rotational speed of semiconductor wafer 13: 200 rpm counterclockwise
Swing stroke: 38mm
Swing speed: 40 mm / sec
The center-to-center distance between the center of the polishing body 11 and the center of the semiconductor wafer 13 at the start of polishing was 30 mm, and the polishing body 11 was swung within the range of 30 mm and 68 mm.
Calculation time: 10 seconds
And
[0029]
Referring to FIG. 5, Vr at the calculation point (0, 0) oscillates between the positive side and the negative side with time, and is equally positive and negative, that is, at the same frequency on the positive side and the negative side. And they are appearing in the same size.
[0030]
Now, in general, in order to quantify the history of the relative speed V given to the polishing object 13 by the polishing body 11 of the polishing apparatus as shown in FIG. 3, the relative speed V is integrated or integrated over the polishing time. The resulting vector is called the cumulative relative velocity, and V S Indicated by This cumulative relative speed V S Represents the deviation (vector value) of the history of the relative speed V. In addition, the relative velocity components Vr and Vθ are all integrated or integrated over the polishing time, and are referred to as cumulative relative velocity components. S , Vθ S Indicated by Cumulative relative speed component Vr S Represents the bias of the history of the relative speed component Vr or the r-direction component of the bias of the history of the relative speed V. Also, the cumulative relative speed component Vθ S Represents the bias of the history of the relative speed component Vθ or the θ-direction component of the bias of the history of the relative speed V.
[0031]
Returning to the examination of the simulation results, the cumulative relative speed Vr of the relative speed Vr at the calculation point (0, 0) S Is substantially zero, it can be said that there is no bias in the history of the relative speed Vr.
[0032]
Referring to FIG. 5, Vθ at the calculation point (0, 0) also oscillates between the positive side and the negative side with time similarly to Vr, and is positive and negative equally, that is, positive and negative. Appear at the same frequency and size. Cumulative relative speed Vθ of this relative speed Vθ S Since its magnitude is almost zero, it can be said that the history of the relative speed Vθ is not biased as well as the history of the relative speed Vr. Therefore, the polishing at the calculation point (0, 0) has no deviation in the history of the relative speeds Vr and Vθ, and can be said to be uniform polishing.
[0033]
Referring to FIG. 6, Vr at calculation point (60, 0) S Appear equally positive and negative as Vr at the calculation point (0, 0). Cumulative relative speed Vr of this Vr S Is almost zero, so there is no bias in the history of the relative speed Vr. However, Vθ shows a negatively biased appearance. Cumulative relative speed Vθ of this Vθ S Is calculated, this cumulative relative speed Vθ S Has a size that cannot be ignored in the negative direction. The history of the relative speed Vθ in FIG. S have. In other words, the history of the relative speed V has a large deviation Vθ in the θ direction. S have. Therefore, the polishing at the calculation point (60, 0) has a bias in the history of the relative speed, and can be said to be uneven polishing.
[0034]
Referring to FIG. 7, Vr at calculation point (120, 0) appears equally positive and negative as Vr at calculation point (0, 0). Cumulative relative speed Vr of this Vr S Is almost zero, so there is no bias in the history of the relative speed Vr. However, Vθ appears to be more negatively biased than Vθ at the calculation point (60, 0). Cumulative relative speed Vθ of this Vθ S Is calculated, this cumulative relative speed Vθ S Is Vθ at the calculation point (60, 0) in the negative direction. S It has a larger value. That is, the history of the relative velocity Vθ is larger than the deviation Vθ at the calculation point (60, 0). S have. In other words, the history of the relative velocity V has a larger deviation Vθ in the θ direction than at the calculation point (60, 0). S have. Therefore, the polishing at the calculation point (120, 0) has a bias in the relative speed, and it can be said that the polishing at the calculation point (60, 0) is more uneven than the polishing at the calculation point (60, 0).
[0035]
FIG. 8 shows a state in which there is a bias in the history of the relative speed, which has been found from the above simulation results. In FIG. 8, ● indicates the position 3 of the calculation point (120, 0), and arrows indicate the patterns 1 and 2 at the positions receiving the history of the relative velocity Vθ substantially equivalent to the calculation point (120, 0). Bias of the history of relative speed Vθ (accumulated relative speed Vθ S ). Vθ S Is negative, so it is facing counterclockwise. Vr history bias (cumulative relative speed Vr S ) Are not shown because they are almost zero.
[0036]
Next, the semiconductor wafer 13 was actually polished under the polishing conditions shown in Table 1 in which it was found from the above simulation that the history of the relative speed had a bias. In FIG. 8, four rectangles, up, down, left, and right, are arranged at the same position in the r direction as the calculation point (120, 0), and show the device pattern of the semiconductor wafer actually polished. In FIG. 8, the upper pattern 1 and the left pattern 2 are arranged on substantially the same circumference. The pattern 1 has its longitudinal direction oriented in the r direction, and the pattern 2 has its longitudinal direction oriented in the θ direction. ing. Polishing in the pattern 1 has no deviation in the history of the relative speed in the longitudinal direction (r direction), but the deviation in the history of the relative speed Vθ in the perpendicular direction (θ direction). S There is. In addition, the polishing in the pattern 2 is such that the deviation of the history of the relative speed in the longitudinal direction (θ direction) is Vθ. S However, there is no deviation in the history of the relative speed in the direction perpendicular to the direction (r direction).
[0037]
FIG. 9A shows the deviation Vθ of the history of the relative speed in the direction AA ′ of the cross section in the longitudinal direction of the pattern 2 and the direction. S Is the deviation Vr of the history of the relative speed in the direction BB ′ of the cross section in the longitudinal direction of the pattern 1 and the direction. S Is shown. Vr S Is almost zero, and therefore is indicated by a circle.
[0038]
FIG. 9B shows the shape of the AA ′ cross section of the pattern 2 before (left) and after polishing (right) and the shape of the BB ′ cross section of the pattern 1 before (left) and after polishing. The shape of (right) is shown.
[0039]
The AA ′ cross section of the pattern 2 is greatly affected by the relative velocity being deviated in the AA ′ direction, and as shown in the upper part of FIG. 9B, the step is greatly inclined with the progress of polishing. The step is reduced while having a tendency.
[0040]
On the other hand, since the relative speed is uniformly generated in the BB 'direction in the BB' section in the BB 'direction, as shown in the lower part of FIG. Steps are reduced.
[0041]
From the above facts, it has been clarified that, depending on the difference in the orientation of the pattern arrangement on the surface of the semiconductor wafer 13, even if the pattern structure is the same, there is a great difference in how the steps are eliminated.
[0042]
At the same time, it has been clarified that a pattern placed in a direction in which the accumulated relative velocity component is small can be subjected to step-eliminating polishing with a small inclination in that direction.
[0043]
This led to the idea that it is effective to reduce the deviation of the history of the relative speed in order to improve the elimination of the step.
[Embodiment 1 of the present invention]
The polishing method according to the first embodiment of the present invention will be described with reference to FIGS.
[0044]
In the polishing method according to the embodiment of the present invention, in FIG. 2, the polishing body 11 is pressed against the polishing target 13 while the polishing body 11 having a diameter smaller than the polishing target 13 is pressed against the polishing target 13. A polishing method for polishing the object to be polished 13 by relative movement with respect to the polishing object, comprising a step of polishing under a plurality of different polishing conditions, and polishing under any one of the plurality of polishing conditions. Also, the history of the relative speed of the relative motion has a bias, and the magnitude of the bias is reduced by polishing under the plurality of polishing conditions.
[0045]
The relative movement of the polishing method according to the embodiment of the present invention is given by the movements 5 and 6 of the polishing body 11 and the object 13 to be polished. The polishing body 11 is provided with the polishing body movement 5 by the polishing body moving mechanism 19, and the polishing object 13 is provided with the polishing object movement 6 by the polishing object moving mechanism 20. The polishing body motion is usually a combination of a rotation motion and a swing motion as shown in the polishing apparatus of FIG. 2 or only the rotation motion, and the polishing object motion is usually only the rotation motion. In particular, the exercise is not limited to the exercise shown in FIG. The relative motion is a polishing body motion 5 with respect to a polishing object motion 6.
[0046]
The relative speed V of the polishing method according to the embodiment of the present invention is the speed of the polishing body motion 5 of the polishing body 11 with respect to the speed of the polishing object motion 6 of the polishing object 13. P And the speed of the polishing object 13 is V W Then, the relative velocity V becomes V = V in exactly the same way as the definition made in the [Approach to the Invention] section. P -V W Given by
[0047]
The polishing method according to the embodiment of the present invention performs polishing under a plurality of different polishing conditions. At least among the plurality of polishing conditions, the histories of the relative speeds are different from each other. The histories of the relative speeds different from each other are given by the polished body motion or the polished object motion different from each other between the respective polishing conditions.
[0048]
In the polishing method according to the embodiment of the present invention, the history of each relative speed has one bias (vector) under one polishing condition. The deviation has a different direction and magnitude between the plurality of different polishing conditions. When the bias is combined between these different polishing conditions, the combined bias is smaller than the bias under one polishing condition. That is, the bias of the history of the relative speed generated under one polishing condition is offset by the bias of the history of the relative speed generated under another polishing condition, and the magnitude of the bias resulting from the cancellation is the one polishing condition. Other polishing conditions are set so as to be smaller than the deviation generated in the above. Other polishing conditions may be one or more and may be any number.
[0049]
When the polishing method according to the embodiment of the present invention as described above is performed, the deviation of the history of the relative speed of the polishing body 11 is reduced, and therefore, the convex pattern on the surface of the polishing target 13 such as a semiconductor wafer is polished. Sometimes, the step can be reduced uniformly on the pattern irrespective of the direction of the pattern, and the step can be reduced uniformly regardless of the position of the pattern on the polishing target 13.
[0050]
The polishing method according to the embodiment of the present invention described above will be specifically described with reference to FIGS. 1 (a) and 1 (b), reference numeral 13 denotes an object to be polished attached to the object to be polished 14 of the polishing apparatus shown in FIG. The upper convex pattern 7 indicated by ● is an arbitrary point on the polishing target 13.
[0051]
A point on a concentric circle whose radius is the distance of the arbitrary point 7 from the center of the polishing object 13 generally receives an equivalent polishing history (a history of relative speed). The polishing performed by the polishing body 11 on the pattern 1 elongated in the r direction and the pattern 2 elongated in the θ direction on the concentric circles will be described.
[0052]
The relative speed of the polishing body 11 under the first polishing condition is defined as V1, and the r component of the bias of the history of the relative speed V1 after the polishing under the first polishing condition is V1r. S , Θ component as V1θ S And V1θ S Has a size that cannot be ignored, and is indicated by an arrow in FIG. S Since is usually substantially zero, it is not shown in FIG. After the polishing under the first polishing condition is completed, the polishing is performed at the relative speed V2 of the polishing body 11 under the second polishing condition. The r component of the bias of the history of the relative speed V2 is V2r S , Θ component as V2θ S Then, V2θ S Is V1θ as shown by the arrow in FIG. S V1θ in the opposite direction S Occurs to offset the magnitude of V2r S Is V1r S As shown in FIG. 1 (a), it is usually substantially zero, as shown in FIG. As a result, as shown in FIG. S Is smaller than the deviation due to polishing under the single first or second polishing condition. Where Vθ S = V1θ S + V2θ S It is.
[0053]
As described above, since the bias of the history of the relative speed V is reduced, the step can be reduced uniformly regardless of the direction of the pattern and the position of the pattern on the polishing target.
[0054]
Specifically, the deviation of the history of the relative speed V of the polishing body can be reduced by, for example, the following method.
[0055]
In the first method, the first polishing condition is such that the polishing body 11 is polished for a predetermined time while rotating the polishing object 11 at a certain rotation speed in a certain rotation direction and the polishing object 13 at a certain rotation speed in a certain rotation direction. The second polishing condition is such that only the rotation direction of the polishing body 11 is rotated in the reverse direction to the first polishing condition, and the other conditions are the same as the first polishing condition.
[0056]
According to this method, the bias of the history of the relative speed caused by the polishing under the first polishing condition cannot be completely offset by the bias caused by the polishing under the second polishing condition. Can be greatly reduced.
[0057]
In the second method, the first polishing condition is such that the polishing body 11 is polished for a predetermined time while rotating the polishing body 11 at a certain rotation speed in a certain rotation direction and the polishing object 13 at a certain rotation speed in a certain rotation direction. The second polishing condition is a condition in which the rotation direction of the polishing body 11 and the rotation direction of the polishing target 13 are both reversed without changing the magnitude of the rotation speed, and the polishing is performed for the same time as the first polishing condition. Things.
[0058]
According to this method, it is possible to completely offset the deviation of the history of the relative speed caused by the polishing under the first polishing condition by the deviation caused by the polishing under the second polishing condition. By this method, it is possible to perform substantially uniform polishing and ideal polishing in which the deviation of the history of the relative speed of the polishing body 11 is zero.
[0059]
The third method is, as shown in FIG. 16, a method of polishing using a polishing apparatus having a first polishing position, a second polishing position, and, if necessary, a third and subsequent polishing positions. Each of the plurality of polishing positions is provided with a polishing body and a polishing object holding portion. The movement conditions such as the rotation of each polishing body and each polishing object holding part are set differently from the movement conditions of other polishing bodies and other polishing objects, and the first polishing position is the first polishing position of the polishing body. A motion condition that causes a bias in the history of one relative speed is set, and a motion condition that offsets the bias caused by the first polishing condition is set at the second polishing position. For example, the relationship between the first polishing condition and the second polishing condition is the method described in the first method or the second method.
[0060]
In the third method, first, when the polishing of the object to be polished is completed at the first polishing position under the first polishing condition, the object to be polished is transferred to the second polishing position (in FIG. (Indicating the conveying direction), and polishing is performed at the second polishing position under the second polishing condition. According to the polishing method of the present embodiment, the deviation of the history of the relative velocity generated at the first polishing position can be reduced by the deviation generated at the second polishing position. Also, while polishing the first polishing object under the second polishing condition at the second polishing position, the second polishing object can be polished under the first polishing condition at the first polishing position. Polishing time can be shortened and the production volume is large. Further, since one polishing condition may be set at one polishing position, different polishing conditions can be easily set.
[0061]
The polishing method according to the embodiment of the present invention exerts its effect particularly when the diameter of the polishing body 11 is smaller than the diameter of the polishing target 13, but the diameter of the polishing body 11 is equal to or larger than the diameter of the polishing target 13. It is sometimes effective.
[0062]
FIG. 2 shows a polishing apparatus according to an embodiment of the present invention. A polishing apparatus according to an embodiment of the present invention will be described with reference to FIG. The polishing apparatus according to the embodiment of the present invention includes a polishing body 11, a polishing platen 12 on which the polishing body 11 is attached, a polishing object holder 14, and a rotational movement (direction is indicated by an arrow) of the polishing body 11. A polishing body moving mechanism 19 for giving a swinging motion (direction is indicated by an arrow), a polishing object moving mechanism 20 for giving a rotating motion to the polishing object 13, a polishing body moving mechanism 19 and a polishing object moving mechanism 20; And a control unit 17 for sending control signals 21 and 22 to control these operations.
[0063]
Here, the polishing body moving mechanism 19 of the polishing apparatus according to the embodiment of the present invention includes an actuator (not shown) such as a motor for giving the above-described rotational movement, the above-mentioned swinging movement, and the like to the polishing body 11, and controls the same. And a drive unit (not shown) including an input / output unit for receiving the signal 21 and causing the actuator to perform a desired drive. The polishing body moving mechanism 19 is configured to be able to rotate the polishing body 11 in either a clockwise direction or a counterclockwise direction.
[0064]
The polishing object moving mechanism 20 includes an actuator (not shown) such as a motor for giving the above-described rotational movement to the polishing object 13, and a control signal 22 for causing the actuator to perform desired driving. A drive unit (not shown) including an input / output unit.
Further, the polishing object moving mechanism 20 of the polishing apparatus according to the embodiment of the present invention is configured so that the rotation of the polishing object 13 can be rotated clockwise or counterclockwise.
[0065]
Polishing is performed by pressing the polishing body 11 against the rotating polishing object 13 while supplying the polishing agent 15 and swinging while rotating the polishing body 11.
[0066]
The control unit 17 of the polishing apparatus according to the embodiment of the present invention can set a plurality of different polishing conditions. At the time of polishing, the control unit 17 sends control signals 21 and 22 as follows.
[0067]
In the first stage of polishing, the control unit 17 sends the control signal 21 to the polishing body moving mechanism 19 and the control signal 22 to the object to be polished in accordance with the first polishing condition among a plurality of mutually different polishing conditions. It is sent to the object moving mechanism 20. Upon receiving the control signal 21, the polishing body moving mechanism 19 causes the polishing body 11 to perform the first polishing body movement 5, and receives the control signal 22, and the polishing target moving mechanism 20 causes the polishing target 13 to perform the first polishing. The object movement 6 is performed. A first relative speed is generated in the polishing body 11 in response to these movements 5 and 6, and a first deviation occurs in the history of the relative speed of the polishing body 11.
[0068]
The controller 17 sends a second control signal 21 to the polishing body moving mechanism 19 and a second control signal in the second stage of polishing, in accordance with a second polishing condition among a plurality of different polishing conditions. The control signal 22 is sent to the polishing object moving mechanism 20. Upon receiving the second control signal 21, the polishing body moving mechanism 19 causes the polishing body 11 to perform the second polishing body movement 5, and upon receiving the second control signal 22, the polishing object moving mechanism 20 causes the polishing object moving mechanism 20 to perform polishing. 13 causes the second object to be polished 6 to move. A second relative speed is generated in the polishing body 11 corresponding to these movements 5 and 6, and a second deviation occurs in the history of the relative speed of the polishing body 11.
[0069]
In the polishing apparatus according to the embodiment of the present invention, the second deviation cancels the first deviation, and the magnitude of the canceled deviation is smaller than the magnitude of the first or second deviation. When polishing is performed under three or more different polishing conditions, the first deviation is offset by the second deviation and the third deviation, etc., and the magnitude of the deviation resulting from the offset is the first or second deviation. Or, the magnitude of the third deviation is reduced.
[0070]
In other words, in the polishing apparatus according to the embodiment of the present invention, the bias of the history of the relative speed caused by the polishing under each of the plurality of different polishing conditions is determined by a plurality of different polishing conditions. By synthesizing the polishing under the polishing conditions, the magnitude of the deviation generated under each polishing condition is reduced.
[0071]
As described above, according to the polishing method and the polishing apparatus according to the embodiment of the present invention, by applying a plurality of different polishing conditions, the deviation Vr of the history of the relative speed generated under one polishing condition. S , Vθ S Is reduced, so that unevenness in removing the step of the pattern on the semiconductor wafer surface is reduced. That is, according to the polishing method and the polishing apparatus of the embodiment of the present invention, the steps can be reduced uniformly regardless of the direction of the pattern and the position of the pattern on the polishing target.
[0072]
As described above, the case where the history of the r component Vr of the relative speed V has substantially no bias has been described. However, it is needless to say that the present invention can be applied to the case where the history of Vr has a bias.
[Embodiment 2 of the present invention]
A polishing method according to an embodiment of the present invention will be described using the polishing apparatus shown in FIG.
[0073]
Using the polishing apparatus shown in FIG. 2 in which the diameter of the polishing body 11 is smaller than the diameter of the polishing object 13, the relative position of the polishing body 11 with respect to the center position of the rotating polishing object 13 is changed. The point that the polishing is performed while being changed by the dynamic motion is the same as the conventional polishing method.
[0074]
In the polishing method according to the embodiment of the present invention, the oscillation cycle of the oscillation motion and the rotation cycle of the rotational motion of the object to be polished are not synchronized during the polishing time. More precisely, the polishing conditions are set so as to avoid synchronization during the polishing time. More specifically, in the polishing method according to the embodiment of the present invention, when a polishing time is represented by t, a synchronization cycle between the oscillation cycle of the oscillation motion and the rotation cycle of the rotation motion of the polishing target is set. The swing cycle and the rotation cycle are set so that T is longer than the polishing time t.
[0075]
More specifically, assuming that the average speed (scalar) of the rocking motion is v (mm / sec) and the stroke of the rocking motion is L (mm), the rocking cycle T P (Seconds)
Equation T P = 2L / v. If the rotation speed of the rotation is Rrpm, the rotation period T W (Seconds) is given by the formula T W = 60 / R.
[0076]
At this time, T P And T W T, which is the least common multiple of P And rotation cycle T W Is a period of synchronization. For example, T P For 0.9 seconds, T W Is 10 seconds, the synchronization period T is 90 seconds, which is the least common multiple.
[0077]
If the time 90 seconds is longer than the desired polishing time t, the rotation cycle and the swing cycle are adopted as they are. If the time 90 seconds is equal to or shorter than the desired polishing time t, the rotational speed of the polishing body 11 or the swinging stroke of the polishing target 13 or the average speed of the swinging motion of the polishing object 13 is adjusted to increase or decrease T. P Or T W Is adjusted so that the synchronization period T exceeds the polishing time t.
[0078]
As described above, according to the polishing method of the embodiment of the present invention, since the oscillation cycle of the oscillation motion and the rotation cycle of the rotational motion of the object are asynchronous, the circle of the object to be polished is Polishing unevenness in the circumferential direction (rotational direction) can be significantly reduced.
[0079]
The simulation method according to the embodiment of the present invention is described below with reference to FIG. 13, and is a simulation method performed in advance to determine the polishing conditions of the polishing apparatus as shown in FIG.
[0080]
First, in step S1, polishing conditions for a desired polishing profile (polishing amount distribution) are acquired.
[0081]
Next, in step S2, a swing cycle of the polishing body, a rotation cycle of the object to be polished with respect to the above-mentioned polishing conditions, and a synchronization cycle between the swing cycle and the rotation cycle are obtained.
[0082]
Next, in step S3, it is determined whether the synchronization period T is longer than the polishing time t. If the synchronization period T is longer than the polishing time t, the process proceeds to step S5; otherwise, the process proceeds to step S4.
[0083]
Next, in step S4, the swing condition of the polishing body or the rotation condition of the object to be polished are finely adjusted, and the process proceeds to step S2.
[0084]
Finally, in step S5, the determined polishing conditions including the swing condition and the rotation condition are output.
[0085]
According to the simulation method of the present embodiment, when polishing under the polishing conditions simulated by this method, the swing motion of the polishing body and the rotation motion of the polishing target are not synchronized, so that polishing unevenness in the circumferential direction, That is, the polishing amount distribution is small, and a centrally symmetric polishing amount distribution is obtained.
[Embodiment 3 of the present invention]
FIG. 12 is a flowchart showing a semiconductor device manufacturing process according to the embodiment of the present invention. After starting the semiconductor device manufacturing process, first, in step S200, an appropriate processing step is selected from the following steps S201 to S204. According to the selection, the process proceeds to any of steps S201 to S204.
[0086]
Step S201 is an oxidation step of oxidizing the surface of the semiconductor wafer. Step S202 is a CVD step of forming an insulating film on the surface of the semiconductor wafer by CVD or the like. Step S203 is an electrode forming step of forming an electrode film on the semiconductor wafer by a process such as vapor deposition. Step S204 is an ion implantation step of implanting ions into the semiconductor wafer.
[0087]
After the CVD process or the electrode forming process, the process proceeds to step S209, and it is determined whether the CMP process is performed. If not, the process proceeds to step S206; otherwise, the process proceeds to step S205. Step S205 is a CMP step, in which the polishing method or the polishing apparatus of the present invention is used to flatten an interlayer insulating film or to form a damascene by polishing a metal film on the surface of a semiconductor device. Done.
[0088]
After the CMP step or the oxidation step, the process proceeds to step S206. Step S206 is a photolithography process. In the photolithography process, a resist is applied to a semiconductor wafer, a circuit pattern is printed on the semiconductor wafer by exposure using an exposure device, and the exposed semiconductor wafer is developed. Further, the next step S207 is an etching step of removing portions other than the developed resist image by etching, removing the resist, and removing unnecessary resist after etching.
[0089]
Next, it is determined in step S208 whether all necessary steps have been completed. If not, the process returns to step S200, and the previous steps are repeated to form a circuit pattern on the semiconductor wafer. If it is determined in step S208 that all steps have been completed, the process ends.
[0090]
In the semiconductor device manufacturing method according to the embodiment of the present invention, since the polishing method or the polishing apparatus of the present invention is used in the CMP step, the direction of the convex pattern of the semiconductor wafer and the pattern Irrespective of the position at the step, the steps remaining in the polished pattern can be made uniform. Alternatively, the polishing unevenness in the circumferential direction, that is, the polishing amount distribution can be reduced. Therefore, in the semiconductor device manufacturing method according to the embodiment of the present invention, the timing at which the step is eliminated by polishing or the timing at which a desired polishing amount is reached can be accurately grasped, and the yield in the CMP process is improved, and the polishing is performed. Semiconductor wafers, and ultimately, the semiconductor device manufacturing quality can be improved. As a result, there is an effect that a high-quality semiconductor device can be manufactured at a lower cost than the conventional semiconductor device manufacturing method.
[0091]
Note that the polishing apparatus according to the embodiment of the present invention may be used in a CMP step of a semiconductor device manufacturing process other than the semiconductor device manufacturing process described above.
[0092]
The semiconductor device according to the embodiment of the present invention is manufactured by the semiconductor device manufacturing method according to the embodiment of the present invention. As a result, the semiconductor device according to the embodiment of the present invention has the effect of lower cost and higher quality than the conventional semiconductor device.
[0093]
Although the first to third embodiments of the present invention have been described above, the present invention is not limited to these embodiments.
[0094]
For example, the above embodiment is an example applied to CMP, but the present invention can also be applied to polishing of optical members such as glass.
[0095]
【Example】
[Example 1]
In this embodiment, an 8-inch Si wafer 13 having a lattice pattern as shown in FIG. 14 provided on the entire surface thereof is stepped under different first and second polishing conditions using the polishing apparatus shown in FIG. Polishing for the solution was performed. The lattice pattern was 3 mm × 2 mm, and a Cu layer having a thickness of 1.0 μm was arranged in a lattice shape having a pitch of 100 μm and a period of 200 μm with a step of 0.5 μm.
[0096]
Figure 2004223636
When the Cu layer is polished to a residual film thickness of 0.4 μm under the first and second conditions, the deviation of the history of the relative speed at an arbitrary point on the Si wafer 13 is reduced, thereby reducing the unevenness in eliminating the step. Slightly reduced.
[Example 2]
In this embodiment, an 8-inch Si wafer 13 having a lattice pattern as shown in FIG. 14 provided on the entire surface thereof is stepped under different first and second polishing conditions using the polishing apparatus shown in FIG. Polishing for the solution was performed. The lattice pattern was 3 mm × 2 mm, and a Cu layer having a thickness of 1.0 μm was arranged in a lattice shape having a pitch of 100 μm and a period of 200 μm with a step of 0.5 μm.
[0097]
Figure 2004223636
Under the above polishing conditions, polishing was first performed under the first polishing condition and then under the second polishing condition for a total of 60 seconds.
[0098]
By the polishing under the first and second conditions, the history of the relative speed at any one point of the Si wafer 13 has no bias, and uniform polishing can be realized. As a result, when the remaining film thickness of the Cu layer was polished to 0.4 μm, the unevenness (the difference between the maximum value and the minimum value of the step) of the step of the projection on the entire surface of the Si wafer 13 was 0.05 μm. Met.
[0099]
As described above, according to the present embodiment, the unevenness of the step elimination property can be significantly reduced.
[Comparative Example 1]
In this embodiment, an 8-inch Si wafer 13 provided with a lattice pattern as shown in FIG. 14 over its entire surface is polished by the polishing apparatus shown in FIG. Was performed. The lattice pattern was 3 mm × 2 mm, and a Cu layer having a thickness of 1.0 μm was arranged in a lattice shape having a pitch of 100 μm and a period of 200 μm with a step of 0.5 μm.
[0100]
Figure 2004223636
When the polishing was performed under the above polishing conditions, the deviation of the relative speed history at an arbitrary point on the Si wafer 13 was greatly generated, and the cross section of the pattern convex portion after polishing was as shown in FIG. 9B. The shape was uneven in a wedge shape, and the shape varied depending on the position in the Si wafer 13.
[0101]
The unevenness in eliminating the step according to this comparative example was large.
[Example 3]
In the present embodiment, the Cu layer of the semiconductor wafer 13 having no pattern in which the Cu layer is formed on the entire surface of the mirror-polished semiconductor wafer by 1.0 μm is formed with a diameter smaller than the diameter of the semiconductor wafer 13 shown in FIG. Is polished using a polishing apparatus provided with the polishing pad 11 of FIG.
[0102]
First, the following polishing conditions were set as conditions for achieving a desired polishing profile.
[0103]
Figure 2004223636
The swing cycle T of the polishing pad 11 under these polishing conditions P Is given by the formula T P = 2 L / v, which was determined to be 4.0 seconds. Also, the rotation cycle T of the semiconductor wafer 13 W Is given by the formula T W = 60 / R was determined by substituting the above value, which was 0.3 seconds. The synchronization cycle T between the oscillation cycle of the polishing pad 11 of 4.0 seconds and the rotation cycle of the semiconductor wafer 13 of 0.3 seconds is 12.0 seconds which is the least common multiple of the 4.0 seconds and 0.3 seconds. The time was shorter than 60 seconds.
[0104]
Therefore, the rotation speed R of the semiconductor wafer 13 was finely adjusted from 200 rpm to 199 rpm, and the synchronization cycle was calculated again.
[0105]
Rotation cycle T of semiconductor wafer 13 under these polishing conditions W Is changed from the initial 0.3 seconds to 60/199 seconds, and the synchronization period T of 4.0 seconds of the oscillation period of the polishing pad 11 and 60/199 seconds of the rotation period of the semiconductor wafer 13 is 4.0 seconds and 60 seconds. It was 1200 seconds, which was the least common multiple of / 199 seconds, and was much longer than the polishing time of 60 seconds.
[0106]
When the polishing was performed under the above conditions, no synchronization occurred during the polishing time.
[0107]
When the polishing amount (polishing film thickness) was measured after polishing under the above conditions, the polishing amount became symmetric with respect to the center of the semiconductor wafer 13 as shown in a) of FIG. Unevenness was small, and center-symmetric polishing was possible.
[Comparative Example 2]
In the present embodiment, the Cu layer of the semiconductor wafer 13 having no pattern in which the Cu layer is formed to 1.0 μm on the mirror-polished semiconductor wafer surface is polished to a diameter smaller than the diameter of the semiconductor wafer 13 shown in FIG. Polishing was performed under the following polishing conditions using a polishing apparatus having a pad 11.
[0108]
Figure 2004223636
The swing cycle T of the polishing pad 11 under these polishing conditions P Is given by the formula T P = 2 L / v, which was determined to be 4.0 seconds. Also, the rotation cycle T of the semiconductor wafer 13 W Is given by the formula T W = 60 / R was determined by substituting the above value, which was 0.3 seconds. The synchronization cycle T between the oscillation cycle of the polishing pad 11 of 4.0 seconds and the rotation cycle of the semiconductor wafer 13 of 0.3 seconds is 12.0 seconds which is the least common multiple of the 4.0 seconds and 0.3 seconds. The time was shorter than 60 seconds.
[0109]
After the polishing under the above conditions, the polishing amount (polishing film thickness) was measured. As shown in b) of FIG. 15, the polishing amount was not symmetrical with respect to the center of the semiconductor wafer 13 but was inclined. And uneven polishing in the circumferential direction was large.
[0110]
【The invention's effect】
According to the present invention, it is possible to provide a polishing method capable of reducing unevenness in eliminating steps.
[0111]
Further, according to the present invention, it is possible to provide a polishing method capable of reducing polishing unevenness in a circumferential direction.
[0112]
Further, according to the present invention, it is possible to provide a polishing apparatus capable of reducing unevenness in eliminating steps.
[0113]
Further, according to the present invention, it is possible to provide a polishing simulation method capable of reducing polishing unevenness in a circumferential direction.
[0114]
Further, according to the present invention, it is possible to provide a semiconductor device manufacturing method capable of manufacturing a high quality semiconductor device at low cost.
[0115]
Further, according to the present invention, a high-quality semiconductor device can be provided at low cost.
[Brief description of the drawings]
FIG. 1 illustrates the reduction of bias in the history of relative speed in a polishing method according to an embodiment of the present invention.
FIG. 2 illustrates a polishing apparatus according to an embodiment of the present invention or a polishing apparatus illustrating a polishing method according to an embodiment of the present invention.
FIG. 3 shows a small-diameter polishing apparatus.
FIG. 4 shows calculation positions of a polishing simulation.
FIG. 5 shows the simulated history of the relative speed at point (0,0).
FIG. 6 shows the simulated history of the relative velocity at point (60,0).
FIG. 7 shows a simulated history of the relative velocity at point (120,0).
FIG. 8 shows a case where the history of the relative speed is biased.
FIG. 9 shows a cross-sectional shape of a convex pattern after polishing when there is a bias in the history of relative speed.
FIG. 10 shows a conventional polishing apparatus.
FIG. 11 shows a conventional state of uneven polishing in the circumferential direction.
FIG. 12 shows a method for manufacturing a semiconductor device according to an embodiment of the present invention.
FIG. 13 shows a simulation method according to the embodiment of the present invention.
FIG. 14 shows an Si wafer with a grid pattern to be polished in an example.
FIG. 15 shows a polishing profile of an example.
FIG. 16 is a diagram illustrating a polishing method according to an embodiment of the present invention.
[Explanation of symbols]
1 Pattern 1
2 pattern 2
3 Calculation point position
4 steps
5 Abrasive body exercise
6 Object movement
7. Arbitrary point on the polishing object 13
11 polishing body (polishing pad)
12 Polishing surface plate
13 Object to be polished (semiconductor wafer, Si wafer)
14 Polishing object holder (wafer holder)
15 abrasive
16 Abrasive supply section
17 Control part
18 polishing tools
19 Abrasive moving mechanism
20 Polishing object moving mechanism
21, 22 control signal

Claims (9)

研磨体を研磨対象物に押圧しながら、前記研磨体を前記研磨対象物に対して相対運動させ、前記研磨対象物を研磨する研磨方法であって、互いに異なる複数の研磨条件で研磨する段階を具え、前記複数の研磨条件の内の一つの研磨条件で研磨することによって生じた前記相対運動の相対速度の履歴の偏りの大きさを、前記複数の研磨条件の内の他の一つ以上の研磨条件で研磨することによって生じた前記相対運動の相対速度の履歴の偏りによって相殺して低減することを特徴とする研磨方法。A polishing method for polishing the polishing object while pressing the polishing object against the polishing object while relatively moving the polishing object with respect to the polishing object, and polishing the polishing object under a plurality of different polishing conditions. The magnitude of the deviation of the history of the relative speed of the relative motion caused by polishing under one of the plurality of polishing conditions is determined by using at least one of the other polishing conditions among the plurality of polishing conditions. A polishing method characterized in that the reduction is offset by a bias in the history of the relative speed of the relative motion caused by polishing under the polishing conditions. 前記研磨体と前記研磨対象物が研磨中に各々回転され、前記複数の研磨条件の内の一つの研磨条件に於ける前記研磨体の回転方向が、前記複数の研磨条件の内の他の一つの研磨条件で反転されることを特徴とする請求項1記載の研磨方法。The polishing body and the object to be polished are each rotated during polishing, and the direction of rotation of the polishing body under one of the plurality of polishing conditions is the other of the plurality of polishing conditions. The polishing method according to claim 1, wherein the polishing is performed under two polishing conditions. 前記研磨体と前記研磨対象物が研磨中に各々回転され、前記複数の研磨条件の内の一つの研磨条件に於ける前記研磨体と前記研磨対象物の回転方向が、前記複数の研磨条件の内の他の一つの研磨条件で両方共に反転されることを特徴とする請求項1記載の研磨方法。The polishing body and the object to be polished are each rotated during polishing, and the rotation direction of the polishing body and the object to be polished in one of the plurality of polishing conditions is the rotation direction of the plurality of polishing conditions. 2. The polishing method according to claim 1, wherein both are reversed under another one of the polishing conditions. 前記研磨を複数の研磨位置を有する研磨装置で行い、前記異なる複数の研磨条件の各々が、前記複数の研磨位置の各研磨位置に於ける研磨体と研磨対象物保持部の各運動に対して与えられ、前記複数の研磨位置の内の一つの研磨位置で前記複数の研磨条件の内の一つの研磨条件により研磨が終了した後に、前記複数の研磨位置の内の他の一つの研磨位置で前記複数の研磨条件の内の他の一つの研磨条件で研磨を行なう為に、前記一つの研磨位置から他の研磨位置へ前記研磨対象物を搬送する段階を具えることを特徴とする請求項1〜3何れか1項記載の研磨方法。The polishing is performed by a polishing apparatus having a plurality of polishing positions, and each of the plurality of different polishing conditions is determined with respect to each movement of the polishing body and the polishing object holder at each polishing position of the plurality of polishing positions. Given, after polishing is completed by one of the plurality of polishing conditions at one of the plurality of polishing positions, at another one of the plurality of polishing positions. The method according to claim 1, further comprising the step of: transporting the object to be polished from the one polishing position to another polishing position in order to perform polishing under another one of the plurality of polishing conditions. The polishing method according to any one of claims 1 to 3. 研磨体に回転運動を与える研磨体回転機構と研磨対象物に回転運動を与える研磨対象物回転機構とを具え、前記研磨体を前記研磨対象物に押圧しながら、前記研磨体を前記研磨対象物に対して相対運動させ、前記研磨対象物を研磨する研磨装置であって、前記研磨体回転機構と前記研磨対象物回転機構とが、各々時計回りと反時計回りの両方向に回転可能となるよう構成され、前記研磨加工の間に前記研磨体の回転運動の回転方向又は前記研磨対象物の回転運動の回転方向の片方または両方を反転させることにより、前記相対運動の偏りを低減させることを特徴とする研磨装置。A polishing body rotating mechanism for giving a rotating motion to the polishing body and a polishing object rotating mechanism for giving a rotating motion to the polishing object, wherein the polishing body is pressed against the polishing object while the polishing body is pressed against the polishing object. Relative to the polishing object to polish the object to be polished, wherein the polishing body rotation mechanism and the object to be polished are rotatable in both clockwise and counterclockwise directions. The method is characterized in that one or both of the rotational direction of the rotational movement of the polishing body and / or the rotational direction of the rotational movement of the object to be polished are reversed during the polishing to reduce the bias of the relative movement. Polishing equipment. 研磨体を回転運動する研磨対象物に押圧しながら、前記研磨体の揺動運動によって前記研磨対象物の中心位置に対する前記研磨体の相対位置を変化させながら研磨する研磨方法であって、前記揺動運動の揺動周期と前記回転運動の周期とが研磨時間中には同期しないことを特徴とする研磨方法。A polishing method for polishing while changing a relative position of the polishing body with respect to a center position of the polishing object by swinging movement of the polishing body while pressing the polishing body against a rotating polishing object. A polishing method, wherein the oscillation cycle of the dynamic motion and the cycle of the rotary motion are not synchronized during the polishing time. 研磨体を回転運動する研磨対象物に押圧しながら、前記研磨体の揺動運動によって前記研磨対象物の中心位置に対する前記研磨体の相対位置を変化させながら研磨する研磨装置の研磨条件を決定する為のシミュレーション方法であり、前記揺動運動の揺動周期と、前記回転運動の周期とが研磨時間中には同期しないよう予め研磨条件を決定する研磨シミュレーション方法。While pressing the polishing body against the rotating polishing object, the polishing condition of the polishing apparatus for performing polishing while changing the relative position of the polishing body with respect to the center position of the polishing object by the swinging motion of the polishing body is determined. A polishing simulation method for determining polishing conditions in advance so that the oscillation cycle of the oscillation motion and the cycle of the rotation motion are not synchronized during the polishing time. 請求項1〜4、請求項6何れか1項記載の研磨方法又は請求項5記載の研磨装置を用いて研磨対象物を研磨する段階を具えることを特徴とする半導体デバイスの製造方法。A method for manufacturing a semiconductor device, comprising a step of polishing an object to be polished using the polishing method according to any one of claims 1 to 4 and claim 6 or the polishing apparatus according to claim 5. 請求項8記載の半導体デバイス製造方法で製造されることを特徴とする半導体デバイス。A semiconductor device manufactured by the semiconductor device manufacturing method according to claim 8.
JP2003012686A 2003-01-21 2003-01-21 Polishing method, polishing device, polishing simulation method, and semiconductor device and its manufacturing method Withdrawn JP2004223636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003012686A JP2004223636A (en) 2003-01-21 2003-01-21 Polishing method, polishing device, polishing simulation method, and semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003012686A JP2004223636A (en) 2003-01-21 2003-01-21 Polishing method, polishing device, polishing simulation method, and semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004223636A true JP2004223636A (en) 2004-08-12

Family

ID=32901219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003012686A Withdrawn JP2004223636A (en) 2003-01-21 2003-01-21 Polishing method, polishing device, polishing simulation method, and semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004223636A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142924A (en) * 2007-12-12 2009-07-02 Nikon Corp Grinding device
JP2009142973A (en) * 2007-12-18 2009-07-02 Nikon Corp Grinding device
JP2009166215A (en) * 2008-01-18 2009-07-30 Nikon Corp Grinding method and grinding device
WO2017155081A1 (en) * 2016-03-11 2017-09-14 東邦エンジニアリング株式会社 Planarizing device
US10665480B2 (en) 2014-12-31 2020-05-26 Osaka University Planarizing processing method and planarizing processing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142924A (en) * 2007-12-12 2009-07-02 Nikon Corp Grinding device
JP2009142973A (en) * 2007-12-18 2009-07-02 Nikon Corp Grinding device
JP2009166215A (en) * 2008-01-18 2009-07-30 Nikon Corp Grinding method and grinding device
US10665480B2 (en) 2014-12-31 2020-05-26 Osaka University Planarizing processing method and planarizing processing device
WO2017155081A1 (en) * 2016-03-11 2017-09-14 東邦エンジニアリング株式会社 Planarizing device
JP2017159430A (en) * 2016-03-11 2017-09-14 東邦エンジニアリング株式会社 Flattening machining device, operation method thereof, and workpiece manufacturing method
US10770301B2 (en) 2016-03-11 2020-09-08 Toho Engineering Co., Ltd. Planarization processing device

Similar Documents

Publication Publication Date Title
US6869732B2 (en) Glass substrate for photomasks and preparation method
US9316902B2 (en) Photomask-forming glass substrate and making method
US20100233937A1 (en) Method for predicting worked shape, method for determining working conditions, working method, working system, semiconductor device manufacturing method, computer program and computer program storage medium
US7306509B2 (en) Processing device, processing method and method of manufacturing semiconductor device
KR20150108354A (en) Method for manufacturing mask blank substrate, method for manufacturing mask blank and method for manufacturing transfer mask
JP2004223636A (en) Polishing method, polishing device, polishing simulation method, and semiconductor device and its manufacturing method
JP2000263416A (en) Dressing device and polishing device provided with this dressing device
JPH08139169A (en) Method for making ceramic member for wafer holding base
JP2007019434A (en) Polishing pad profile modification equipment and polishing equipment
JP2003257911A (en) Dressing method and dressing device, polishing device, and semiconductor device and manufacturing method thereof
JP2002083787A (en) Method and apparatus for polishing wafer
JP2004082270A (en) Polishing pad and polishing device and method using the same
JP2020049612A (en) Double surface polishing device and double surface polishing method of workpiece
JPH0911117A (en) Flattening method and apparatus
JP2005301304A (en) Substrate for mask blank, mask blank, and mask for transfer
JP6956604B2 (en) Substrate processing equipment and article manufacturing method
JP2003266300A (en) Polishing device and manufacturing method for semiconductor device
US20020094687A1 (en) Method of fabricating semiconductor device for preventing contaminating particle generation
JPH1034535A (en) Method and device for polishing
JPH08162431A (en) Flattening method of semiconductor device
JP6161913B2 (en) Method for manufacturing substrate for mask blank, method for manufacturing substrate with multilayer reflective film, method for manufacturing mask blank, and method for manufacturing transfer mask
JP2004022886A (en) Polishing member, polishing device using the same, semiconductor device manufacturing method using it, and semiconductor device manufactured through the method
JPH09167745A (en) Method and device for chemical/mechanical polishing and manufacture of semiconductor substrate
KR100906042B1 (en) Planarizing method of a semiconductor device
Keilen Investigation of Chemical Mechanical Polishing to Enhance Feature Resolution by Atomic Layer Deposition

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404