JP5119602B2 - Periodic pattern defect inspection method and defect inspection apparatus - Google Patents

Periodic pattern defect inspection method and defect inspection apparatus Download PDF

Info

Publication number
JP5119602B2
JP5119602B2 JP2006063043A JP2006063043A JP5119602B2 JP 5119602 B2 JP5119602 B2 JP 5119602B2 JP 2006063043 A JP2006063043 A JP 2006063043A JP 2006063043 A JP2006063043 A JP 2006063043A JP 5119602 B2 JP5119602 B2 JP 5119602B2
Authority
JP
Japan
Prior art keywords
periodic pattern
inspection
light
incident angle
light sources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006063043A
Other languages
Japanese (ja)
Other versions
JP2007240323A (en
Inventor
崇 稲村
恭行 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2006063043A priority Critical patent/JP5119602B2/en
Publication of JP2007240323A publication Critical patent/JP2007240323A/en
Application granted granted Critical
Publication of JP5119602B2 publication Critical patent/JP5119602B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、周期性パターンを持つメモリ用フォトマスクなどの製品においてパターンのスジ状ムラ欠陥を検査するための欠陥検査装置及び欠陥検査方法に係り、特にフォトマスクやウエハ等の基板に周期的に形成されているパターンに生じるスジ状ムラを高精度に検出できる周期性パターンの欠陥検査方法及び欠陥検査装置に関する。   The present invention relates to a defect inspection apparatus and a defect inspection method for inspecting a pattern-like uneven defect in a product such as a photomask for a memory having a periodic pattern. The present invention relates to a defect inspection method and a defect inspection apparatus for a periodic pattern capable of detecting a stripe-shaped unevenness generated in a formed pattern with high accuracy.

周期性パターンとは、一定の間隔(以下ピッチと記す)を持つライン・アンド・スペース・パターンの集合体を称し、例えば、1本のパターンが所定ピッチで配列したストライプ状の周期性パターン、又は開口部のパターンが所定ピッチで配列したマトリクス状の周期性パターン等をいう。   The periodic pattern refers to a collection of line and space patterns having a constant interval (hereinafter referred to as a pitch). For example, a periodic pattern of stripes in which one pattern is arranged at a predetermined pitch, or A matrix-like periodic pattern in which patterns of openings are arranged at a predetermined pitch.

従来の周期性パターンの欠陥検査では、同軸の透過照明や平面照明(例えば、特許文献1、2参照)を用いて透過率画像を撮像し、各々の画像での光の強度(明るさ、輝度)を比べてスジ状ムラ欠陥と正常部とを視認する方法をとっている。そのため、ムラ欠陥部と正常部との光の強度差が少ない所謂コントラストが低い画像において、強度差を拡大してムラ欠陥部を抽出する。すなわち、従来の方法では、回折光の強度分布を計測し、その回折光のピークが現れるところで検査を行なう。   In a conventional defect inspection of a periodic pattern, a transmittance image is captured using coaxial transmission illumination or planar illumination (see, for example, Patent Documents 1 and 2), and light intensity (brightness and luminance) in each image is captured. ) To visually recognize the streaky unevenness defect and the normal part. Therefore, in an image with a low so-called contrast with a small light intensity difference between the mura defect portion and the normal portion, the mura defect portion is extracted by expanding the intensity difference. That is, in the conventional method, the intensity distribution of diffracted light is measured, and an inspection is performed where the peak of the diffracted light appears.

しかし、従来の方法においては、ピッチの小さいメモリ用フォトマスクの周期性パターンを検査する場合に、強度差の処理を工夫したとしても、ムラ欠陥部と正常部でのコントラストの向上が望めず、ムラ欠陥部に生じるわずかな光の強度差を判別できないことがある。
特開2002−148210号公報 特開2002−350361号公報
However, in the conventional method, when inspecting the periodic pattern of the photomask for memory with a small pitch, even if the processing of the intensity difference is devised, the improvement in the contrast between the mura defect portion and the normal portion cannot be expected, There may be a case where a slight difference in the intensity of light generated in the uneven defect portion cannot be determined.
JP 2002-148210 A JP 2002-350361 A

本発明は上記の課題を解決するためになされたものであって、メモリ用フォトマスクのような微細ピッチの周期性パターンを高精度に検査することができる周期性パターンの欠陥検査方法および欠陥検査装置を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and a periodic pattern defect inspection method and defect inspection capable of inspecting a periodic pattern with a fine pitch such as a photomask for a memory with high accuracy. An object is to provide an apparatus.

本発明に係る周期性パターンの欠陥検査方法は、基板のXY面上にX軸方向に所定のピッチで描画された周期性パターンに4つの検査光源から中心波長λ1(=500nm)の光を照射して周期性パターンに発生するスジ状ムラ欠陥を検査する周期性パターンの欠陥検査方法において、(i)前記4つの検査光源とは異なる他の光源から前記検査光源の中心波長λ1(=500nm)を外れる回折角度算出用波長λ2(=633nm)の単一波長の光を前記周期性パターンの描画水平方向および描画垂直方向においてそれぞれ対向する方向から前記周期性パターンに照射し、その主要回折光のピークが回折面の垂直軸に現れる入射角度Aを測定し、測定した前記入射角度Aを用いるθ1=(90−A)π/180の関係から一次回折光が現れる入射角度θ1を求め、求めた入射角度θ1と前記検査光源の中心波長λ1を用いるd=1×λ1/sin(θ1)の関係からピッチ寸法dを算出するか、または、前記周期性パターンの図面情報から該周期性パターンのピッチ寸法を取得し、
(ii)前記得られたピッチ寸法dと前記回折角度算出用波長λ2を用いるθtarget=sin -1 (1×λ2/d)の関係から前記周期性パターンの正常部とムラ部の回折光光強度のコントラストが取れるように測定に適した入射角度θtargetを求め、求めた入射角度θtargetを用いるB={90−(θtarget×180)}/πの関係から入射角度Bを算出し、(iii)前記入射角度Bで前記4つの検査光源から前記周期性パターンに光が入射するように前記4つの検査光源の各々と前記基板とを相対位置合わせし、(iv)前記4つの検査光源の各々から中心波長λ1(=500nm)の光を前記周期性パターンに照射して検査する、ことを特徴とする。
In the defect inspection method for a periodic pattern according to the present invention, the periodic pattern drawn on the XY plane of the substrate at a predetermined pitch in the X-axis direction is irradiated with light having a center wavelength λ1 (= 500 nm) from four inspection light sources. In the periodic pattern defect inspection method for inspecting streaky unevenness defects occurring in the periodic pattern, (i) a central wavelength λ1 (= 500 nm) of the inspection light source from another light source different from the four inspection light sources Irradiating the periodic pattern with light having a single wavelength of a diffraction angle calculation wavelength λ2 (= 633 nm) that deviates from the direction opposite to each other in the drawing horizontal direction and the drawing vertical direction of the periodic pattern. The incident angle A at which the peak appears on the vertical axis of the diffractive surface is measured, and the first order diffracted light appears from the relationship of θ1 = (90−A) π / 180 using the measured incident angle A. The angle .theta.1 determined, or calculated pitch dimension d from the relationship d = 1 × used central wavelength .lambda.1 of the incident angle .theta.1 obtained the inspection light source λ1 / sin (θ1), or, the drawing information of the periodic pattern To obtain the pitch dimension of the periodic pattern from
(Ii) Diffracted light intensity of the normal portion and the uneven portion of the periodic pattern from the relationship of θtarget = sin −1 (1 × λ2 / d) using the obtained pitch dimension d and the diffraction angle calculation wavelength λ2. obtains the incident angle Shitatarget suitable for measurement so that the contrast can be taken of, calculating the incident angle B from the relationship between the incident angle Shitatarget using B = {90- (θtarget × 180 )} / π obtained, (iii) the Relatively align each of the four inspection light sources and the substrate so that light is incident on the periodic pattern from the four inspection light sources at an incident angle B , and (iv) center from each of the four inspection light sources Inspection is performed by irradiating the periodic pattern with light having a wavelength λ1 (= 500 nm) .

本発明に係る周期性パターンの欠陥検査装置は、基板のXY面上にX軸方向に所定のピッチで描画された周期性パターンに発生するスジ状ムラ欠陥を検査するための周期性パターンの欠陥検査装置であって、(a)前記基板を実質的に水平に保持し、該基板を二次元平面視野内でX軸方向およびY軸方向にそれぞれ移動させる移動機構を備えたXYステージと、(b1)中心波長λ1(=500nm)の光を出射し、前記XYステージ上の基板の周期性パターンに対して斜め透過光の照明を個別に行う4つの検査光源と、(b2)前記検査光源の中心波長λ1(=500nm)を外れる回折角度算出用波長λ2(=633nm)の単一波長の光を前記周期性パターンの描画水平方向および描画垂直方向においてそれぞれ対向する方向から前記周期性パターンに照射する他の光源と、(c)前記XYステージを挟んで前記4つの検査光源の反対側に配置され、前記4つの検査光源によって斜め透過光照明された前記周期性パターンにおける回折光を撮像する撮像手段と、(d)前記4つの検査光源の光学的条件をそれぞれ個別に設定する光学条件4軸設定手段と、(e)前記光学条件4軸設定手段により設定された光学的条件に基づいて前記XYステージ上の基板に対して前記4つの検査光源の各々を二次元平面視野内で個別に移動させる移動手段と、(f)前記移動手段によって前記4つの検査光源の各々が移動されたときに、前記光学条件4軸設定手段により設定された光学的条件に基づいて検査対象となる前記周期性パターンに対して前記4つの検査光源の各々から斜め透過光の照明があたるように、前記移動手段と連動して前記4つの検査光源の各々の向きを変えさせる姿勢変更手段と、(g)前記他の光源から前記回折角度算出用波長λ2(=633nm)の単一波長の光を照射し、その主要回折光のピークが回折面の垂直軸に現れる入射角度Aを測定し、測定した前記入射角度Aを用いるθ1=(90−A)π/180の関係から一次回折光が現れる入射角度θ1を求め、求めた入射角度θ1と前記検査光源の中心波長λ1を用いるd=1×λ1/sin(θ1)の関係からピッチ寸法dを算出するか、または、前記周期性パターンの図面情報から該周期性パターンのピッチ寸法を取得する手段と、(h)前記4つの検査光源の各々に取り付けられた中心波長λ1(=500nm)のバンドパスフィルタと、(i)前記得られたピッチ寸法dと前記回折角度算出用波長λ2を用いるθtarget=sin -1 (1×λ2/d)の関係から前記周期性パターンの正常部とムラ部の回折光光強度のコントラストが取れるように測定に適した入射角度θtargetを求め、求めた入射角度θtargetを用いるB={90−(θtarget×180)}/πの関係から入射角度Bを算出し、該入射角度Bで前記4つの検査光源から前記周期性パターンに光が入射するように、前記移動手段および前記姿勢変更手段の動作をそれぞれ制御して前記4つの検査光源の各々と前記基板とを相対位置合わせする制御手段と、を具備することを特徴とする。 The periodic pattern defect inspection apparatus according to the present invention is a periodic pattern defect for inspecting streaky unevenness defects generated in a periodic pattern drawn at a predetermined pitch in the X-axis direction on the XY plane of a substrate. an inspection apparatus, an XY stage having a moving mechanism for moving each (a) said substrate substantially horizontally held, and in the X-axis and Y-axis directions the substrate in a two-dimensional plane field, ( b1) Four inspection light sources that emit light having a central wavelength λ1 (= 500 nm) and individually illuminate obliquely transmitted light with respect to the periodic pattern of the substrate on the XY stage, and (b2) A single wavelength light having a diffraction angle calculation wavelength λ2 (= 633 nm) that deviates from the center wavelength λ1 (= 500 nm) from the opposite direction in the drawing pattern horizontal direction and the drawing vertical direction. And other light sources for irradiating the period pattern, across the (c) the XY stage is arranged on the opposite side of the four inspection light source, the diffraction in the cyclic pattern that is illuminated obliquely transmitted light by the four inspection light source Imaging means for imaging light; (d) optical condition 4-axis setting means for individually setting the optical conditions of the four inspection light sources; and (e) optical conditions set by the optical condition 4-axis setting means. A moving means for individually moving each of the four inspection light sources in a two-dimensional plane visual field with respect to the substrate on the XY stage based on a condition; and (f) each of the four inspection light sources by the moving means. When moved, the obliquely transmitted light from each of the four inspection light sources with respect to the periodic pattern to be inspected based on the optical condition set by the optical condition four-axis setting means As lighting strikes, and posture changing means for creating changing each direction of the four inspection light source in conjunction with the mobile unit, the (g) wherein the diffraction from another source angles calculated for the wavelength λ2 (= 633nm) Irradiation with light of a single wavelength, the incident angle A at which the peak of the main diffracted light appears on the vertical axis of the diffraction surface is measured, and the relation θ1 = (90−A) π / 180 using the measured incident angle A Calculating the pitch angle d from the relationship of d = 1 × λ1 / sin (θ1) using the calculated incident angle θ1 and the center wavelength λ1 of the inspection light source , or Means for acquiring the pitch dimension of the periodic pattern from the drawing information of the periodic pattern; (h) a bandpass filter having a center wavelength λ1 (= 500 nm) attached to each of the four inspection light sources; ) said Using said diffraction angle calculation wavelength .lambda.2 a pitch dimension d which is θtarget = sin -1 (1 × λ2 / d) of the relationship so that the contrast of the diffracted light intensity of the normal portion and the unevenness of the periodic pattern can be taken from An incident angle θtarget suitable for measurement is obtained, and an incident angle B is calculated from the relationship of B = {90− (θtarget × 180)} / π using the obtained incident angle θtarget, and the four inspections are performed at the incident angle B. Control means for controlling the operations of the moving means and the attitude changing means so that light enters the periodic pattern from a light source and relatively aligning each of the four inspection light sources with the substrate; It is characterized by comprising.

本発明の欠陥検査方法では、検査視野内で観察される欠陥像の見えかたと周期性パターンのピッチと光の波長と入射角との関係について調べた相関データを予め把握しておき、該相関データを用いて前記回折角度算出用波長として633nmを選択することができる。 In the defect inspection method of the present invention, correlation data obtained by examining the relationship between the appearance of the defect image observed in the inspection visual field, the pitch of the periodic pattern, the wavelength of light, and the incident angle is obtained in advance, and the correlation Using the data, 633 nm can be selected as the diffraction angle calculation wavelength.

ここで「回折角度算出用波長」とは、光源から周期性パターンに光を照射したときの、検査に適した光源からの光の入射角度θtargetを下式で求めるための便宜的な仮想値をいう。この回折角度算出用波長λの値(rad)は、照射光源の波長域を基に、実証試験により予め取得した光源波長とムラの見えやすさとの相関関係のデータより決定する。 Here, the “diffraction angle calculation wavelength” is a convenient virtual value for obtaining the incident angle θtarget of light from the light source suitable for inspection when the periodic pattern is irradiated with light from the light source using the following equation. Say. The value (rad) of the diffraction angle calculation wavelength λ is determined based on the correlation data between the light source wavelength and the visibility of unevenness obtained in advance through a verification test based on the wavelength range of the irradiation light source.

θtarget=sin-1(m*λ/d)
本発明の欠陥検査装置において、中心波長500nmのバンドパスフィルタを4つの検査光源の各々に取付け、各検査光源から出射される中心波長500nmの光をバンドパスフィルタに通して、500nmを中心とする波長帯域のコントラストの良い周期性パターンの画像を得ることができる。また、制御手段は、前記撮像手段の検査視野内で観察される欠陥像の見えかたと周期性パターンのピッチと光の波長と入射角との関係について調べた相関データを保存し、周期性パターンを検査するごとに前記相関データを呼び出すことができる。例えば、周期性パターンの情報(ピッチなど)および光源の光学的条件(光の波長、光の強度分布、光の入射角度、投光の向き、投光照明エリアの面積、焦点深度など)をそれぞれ個別に設定する。具体的には、被検体の周期性パターンに対応して光源ごとに移動手段および姿勢変更手段をどのように動作させるかを実証試験等によって予め把握しておき、このデータをレシピとして保存しておく。そして、実際に検査を行う際に、被検体の周期性パターンに応じて最適のレシピを選択し、選択して呼び出した設定データに従って光源の光学的条件をそれぞれ個別に設定する。
θtarget = sin −1 (m * λ / d)
In the defect inspection apparatus of the present invention, a band-pass filter having a center wavelength of 500 nm is attached to each of the four inspection light sources, and light having a center wavelength of 500 nm emitted from each inspection light source is passed through the band-pass filter and centered on 500 nm. An image of a periodic pattern with good contrast in the wavelength band can be obtained. Further, the control means stores correlation data obtained by examining the relationship between the appearance of the defect image observed in the inspection field of view of the imaging means, the pitch of the periodic pattern, the wavelength of the light, and the incident angle, and the periodic pattern The correlation data can be recalled each time the test is performed. For example, periodic pattern information (pitch, etc.) and light source optical conditions (light wavelength, light intensity distribution, light incident angle, light projection direction, floodlight area, depth of focus, etc.) Set individually. Specifically, it is necessary to grasp in advance through a verification test or the like how to operate the moving unit and the posture changing unit for each light source corresponding to the periodic pattern of the subject, and save this data as a recipe. deep. When actually performing the inspection, an optimum recipe is selected according to the periodic pattern of the subject, and the optical conditions of the light source are individually set according to the setting data selected and called.

周期性パターンの形状は基本的に矩形が多く、また描画ムラも描画水平方向と描画垂直方向(描画直交方向)とに周期的に生じることが多いために、フォトマスクに対して描画水平方向および描画垂直方向においてそれぞれ対向する方向から照明する4軸を基本として投光する。   The shape of the periodic pattern is basically a rectangular shape, and unevenness of drawing often occurs periodically in the drawing horizontal direction and the drawing vertical direction (direction perpendicular to the drawing). Light is projected on the basis of four axes that are illuminated from opposite directions in the drawing vertical direction.

検査光が周期性パターンに入射すると、周期性パターンのナイフエッジ部分(正常パターンの変位部あるいは変曲部)およびスジ状ムラ(欠陥パターンの変位部あるいは変曲部部)において光が回折して、それらの回折光をそれぞれ検出することにより欠陥としてのスジ状ムラが検出される。   When the inspection light is incident on the periodic pattern, the light is diffracted at the knife edge portion (normal pattern displacement portion or inflection portion) and streaky unevenness (defect pattern displacement portion or inflection portion) of the periodic pattern. By detecting these diffracted lights, streaky irregularities as defects are detected.

光の回折に関して、周期性パターンの正常部では、ある特定の方向に強力な透過光が形成される。スジ状ムラ部でも、ある特定方向のみに回折光が出る場合もあるが、パターンの周期性(パターン形状やピッチ間隔)が正常部と異なるので、パターン形状及びピッチ間隔に応じて正常部とは違う方向に回折光を生じる。これらの回折光を含む光学検出データに基づき画像処理と解析を繰り返し行い、スジ状ムラを検出し表示する。   With respect to light diffraction, strong transmitted light is formed in a specific direction in the normal part of the periodic pattern. Even in the stripe-shaped uneven part, diffracted light may be emitted only in a specific direction, but since the periodicity of the pattern (pattern shape and pitch interval) is different from the normal part, it is different from the normal part depending on the pattern shape and pitch interval. Diffracted light is generated in a different direction. Image processing and analysis are repeatedly performed based on optical detection data including these diffracted lights, and streaky irregularities are detected and displayed.

本発明の検査装置が光の回折現象をマクロ的に捉える装置であるため、回折現象に大きく影響を与える投光角度(光の入射角)や光の波長に依存する部分が大きい。しかし、フォトマスクの周期性パターンはまさに多種多様であり、パターンが様々であること、およびスジ状ムラの程度がサンプルによって大きく異なることから、光学条件を一定の固定した条件に設定することは困難である。このため、該当するサンプルに合わせた光学系の条件を個別に設定することが必要になってくる。そこで、本発明では、周期性パターンの欠陥(スジ状ムラ)を見つけやすい光学条件として光の波長λ(回折角度算出用波長633nm)とそのときの入射角度θをそれぞれ設定することで、どのようなパターンの検査対象であっても見落としなく高精度に検査することができるようになる。 Since the inspection apparatus according to the present invention is a device that captures the diffraction phenomenon of light in a macro manner, the portion depending on the light projection angle (light incident angle) and the light wavelength that greatly affects the diffraction phenomenon is large. However, the periodic patterns of photomasks are very diverse, and it is difficult to set the optical conditions to a fixed condition because the patterns are various and the degree of streak-like unevenness varies greatly depending on the sample. It is. For this reason, it is necessary to individually set the optical system conditions according to the corresponding sample. Therefore, in the present invention, the optical wavelength λ (diffraction angle calculation wavelength 633 nm) and the incident angle θ at that time are set as optical conditions that make it easy to find defects (striped irregularities) in the periodic pattern. Even if it is an inspection object of a simple pattern, it becomes possible to inspect with high accuracy without oversight.

上述のように設定した光学条件の設定値等をレシピとして保存し、これとともに検査結果および検査画像をデータベースに保存する。すなわち、パネル画面を用いて必要な入力操作を行うことにより、保存された履歴データから任意のデータを選択し、すでに実績のある検査画像や検査結果を容易に確認することができる。また、履歴データを呼び出した後に、再検査を実行すれば、保存されたレシピから再度同じ光学条件や判定条件を呼び出し、そしてさらに検査エリアを呼び出して過去に実績のある検査とまったく同じ検査手法で検査することが可能となる。このようにして再現性の高い検査を行うことができるようになる。   The set values of the optical conditions set as described above are stored as a recipe, and the inspection result and the inspection image are stored in the database together with the recipe. That is, by performing a necessary input operation using the panel screen, it is possible to select arbitrary data from the stored history data and easily check the already-proven inspection images and inspection results. In addition, if the re-inspection is executed after recalling the history data, the same optical conditions and judgment conditions are recalled from the saved recipe, and the inspection area is recalled and the inspection method that has been proven in the past is used. It becomes possible to inspect. In this way, inspection with high reproducibility can be performed.

本発明によれば、従来法では検出できなかったスジ状ムラ欠陥を検出することができ、メモリ用フォトマスクのような微細ピッチの周期性パターンであっても高精度に検査することができるようになる。   According to the present invention, it is possible to detect streaky irregularities that could not be detected by the conventional method, and to inspect even a periodic pattern with a fine pitch such as a photomask for a memory with high accuracy. become.

以下、添付の図面を参照して本発明を実施するための最良の形態を説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

図1に示すように、本発明の周期性パターンの欠陥検査装置は、斜め透過照明部10と、透過照明される被検体基板50を可動支持するXYステージ部20と、撮像するための撮像部30と、撮像された画像を強調処理し、スジ状ムラ欠陥であるか否かを判定し、さらに強調された画像をオペレータが認識しやすいようにスジ状ムラ欠陥を表示する機能を有する処理部40とを具備している。   As shown in FIG. 1, the defect inspection apparatus for a periodic pattern according to the present invention includes an oblique transmission illumination unit 10, an XY stage unit 20 that moves and supports a subject substrate 50 that is transmitted and illuminated, and an imaging unit for imaging. 30 and a processing unit that has a function of emphasizing the captured image, determining whether the image is a streak-like unevenness defect, and displaying the streak-like unevenness defect so that the operator can easily recognize the emphasized image 40.

斜め透過照明部10は4つの光源11A〜11Dを備えている。各光源11A〜11Dは、姿勢変更手段としての傾動機構12および移動手段としてのリニアスライダ13によってリニアガイド14上にそれぞれ可動に支持されている。リニアガイド14は平面視野内で互いに直交するように配置された各2本のXガイドおよびYガイドからなるものである。2本のXガイドのうちの一方には第1の光源11AがX方向にスライド走行可能に設けられ、他方には第2の光源11BがX方向にスライド走行可能に設けられている。また、2本のYガイドのうちの一方には第3の光源11CがY方向にスライド走行可能に設けられ、他方には第4の光源11DがY方向にスライド走行可能に設けられている。リニアスライダ13は、リニアガイド14に駆動可能に係合するとともに、傾動機構12を介して光源11A〜11Dを支持している。さらに、各光源11A〜11Dは点灯と消灯を切り換える(点光源の変更)手段を備えており、検査対象基板との距離、又は照明光の入射角、方面を切り換えることができるようになっている。   The oblique transmission illumination unit 10 includes four light sources 11A to 11D. Each of the light sources 11A to 11D is movably supported on a linear guide 14 by a tilting mechanism 12 as posture changing means and a linear slider 13 as moving means. The linear guide 14 is composed of two X guides and Y guides which are arranged so as to be orthogonal to each other within a plane field of view. One of the two X guides is provided with the first light source 11A so as to be able to slide in the X direction, and the other is provided with the second light source 11B so as to be capable of sliding in the X direction. Also, one of the two Y guides is provided with a third light source 11C that can slide in the Y direction, and the other has a fourth light source 11D that can slide in the Y direction. The linear slider 13 is drivably engaged with the linear guide 14 and supports the light sources 11 </ b> A to 11 </ b> D via the tilt mechanism 12. Further, each of the light sources 11A to 11D is provided with means for switching on and off (changing the point light source) so that the distance from the inspection target substrate, the incident angle of illumination light, and the direction can be switched. .

傾動機構12は、超小型モータと、モータ回転駆動軸に連結された水平軸と、光源11A〜11Dとともに水平軸まわりに旋回するホルダとを備えている。各光源11A〜11Dは、モータ駆動によって図5に示すように傾動動作する。これにより光源11A〜11Dからの光の投光角度θが様々に変わり、様々な角度と方向からの照明が可能となっている。また、各光源11A〜11Dには、所望の波長の光を透過させる図示しない光学フィルタ(波長変換手段)を着脱可能に装着できるようになっている。光学フィルタは、波長変換手段として機能するものであり、種々の周期性パターンに対応して複数種類の光学フィルタが準備され、顧客仕様や検査レシピが変更されるごとにそれに応じて所望の光学フィルタに交換できるようになっている。   The tilting mechanism 12 includes an ultra-small motor, a horizontal shaft connected to the motor rotation drive shaft, and a holder that rotates around the horizontal axis together with the light sources 11A to 11D. Each of the light sources 11A to 11D is tilted as shown in FIG. As a result, the light projection angle θ of the light from the light sources 11A to 11D changes variously, and illumination from various angles and directions is possible. Each of the light sources 11A to 11D can be detachably mounted with an optical filter (wavelength conversion means) (not shown) that transmits light of a desired wavelength. The optical filter functions as a wavelength converting means, and a plurality of types of optical filters are prepared corresponding to various periodic patterns, and each time a customer specification or inspection recipe is changed, a desired optical filter is correspondingly changed. Can be replaced.

光源11A〜11Dにはテレセントリックレンズを含む平行光学系を備えた直線的な光源を用いる。このタイプの光源は輝度ムラや照度ムラがあり、照明強度が高いと撮像画像に影響を受けることがある。本実施形態の検査装置では、輝度ムラや照度ムラを防止するための対策として照明中心位置調整機能を付加している。   As the light sources 11A to 11D, linear light sources having a parallel optical system including a telecentric lens are used. This type of light source has uneven brightness and uneven illuminance, and if the illumination intensity is high, the captured image may be affected. In the inspection apparatus of the present embodiment, an illumination center position adjustment function is added as a measure for preventing luminance unevenness and illuminance unevenness.

XYステージ部20では、検査対象基板としてのマスク50をXYステージ21上の所定の位置に載置し保持する。XYステージ部20は、測定機能を有し、位置を認知して、マスク50の検査開始位置に装置の光軸を重ねる。XYステージ21は、X駆動機構22およびY駆動機構によって水平面内でX方向とY方向とにそれぞれ移動可能に支持されている。   In the XY stage unit 20, a mask 50 as an inspection target substrate is placed and held at a predetermined position on the XY stage 21. The XY stage unit 20 has a measurement function, recognizes the position, and superimposes the optical axis of the apparatus on the inspection start position of the mask 50. The XY stage 21 is supported by an X drive mechanism 22 and a Y drive mechanism so as to be movable in the X direction and the Y direction in a horizontal plane.

撮像部30では、光軸に平行な撮像側平行光学系31から構成され、画像を撮像する手段、例えば、CCD付きカメラ、画像のデータ化及びデータ保存送信等の役割を分担する。撮像側平行光学系31は、検査対象パターン51を所望の倍率(拡大または縮小、等倍も含む)でプロジェクション撮像できるように投影光学系を含むものである。   The imaging unit 30 includes an imaging-side parallel optical system 31 parallel to the optical axis, and shares functions such as a means for capturing an image, for example, a camera with a CCD, image data conversion, data storage and transmission. The imaging side parallel optical system 31 includes a projection optical system so that the inspection target pattern 51 can be projected and imaged at a desired magnification (including enlargement or reduction, and equal magnification).

処理部40は、撮像部30及びXYステージ部20及び透過照明部10を統括的に管理するとともに、周期性パターンのムラの検査の工程を逐次処理する手段をも統括管理するものである。さらに、処理部40では、撮像部30から撮像した画像データを受け取り、該データを所定のデータ処理手順により画像の特徴を抽出比較し、その差分を算出し、良否を判定する。なお、周期性パターンムラの検査の工程を逐次処理するフローチャートを図3に示して後述する。   The processing unit 40 comprehensively manages the imaging unit 30, the XY stage unit 20, and the transmitted illumination unit 10, and also comprehensively manages means for sequentially processing the inspection process of the periodic pattern unevenness. Further, the processing unit 40 receives the image data captured from the imaging unit 30, extracts and compares the characteristics of the image according to a predetermined data processing procedure, calculates the difference, and determines pass / fail. A flow chart for sequentially processing the periodic pattern unevenness inspection process will be described later with reference to FIG.

次に、図2を参照して検査装置の制御系の概要を説明する。   Next, the outline of the control system of the inspection apparatus will be described with reference to FIG.

本発明の検査装置は、光学条件4軸設定機能、軸別個別設定・保存機能、基準条件・参考条件設定機能、照明中心位置調整機能、データベース機能・再検査機能などの諸機能を作動させるために5つのサブシステム40a〜40eにより構成されている。   The inspection apparatus of the present invention operates various functions such as an optical condition 4-axis setting function, individual axis setting / storing function, reference condition / reference condition setting function, illumination center position adjustment function, database function / re-inspection function, etc. The five subsystems 40a to 40e.

データ入力部40aは、センサ部411、照明部412、位置固定部413および位置制御部414を備えている。センサ部411は、位置検出用の位置センサ、移動距離検出用の距離センサ(エンコーダやカウンタを含む)および輝度検出用の光感知センサなど複数のセンサを有する。データ処理部40bは、データ入力部40aのセンサ部411から入力される撮像データを処理する画像処理部415と、処理したデータを管理するデータ管理部416と、を備えている。センサ部411の各センサからは検出信号が画像処理部415に随時送られるようになっている。画像処理部415は、処理部40のパソコン41の機能の一部としてもよいし、パソコン41とは別に独立した処理ユニットとしてもよい。   The data input unit 40a includes a sensor unit 411, an illumination unit 412, a position fixing unit 413, and a position control unit 414. The sensor unit 411 includes a plurality of sensors such as a position sensor for position detection, a distance sensor for detecting a moving distance (including an encoder and a counter), and a light detection sensor for detecting luminance. The data processing unit 40b includes an image processing unit 415 that processes imaging data input from the sensor unit 411 of the data input unit 40a, and a data management unit 416 that manages the processed data. Detection signals are sent to the image processing unit 415 from each sensor of the sensor unit 411 as needed. The image processing unit 415 may be a part of the function of the personal computer 41 of the processing unit 40 or may be a processing unit independent of the personal computer 41.

照明部412は、光源11A〜11Dをコントロールするものである。   The illumination unit 412 controls the light sources 11A to 11D.

位置固定部413は、XYステージ部20をコントロールするものである。   The position fixing unit 413 controls the XY stage unit 20.

位置制御部414は、光源11A〜11Dの傾動機構12およびリニアスライダ13を個別にコントロールするものである。   The position control unit 414 individually controls the tilt mechanism 12 and the linear slider 13 of the light sources 11A to 11D.

マシンインターフェイス部40cは、検査対象となるマスク50を搬送する搬送機構(図示せず)等の外部装置との間でデータの送受信を行う機械連動部417と、マスクの受け渡しを行う自動給排部418と、を備えている。   The machine interface unit 40c includes a machine interlocking unit 417 that transmits / receives data to / from an external device such as a transport mechanism (not shown) that transports the mask 50 to be inspected, and an automatic supply / discharge unit that transfers the mask. 418.

ヒューマンインターフェイス部40eは、データ処理部40bで処理された処理画像を表示する情報表示部42と、オペレータとの間で情報のやりとりを行う対人操作部43と、を備えている。   The human interface unit 40e includes an information display unit 42 that displays a processed image processed by the data processing unit 40b, and an interpersonal operation unit 43 that exchanges information with an operator.

システムバス40dは、ヒューマンインターフェイス部40eと他のサブシステム40a〜40cとの間をインターフェイスしてデータ送受信させるものである。   The system bus 40d is an interface between the human interface unit 40e and the other subsystems 40a to 40c for data transmission / reception.

データベース機能・再検査機能は、光学条件の設定値等をレシピとして保存し、これと共に検査結果や検査画面をもデータベースに保存する機能である。データベース機能・再検査機能を付加することによって、上述した各種機能で設定した光学条件の設定値等をレシピとして保存し、これとともに検査結果および検査画像をデータベースに保存する。   The database function / re-inspection function is a function that stores optical condition setting values and the like as a recipe, and also stores inspection results and inspection screens in the database. By adding the database function / re-inspection function, the optical condition setting values set by the various functions described above are stored as recipes, and the inspection results and inspection images are also stored in the database.

例えば、オペレータは、入力・表示パネルを用いて画面上に表示される画像を見ながら、ランプ1〜4の各条件やカメラの撮像条件など必要なレシピを入力し、変更することができる。また、画面を用いて必要な入力操作を行うことにより、保存された履歴データから任意のデータを選択し、すでに実績のある検査画像や検査結果を容易に確認することができる。また、履歴データを呼び出した後に、再検査を実行すれば、保存されたレシピから再度同じ光学条件や判定条件を呼び出し、そしてさらに検査エリアを呼び出して過去に実績のある検査とまったく同じ検査手法で検査することが可能となる。このようにして再現性の高い検査を行うことができるようになる。   For example, the operator can input and change necessary recipes such as the conditions of the lamps 1 to 4 and the imaging conditions of the camera while viewing the image displayed on the screen using the input / display panel. Further, by performing a necessary input operation using the screen, it is possible to select arbitrary data from the stored history data and easily check the already-proven inspection images and inspection results. In addition, if the re-inspection is executed after recalling the history data, the same optical conditions and judgment conditions are recalled from the saved recipe, and the inspection area is recalled and the inspection method that has been proven in the past is used. It becomes possible to inspect. In this way, inspection with high reproducibility can be performed.

次に、図3を参照して周期性パターンの欠陥検査手順の概要について説明する。   Next, an outline of a periodic pattern defect inspection procedure will be described with reference to FIG.

メインスイッチをONして装置を起動させ、検査を開始する(工程S1)。所定の初期条件を設定し、すべての初期条件が揃ったところでその設定動作を終了する(工程S2)。X駆動機構22およびY駆動機構23を駆動させ、XYステージ21をホーム位置から使用位置まで移動させる(工程S3)。マスク50をXYステージ21上に載置する(工程S4)。次いで、XYステージ21ごとマスク50を検査開始位置まで移動させ、検査対象となる周期性パターン51を撮像エリア56に位置させる(工程S5)。   The main switch is turned on to activate the apparatus, and inspection is started (step S1). Predetermined initial conditions are set, and the setting operation is terminated when all the initial conditions are obtained (step S2). The X drive mechanism 22 and the Y drive mechanism 23 are driven, and the XY stage 21 is moved from the home position to the use position (step S3). The mask 50 is placed on the XY stage 21 (step S4). Next, the mask 50 is moved to the inspection start position together with the XY stage 21, and the periodic pattern 51 to be inspected is positioned in the imaging area 56 (step S5).

撮像部30の撮像の条件を設定する(工程S6)。カメラ31の倍率を設定する(工程S7)。斜め透過照明部10の照明条件を設定する(工程S8)。これらの設定が完了すると、光源11A〜11Dをスライド移動させ、傾動動作させ、撮像エリア56に対して位置合せし、パターン51に投光照明し、これを撮像する(工程S9)。初回の撮像画像を処理部40のパソコン41に取り込む(工程S10)。次の撮像エリア(検査対象パターン)の有無を判定する(工程S11)。   The imaging conditions of the imaging unit 30 are set (step S6). The magnification of the camera 31 is set (step S7). Illumination conditions for the oblique transmission illumination unit 10 are set (step S8). When these settings are completed, the light sources 11A to 11D are slid and tilted, aligned with the imaging area 56, illuminated by the pattern 51, and imaged (step S9). The first captured image is taken into the personal computer 41 of the processing unit 40 (step S10). It is determined whether or not there is a next imaging area (inspection target pattern) (step S11).

次の撮像エリア(検査対象パターン)が有ると判定した場合は、XYステージ21によりマスク50を移動させ、次の撮像エリアをカメラ撮像エリア56に位置させ、これを撮像する(工程S12)。次の撮像エリアのパターン画像を処理部40のパソコン41に取り込む(工程S13)。最後の撮像エリアであるか否かを判定する(工程S14)。最後の撮像エリアであると判定した場合は、工程S16へ進む。   If it is determined that there is a next imaging area (inspection target pattern), the mask 50 is moved by the XY stage 21, the next imaging area is positioned in the camera imaging area 56, and this is imaged (step S12). The pattern image of the next imaging area is taken into the personal computer 41 of the processing unit 40 (step S13). It is determined whether or not it is the last imaging area (step S14). If it is determined that it is the last imaging area, the process proceeds to step S16.

最後の撮像エリアでないと判定した場合は、工程S11に戻って、次の撮像エリアを撮像し(工程S12)、その撮像画像を取り込み(工程S13)、最後の撮像エリアであるか否かを再度判定する(工程S14)。   If it is determined that it is not the last imaging area, the process returns to step S11, the next imaging area is imaged (step S12), the captured image is captured (step S13), and it is determined again whether or not it is the last imaging area. Determine (step S14).

工程S11で次の撮像エリアが無いと判定した場合は、撮像を終了するとともに、XYステージ21の駆動を停止させ(工程S15)、工程S16〜S21の画像処理及び判定処理を経て、最終的に装置を停止させる(工程S22)。   If it is determined in step S11 that there is no next imaging area, the imaging is terminated and the driving of the XY stage 21 is stopped (step S15), and finally the image processing and determination processing in steps S16 to S21 are performed. The apparatus is stopped (step S22).

工程S14で最後の撮像エリアであると判定した場合は、その撮像データを処理部40へ転送し(工程S16)、パソコン41において画像処理する(工程S17)。そして、画像処理した結果データを出力し(工程S18)、その出力結果を評価判定する(工程S19)。評価判定が完了すると、検査工程を終了する(工程S20)。マスク50をステージ21から持ち上げ、搬送アームに受け渡し、チャンバから搬出する(工程S21)。装置を停止させ、検査を終了する(工程S22)。   If it is determined in step S14 that it is the last imaging area, the imaging data is transferred to the processing unit 40 (step S16), and the personal computer 41 performs image processing (step S17). Then, the image processing result data is output (step S18), and the output result is evaluated (step S19). When the evaluation determination is completed, the inspection process is terminated (process S20). The mask 50 is lifted from the stage 21, transferred to the transfer arm, and unloaded from the chamber (step S21). The apparatus is stopped and the inspection is finished (step S22).

次に、図4を参照して検査対象の周期性パターンとしてメモリ用フォトマスクに形成された微細パターンを検査する場合について説明する。   Next, a case where a fine pattern formed on a memory photomask is inspected as a periodic pattern to be inspected will be described with reference to FIG.

先ず検査対象となるメモリ用フォトマスクの周期性パターンに入射角度を変えながらレーザー光を照射して、その主要回折光ピークが回折面の垂直軸上に出現する入射角度Aを計測する(工程S31)。ここで求められた入射角度Aは本発明の装置仕様に基づいて回折面に対して平行な軸を基準(0度)として用いる角度である。回折面に対して垂直な軸を基準(0度)とし、角度をラジアンにて計算する一般的な理論式の形式に合わせるために、下式(1)により入射角度Aを入射角度θ1に換算する。 First, the periodic pattern of the memory photomask to be inspected is irradiated with laser light while changing the incident angle, and the incident angle A at which the main diffracted light peak appears on the vertical axis of the diffraction surface is measured (step S31). ). The incident angle A obtained here is an angle using an axis parallel to the diffraction surface as a reference (0 degree) based on the apparatus specification of the present invention. In order to adjust the angle perpendicular to the diffractive surface as a reference (0 degree) and to match the format of a general theoretical formula for calculating the angle in radians, the incident angle A is changed to the incident angle θ 1 by the following equation (1). Convert.

θ1=(90−A)π/180 …(1)
m次の回折光が現れる入射角度θMとパターンに照射される光の波長λ、周期性パターンのピッチdには下式(2)の関係が成り立つ。
θ 1 = (90−A) π / 180 (1)
The relationship of the following formula (2) is established between the incident angle θ M at which m-th order diffracted light appears, the wavelength λ of the light irradiated on the pattern, and the pitch d of the periodic pattern.

θM=sin-1(mλ/d) …(2)
上式(2)を基に入射角度θ1、レーザー光波長λ1を用いて下式(3)より周期性パターンのピッチ寸法dを求める(工程S32)。
θ M = sin −1 (mλ / d) (2)
Based on the above equation (2), the pitch angle d of the periodic pattern is obtained from the following equation (3) using the incident angle θ 1 and the laser light wavelength λ 1 (step S32).

d=1×λ1/sin(θ1) …(3)
求めたピッチ寸法dと検査に用いる光源波長に対応する回折角算出用波長λ2を用いて下式(4)から測定に適した入射角度θtargetを求める(工程S33)。
d = 1 × λ 1 / sin (θ 1 ) (3)
An incident angle θ target suitable for measurement is obtained from the following equation (4) using the obtained pitch dimension d and the diffraction angle calculation wavelength λ 2 corresponding to the light source wavelength used for the inspection (step S33).

θtarget=sin-1(1×λ2/d) …(4)
求めた入射角度θtargetを、下式(5)を用いて本発明の装置仕様に準ずる角度Bに換算する。
θtarget = sin −1 (1 × λ 2 / d) (4)
The obtained incident angle θtarget is converted into an angle B conforming to the apparatus specifications of the present invention using the following equation (5).

B={90−(θtarget×180)}/π …(5)
上記のようにして求めた入射角度で光がマスク50に入射するように、マスク50に対して検査装置の光源11A〜11Dをそれぞれ位置合せする(工程S34)。
B = {90− (θtarget × 180)} / π (5)
The light sources 11A to 11D of the inspection apparatus are respectively aligned with the mask 50 so that light is incident on the mask 50 at the incident angle obtained as described above (step S34).

各光源11A〜11Dでは所定のバンド幅を持つ光学フィルタを用いて光源光の波長を所望の検査指定波長に変換し、その波長変換光でマスク50の検査エリアを照明する(工程S35)。撮像部30により検査エリアを撮像し、その撮像データを処理部40に送って画像処理する。画像処理データを観察・分析することによりマスク50上の周期性パターンにスジ状ムラ欠陥が有るか無いかを判断・評価する。   In each of the light sources 11A to 11D, the wavelength of the light source light is converted into a desired inspection designated wavelength by using an optical filter having a predetermined bandwidth, and the inspection area of the mask 50 is illuminated with the wavelength converted light (step S35). An imaging area is imaged by the imaging unit 30, and the imaging data is sent to the processing unit 40 for image processing. By observing / analyzing the image processing data, it is determined / evaluated whether the periodic pattern on the mask 50 has a streaky unevenness defect.

ある1つのエリアの検査が終了すると、XYステージ部20によって検査対象マスク50を所定距離だけステップ移動させ、次の検査対象エリアを撮像部30の測定視野内に位置させ、上記と同様に次のエリアに検査指定波長の光を照射して検査する(工程S36)。このようにして小エリアに対して次々に照明・撮像・観察・分析・評価を繰り返し、マスク50の全エリアを検査する。   When the inspection of a certain area is completed, the inspection target mask 50 is stepped by a predetermined distance by the XY stage unit 20, the next inspection target area is positioned within the measurement visual field of the imaging unit 30, and the next inspection is performed as described above. The area is inspected by irradiating light with a specified wavelength (step S36). In this way, illumination, imaging, observation, analysis, and evaluation are repeated one after another for the small area, and the entire area of the mask 50 is inspected.

次に、図5〜図8を参照してスジ状ムラ欠陥を解析するための数値化処理の概要を説明する。
例えば、図6に示すような被検体基板50から周期性パターンエリア52のみの二次元画像データを切り出し、図7に示すように切り出した二次元画像データに対して積算データ61を計算する。次いで、積算データ61から注目点を対象とする積算移動平均データ62を計算する。ここで、移動平均計算可能範囲64は変更可能となっている。しかし、この積算移動平均データ62は、注目点を中心とする移動平均を計算していることから、その両端部分63で計算することが不可能である。このため計算不可能な両端部分63については、移動平均計算可能範囲64の両端のデータに基づく最小二乗法により最端部の最小二乗法による移動平均計算可能範囲64を計算する。
Next, the outline of the digitization process for analyzing the stripe-like unevenness defect will be described with reference to FIGS.
For example, two-dimensional image data of only the periodic pattern area 52 is cut out from the subject substrate 50 as shown in FIG. 6, and integrated data 61 is calculated for the cut-out two-dimensional image data as shown in FIG. Next, integrated moving average data 62 for the target point is calculated from the integrated data 61. Here, the moving average calculation possible range 64 can be changed. However, since this integrated moving average data 62 calculates a moving average centered on the point of interest, it cannot be calculated at both end portions 63 thereof. Therefore, for both end portions 63 that cannot be calculated, the moving average calculation range 64 by the least square method at the extreme end is calculated by the least square method based on the data at both ends of the moving average calculation range 64.

次に、積算データ61と積算移動平均データ62との差分を計算し、図8に示すように差分データ71を得る。この差分データ71に閾値72を設け、閾値72を超えるものをスジ状ムラ欠陥であると判定する。   Next, the difference between the integrated data 61 and the integrated moving average data 62 is calculated to obtain differential data 71 as shown in FIG. A threshold value 72 is provided in the difference data 71, and a data exceeding the threshold value 72 is determined to be a streak-like unevenness defect.

但し、最小二乗法により移動平均を求めた両端部分63については、あくまでも最小二乗法による予測値であるため、誤差が生じることが予想される。これに対応するために、最小二乗法による移動平均計算可能範囲64の閾値72とは別個の値73を設定可能とする。このようにスジ状ムラ欠陥に特化した検査方法とすることで、スジ状ムラ欠陥を高精度に検出することが可能となる。   However, since the both end portions 63 obtained by calculating the moving average by the least square method are predicted values by the least square method, it is expected that an error will occur. In order to cope with this, it is possible to set a value 73 different from the threshold 72 of the moving average calculation possible range 64 by the least square method. By using an inspection method specialized for streaky unevenness defects in this way, it becomes possible to detect streaky unevenness defects with high accuracy.

周期性パターンの撮像と欠陥検出についてさらに説明する。   The imaging of the periodic pattern and the defect detection will be further described.

周期性パターン51の正常部では、スリット部(又は開口部)の形状、ピッチが一定となるために互いに干渉し、一定の方向に強い回折光が生じ、欠陥部では、スリット部(又は開口部)の形状・ピッチが不安定となるために形状・ピッチに応じて、様々な方向に、種々の強さで回折光が生じる。   In the normal part of the periodic pattern 51, the shape and pitch of the slit part (or opening part) are constant, so that they interfere with each other, and strong diffracted light is generated in a certain direction. In the defective part, the slit part (or opening part). ) Is unstable, and diffracted light is generated in various directions with various intensities in accordance with the shape and pitch.

検査装置において、斜め透過照明部10から照射された光が、周期性パターン51のブラックマトリクスのマスク50の開口部にて回折され、その回折光が画像として撮像部30に捕らえられる。入射角θを90゜より小さくすると観察環境が替わり、スリット部(又は開口部)の形状、ピッチの差違が強調される効果があり、照射角度を少しずつ変化させる照明により回折光の輝度の差違が更に強調される。   In the inspection apparatus, the light emitted from the oblique transmission illumination unit 10 is diffracted at the opening of the black matrix mask 50 of the periodic pattern 51, and the diffracted light is captured by the imaging unit 30 as an image. If the incident angle θ is smaller than 90 °, the observation environment is changed, and the difference in the shape and pitch of the slit (or opening) is emphasized. The difference in the brightness of the diffracted light is caused by illumination that gradually changes the irradiation angle. Is further emphasized.

マスク50において回折される回折光は、ブラックマトリクスの微妙な変動により、回折角に変化をもたらすため、撮像部30に捕らえられた画像はブラックマトリクスの変動に起因する欠陥部を強調した画像となる。さらに、斜め透過照明部10及び撮像部30に平行光学系を用いることで、回折光の変動をより正確に強調した画像が捕らえられる。また、複数設置された照明を順次点灯することで、様々な方向性をもつ欠陥に対して最適な画像が取得可能となる。   The diffracted light diffracted by the mask 50 changes the diffraction angle due to subtle variations in the black matrix, so that the image captured by the imaging unit 30 is an image that emphasizes the defective portion caused by the variation in the black matrix. . Furthermore, by using a parallel optical system for the oblique transmission illumination unit 10 and the imaging unit 30, an image in which the fluctuation of the diffracted light is more accurately emphasized is captured. In addition, by sequentially lighting a plurality of installed lights, it is possible to obtain an optimal image for defects having various directions.

このようにして撮像部30に捕らえられた欠陥画像を、処理部40にて欠陥部抽出処理、判定処理を行う。判定された欠陥の位置やレベルを欠陥画像と同時に処理部40に表示することで、欠陥のモニター用途としての利用も有効となっている。   In this manner, the defect image captured by the imaging unit 30 is subjected to defect portion extraction processing and determination processing by the processing unit 40. By displaying the determined position and level of the defect on the processing unit 40 simultaneously with the defect image, the use for defect monitoring is also effective.

図5に示すように、光学条件4軸設定機能に基づいて各光源の光学的条件を設定する際に、光源/マスク相互間距離を種々変えるとともに、光源11A〜11Dからパターン51に投光される光の角度θ1,θ2,θ3,θ4を種々変えることができる。これにより、パターン51の形状や種類に応じて最適の検査光をパターンに投光することが可能となる。なお、投光角度θ1〜θ4は装置構成上の制限を受けることから30°〜70°の範囲とする。   As shown in FIG. 5, when setting the optical condition of each light source based on the optical condition four-axis setting function, the distance between the light sources / masks is variously changed and light is projected from the light sources 11A to 11D to the pattern 51. Various angles of light θ1, θ2, θ3, and θ4 can be changed. Thereby, it becomes possible to project the optimal inspection light onto the pattern according to the shape and type of the pattern 51. Note that the projection angles θ1 to θ4 are in the range of 30 ° to 70 ° because of limitations on the apparatus configuration.

次に、図9〜図13を参照して本発明の種々の実施例についてそれぞれ説明する。
(実施例1)
633nmのレーザー光で周期性パターンを照明してその主要回折光ピークの回折角度を測定し、測定した回折角度から当該周期性パターンのピッチ寸法dを算出するか、あるいは周期性パターンの図面情報(データ)から当該周期性パターンのピッチ寸法dを取得した。
Next, various embodiments of the present invention will be described with reference to FIGS.
Example 1
Illuminate the periodic pattern with 633 nm laser light and measure the diffraction angle of the main diffracted light peak, and calculate the pitch dimension d of the periodic pattern from the measured diffraction angle, or drawing information of the periodic pattern ( The pitch dimension d of the periodic pattern was obtained from the data.

次いで、後の検査に用いる照明光の中心波長500nmに対応する回折角度算出用波長633nmと上記ピッチ寸法dとに基づき最適検査角度(入射角度)θtarget(=54°)を求めた。   Next, the optimum inspection angle (incident angle) θtarget (= 54 °) was determined based on the diffraction angle calculation wavelength 633 nm corresponding to the center wavelength 500 nm of the illumination light used for the subsequent inspection and the pitch dimension d.

照明光源(メタルハライドランプ)に中心波長500nmのバンドパスフィルタを装着し、54°の入射角で周期性パターンを照明したところ、図10に示すようにコントラストの良い画像を得ることができ、周期性パターン51のなかに存在するスジ状ムラ欠陥54を鮮明に捉えることができた。   When a band pass filter with a center wavelength of 500 nm is attached to an illumination light source (metal halide lamp) and a periodic pattern is illuminated at an incident angle of 54 °, an image with good contrast can be obtained as shown in FIG. The streaky unevenness defect 54 existing in the pattern 51 was clearly captured.

ちなみに、検査に用いている照明の中心波長500nmを回折角度算出用波長として算出した入射角度、すなわち従来の技術と同様に回折光強度の主要回折光ピークが現われる入射角度で照明し、スジ状ムラ欠陥を可視光の像として検査視野内で捉えることができるか否かについて調べた。その結果、いずれの場合も可視光像としてスジ状ムラ欠陥を鮮明に捉えることができなかった。   By the way, illumination is performed at an incident angle calculated using the center wavelength of 500 nm of the illumination used for the inspection as a wavelength for calculating the diffraction angle, that is, at an incident angle at which the main diffracted light peak of the diffracted light intensity appears as in the conventional technique, It was investigated whether or not the defect could be captured as an image of visible light within the inspection visual field. As a result, in any case, the streaky unevenness defect could not be clearly captured as a visible light image.

次に、従来の技術である回折光強度の主要回折ピークが現われる入射角度での検査においてスジ状ムラ欠陥を捉えられない理論背景について図9を参照して説明する。   Next, a theoretical background in which a streaky unevenness defect cannot be captured in an inspection at an incident angle at which a main diffraction peak of diffracted light intensity appears, which is a conventional technique, will be described with reference to FIG.

図9の(a)は、横軸に照明光の入射角度をとり、縦軸に光強度をとって、500nmを中心とした帯域のバンドパスを通した光を照明したときの周期性パターンの正常部及びムラ欠陥部の光強度分布をそれぞれ模式的に示す特性線図である。図中にて特性線E1(実線)は正常部の光強度分布を示し、特性線F1(破線)はムラ欠陥部の光強度分布を示す。なお、周期性パターン51の平均ピッチは1080nmであった。   FIG. 9A shows the periodic pattern when the light incident through the band pass of the band centering on 500 nm is illuminated with the incident angle of the illumination light on the horizontal axis and the light intensity on the vertical axis. It is a characteristic diagram which shows typically the light intensity distribution of a normal part and a nonuniformity defect part, respectively. In the figure, the characteristic line E1 (solid line) indicates the light intensity distribution of the normal part, and the characteristic line F1 (broken line) indicates the light intensity distribution of the uneven defect part. The average pitch of the periodic pattern 51 was 1080 nm.

図9の(a)から明らかなように、一次回折光ピークに対応する入射角度α1(=62°)のところでは画面全体は明るいが、特性線E1とF1との間の輝度差が小さいためにコントラストが不良になり、ムラ欠陥の画像が不鮮明になるか又は現われない。これに対して、一次回折光のピークから外れる入射角度β1(=52°)のところでは画面全体は暗くなるが、特性線E1とF1との間の輝度差が大きくなるために全体としてコントラストが良好になり、ムラ欠陥の画像を鮮明に捉えることができた。   As apparent from FIG. 9A, the entire screen is bright at the incident angle α1 (= 62 °) corresponding to the first-order diffracted light peak, but the luminance difference between the characteristic lines E1 and F1 is small. The contrast becomes poor, and the image of the mura defect becomes unclear or does not appear. On the other hand, the entire screen becomes dark at an incident angle β1 (= 52 °) deviating from the peak of the first-order diffracted light, but the contrast as a whole is increased because the luminance difference between the characteristic lines E1 and F1 becomes large. As a result, the image of the mura defect was clearly captured.

図9の(b)はCCDダイナミックレンジにおける正常部及びムラ欠陥部の輝度レベルを模式的に示す図である。上述したように本発明では主要回折光の輝度レベルのピークから外れたところで検査を実施するために、画面が全体として暗くなる。そこで、CCDダイナミックレンジにおけるカメラ感度0〜255のうち正常部の輝度にグレイレベルを合わせることにより、画面を明るくすることができる。   FIG. 9B is a diagram schematically showing the luminance levels of the normal part and the uneven defect part in the CCD dynamic range. As described above, in the present invention, since the inspection is carried out at a point outside the peak of the luminance level of the main diffracted light, the entire screen becomes dark. Therefore, the screen can be brightened by adjusting the gray level to the brightness of the normal portion of the camera sensitivity 0 to 255 in the CCD dynamic range.

(実施例2)
633nmのレーザー光で実施例1と異なる周期性パターンを照明してその主要回折光ピークの回折角度を測定し、測定した回折角度から当該周期性パターンのピッチ寸法dを算出するか、あるいは周期性パターンの図面情報(データ)から当該周期性パターンのピッチ寸法dを取得した。
(Example 2)
A periodic pattern different from that of the first embodiment is illuminated with a laser beam of 633 nm and the diffraction angle of the main diffracted light peak is measured, and the pitch dimension d of the periodic pattern is calculated from the measured diffraction angle, or the periodicity is calculated. The pitch dimension d of the periodic pattern was obtained from the pattern drawing information (data).

次いで、後の検査に用いる照明光の中心波長500nmに対応する回折角度算出用波長633nmと上記ピッチ寸法dとに基づき最適検査角度(入射角度)θtarget(=41.8°)を求めた。   Next, the optimum inspection angle (incident angle) θtarget (= 41.8 °) was obtained based on the diffraction angle calculation wavelength 633 nm corresponding to the center wavelength 500 nm of the illumination light used for the subsequent inspection and the pitch dimension d.

照明光源(メタルハライドランプ)に中心波長500nmのバンドパスフィルタを装着し、41.8°の入射角で周期性パターンを照明したところ、図13に示すようにコントラストの良い画像を得ることができ、周期性パターン51のなかに存在するスジ状ムラ欠陥54を鮮明に捉えることができた。なお、周期性パターン51の平均ピッチは864nmであった。   When a bandpass filter with a central wavelength of 500 nm is attached to the illumination light source (metal halide lamp) and the periodic pattern is illuminated at an incident angle of 41.8 °, an image with good contrast can be obtained as shown in FIG. The streaky unevenness defect 54 existing in the periodic pattern 51 was clearly captured. The average pitch of the periodic pattern 51 was 864 nm.

ちなみに、検査に用いている照明の中心波長500nmを回折角度算出用波長として算出した入射角度、すなわち従来の技術と同様に回折光強度の主要回折光ピークが現われる入射角度で照明し、スジ状ムラ欠陥を可視光の像として検査視野内で捉えることができるか否かについて調べた。その結果、可視光像としてスジ状ムラ欠陥を鮮明に捉えることができなかった。   By the way, illumination is performed at an incident angle calculated using the center wavelength of 500 nm of the illumination used for the inspection as a wavelength for calculating the diffraction angle, that is, at an incident angle at which the main diffracted light peak of the diffracted light intensity appears as in the conventional technique, It was investigated whether or not the defect could be captured as an image of visible light within the inspection visual field. As a result, streaky unevenness defects could not be clearly captured as a visible light image.

このように周期性パターン51の形状の大部分が、図10に示すように、矩形であることから、スジ状ムラ(描画ムラ)が描画の水平方向(X方向)と垂直方向(Y方向)にそれぞれ周期的に発生することが多く、そのためパターン形状に応じて欠陥を見つけ易い入射角度がいくつか存在する。例えばT字パターンでは例えばθ1,θ2が欠陥を見つけ易い入射角度であることを実証試験で予め把握しておき、T字パターンを含むフォトマスクを検査する場合は、レシピ条件の入射角度にθ1,θ2を設定しておくと、スジ状ムラを確実かつ効率良く検出することができる。なお、光源の数を4つとしたのは、輝度不足を解消するために、輝度の補完を考慮したほか、X方向の2光源のみ、又はY方向の2光源のみを用いて、切り替えるようにして測定が可能なようにしたものである。   Since most of the shape of the periodic pattern 51 is rectangular as shown in FIG. 10, the stripe-like unevenness (drawing unevenness) is in the horizontal direction (X direction) and vertical direction (Y direction). In many cases, the incident angle is periodically generated. Therefore, there are several incident angles at which defects are easily found according to the pattern shape. For example, in a T-shaped pattern, for example, when θ1 and θ2 are incident angles at which defects are easy to find, it is grasped in advance by a verification test, and when a photomask including a T-shaped pattern is inspected, θ1, If θ2 is set, streak-like unevenness can be detected reliably and efficiently. The reason why the number of light sources is set to four is that, in order to eliminate the luminance deficiency, in addition to considering the complementation of luminance, switching is performed using only two light sources in the X direction or only two light sources in the Y direction. Measurement is made possible.

4つの光源11A〜11Dは、検査対象となるパターンから当該光源までの距離に応じてその投光角度を適宜変えることができるようになっている。なお、入射角度θそのものを直接に検出しない場合であっても、光源/パターン間の高さレベル差Lが判明していれば、光源/パターン間の距離を検出することにより、投光角度を求めることができる。   The four light sources 11 </ b> A to 11 </ b> D can appropriately change the projection angle according to the distance from the pattern to be inspected to the light source. Even when the incident angle θ itself is not directly detected, if the height level difference L between the light source / pattern is known, the light projection angle can be determined by detecting the distance between the light source / pattern. Can be sought.

光学条件4軸設定手段によって4つの光源の光学的条件(光の波長、光の強度分布、光の入射角度、投光の向き、投光照明エリアの面積、焦点深度など)をそれぞれ個別に設定する。具体的には、被検体の周期性パターン51に対応して光源ごとに移動手段および姿勢変更手段をどのように動作させるかを実証試験等によって予め把握しておき、このデータをレシピとして保存しておく。そして、実際に検査を行う際に、被検体の周期性パターンに応じて最適のレシピを選択し、選択して呼び出した設定データに従って4つの光源の光学的条件をそれぞれ個別に設定する。周期性パターンの形状は基本的に矩形が多く、また描画ムラも描画水平方向と描画垂直方向(描画直交方向)とに周期的に生じることが多いために、フォトマスクに対して描画水平方向および描画垂直方向においてそれぞれ対向する方向から照明する4軸を基本として投光する。検査光が周期性パターンに入射すると、周期性パターンの変位部あるいは変曲部およびスジ状ムラにおいて光が回折して、それらの回折光をそれぞれ検出することにより欠陥としてのスジ状ムラ54が検出される。   The optical conditions of the four light sources (light wavelength, light intensity distribution, light incident angle, direction of light projection, area of the floodlight illumination area, depth of focus, etc.) are individually set by the optical condition 4-axis setting means. To do. Specifically, in advance by a verification test or the like, how to operate the moving means and the posture changing means for each light source corresponding to the periodic pattern 51 of the subject is stored, and this data is stored as a recipe. Keep it. Then, when actually performing the examination, an optimum recipe is selected according to the periodic pattern of the subject, and the optical conditions of the four light sources are individually set according to the setting data selected and called. The shape of the periodic pattern is basically a rectangular shape, and unevenness of drawing often occurs periodically in the drawing horizontal direction and the drawing vertical direction (direction perpendicular to the drawing). Light is projected on the basis of four axes that are illuminated from opposite directions in the drawing vertical direction. When the inspection light is incident on the periodic pattern, the light is diffracted at the displacement portion or the inflection portion of the periodic pattern and the streak-like unevenness, and the streaky unevenness 54 as a defect is detected by detecting the diffracted light respectively. Is done.

光の回折に関して、周期性パターン51の正常部では、ある特定の方向に強力な透過光が形成される。一方、スジ状ムラ部54では、特定方向のみに回折光が出ずにパターン形状及びピッチ間隔に応じていろいろの方向に種々の強さで回折光が生じる。これらの回折光を含む光学検出データに基づき画像処理と解析を繰り返し行い、スジ状ムラを検出し表示する。   Regarding light diffraction, in the normal portion of the periodic pattern 51, strong transmitted light is formed in a specific direction. On the other hand, in the streaky uneven portion 54, diffracted light is not emitted only in a specific direction, but diffracted light is generated with various intensities in various directions according to the pattern shape and pitch interval. Image processing and analysis are repeatedly performed based on optical detection data including these diffracted lights, and streaky irregularities are detected and displayed.

次に、照明光に用いる光にはどのようなものが適しているかを図11〜図13を参照して説明する。   Next, what kind of light is suitable for the illumination light will be described with reference to FIGS.

(比較例1)
図11は正常部及びムラ欠陥部に関する青スペクトル中心のバンド幅の照明光(バンド光)の光強度分布を示す特性線図である。ムラ欠陥の観察に最適なバンド幅をもつフィルタを用いて青スペクトル中心のバンド幅の照明光を周期性パターンに照明した。図中にて特性線E3(実線)は正常部の光強度分布を示し、特性線F3(破線)はムラ欠陥部の光強度分布を示す。図から明らかなように、一次回折光ピークに対応する入射角度α3(=62°)のところでは画面全体は明るいが、特性線E3とF3との間の輝度差が小さいためにコントラストが不良になり、ムラ欠陥の画像が不鮮明になるか又は現われない。これに対して、一次回折光のピークから外れる入射角度β3(=54°)のところでは画面全体は暗くなるが、特性線E3とF3との間の輝度差が大きくなるために全体としてコントラストが良好になり、ムラ欠陥の画像を鮮明に捉えることができた。
(Comparative Example 1)
FIG. 11 is a characteristic diagram showing the light intensity distribution of illumination light (band light) having a bandwidth at the center of the blue spectrum with respect to the normal part and the mura defect part. The periodic pattern was illuminated with illumination light having a bandwidth at the center of the blue spectrum using a filter having an optimum bandwidth for observing mura defects. In the figure, the characteristic line E3 (solid line) indicates the light intensity distribution of the normal part, and the characteristic line F3 (broken line) indicates the light intensity distribution of the uneven defect part. As is apparent from the figure, the entire screen is bright at the incident angle α3 (= 62 °) corresponding to the first-order diffracted light peak, but the contrast is poor because the luminance difference between the characteristic lines E3 and F3 is small. And the image of the mura defect becomes unclear or does not appear. On the other hand, the entire screen becomes dark at an incident angle β3 (= 54 °) that deviates from the peak of the first-order diffracted light, but the contrast as a whole is increased because the luminance difference between the characteristic lines E3 and F3 becomes large. As a result, the image of the mura defect was clearly captured.

(比較例2)
図12は正常部及びムラ欠陥部に関する青スペクトル照明光(スペクトル光)の光強度分布を示す特性線図である。フィルタを用いて青スペクトルの照明光を周期性パターンに照明した。図中にて特性線E4(実線)は正常部の光強度分布を示し、特性線F4(破線)はムラ欠陥部の光強度分布を示す。CCDカメラ31に内蔵されたラインセンサの感度との兼ね合いもあるが、一次回折光ピークに対応する入射角度α4(=62°)のところであっても、一次回折光のピークから外れる入射角度β4(=60°)のところであっても、いずれの場合もコントラストが不良になり、ムラ欠陥の画像が不鮮明になり、ムラ欠陥の画像を見ることはできるが、観察し難いことが判明した。
(Comparative Example 2)
FIG. 12 is a characteristic diagram showing the light intensity distribution of the blue spectrum illumination light (spectrum light) related to the normal part and the uneven defect part. The illumination light of the blue spectrum was illuminated to the periodic pattern using a filter. In the figure, the characteristic line E4 (solid line) indicates the light intensity distribution of the normal part, and the characteristic line F4 (broken line) indicates the light intensity distribution of the uneven defect part. Although there is a tradeoff with the sensitivity of the line sensor built in the CCD camera 31, even at an incident angle α4 (= 62 °) corresponding to the first-order diffracted light peak, an incident angle β4 ( = 60 °), in any case, the contrast was poor, the image of the mura defect became unclear, and the image of the mura defect could be seen, but it was found difficult to observe.

(比較例3)
図13は正常部及びムラ欠陥部に関する白色照明光の光強度分布を示す特性線図である。図中にて特性線E5(実線)は正常部の光強度分布を示し、特性線F5(破線)はムラ欠陥部の光強度分布を示す。CCDカメラ31に内蔵されたラインセンサの感度との兼ね合いもあるが、一次回折光ピークに対応する入射角度α5(=62°)のところであっても、一次回折光のピークから外れる入射角度β5(=40°)のところであっても、いずれの場合もコントラストが不良になり、ムラ欠陥の画像が現われなかった。
(Comparative Example 3)
FIG. 13 is a characteristic diagram showing the light intensity distribution of the white illumination light with respect to the normal part and the uneven defect part. In the figure, the characteristic line E5 (solid line) indicates the light intensity distribution in the normal part, and the characteristic line F5 (broken line) indicates the light intensity distribution in the uneven defect part. Although there is a tradeoff with the sensitivity of the line sensor built in the CCD camera 31, even at an incident angle α5 (= 62 °) corresponding to the first-order diffracted light peak, an incident angle β5 ( = 40 °), the contrast was poor in any case, and an image of uneven defects did not appear.

本発明によればフォトマスクやウエハ等の基板に周期的に形成されているパターンに生じるスジ状ムラを高精度に検出することができる。   According to the present invention, streak-like unevenness generated in a pattern periodically formed on a substrate such as a photomask or a wafer can be detected with high accuracy.

本発明の検査装置の概要を示す構成ブロック斜視図。1 is a structural block perspective view showing an outline of an inspection apparatus of the present invention. 本発明の検査装置の制御系統を示すブロック図。The block diagram which shows the control system of the test | inspection apparatus of this invention. 一般的な欠陥検査方法の手順を示すフローチャート。The flowchart which shows the procedure of the general defect inspection method. メモリ用フォトマスクの周期性パターンの欠陥を検査する手順を示すフローチャート。The flowchart which shows the procedure which test | inspects the defect of the periodic pattern of the memory photomask. 検査装置を側方から見て被検体と光源との位置関係を示す図。The figure which shows the positional relationship of a test object and a light source seeing a test | inspection apparatus from the side. 被検体としてのマスクを模式的に示す平面図。The top view which shows typically the mask as a subject. 周期性パターンを検査するときの演算手順を説明するための波形図。The wave form diagram for demonstrating the calculation procedure when test | inspecting a periodic pattern. 周期性パターンを検査するときの演算手順を説明するための別の波形図。FIG. 6 is another waveform diagram for explaining a calculation procedure when inspecting a periodic pattern. (a)は正常部及びムラ欠陥部の光強度分布をそれぞれ示す特性線図、(b)はCCDダイナミックレンジにおける正常部及びムラ欠陥部の輝度レベルを模式的に示す図。(A) is a characteristic diagram which shows the light intensity distribution of a normal part and a nonuniformity defect part, respectively, (b) is a figure which shows typically the luminance level of a normal part and a nonuniformity defect part in a CCD dynamic range. ムラ欠陥部を有する周期性パターンの一例を示す平面模式図。The plane schematic diagram which shows an example of the periodic pattern which has a nonuniformity defect part. 正常部及びムラ欠陥部に関する青スペクトル中心のバンド幅の照明光の光強度分布を示す特性線図。The characteristic diagram which shows the light intensity distribution of the illumination light of the bandwidth of the blue spectrum center regarding a normal part and a nonuniformity defect part. 正常部及びムラ欠陥部に関する青スペクトル照明光の光強度分布を示す特性線図。The characteristic diagram which shows the light intensity distribution of the blue spectrum illumination light regarding a normal part and a nonuniformity defect part. 正常部及びムラ欠陥部に関する白色照明光の光強度分布を示す特性線図。The characteristic diagram which shows the light intensity distribution of the white illumination light regarding a normal part and a nonuniformity defect part.

符号の説明Explanation of symbols

10…斜め透過照明部、11A〜11D…光源、
12…姿勢変更手段(傾動機構)、
13…移動手段(リニアスライダ)、14…案内路(リニアガイド)、
20…XYステージ部、22…X駆動機構、23…Y駆動機構、
30…撮像部、31…撮像側平行光学系(撮像手段、CCDカメラ)、32…カメラ光軸(中心線)、
40…処理部、41…パソコン(画像処理部)、42…LCD(情報表示部)、43…キイボード(対人操作部)、
50…マスク(被検体基板)、51…パターン、52…スジ状ムラ、53…周期的パターンエリア、56…撮像エリア(検査エリア)、58…中心線(カメラ光軸)、
61…積算データ、62…積算移動平均データ、63…最小2乗法による移動平均計算範囲、64…移動平均計算可能範囲、71…差分データ、72…移動平均計算可能範囲の閾値、73…最小2乗法による移動平均計算範囲の閾値。
10: Obliquely transmitted illumination part, 11A-11D ... Light source,
12 ... posture changing means (tilting mechanism),
13 ... Moving means (linear slider), 14 ... Guide path (linear guide),
20 ... XY stage part, 22 ... X drive mechanism, 23 ... Y drive mechanism,
30 ... Imaging unit, 31 ... Imaging side parallel optical system (imaging means, CCD camera), 32 ... Camera optical axis (center line),
40 ... processing unit, 41 ... personal computer (image processing unit), 42 ... LCD (information display unit), 43 ... key board (personal operation unit),
DESCRIPTION OF SYMBOLS 50 ... Mask (subject board | substrate), 51 ... Pattern, 52 ... Stripe unevenness, 53 ... Periodic pattern area, 56 ... Imaging area (inspection area), 58 ... Center line (camera optical axis),
61: Integrated data, 62: Integrated moving average data, 63: Moving average calculation range by least square method, 64: Moving average calculation range, 71: Difference data, 72: Threshold of moving average calculation range, 73: Minimum 2 Multiplicative moving average calculation range threshold.

Claims (2)

基板のXY面上にX軸方向に所定のピッチで描画された周期性パターンに4つの検査光源から中心波長λ1(=500nm)の光を照射して周期性パターンに発生するスジ状ムラ欠陥を検査する周期性パターンの欠陥検査方法において、
(i)前記4つの検査光源とは異なる他の光源から前記検査光源の中心波長λ1(=500nm)を外れる回折角度算出用波長λ2(=633nm)の単一波長の光を前記周期性パターンの描画水平方向および描画垂直方向においてそれぞれ対向する方向から前記周期性パターンに照射し、その主要回折光のピークが回折面の垂直軸に現れる入射角度Aを測定し、測定した前記入射角度Aを用いるθ1=(90−A)π/180の関係から一次回折光が現れる入射角度θ1を求め、求めた入射角度θ1と前記検査光源の中心波長λ1を用いるd=1×λ1/sin(θ1)の関係からピッチ寸法dを算出するか、または、前記周期性パターンの図面情報から該周期性パターンのピッチ寸法を取得し、
(ii)前記得られたピッチ寸法dと前記回折角度算出用波長λ2を用いるθtarget=sin -1 (1×λ2/d)の関係から前記周期性パターンの正常部とムラ部の回折光光強度のコントラストが取れるように測定に適した入射角度θtargetを求め、求めた入射角度θtargetを用いるB={90−(θtarget×180)}/πの関係から入射角度Bを算出し、
(iii)前記入射角度Bで前記4つの検査光源から前記周期性パターンに光が入射するように前記4つの検査光源の各々と前記基板とを相対位置合わせし、
(iv)前記4つの検査光源の各々から中心波長λ1(=500nm)の光を前記周期性パターンに照射して検査する、ことを特徴とする周期性パターンの欠陥検査方法。
The periodic pattern drawn on the XY plane of the substrate at a predetermined pitch in the X-axis direction is irradiated with light having a central wavelength λ1 (= 500 nm) from four inspection light sources, thereby causing streak-like uneven defects generated in the periodic pattern. In the defect inspection method of the periodic pattern to be inspected,
(I) Light having a single wavelength of a diffraction angle calculation wavelength λ2 (= 633 nm) that deviates from the central wavelength λ1 (= 500 nm) of the inspection light source from another light source different from the four inspection light sources . The periodic pattern is irradiated from opposite directions in the drawing horizontal direction and the drawing vertical direction, the incident angle A at which the peak of the main diffracted light appears on the vertical axis of the diffraction surface is measured, and the measured incident angle A is used. The incident angle θ1 at which the first-order diffracted light appears is determined from the relationship θ1 = (90−A) π / 180, and d = 1 × λ1 / sin (θ1) using the calculated incident angle θ1 and the center wavelength λ1 of the inspection light source. Calculating the pitch dimension d from the relationship , or obtaining the pitch dimension of the periodic pattern from the drawing information of the periodic pattern,
(Ii) Diffracted light intensity of the normal portion and the uneven portion of the periodic pattern from the relationship of θtarget = sin −1 (1 × λ2 / d) using the obtained pitch dimension d and the diffraction angle calculation wavelength λ2. An incident angle θtarget suitable for measurement so as to obtain a contrast of λ is obtained, and an incident angle B is calculated from the relationship of B = {90− (θtarget × 180)} / π using the obtained incident angle θtarget.
(Iii) Relatively aligning each of the four inspection light sources and the substrate so that light enters the periodic pattern from the four inspection light sources at the incident angle B ;
(Iv) A periodic pattern defect inspection method, wherein the periodic pattern is irradiated with light having a central wavelength λ1 (= 500 nm) from each of the four inspection light sources.
基板のXY面上にX軸方向に所定のピッチで描画された周期性パターンに発生するスジ状ムラ欠陥を検査するための周期性パターンの欠陥検査装置であって、
(a)前記基板を実質的に水平に保持し、該基板を二次元平面視野内でX軸方向およびY軸方向にそれぞれ移動させる移動機構を備えたXYステージと、
(b1)中心波長λ1(=500nm)の光を出射し、前記XYステージ上の基板の周期性パターンに対して斜め透過光の照明を個別に行う4つの検査光源と、
(b2)前記検査光源の中心波長λ1(=500nm)を外れる回折角度算出用波長λ2(=633nm)の単一波長の光を前記周期性パターンの描画水平方向および描画垂直方向においてそれぞれ対向する方向から前記周期性パターンに照射する他の光源と、
(c)前記XYステージを挟んで前記4つの検査光源の反対側に配置され、前記4つの検査光源によって斜め透過光照明された前記周期性パターンにおける回折光を撮像する撮像手段と、
(d)前記4つの検査光源の光学的条件をそれぞれ個別に設定する光学条件4軸設定手段と、
(e)前記光学条件4軸設定手段により設定された光学的条件に基づいて前記XYステージ上の基板に対して前記4つの検査光源の各々を二次元平面視野内で個別に移動させる移動手段と、
(f)前記移動手段によって前記4つの検査光源の各々が移動されたときに、前記光学条件4軸設定手段により設定された光学的条件に基づいて検査対象となる前記周期性パターンに対して前記4つの検査光源の各々から斜め透過光の照明があたるように、前記移動手段と連動して前記4つの検査光源の各々の向きを変えさせる姿勢変更手段と、
(g)前記他の光源から前記回折角度算出用波長λ2(=633nm)の単一波長の光を照射し、その主要回折光のピークが回折面の垂直軸に現れる入射角度Aを測定し、測定した前記入射角度Aを用いるθ1=(90−A)π/180の関係から一次回折光が現れる入射角度θ1を求め、求めた入射角度θ1と前記検査光源の中心波長λ1を用いるd=1×λ1/sin(θ1)の関係からピッチ寸法dを算出するか、または、前記周期性パターンの図面情報から該周期性パターンのピッチ寸法を取得する手段と、
(h)前記4つの検査光源の各々に取り付けられた中心波長λ1(=500nm)のバンドパスフィルタと、
(i)前記得られたピッチ寸法dと前記回折角度算出用波長λ2を用いるθtarget=sin -1 (1×λ2/d)の関係から前記周期性パターンの正常部とムラ部の回折光光強度のコントラストが取れるように測定に適した入射角度θtargetを求め、求めた入射角度θtargetを用いるB={90−(θtarget×180)}/πの関係から入射角度Bを算出し、該入射角度Bで前記4つの検査光源から前記周期性パターンに光が入射するように、前記移動手段および前記姿勢変更手段の動作をそれぞれ制御して前記4つの検査光源の各々と前記基板とを相対位置合わせする制御手段と、
を具備することを特徴とする周期性パターンの欠陥検査装置。
A periodic pattern defect inspection apparatus for inspecting streaky uneven defects generated in a periodic pattern drawn at a predetermined pitch in the X-axis direction on the XY plane of a substrate ,
(A) an XY stage including a moving mechanism that holds the substrate substantially horizontally and moves the substrate in the X-axis direction and the Y-axis direction within a two-dimensional planar field of view;
(B1) Four inspection light sources that emit light having a central wavelength λ1 (= 500 nm) and individually illuminate obliquely transmitted light with respect to the periodic pattern of the substrate on the XY stage;
(B2) A direction in which light having a single wavelength of a diffraction angle calculation wavelength λ2 (= 633 nm) that deviates from the center wavelength λ1 (= 500 nm) of the inspection light source is opposed to each other in the drawing horizontal direction and drawing vertical direction of the periodic pattern. Other light sources that irradiate the periodic pattern from
(C) an imaging unit that is disposed on the opposite side of the four inspection light sources across the XY stage, and that images diffracted light in the periodic pattern illuminated obliquely by the four inspection light sources;
(D) optical condition 4-axis setting means for individually setting the optical conditions of the four inspection light sources;
(E) moving means for individually moving each of the four inspection light sources in a two-dimensional planar field of view with respect to the substrate on the XY stage based on the optical condition set by the optical condition four-axis setting means; ,
(F) When each of the four inspection light sources is moved by the moving means, the periodic pattern to be inspected based on the optical condition set by the optical condition four-axis setting means Posture changing means for changing the orientation of each of the four inspection light sources in conjunction with the moving means so that each of the four inspection light sources is illuminated with obliquely transmitted light;
(G) irradiating light of a single wavelength of the diffraction angle calculation wavelength λ2 (= 633 nm) from the other light source , and measuring an incident angle A at which the peak of the main diffracted light appears on the vertical axis of the diffraction surface; The incident angle θ1 at which the first-order diffracted light appears is determined from the relationship θ1 = (90−A) π / 180 using the measured incident angle A, and d = 1 using the calculated incident angle θ1 and the center wavelength λ1 of the inspection light source. Means for calculating the pitch dimension d from the relationship of xλ1 / sin (θ1) or obtaining the pitch dimension of the periodic pattern from the drawing information of the periodic pattern;
(H) a bandpass filter having a center wavelength λ1 (= 500 nm) attached to each of the four inspection light sources;
(I) Diffracted light intensity of the normal portion and the uneven portion of the periodic pattern from the relationship of θtarget = sin −1 (1 × λ2 / d) using the obtained pitch dimension d and the diffraction angle calculation wavelength λ2. The incident angle θ target suitable for the measurement is obtained so as to obtain the contrast , and the incident angle B is calculated from the relationship of B = {90− (θ target × 180)} / π using the obtained incident angle θ target. The relative positions of each of the four inspection light sources and the substrate are controlled by controlling the operations of the moving means and the posture changing means so that light enters the periodic pattern from the four inspection light sources. Control means;
A defect inspection apparatus for periodic patterns, comprising:
JP2006063043A 2006-03-08 2006-03-08 Periodic pattern defect inspection method and defect inspection apparatus Expired - Fee Related JP5119602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006063043A JP5119602B2 (en) 2006-03-08 2006-03-08 Periodic pattern defect inspection method and defect inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006063043A JP5119602B2 (en) 2006-03-08 2006-03-08 Periodic pattern defect inspection method and defect inspection apparatus

Publications (2)

Publication Number Publication Date
JP2007240323A JP2007240323A (en) 2007-09-20
JP5119602B2 true JP5119602B2 (en) 2013-01-16

Family

ID=38586008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006063043A Expired - Fee Related JP5119602B2 (en) 2006-03-08 2006-03-08 Periodic pattern defect inspection method and defect inspection apparatus

Country Status (1)

Country Link
JP (1) JP5119602B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5104438B2 (en) * 2008-03-18 2012-12-19 凸版印刷株式会社 Periodic pattern unevenness inspection apparatus and method
JP2010019639A (en) * 2008-07-09 2010-01-28 Lasertec Corp Irregularity detection device and pattern inspection device
JP5320936B2 (en) * 2008-09-26 2013-10-23 凸版印刷株式会社 Inspection condition setting method and inspection apparatus in periodic pattern unevenness inspection apparatus
JP2010210577A (en) * 2009-03-12 2010-09-24 Daihatsu Motor Co Ltd Shape recognition device
JP5395470B2 (en) * 2009-03-12 2014-01-22 ダイハツ工業株式会社 Shape recognition device
WO2010134709A2 (en) * 2009-05-21 2010-11-25 삼성중공업 주식회사 Flat bed scan module, flat bed scan system, jig for measuring alignment errors of a flat bed scan module, and method for measuring alignment errors of a flat bed scan module using same
JP5866912B2 (en) * 2011-09-16 2016-02-24 凸版印刷株式会社 Pattern drawing condition derivation method and pattern drawing apparatus
JP6044764B2 (en) * 2012-10-19 2016-12-14 株式会社Ihi Foreign matter monitoring method and foreign matter monitoring device
KR102110936B1 (en) * 2018-02-27 2020-05-14 주식회사 선반도체 Appartus and method for insfecting diffraction of coaxial reflection type
JP7266514B2 (en) * 2019-11-29 2023-04-28 富士フイルム株式会社 Imaging device and surface inspection device
CN116500042B (en) * 2023-05-09 2024-01-26 哈尔滨工业大学重庆研究院 Defect detection method, device, system and storage medium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4470239B2 (en) * 1999-07-29 2010-06-02 株式会社ニコン Defect detection method and apparatus
TWI285738B (en) * 2000-09-26 2007-08-21 Olympus Corp Defect detecting apparatus and computer readable medium
JP2002148210A (en) * 2000-11-13 2002-05-22 Dainippon Printing Co Ltd Method and apparatus for inspecting irregularity of periodic pattern
JP2002350361A (en) * 2001-05-29 2002-12-04 Dainippon Printing Co Ltd Method and apparatus for testing unevenness of periodic pattern
JP4474904B2 (en) * 2003-11-18 2010-06-09 凸版印刷株式会社 Periodic pattern unevenness inspection device

Also Published As

Publication number Publication date
JP2007240323A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
JP5119602B2 (en) Periodic pattern defect inspection method and defect inspection apparatus
JP5228490B2 (en) Defect inspection equipment that performs defect inspection by image analysis
JP4655644B2 (en) Periodic pattern unevenness inspection system
KR101894683B1 (en) Metal body shape inspection device and metal body shape inspection method
EP2508871A1 (en) Inspection apparatus, measurement method for three-dimensional shape, and production method for structure
US7660036B2 (en) Method for particle analysis and particle analysis system
TWI783420B (en) Method of capturing and analyzing spectrometer data on multiple sample gemstones and system for recording spectrometer readings of multiple gemstone samples
JP2008014768A (en) Defect inspection device and method
US8200003B2 (en) Method for the optical inspection and visualization of optical measuring values obtained from disk-like objects
JP2012173045A (en) Evaluation apparatus for surface checkup apparatuses and evaluation method for surface checkup apparatuses
JP5320936B2 (en) Inspection condition setting method and inspection apparatus in periodic pattern unevenness inspection apparatus
JP5200353B2 (en) Periodic pattern unevenness inspection system
JP4967245B2 (en) Periodic pattern unevenness inspection apparatus and unevenness inspection method
JP2006242759A (en) Method for inspecting unevenness in periodic pattern
KR20140065348A (en) Visual inspecting apparatus and method
JP2020165666A (en) Spectroscopic inspection method and spectroscopic inspection device
JP2008026147A (en) Inspection device for color filter, and inspection method for the color filter
WO2021084773A1 (en) Image processing system, setting method, and program
JP2005274156A (en) Flaw inspection device
KR101217174B1 (en) Apparatus for inspecting substrate and method of inspecting substrate
TW201704737A (en) Mura quantifying system by laser crystallization facility using UV and Mura quantifying method by laser crystallization facility using UV
JP2007205820A (en) Inspecting device for color filter, and inspecting method for color filter
JP3807201B2 (en) Projection lens inspection sheet, projection lens inspection apparatus, and projection lens inspection method
JP2014163681A (en) Periodic pattern irregularity inspection method and irregularity inspection device
JP2024073922A (en) Surface inspection device and surface inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121008

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees