JP5109871B2 - Spherical surface acoustic wave device - Google Patents
Spherical surface acoustic wave device Download PDFInfo
- Publication number
- JP5109871B2 JP5109871B2 JP2008217047A JP2008217047A JP5109871B2 JP 5109871 B2 JP5109871 B2 JP 5109871B2 JP 2008217047 A JP2008217047 A JP 2008217047A JP 2008217047 A JP2008217047 A JP 2008217047A JP 5109871 B2 JP5109871 B2 JP 5109871B2
- Authority
- JP
- Japan
- Prior art keywords
- acoustic wave
- surface acoustic
- excitation
- detection means
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000010897 surface acoustic wave method Methods 0.000 title claims description 354
- 239000000758 substrate Substances 0.000 claims description 115
- 230000005284 excitation Effects 0.000 claims description 112
- 238000001514 detection method Methods 0.000 claims description 109
- 230000005489 elastic deformation Effects 0.000 claims description 64
- 230000002093 peripheral effect Effects 0.000 claims description 21
- 238000005530 etching Methods 0.000 claims description 8
- 239000000615 nonconductor Substances 0.000 claims description 8
- 238000011946 reduction process Methods 0.000 claims description 5
- 239000011859 microparticle Substances 0.000 claims 1
- 239000013078 crystal Substances 0.000 description 37
- 239000000463 material Substances 0.000 description 31
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 239000010409 thin film Substances 0.000 description 12
- 239000010453 quartz Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000009751 slip forming Methods 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 239000010408 film Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 239000003190 viscoelastic substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
- G01N29/2462—Probes with waveguides, e.g. SAW devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/07—Analysing solids by measuring propagation velocity or propagation time of acoustic waves
- G01N29/075—Analysing solids by measuring propagation velocity or propagation time of acoustic waves by measuring or comparing phase angle
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/11—Analysing solids by measuring attenuation of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/042—Wave modes
- G01N2291/0423—Surface waves, e.g. Rayleigh waves, Love waves
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Acoustics & Sound (AREA)
- Piezo-Electric Transducers For Audible Bands (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Description
この発明は、球状弾性表面波装置に関係している。 The present invention relates to a spherical surface acoustic wave device.
少なくとも球形状の一部により円環状に連続して構成されており弾性表面波が励起可能で励起された弾性表面波が上記円環の連続する方向に伝搬し周回可能な弾性表面波周回路を外表面に含む弾性表面波伝搬基体と;そして、弾性表面波伝搬基体の弾性表面波周回路上に又は上記周回路に対向して配置され、弾性表面波周回路に弾性表面波を励起し励起された弾性表面波を上記円環の連続する方向に伝搬させて周回させるとともに、弾性表面波周回路を周回してきた弾性表面波を検知し周回してきた弾性表面波に対応した受信信号を発する弾性表面波・励起/検知手段と、を備えた球状弾性表面波装置は例えば特開2005−94609号公報(特許文献1)の図1及び図7などにより既に良く知られている。 A surface acoustic wave circuit that is formed continuously in an annular shape by at least a part of a spherical shape and can excite surface acoustic waves, and the excited surface acoustic waves can propagate and circulate in the continuous direction of the ring. A surface acoustic wave propagation substrate included on the outer surface; and disposed on or opposite to the surface acoustic wave circuit of the surface acoustic wave propagation substrate, and the surface acoustic wave circuit is excited by exciting the surface acoustic wave. A surface acoustic wave that propagates in a continuous direction of the ring and circulates, and detects a surface acoustic wave that circulates the surface acoustic wave circuit and generates a received signal corresponding to the surface acoustic wave that has circulated A spherical surface acoustic wave device including a wave / excitation / detection means is already well known, for example, from FIGS. 1 and 7 of Japanese Patent Laid-Open No. 2005-94609 (Patent Document 1).
弾性表面波伝搬基体は、弾性表面波を励起させることが出来ない材料を使用して少なくとも球形状の一部により円環状に連続して構成されている部分を外表面に含むよう形成された基材の上記外表面において少なくとも上記円環状の部分を弾性表面波が励起可能な材料により被覆することにより形成されるか、又は、弾性表面波が励起可能な材料を使用して少なくとも球形状の一部により円環状に連続して構成されている部分を外表面に含むよう形成される。 The surface acoustic wave propagation substrate is a base formed using a material that cannot excite a surface acoustic wave so that the outer surface includes at least a part that is continuously formed in an annular shape by a part of a spherical shape. It is formed by coating at least the annular portion on the outer surface of the material with a material capable of exciting surface acoustic waves, or at least one spherical shape using a material capable of exciting surface acoustic waves. The outer surface includes a portion that is continuously formed in an annular shape by the portion.
ここで弾性表面波が励起可能な材料としては通常圧電材料が使用され、弾性表面波伝搬基体の全体を弾性表面波が励起可能な材料を使用して形成する場合には圧電材料として、例えば水晶,ニオブ酸リチウム(LiNbO3),タンタル酸リチウム(LiTaO3),ランガサイト(La3Ga5SiO14)及びこれらのファミリーの如き圧電性結晶材料が使用される。この場合には、上記少なくとも球形状の一部により円環状に連続して構成されている部分は圧電性結晶材料の結晶面が上記外表面と交差する線上にあり、上記円環状に連続している方向は上記線のほぼ延出方向である。 Here, a piezoelectric material is usually used as a material capable of exciting a surface acoustic wave. When the entire surface acoustic wave propagation substrate is formed using a material capable of exciting a surface acoustic wave, a piezoelectric material such as a quartz crystal is used. Piezoelectric crystal materials such as, lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), langasite (La 3 Ga 5 SiO 14 ) and their families are used. In this case, the portion configured continuously in an annular shape by at least a part of the spherical shape is on a line where the crystal plane of the piezoelectric crystal material intersects the outer surface, and is continuous in the annular shape. The direction in which the line extends is the substantially extending direction of the line.
そして、圧電性結晶材料の弾性表面波伝搬基体は、製造コストを考慮して、通常は略10mm〜略1mmの径の球形状にされている。 The surface acoustic wave propagation substrate of piezoelectric crystal material is usually formed into a spherical shape having a diameter of about 10 mm to about 1 mm in consideration of manufacturing costs.
弾性表面波・励起/検知手段は種々の構成であることが出来、製造コスト、装置の大きさ、変換効率などを考慮して、通常はいわゆるすだれ状電極(櫛形電極とも言われる)が使用される。 The surface acoustic wave / excitation / detection means can have various configurations, and so-called interdigital electrodes (also referred to as comb electrodes) are usually used in consideration of manufacturing cost, device size, conversion efficiency, and the like. The
すだれ状電極は一対の櫛形状端子部を夫々の複数の櫛歯状電極枝を交互に配置して組み合わせた形状をしていて、弾性表面波伝搬基体の外表面の上記少なくとも球形状の一部により円環状に連続して構成されている部分に例えばフォトリソグラフィー(写真製版)により直接形成されるか、又は弾性表面波伝搬基体とは別体のすだれ状電極支持部材の表面に圧電性結晶材料の外表面の上記部分と相似形状に形作られた部分球形状凹所の内表面に例えばフォトリソグラフィー(写真製版)により直接形成された後に弾性表面波伝搬基体の外表面の上記部分に対し所定の隙間(励起する弾性表面波の波長の1/4以下)を介して対向して配置される。 The interdigital electrode has a shape in which a plurality of comb-shaped electrode branches are alternately arranged in combination with a pair of comb-shaped terminal portions, and at least a part of the spherical shape on the outer surface of the surface acoustic wave propagation substrate. Piezoelectric crystal material is formed directly on the surface of the interdigital electrode support member which is formed directly by, for example, photolithography (photoengraving) on a portion which is continuously formed in an annular shape, or separate from the surface acoustic wave propagation substrate For example, photolithography (photoengraving) is directly formed on the inner surface of a partially spherical recess formed in a shape similar to the above-mentioned portion of the outer surface of the surface of the surface acoustic wave propagation substrate. It arrange | positions through a clearance gap (1/4 or less of the wavelength of the surface acoustic wave to excite).
一対の櫛形状端子部の間に所定の周波数の高周波信号をバースト状に適用することにより相互に隣接した2つの櫛歯状電極枝間の距離に対応した波長の弾性表面波を弾性表面波伝搬基体の外表面の上記部分に励起させることが出来、励起された弾性表面波の幅は相互に隣接した2つの櫛歯状電極枝において相互に対向している部分の長さに対応している。 Surface acoustic wave propagation of a surface acoustic wave having a wavelength corresponding to the distance between two adjacent comb-shaped electrode branches by applying a high-frequency signal of a predetermined frequency in a burst shape between a pair of comb-shaped terminal portions The above-mentioned portion of the outer surface of the substrate can be excited, and the width of the excited surface acoustic wave corresponds to the length of the portions facing each other in the two comb-like electrode branches adjacent to each other. .
また、すだれ状電極の一対の櫛形状端子部の複数の櫛歯状電極枝が交互に配列された方向が上述した如く励起された弾性表面波の波面が圧電性結晶材料の外表面の上記部分において略進行する方向になる。従って、弾性表面波伝搬基体の外表面の上記部分にすだれ状電極により弾性表面波を励起させ、この弾性表面波を上記部分において上記部分が円環状に連続する方向に伝搬させるには、すだれ状電極の一対の櫛形状端子部の複数の櫛歯状電極枝が上記方向に配列されるようにしなければならない。 Further, the wavefront of the surface acoustic wave excited in the direction in which the plurality of comb-shaped electrode branches of the pair of comb-shaped terminal portions of the interdigital electrode are alternately arranged is as described above on the outer surface of the piezoelectric crystal material. It becomes the direction which advances substantially. Therefore, in order to excite the surface acoustic wave by the interdigital electrode on the outer surface of the surface acoustic wave propagation substrate and to propagate the surface acoustic wave in the direction in which the portion continues in an annular shape, A plurality of comb-like electrode branches of the pair of comb-shaped terminal portions of the electrode must be arranged in the above direction.
例えば国際公開WO 01/45255 A1号公報(特許文献2)により知られているように、弾性表面波伝搬基体の外表面の上記部分の曲率や上記部分の連続する方向(即ち、励起された弾性表面波を伝搬させる方向)と直交する方向における励起する弾性表面波の幅(弾性表面波・励起/検知手段がすだれ状電極の場合にはすだれ状電極の複数の電極枝が相互に対向している部分の長さ)や上記部分に励起する弾性表面波の周波数(弾性表面波・励起/検知手段がすだれ状電極の場合にはすだれ状電極の複数の電極枝の配列周期)などの所定の項目を所定の条件に設定し、上記連続する方向に向かい弾性表面波を励起させることにより、上記励起された弾性表面波を上記外表面の上記部分に沿い上記部分の連続する方向に対し交差する方向に大きく拡散させることなく繰り返し周回させることができる。 For example, as known from International Publication No. WO 01/45255 A1 (Patent Document 2), the curvature of the portion of the outer surface of the surface acoustic wave propagation substrate and the continuous direction of the portion (that is, excited elasticity) The width of the surface acoustic wave to be excited in the direction orthogonal to the surface wave propagation direction (when the surface acoustic wave / excitation / detection means is an interdigital electrode, multiple electrode branches of the interdigital electrode face each other) And the frequency of the surface acoustic wave to be excited in the above part (surface acoustic wave / arrangement period of plural electrode branches of the interdigital electrode when the excitation / detection means is an interdigital electrode) By setting the item to a predetermined condition and exciting the surface acoustic wave in the continuous direction, the excited surface acoustic wave intersects the continuous direction of the portion along the portion of the outer surface. Direction Can be repeatedly circulated without being greatly diffused in the direction.
球状弾性表面波装置は、弾性表面波伝搬基体の外表面の上記部分(即ち、弾性表面波周回路)に外部環境の変化に感応する感応膜を設け、上記感応膜が接する外部環境、例えばガス濃度、の変化に対応して上記周回路を周回する弾性表面波の伝搬速度や振動エネルギーの減衰率が変化し、ひいては弾性表面波・励起/検知手段からの出力で得られる上記周回路をバースト状の弾性表面波が1周するのに要する時間や1周する毎に弾性表面波の位相や強度が変化することを利用して、外部環境、例えばガス濃度、の変化を測定することに利用することが出来る。 The spherical surface acoustic wave device is provided with a sensitive film that is sensitive to changes in the external environment on the portion of the outer surface of the surface acoustic wave propagation substrate (that is, the surface acoustic wave circuit), and an external environment in contact with the sensitive film, for example, a gas Corresponding to the change in concentration, the propagation speed of surface acoustic waves that circulate around the peripheral circuit and the attenuation rate of vibration energy change, and the peripheral circuit obtained by the output from the surface acoustic wave / excitation / detection means bursts. This is used to measure changes in the external environment, for example, gas concentration, using the time required for one round of the surface acoustic wave to change and the phase and intensity of the surface acoustic wave changing with each round. I can do it.
高周波信号における位相とは一般に、所定の時刻を定義したさいにその時刻における該当信号の時間的な位置を意味する。球状弾性表面波素子の出力計測における位相計測は、弾性表面波が励起された時刻から所定の時間経過した時刻における、球状弾性表面波装置からの高周波信号出力の時間的な位置(位相)をフーリエ解析やクアドラチャ検波やあるいはウエーブレット変換などを用いて計測することを通常指して用いられ、その計測から弾性表面波の伝搬(周回)速度を直接的に計測できる。あるいは、例えば球状弾性表面波装置が所定の回数出力し終わった時刻(所定の回数周回し終わった時刻)を求め、周回開始時刻から上記終わった時刻までの時間の経過を求める事も、“位相を計測する”と呼び、これによって弾性表面波の伝搬(周回)速度の情報を得ることを本発明では除外しない。 A phase in a high frequency signal generally means a temporal position of a corresponding signal at a predetermined time when a predetermined time is defined. The phase measurement in the output measurement of the spherical surface acoustic wave element is performed by calculating the time position (phase) of the high-frequency signal output from the spherical surface acoustic wave device at the time when a predetermined time has elapsed from the time when the surface acoustic wave was excited. It is usually used to measure using analysis, quadrature detection, wavelet transform, etc., and the propagation (circulation) velocity of the surface acoustic wave can be directly measured from the measurement. Alternatively, for example, the time when the spherical surface acoustic wave device has finished outputting a predetermined number of times (the time when the predetermined number of laps have been completed) is obtained, and the passage of time from the lap start time to the end time can also be obtained. In this invention, it is not excluded to obtain information on the propagation speed of surface acoustic waves.
例えば上記ガス濃度が濃くなれば、この濃度変化に対応した上記感応膜の変化の影響により上記周回路を周回するバースト状の弾性表面波の周回速度が遅くなり、ひいては上記周回路をバースト状の弾性表面波が1周するのに要する時間が多くなる。また、これと同じ場合に、1周する毎の弾性表面波の位相に遅延が生じ、そして強度に低下が生じる。 For example, if the gas concentration is increased, the peripheral speed of the burst-like surface acoustic wave that circulates around the peripheral circuit is slowed down by the influence of the change in the sensitive film corresponding to the change in concentration. The time required for the surface acoustic wave to make one round increases. In the same case, there is a delay in the phase of the surface acoustic wave every round, and the strength is reduced.
上述した如き環境の変化による、上記周回路を1周する間におけるバースト状の弾性表面波の周回速度の変化や、上記周回路をバースト状の弾性表面波が1周するのに要する時間の変化や、1周する毎の弾性表面波の位相の遅延や、そして強度の低下の夫々は微小であるが、上記周回路を弾性表面波が周回する回数が増加すればするほどこれらの変化は重畳され大きくなる。即ち、上記変化の測定精度が向上する。 Changes in the circumferential speed of the burst-like surface acoustic wave during one round of the circumference circuit due to environmental changes as described above, and changes in the time required for the burst-like surface acoustic wave to make one round in the circumference circuit In addition, the phase delay of the surface acoustic wave every round and the decrease in strength are small, but these changes are superimposed as the number of times the surface acoustic wave circulates around the circuit increases. It gets bigger. That is, the measurement accuracy of the change is improved.
従って、球状弾性表面波装置を使用して上述した如く外部環境の変化を測定する場合には、上記周回路を周回する弾性表面波の振動エネルギーの減衰率が上記外部環境の変化以外の要因で低下することは好ましくないことは明らかである。 Therefore, when measuring the change in the external environment using the spherical surface acoustic wave device as described above, the attenuation factor of the vibration energy of the surface acoustic wave that circulates in the peripheral circuit is caused by factors other than the change in the external environment. Obviously, it is not desirable to decrease.
球状弾性表面波装置において公知の弾性表面波・励起/検知手段としてすだれ状電極を使用する場合には、前述した前者の場合の如く上記部分(即ち、弾性表面波周回路)にすだれ状電極を直接形成すると、すだれ状電極により圧電性結晶材料の外表面の上記部分に励起され上記部分の上記連続する方向に伝搬する弾性表面波は、上記外表面の上記部分の上記周回路に沿い周回する間にすだれ状電極の質量による反射や位相変化等の影響を受け、その度に信号波形がみだれたり振動エネルギーが損失する。 When the interdigital electrode is used as a known surface acoustic wave / excitation / detection means in the spherical surface acoustic wave device, the interdigital electrode is placed on the above-mentioned portion (ie, the surface acoustic wave circuit) as in the former case. When directly formed, the surface acoustic wave that is excited by the interdigital electrode to the portion of the outer surface of the piezoelectric crystal material and propagates in the continuous direction of the portion circulates along the peripheral circuit of the portion of the outer surface. In the meantime, it is affected by reflection and phase change due to the mass of the interdigital electrode, and a signal waveform is squeezed or vibration energy is lost each time.
このことは、球状弾性表面波装置において公知の弾性表面波・励起/検知手段としてすだれ状電極を使用する場合には、前述した後者の場合の如く圧電性結晶材料の弾性表面波伝搬基体とは別体のすだれ状電極支持部材の表面に圧電性結晶材料の外表面の上記部分と相似形状に形作られた部分球形状凹所の内表面にすだれ状電極を直接形成した後にすだれ状電極を弾性表面波伝搬基体の外表面の上記部分に対し所定の隙間を介して対向するよう配置することが好ましいことを意味している。
しかしながら、前述した如く弾性表面波伝搬基体の球の直径は通常は10mm〜1mmと小さく軽いので、弾性表面波伝搬基体とは別体のすだれ状電極支持部材の表面に形作られた部分球形状凹所の内表面に形成されたすだれ状電極を圧電性結晶材料の外表面の上記部分に対し前述した所定の隙間(励起する弾性表面波の波長の1/4以下)を介して対向するよう配置させる作業は煩雑で多くの時間を必要としている。 However, as described above, the diameter of the sphere of the surface acoustic wave propagation substrate is usually as small as 10 mm to 1 mm, so that the partially spherical concave formed on the surface of the interdigital electrode support member separate from the surface acoustic wave propagation substrate. The interdigital electrode formed on the inner surface of the electrode is disposed so as to face the above-mentioned portion of the outer surface of the piezoelectric crystal material through the aforementioned predetermined gap (1/4 or less of the wavelength of the excited surface acoustic wave). The work to be performed is complicated and requires a lot of time.
そして、上記隙間が所定でないと、すだれ状電極は所定の強さの弾性表面波を弾性表面波伝搬基体の上記周回路に励起させることが出来ず、ひいては上記周回路を周回する弾性表面波の強度や位相を精密に検出することが出来なくなってしまう。 If the gap is not predetermined, the interdigital electrode cannot excite a surface acoustic wave having a predetermined strength to the circumferential circuit of the surface acoustic wave propagation substrate, and consequently the surface acoustic wave that circulates the circumferential circuit. The intensity and phase cannot be detected accurately.
この発明は上記事情の下でなされ、この発明の目的は、構造が簡易で製造が容易であって製造に費やす時間を短縮することが出来、しかも弾性表面波伝搬基体の上記周回路に励起させ上記周回路を周回させた弾性表面波の強度や位相を上記製造の容易さの割には精密に検出することが出来る球状弾性表面波装置を提供することである。 The present invention has been made under the circumstances described above, and the object of the present invention is to simplify the structure and easy to manufacture, reduce the time spent for manufacturing, and to excite the peripheral circuit of the surface acoustic wave propagation substrate. An object of the present invention is to provide a spherical surface acoustic wave device that can accurately detect the intensity and phase of a surface acoustic wave that has circulated around the circumference circuit, in spite of the ease of manufacture.
上述したこの発明の目的を達成するために、この発明に従った球状弾性表面波装置は:少なくとも球形状の一部により円環状に連続して構成されており弾性表面波が励起可能で励起された弾性表面波が上記円環の連続する方向に伝搬し周回可能な弾性表面波周回路を外表面に含む弾性表面波伝搬基体と;弾性表面波伝搬基体の上記外表面において上記弾性表面波周回路を除いた領域を支持する基体支持体と;そして、弾性表面波・励起/検知手段を支持している弾性変形可能な弾性変形部材を支持し、弾性変形部材を介して弾性表面波・励起/検知手段を弾性表面波伝搬基体の上記外表面の上記弾性表面波周回路に当接させるとともに弾性変形部材を弾性変形させる励起/検知手段・支持体と;を備えたことを特徴としている。 In order to achieve the above-described object of the present invention, a spherical surface acoustic wave device according to the present invention comprises: an annular surface continuously configured by at least a part of a sphere, so that the surface acoustic wave can be excited and excited. A surface acoustic wave propagation substrate including a surface acoustic wave circuit capable of propagating and circulating in the direction in which the annular surface is continuous; and the surface acoustic wave circumference on the outer surface of the surface acoustic wave propagation substrate. A substrate support for supporting a region excluding the circuit; and an elastically deformable elastic deformation member supporting the surface acoustic wave / excitation / detection means, and supporting the surface acoustic wave / excitation via the elastic deformation member. / Exciting / detecting means / support for elastically deforming the elastic deformable member while bringing the detecting means into contact with the surface acoustic wave circuit on the outer surface of the surface acoustic wave propagation substrate.
上述した如く構成されたことを特徴とするこの発明に従った球状弾性表面波装置は、上述した如く構成が簡易である。しかも、弾性表面波・励起/検知手段は、励起/検知手段・支持体に弾性変形部材を介して支持されていて、励起/検知手段・支持体により弾性変形部材を介して弾性表面波伝搬基体の上記外表面の上記弾性表面波周回路に当接されている。従って、弾性表面波伝搬基体の上記外表面の上記弾性表面波周回路に対する弾性表面波・励起/検知手段の煩雑な位置決めが不要であるので製造に費やす時間を短縮出来る。 The spherical surface acoustic wave device according to the present invention, which is configured as described above, has a simple configuration as described above. In addition, the surface acoustic wave / excitation / detection means is supported by the excitation / detection means / support via an elastic deformation member, and the surface acoustic wave propagation base is supported by the excitation / detection means / support via the elastic deformation member. Are in contact with the surface acoustic wave circuit on the outer surface. Accordingly, since complicated positioning of the surface acoustic wave / excitation / detection means with respect to the surface acoustic wave circuit on the outer surface of the surface acoustic wave propagation substrate is unnecessary, the time spent for manufacturing can be shortened.
上記弾性表面波周回路に励起/検知手段・支持体により弾性変形部材を介して当接されている弾性表面波・励起/検知手段は、弾性表面波伝搬基体の上記外表面の上記弾性表面波周回路から所定の距離(上記弾性表面波周回路に励起され周回する弾性表面波の波長の1/4以下)に配置する場合に比べ、弾性表面波伝搬基体の上記周回路に励起させ上記周回路を周回させた弾性表面波の強度や位相を精密に検出することは出来ないが、弾性表面波伝搬基体の上記外表面の上記弾性表面波周回路に形成された場合に比べると弾性表面波の周回に伴う強度減衰や伝搬(周回)速度をより精密に検出することが出来る。 The surface acoustic wave / excitation / detection means that is in contact with the surface acoustic wave peripheral circuit via the elastic deformation member by the excitation / detection means / support is the surface acoustic wave on the outer surface of the surface acoustic wave propagation substrate. Compared to a case where the circuit is arranged at a predetermined distance from the peripheral circuit (1/4 or less of the wavelength of the surface acoustic wave excited and circulated by the surface acoustic wave circuit), the peripheral circuit of the surface acoustic wave propagation substrate is excited by the peripheral circuit. Although the strength and phase of the surface acoustic wave that circulates the circuit cannot be detected accurately, the surface acoustic wave is compared with the case where it is formed in the surface acoustic wave peripheral circuit on the outer surface of the surface acoustic wave propagation substrate. It is possible to detect the intensity attenuation and propagation (circulation) speed associated with the orbit of the object more precisely.
[第1の実施の形態]
以下、添付の図面中の図1乃至図7を参照しながら、この発明の第1の実施の形態に従った球状弾性表面波装置10について説明する。
[First Embodiment]
A spherical surface
球状弾性表面波装置10は、弾性表面波伝搬基体12を備えている。弾性表面波伝搬基体12は、弾性表面波を励起させることが出来ない材料を使用して少なくとも球形状の一部により円環状に連続して構成されている部分を外表面に含むよう形成された基材の上記外表面において少なくとも上記円環状の部分を弾性表面波が励起可能な材料により被覆することにより形成されるか、又は、弾性表面波が励起可能な材料を使用して少なくとも球形状の一部により円環状に連続して構成されている部分を外表面に含むよう形成される。
The spherical surface
この実施の形態において弾性表面波伝搬基体12は、弾性表面波が励起可能な材料により球形状に形成されていて、少なくとも球形状の一部により円環状に連続して構成されており弾性表面波が励起可能で励起された弾性表面波が上記円環の連続する方向に伝搬し周回可能な弾性表面波周回路12aを外表面に含む。
In this embodiment, the surface acoustic
弾性表面波が励起可能な材料としては、例えば水晶,ニオブ酸リチウム(LiNbO3),タンタル酸リチウム(LiTaO3),ランガサイト(La3Ga5SiO14)及びこれらのファミリーの如き圧電性結晶材料が使用される。この場合には、上記少なくとも球形状の一部により円環状に連続して構成されている部分は圧電性結晶材料の結晶面が上記外表面と交差する線上にあり、上記円環状に連続している方向は上記線のほぼ延出方向である。 Examples of materials that can excite surface acoustic waves include quartz, lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), langasite (La 3 Ga 5 SiO 14 ), and piezoelectric crystal materials such as these families. Is used. In this case, the portion configured continuously in an annular shape by at least a part of the spherical shape is on a line where the crystal plane of the piezoelectric crystal material intersects the outer surface, and is continuous in the annular shape. The direction in which the line extends is the substantially extending direction of the line.
そして、圧電性結晶材料の弾性表面波伝搬基体12は、製造コストを考慮して、通常は略10mm〜略1mmの径の球形状にされるが、この実施の形態に従った弾性表面波伝搬基体12の径は3.3mmである。
The surface acoustic
この実施の形態では、弾性表面波伝搬基体12は球形状の水晶により形成されている。水晶はその結晶軸Z(水晶の場合はC軸)を地球の自転軸に見たてた時の赤道に該当する結晶軸Z回りの最大外周線が水晶の結晶面が水晶の球形状の外表面と交差する線となっていて、弾性表面波伝搬経路12aは、上記最大外周線に略沿い上記外表面を円環状に一周している。
In this embodiment, the surface acoustic
球状弾性表面波装置10は、弾性表面波伝搬基体12の外表面において弾性表面波周回路12aを除いた領域を支持する基体支持体14と、弾性表面波・励起/検知手段16を支持している弾性変形可能な弾性変形部材18を支持し弾性変形部材18を介して弾性表面波・励起/検知手段16を弾性表面波伝搬基体12の外表面の弾性表面波周回路12aに当接させるとともに弾性変形部材18を弾性変形させる励起/検知手段・支持体20と、をさらに備えている。
The spherical surface
この実施の形態において、基体支持体14は、基台22に支持された基端部14aと基台22から遠ざかる方向に延出した延出端部14bとを含んでおり基端部14aに対し延出端部14bが弾性的に湾曲可能である。基体支持体14は、上述した如く弾性的に湾曲可能な材料により形成することが出来、この実施の形態では厚さ0.04mmのステンレス板により形成されている。基体支持体14の基端部14aは基台22に、半田や固定螺子やリベットや接着剤を含む公知の固定手段により固定されている。
In this embodiment, the
基体支持体14の延出端部14bが、弾性表面波伝搬基体12の外表面における弾性表面波周回路12aを除いた領域を支持するよう構成されている。
The
この実施の形態において、励起/検知手段・支持体20は、基台22に支持された基端部20aと基台22から遠ざかる方向に延出した延出端部20bとを含んでおり基端部20aに対し延出端部20bが弾性的に湾曲可能である。励起/検知手段・支持体20も上述した如く弾性的に湾曲可能な材料により形成することが出来、この実施の形態では厚さ0.04mmのステンレス板により形成されている。励起/検知手段・支持体20の基端部20aは基台22に、半田や固定螺子やリベットや接着剤を含む公知の固定手段24により固定されている。
In this embodiment, the excitation / detection means /
励起/検知手段・支持体20の延出端部20bが、弾性変形部材18を支持していて基体支持体14の延出端部14bに対し弾性表面波伝搬基体12を挟んで相互に対向し弾性表面波伝搬基体12の外表面の弾性表面波周回路12aに弾性表面波・励起/検知手段16を図2中に図示されている如く当接させている。
The
従って、弾性表面波伝搬基体12は基体支持体14の延出端部14aと励起/検知手段・支持体20の延出端部とによって基台22から離れて弾性的に挟持されている。
Accordingly, the surface acoustic
この実施の形態において弾性変形部材18は、不導体であるゴムにより形成されているが、後述する弾性変形の条件を満たすのであれば粘弾性材料により形成されていることが出来るし、時間の経過とともに硬化してしまう材料により形成されていることもできる。
In this embodiment, the elastically
この実施の形態において弾性表面波・励起/検知手段16はすだれ状電極により提供されている。すだれ状電極は、図3の(A)及び(B)中に図示されている如く、一対の櫛形状端子部16a,16bを夫々の複数の櫛歯状電極枝16cを交互に配置して組み合わせた形状をしていて、励起/検知手段・支持体20の延出端部20bにより弾性変形部材18を介して弾性表面波周回路12aに当接されたときに、すだれ状電極の一対の櫛形状端子部16a,16bの複数の櫛歯状電極枝16cが交互に配列された方向が弾性表面波周回路12aの円環状に延出する方向(この実施の形態では、水晶による弾性表面波伝搬基体12の外表面において水晶の結晶軸Z回りの結晶面が上記外表面と交差する円環状の線に沿った方向)に一致し、好ましくは複数の櫛歯状電極枝16cの夫々の延出方向が弾性表面波周回路12aの円環状に延出する方向(この実施の形態では、水晶による弾性表面波伝搬基体12の外表面において水晶の結晶軸Z回りの結晶面が上記外表面と交差する円環状の線に沿った方向)に対し直交するように、弾性変形部材18の表面に形成されている。
In this embodiment, the surface acoustic wave / excitation / detection means 16 is provided by an interdigital electrode. As shown in FIGS. 3A and 3B, the interdigital electrode is formed by combining a pair of comb-shaped
すだれ状電極は、不導体であるゴムにより形成されている弾性変形部材18の表面に例えば金や銅やアルミニウムのような導電性の高い金属薄膜を直接形成した後に例えばフォトリソグラフィー(写真製版)により成形することにより形成することが出来る。とはいうものの、弾性変形部材18が弾性表面波周回路12aに当接されたときに弾性変形するとその表面が僅かに延伸するので、この延伸によりすだれ状電極が破断する可能性もある。この為に、弾性変形部材18の上記弾性変形に伴い弾性変形部材18の外表面とともに変形可能であるが弾性変形部材18の外表面ほどは延伸しない例えばセラミック薄膜の如き不導体上に上述した如くすだれ状電極を形成することが好ましい。即ち、すだれ状電極は、すだれ状電極が提供している弾性表面波・励起/検知手段16と弾性変形部材18との間に介在された不導体上に上述した如く形成されることが好ましい。
The interdigital electrode is formed by, for example, photolithography (photoengraving) after directly forming a highly conductive metal thin film such as gold, copper, or aluminum on the surface of the
このような不導体は、すだれ状電極が形成される前に弾性変形部材18の外表面上に例えば接着剤を含む公知の支持手段により支持されていることができるし、或いはすだれ状電極が形成された後に弾性変形部材18の外表面上に例えば接着剤を含む公知の支持手段により支持されても良い。
Such a non-conductor can be supported on the outer surface of the
すだれ状電極の一対の櫛形状端子部16a,16bは、弾性変形部材18及び励起/検知手段・支持体20上に配置された図示しない配線を介して弾性表面波・励起/検知手段16の動作を制御するための公知の動作制御手段に電気的に接続されている。
The pair of comb-shaped
励起/検知手段・支持体20の延出端部20bにより弾性変形部材18を介して弾性表面波・励起/検知手段16のすだれ状電極が図2中に図示されている如く弾性表面波伝搬基体12の弾性表面波伝搬路12aに当接されている間に、一対の櫛形状端子部16a、16bの間に、上記公知の動作制御手段により所定の周波数の高周波信号をバースト状に適用することにより、所定の波長の弾性表面波を弾性表面波伝搬基体12の外表面の弾性表面波周回路12aに励起させることが出来る。ここにおいて上記所定の周波数の波長や上記所定の波長は相互に隣接した2つの櫛歯状電極枝16c間の距離(配列周期)Pに対応している。
The interdigital electrode of the surface acoustic wave / excitation / detection means 16 is passed through the
すだれ状電極が弾性表面波周回路12aに励起させる弾性表面波の幅はすだれ状電極の一対の櫛形状端子部16a,16bの複数の櫛歯状電極枝16cが相互に対面する距離(電極幅)Wである。
The width of the surface acoustic wave excited by the
図3(B)では一対の櫛形状端子部16a,16bの夫々が4本の櫛歯状電極枝16cによって構成されているが、一対の櫛形状端子部16a,16bの夫々が1本のみの櫛歯状電極枝16cによって構成されていても弾性表面波を励起し検知する事は可能であり本発明はそれを除外しない。なお、一方向にのみ弾性表面波を励起するすだれ状電極や、複数の周波数を効率よく励起する特殊な構造のすだれ状電極が公知でありその何れでも本発明は使用できる。
In FIG. 3B, each of the pair of comb-shaped
常に同じ条件で所定の波長の弾性表面波を弾性表面波伝搬基体12の外表面の弾性表面波周回路12aに励起させるには、励起/検知手段・支持体20の延出端部20bにより弾性変形部材10を介して弾性表面波・励起/検知手段16のすだれ状電極が図2中に図示されている如く弾性表面波伝搬基体12の弾性表面波伝搬路12aに当接されている間に、すだれ状電極の一対の櫛形状端子部16a,16bの複数の櫛歯状電極枝16cが相互に対面する距離Wの全体が常に弾性表面波周回路12aに接していなければならない。
In order to excite the surface acoustic wave of a predetermined wavelength to the surface
この条件を満たすには、図4中に図示されている如く、励起/検知手段・支持体20の延出端部20b上の弾性変形部材18が弾性表面波・励起/検知手段16を弾性表面波伝搬基体12の外表面の弾性表面波周回路12aに当接させたときの弾性変形部材18の凹みの深さDが以下のようになれば良い。
In order to satisfy this condition, as shown in FIG. 4, the
D=R(1−cos(W/2R))
ここにおいて、cosに続く丸括弧内のW/2Rはラジアン単位であり、Wはすだれ状電極の電極幅、そしてRは弾性表面波伝搬基体12の弾性表面波周回路12aの半径である。
D = R (1-cos (W / 2R))
Here, W / 2R in parentheses following cos is in radians, W is the electrode width of the interdigital electrode, and R is the radius of the surface
即ち、少なくともこのような弾性変形部材18の凹みの深さDが得られるよう、励起/検知手段・支持体20や弾性変形部材10の弾性が設定される。しかしながら、前述した如く弾性表面波・励起/検知手段16のすだれ状電極が弾性変形部材18の凹みより破断する可能性が無ければ、上記深さDはもっと深くても良い。
That is, the elasticity of the excitation / detection means /
あるいは、弾性表面波・励起/検知手段16のすだれ状電極が支持されている弾性変形部材10の外表面が予め上述した如き凹みを有する凹面に加工されていれば、弾性表面波伝搬基体12の弾性表面波周回路12aに対し弾性表面波・励起/検知手段16のすだれ状電極を当接させるときに弾性変形部材10の外表面が強いられる弾性変形量は殆ど無くなり、弾性表面波・励起/検知手段16のすだれ状電極が破断される可能性は殆どなくなる。
Alternatively, if the outer surface of the
しかしながら、弾性変形部材10の外表面が平面形状である場合、すだれ状電極をその外表面に形成した例えば金や銅やアルミニウムのような導電性の高い金属薄膜からフォトリソ技術(写真製版)やマスクレス露光機を用いて成形するのであれば、より高精細なすだれ状電極を安価に形成できる。つまり、高精細なパターニングをおこなう為の一般に普及している露光装置やインクジェット塗布装置などのプロセス装置は、パターニングをする対象が平面であることを前提に製造されているからである。
However, when the outer surface of the elastically
弾性表面波周回路12aの半径に対し、所定の範囲の幅と所定の波長を有した弾性表面波を励起させれば、弾性表面波周回路12aに沿いその延長方向と交差する方向に拡散することなく繰り返し弾性表面波を周回させることが出来ることは前述した特許文献2などにより公知である。
If a surface acoustic wave having a predetermined range of width and a predetermined wavelength is excited with respect to the radius of the surface
上記公知の動作制御手段は、弾性表面波周回路12aを周回する弾性表面波を、弾性表面波周回路12aに対し上述した如く励起/検知手段・支持体20の延出端部20b及び弾性変形部材10を介して当接された弾性表面波・励起/検知手段16のすだれ状電極により検知することができる。
The above-mentioned known operation control means applies the surface acoustic wave that circulates the surface
このように、弾性表面波周回路12aに励起/検知手段・支持体20により弾性変形部材18を介して当接されている弾性表面波・励起/検知手段16のすだれ状電極は、弾性表面波周回路12aを周回させた弾性表面波のエネルギーの幾分かを反射させ弾性表面波を幾分かは減衰させるので、弾性表面波伝搬基体12の外表面の弾性表面波周回路12aから所定の距離(弾性表面波周回路12aに励起され周回する弾性表面波の波長の1/4以下)に配置された場合に比べ、弾性表面波伝搬基体12の弾性表面波周回路12aに励起させ弾性表面波周回路12aを周回させた弾性表面波の強度や位相を精密に検出することは出来ないが、弾性表面波伝搬基体12の外表面の弾性表面波周回路12aに形成された場合に比べると弾性表面波周回路12aを周回させた弾性表面波の伝搬に影響してエネルギーを反射させ減衰させる割合は小さく弾性表面波の強度や位相をより精密に検出することが出来る。
In this way, the interdigital electrode of the surface acoustic wave / excitation / detection means 16 that is in contact with the surface
なぜならば、通常は、圧電性結晶材料を加工して得られた弾性表面波伝搬基体12の外表面の表面粗さに比べると弾性表面波・励起/検知手段16のすだれ状電極を形成している金属薄膜の外表面の表面粗さは大きく、微視的に見ると弾性表面波伝搬基体12の外表面の弾性表面波周回路12aに対し弾性表面波・励起/検知手段16のすだれ状電極は無数の点接触をしていることになるからである。
This is because the interdigital electrode of the surface acoustic wave / excitation / detection means 16 is usually formed as compared with the surface roughness of the outer surface of the surface acoustic
とはいうものの、弾性表面波・励起/検知手段16のすだれ状電極が弾性表面波周回路12aに対し当接する周回路当接部分の表面の面積は少ないほうが、弾性表面波のエネルギーを反射させ減衰させる割合が小さくなるので好ましい。
However, the surface area of the peripheral circuit contact portion where the interdigital electrode of the surface acoustic wave / excitation / detection means 16 contacts the surface
この為に、この実施の形態においては、弾性表面波・励起/検知手段16のすだれ状電極が弾性表面波周回路12aに対し当接する周回路当接部分の表面に対し、図5中に良く示されている如く、弾性表面波周回路12aに対する当接面積を減少させる当接面積減少加工26が適用されている。当接面積減少加工26は、弾性表面波・励起/検知手段16の周回路当接部分の表面の複数個所に凹部又は凸部を形成することを含んでいる。
For this reason, in this embodiment, the interdigital electrode of the surface acoustic wave / excitation / detection means 16 is better in FIG. 5 than the surface of the peripheral circuit contact portion where the interdigital electrode contacts the surface
当接面積減少加工26の複数の凹部は、例えばエッチングにより形成される。詳細には、図6の(A)及び(B)中に図示されている如く、不導体である弾性変形部材18(図2参照)の外表面に、弾性表面波・励起/検知手段16(図2参照)のすだれ状電極の成形の為に前述した如く直接又は図示されていない不導体を介して間接的に形成された金属薄膜MFに対し複数の微小なレジストパターンLPを付着させる。次に、図6の(C)中に図示されている如く、複数の微小なレジストパターンLPを伴った金属薄膜MFに対し公知の等方性エッチングを行なう。これにより、複数の微小なレジストパターンLPにより覆われていない金属薄膜MFの外表面の複数箇所に凹部が形成される。次に、図6の(D)中に図示されている如く、複数の微小なレジストパターンLPが公知の方法により金属薄膜MFの外表面から除去される。その後、金属薄膜MFの外表面の複数箇所の凹部の相互間の突部の頂点(弾性表面波周回路12aに対し直接当接する部分となる)の面積をさらに小さくする為に、金属薄膜MFの外表面に対し再度公知の等方性エッチングを行なうことができる。
The plurality of recesses of the contact
当接面積減少加工26の複数の凹部はまた、弾性変形部材18(図2参照)の外表面に、弾性表面波・励起/検知手段16(図2参照)のすだれ状電極の成形の為に前述した如く直接又は図示されていない不導体を介して間接的に形成された金属薄膜MFの外表面に対し、複数の微小なレジストパターンLPを付着させることなく、公知のソフトエッチングを施して金属薄膜MFの外表面にあえてエッチング斑を生じさせることによっても得ることが出来る。
The plurality of recesses of the contact
当接面積減少加工26の複数の凸部は、例えば、図7中に図示されている如く、弾性変形部材18(図2参照)の外表面に前述した如く直接又は図示されていない不導体を介して間接的に形成された金属薄膜から成形された弾性表面波・励起/検知手段16(図2参照)のすだれ状電極の外表面に対し、すだれ状電極の複数の電極枝16c(図3の(B)参照)の配列周期Pの1/4以下の径を有した微小粒子MPを弾性表面波・励起/検知手段16の周回路当接部分の表面の複数個所に付着させることにより形成することができる。
For example, as shown in FIG. 7, the plurality of convex portions of the contact
[第2の実施の形態]
以下、添付の図面中の図8を参照しながら、この発明の第2の実施の形態に従った球状弾性表面波装置30について説明する。
[Second Embodiment]
Hereinafter, a spherical surface acoustic wave device 30 according to a second embodiment of the present invention will be described with reference to FIG. 8 in the accompanying drawings.
第2の実施の形態に従った球状弾性表面波装置30の構成部材の一部は、図1乃至図7を参照しながら前述したこの発明の第1の実施の形態に従った球状弾性表面波装置10の構成部材の一部と同じである。従って、第2の実施の形態に従った球状弾性表面波装置30において前述した第1の実施の形態に従った球状弾性表面波装置10の構成部材と同じ構成部材には第1の実施の形態に従った球状弾性表面波装置10の対応する構成部材に付されていた参照符号と同じ参照符号を記して詳細な説明は省略する。
Part of the constituent members of the spherical surface acoustic wave device 30 according to the second embodiment is a spherical surface acoustic wave according to the first embodiment of the present invention described above with reference to FIGS. This is the same as some of the components of the
第2の実施の形態に従った球状弾性表面波装置30が第1の実施の形態に従った球状弾性表面波装置10と異なっているのは、弾性表面波伝搬基体12の外表面において弾性表面波周回路12aを除いた領域を支持する基体支持体32の構成と、弾性表面波・励起/検知手段16を支持している弾性変形可能な弾性変形部材18´を支持し弾性変形部材18´を介して弾性表面波・励起/検知手段16を弾性表面波伝搬基体12の外表面の弾性表面波周回路12aに当接させるとともに弾性変形部材18´を弾性変形させる励起/検知手段・支持体34の構成と、である。
The spherical surface acoustic wave device 30 according to the second embodiment is different from the spherical surface
基体支持体32は、図8の(A)中に良く示されている如く、複数の弾性表面波伝搬基体12を複数の弾性表面波伝搬基体12の夫々の外表面の弾性表面波周回路12aの一部を基体支持体32の一表面から外部に露出させて支持している。
As shown well in FIG. 8A, the
この実施の形態では、基体支持体32は、平坦な板形状であり、複数の所定の支持場所32aは基体支持体32の両平面に貫通した穴形状である。夫々の支持場所32aには、公知の測定手段により結晶軸Zの向きが判明し外表面における所定の弾性表面波周回路12aの位置が測定できた弾性表面波伝搬基体12が、例えば公知の保持搬送手段36により仮に保持した状態で上述した如く所定の弾性表面波周回路12aを測定した場所から基体支持体32の所定の支持場所32aまで搬送させられるとともに所定の支持場所32aに支持させられる。
In this embodiment, the
所定の支持場所32aに対し弾性表面波伝搬基体12は、結晶軸Z(水晶の場合は、C軸)を所定の方向に向けて、即ち、弾性表面波伝搬基体12の外表面の所定の弾性表面波周回路12aを所定の支持場所32aの穴の周囲の所定の周方向位置に向けて、支持される。その際には、弾性表面波伝搬基体12の外表面の所定の弾性表面波周回路12aは所定の支持場所32aの穴の所定の周方向位置において平板形状の基体支持体32の両平面に対し直交している。
The surface acoustic
弾性表面波伝搬基体12の外表面において所定の弾性表面波周回路12a以外の領域が所定の支持場所32aにより支持され、所定の弾性表面波周回路12aは所定の支持場所32aに接触されない。弾性表面波伝搬基体12の外表面において所定の弾性表面波周回路12a以外の領域を支持する所定の支持場所32aの領域には、例えば接着剤の如き公知の固定手段が設けられている。従って、所定の支持場所32aに支持された弾性表面波伝搬基体12の外表面は上述した公知の固定手段により所定の支持場所32aに固定される。
A region other than the predetermined surface
また、基体支持体32の所定の支持場所32aでは、弾性表面波伝搬基体12の外表面の所定の弾性表面波周回路12aにおいて径方向の両端部が外部空間に露出されている。
Further, at a
この実施の形態の励起/検知手段・支持体34は、図8の(B)及び(C)中に図示されている如く、基体支持体32の一表面の所定位置に着脱可能に固定されることにより基体支持体32の複数の所定の支持場所32aに上述した如く支持されている複数の弾性表面波伝搬基体12の外表面の弾性表面波周回路12aの一部に当接され弾性変形される弾性変形部材36を備えている。弾性変形部材36は、前述した第1の実施の形態の弾性変形部材18と同様の材料により形成することができる。
The excitation / detection means /
さらに、弾性変形部材36において基体支持体32の複数の所定の支持場所32aに上述した如く支持されている複数の弾性表面波伝搬基体12の外表面の弾性表面波周回路12aの一部に当接される複数の部分の夫々には、前述した第1の実施の形態の場合の如く弾性表面波・励起/検知手段16のすだれ状電極が支持されている。
Further, a part of the surface
そして、基体支持体32の複数の所定の支持場所32aに上述した如く支持されている複数の弾性表面波伝搬基体12の夫々の外表面の弾性表面波周回路12aの一部に励起/検知手段・支持体34の弾性変形部材36を介して当接された弾性表面波・励起/検知手段16のすだれ状電極は、前述した第1の実施の形態の場合と同様に、その複数の櫛歯状電極枝16c(図3の(A)及び(B)を参照)が交互に配列された方向が弾性表面波周回路12aの円環状に延出する方向(この実施の形態では、水晶による弾性表面波伝搬基体12の外表面において水晶の結晶軸Z回りの結晶面が上記外表面と交差する円環状の線に沿った方向)に一致し、好ましくは複数の櫛歯状電極枝16cの夫々の延出方向が弾性表面波周回路12aの円環状に延出する方向(この実施の形態では、水晶による弾性表面波伝搬基体12の外表面において水晶の結晶軸Z回りの結晶面が上記外表面と交差する円環状の線に沿った方向)に対し直交するように、弾性変形部材36の外表面の上記複数の所定の部分に形成されている。
Excitation / detection means is provided on a part of the surface
なお、励起/検知手段・支持体34を、図8の(B)及び(C)中に図示されている如く、基体支持体32の一表面の所定位置に着脱可能に固定するための構造は種々の公知の位置決め固定構造を採用することが出来る。この実施の形態では、基体支持体32の一表面の複数の所定の位置に形成された複数の位置決め孔PHと、励起/検知手段・支持体34の外表面の複数の所定の位置に複数の位置決め孔PHに対し挿脱可能に形成された複数の位置決め突起PPと、の組み合わせが上記位置決め固定構造を提供している。
As shown in FIGS. 8B and 8C, the structure for detachably fixing the excitation / detection means /
複数の位置決め孔PHを励起/検知手段・支持体34の外表面の複数の所定の位置に形成し、複数の位置決め突起PPを基体支持体32の一表面の複数の所定の位置に形成することも出来る。
A plurality of positioning holes PH are formed at a plurality of predetermined positions on the outer surface of the excitation / detection means /
10…球状弾性表面波装置、12…弾性表面波伝搬基体、12a…弾性表面波周回路、14…基体支持体、14a…基端部、14b…延出端部、16…弾性表面波・励起/検知手段、16a,16b…櫛形状端子部、16c…櫛歯状電極枝、18…弾性変形部材、20…励起/検知手段・支持体、20a…基端部、20b…延出端部、22…基台、24…固定手段、P…配列周期、W…電極幅、D…凹みの深さ、R…半径、26…当接面積減少加工、LP…レジストパターン、MF…金属薄膜、30…球状弾性表面波装置、32…基体支持体、32a…支持場所、34…励起/検知手段・支持体、36…弾性変形部材、PH…位置決め孔、PP…位置決め突起。
DESCRIPTION OF
Claims (12)
弾性表面波伝搬基体の上記外表面において上記弾性表面波周回路を除いた領域を支持する基体支持体と;そして、
弾性表面波・励起/検知手段を支持している弾性変形可能な弾性変形部材を支持し、弾性変形部材を介して弾性表面波・励起/検知手段を弾性表面波伝搬基体の上記外表面の上記弾性表面波周回路に当接させるとともに弾性変形部材を弾性変形させる励起/検知手段・支持体と;
を備えたことを特徴とする球状弾性表面波装置。 A surface acoustic wave circuit that is formed continuously in an annular shape by at least a part of a spherical shape and can excite surface acoustic waves, and the excited surface acoustic waves can propagate and circulate in the continuous direction of the ring. A surface acoustic wave propagation substrate included on the outer surface;
A substrate support for supporting a region excluding the surface acoustic wave circuit on the outer surface of the surface acoustic wave propagation substrate; and
An elastically deformable elastic deformation member supporting the surface acoustic wave / excitation / detection means is supported, and the surface acoustic wave / excitation / detection means is supported on the outer surface of the surface acoustic wave propagation substrate via the elastic deformation member. An excitation / detection means / support for contacting the surface acoustic wave circuit and elastically deforming the elastically deformable member;
A spherical surface acoustic wave device comprising:
D=R(1−cos(W/2R)):ただし、cosに続く丸括弧内はラジアン単位、
以上である、ことを特徴とする請求項1乃至6のいずれか1項に記載の球状弾性表面波装置。 The surface acoustic wave / excitation / detection means is an interdigital electrode, the electrode width of the interdigital electrode is W, the radius of the surface acoustic wave circuit of the surface acoustic wave propagation substrate is R, and the excitation / detection means / support The depth D of the dent of the elastic deformation member when the surface acoustic wave excitation / detection means is brought into contact with the surface acoustic wave circuit on the outer surface of the surface acoustic wave propagation substrate,
D = R (1-cos (W / 2R)): where the parentheses following cos are in radians,
The spherical surface acoustic wave device according to any one of claims 1 to 6, wherein the surface acoustic wave device is as described above.
基体支持体の延出端部が、弾性表面波伝搬基体の上記外表面における上記弾性表面波周回路を除いた領域を支持しており、
励起/検知手段・支持体の延出端部が、弾性変形部材を支持していて基体支持体の延出端部に対し弾性表面波伝搬基体を挟んで相互に対向し弾性表面波伝搬基体の外表面の弾性表面波周回路に弾性表面波・励起/検知手段を当接させており、
弾性表面波伝搬基体は基体支持体の延出端部と励起/検知手段・支持体の延出端部とによって基台から離れて弾性的に挟持されている、
ことを特徴とする請求項1乃至9のいずれか1項に記載の球状弾性表面波装置。 Each of the substrate support and the excitation / detection means / support includes a base end supported by the base and an extended end extending in a direction away from the base, and extends to the base end. The end is elastically bendable,
The extended end portion of the substrate support supports a region excluding the surface acoustic wave circuit on the outer surface of the surface acoustic wave propagation substrate,
The extension end of the excitation / detection means / support supports the elastic deformation member and faces the extension end of the substrate support with the surface acoustic wave propagation substrate sandwiched therebetween. The surface acoustic wave / excitation / detection means is in contact with the surface acoustic wave circuit on the outer surface,
The surface acoustic wave propagation substrate is elastically held away from the base by the extended end portion of the substrate support and the extended end portion of the excitation / detection means / support.
The spherical surface acoustic wave device according to claim 1, wherein the spherical surface acoustic wave device is provided.
励起/検知手段・支持体は、上記基体支持体の一表面の所定位置に固定されることにより弾性変形部材を介して弾性表面波・励起/検知手段を弾性表面波伝搬基体の上記外表面の上記弾性表面波周回路の上記一部に当接させるとともに弾性変形部材を弾性変形させる、
ことを特徴とする請求項1乃至9のいずれか1項に記載の球状弾性表面波装置。 The substrate support supports the surface acoustic wave propagation substrate by exposing a part of the surface acoustic wave circuit on the outer surface of the surface acoustic wave propagation substrate to the outside from one surface of the substrate support, and
The excitation / detection means / support is fixed to a predetermined position on one surface of the substrate support, thereby allowing the surface acoustic wave / excitation / detection means to be attached to the outer surface of the surface acoustic wave propagation substrate via the elastic deformation member. Abutting on the part of the surface acoustic wave circuit and elastically deforming the elastic deformation member;
The spherical surface acoustic wave device according to claim 1, wherein the spherical surface acoustic wave device is provided.
励起/検知手段・支持体は、上記基体支持体の一表面の所定位置に固定されることにより、基体支持体に支持された複数の弾性表面波伝搬基体の上記外表面の上記弾性表面波周回路の一部に当接され弾性変形される弾性変形部材を備えている、
ことを特徴とする請求項11に記載の球状弾性表面波装置。 The substrate support supports a plurality of surface acoustic wave propagation substrates by exposing a part of the surface acoustic wave circuit on the outer surface of each of the plurality of surface acoustic wave propagation substrates from one surface of the substrate support to the outside. And
The excitation / detection means / support is fixed at a predetermined position on one surface of the substrate support, so that the surface acoustic wave periphery of the outer surface of the plurality of surface acoustic wave propagation substrates supported by the substrate support is obtained. An elastic deformation member that is brought into contact with a part of the circuit and elastically deformed;
The spherical surface acoustic wave device according to claim 11.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008217047A JP5109871B2 (en) | 2008-08-26 | 2008-08-26 | Spherical surface acoustic wave device |
PCT/JP2009/064891 WO2010024302A1 (en) | 2008-08-26 | 2009-08-26 | Spherical surface acoustic wave device |
US12/929,925 US8436511B2 (en) | 2008-08-26 | 2011-02-24 | Spherical surface acoustic wave apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008217047A JP5109871B2 (en) | 2008-08-26 | 2008-08-26 | Spherical surface acoustic wave device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010056668A JP2010056668A (en) | 2010-03-11 |
JP5109871B2 true JP5109871B2 (en) | 2012-12-26 |
Family
ID=42072169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008217047A Expired - Fee Related JP5109871B2 (en) | 2008-08-26 | 2008-08-26 | Spherical surface acoustic wave device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5109871B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4143296B2 (en) * | 1999-12-17 | 2008-09-03 | 凸版印刷株式会社 | Surface acoustic wave device |
JP3974766B2 (en) * | 2001-10-09 | 2007-09-12 | 凸版印刷株式会社 | Surface acoustic wave device |
JP4426802B2 (en) * | 2003-09-19 | 2010-03-03 | 凸版印刷株式会社 | Surface acoustic wave device and environmental difference detection device using surface acoustic wave device |
JP4910687B2 (en) * | 2006-12-26 | 2012-04-04 | 凸版印刷株式会社 | Surface acoustic wave device |
-
2008
- 2008-08-26 JP JP2008217047A patent/JP5109871B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010056668A (en) | 2010-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7170213B2 (en) | Surface acoustic wave element, electric signal processing apparatus using the surface acoustic wave element, environment evaluating apparatus using the electric signal processing apparatus, and analyzing method using the surface acoustic wave element | |
JP5109871B2 (en) | Spherical surface acoustic wave device | |
JP4561251B2 (en) | Method of analyzing propagation surface of multi-circular surface acoustic wave element and element | |
JP4337488B2 (en) | Method and apparatus for measuring drive of spherical surface acoustic wave device | |
JP3974766B2 (en) | Surface acoustic wave device | |
JP4379090B2 (en) | Liquid measuring method and liquid measuring apparatus using surface acoustic wave | |
WO2010024302A1 (en) | Spherical surface acoustic wave device | |
JP4556442B2 (en) | Surface acoustic wave device | |
JP4426803B2 (en) | Surface acoustic wave device and environmental difference detection device using surface acoustic wave device | |
JP2005191650A (en) | Surface acoustic wave element using langasite crystal and environment difference detector employing surface acoustic wave element | |
JP4700749B2 (en) | Surface acoustic wave device and environmental difference detection device using surface acoustic wave device | |
JP4918758B2 (en) | Temperature calibration method for spherical surface acoustic wave device | |
JP5181929B2 (en) | Spherical surface acoustic wave device | |
JP5157828B2 (en) | Surface acoustic wave device | |
JP5169716B2 (en) | Spherical surface acoustic wave device manufacturing method and exposure mask | |
JP6950890B2 (en) | Detection element and its manufacturing method | |
JP5533508B2 (en) | Spherical surface acoustic wave device | |
JP5648305B2 (en) | Spherical surface acoustic wave device | |
JP5309900B2 (en) | Surface acoustic wave device | |
JP5082992B2 (en) | Manufacturing method of spherical surface acoustic wave device | |
JP4389552B2 (en) | Acoustic wave element and environmental difference detection device using acoustic wave element | |
JP4816915B2 (en) | Surface cleaning method for surface acoustic wave device | |
JP4479438B2 (en) | Surface acoustic wave device and environmental difference detection device using surface acoustic wave device | |
JP2014078878A (en) | Spherical substrate rotation controller and rotation control method | |
JP5533509B2 (en) | Spherical surface acoustic wave device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110804 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120911 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120924 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151019 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |