JP4379090B2 - Liquid measuring method and liquid measuring apparatus using surface acoustic wave - Google Patents

Liquid measuring method and liquid measuring apparatus using surface acoustic wave Download PDF

Info

Publication number
JP4379090B2
JP4379090B2 JP2003382203A JP2003382203A JP4379090B2 JP 4379090 B2 JP4379090 B2 JP 4379090B2 JP 2003382203 A JP2003382203 A JP 2003382203A JP 2003382203 A JP2003382203 A JP 2003382203A JP 4379090 B2 JP4379090 B2 JP 4379090B2
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
liquid
spherical
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003382203A
Other languages
Japanese (ja)
Other versions
JP2005147736A (en
Inventor
教尊 中曽
慎吾 赤尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2003382203A priority Critical patent/JP4379090B2/en
Publication of JP2005147736A publication Critical patent/JP2005147736A/en
Application granted granted Critical
Publication of JP4379090B2 publication Critical patent/JP4379090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

この発明は弾性表面波素子に関係しており、より詳細には、少なくとも球面の一部で形成されていて円環状に連続している外表面を有した基材の上記外表面に設けられている弾性表面波発生手段が上記外表面が連続している方向に向かう弾性表面波を発生させる、球状弾性表面波素子に関係している。   The present invention relates to a surface acoustic wave element. More specifically, the present invention is provided on the outer surface of a substrate having an outer surface that is formed of at least a part of a spherical surface and is continuous in an annular shape. The present invention relates to a spherical surface acoustic wave element in which the surface acoustic wave generating means generates a surface acoustic wave in the direction in which the outer surface is continuous.

基材上に弾性表面波を発生させるとともに基材上に発生された弾性表面波を受信するものとして弾性表面波素子は従来から良く知られている。従来の弾性表面波素子では圧電体上に1対のすだれ状電極が設けられていて、一方のすだれ状電極に高周波電圧を供給することにより一方のすだれ状電極の並んでいる方向に弾性表面波を発生させ、他方のすだれ状電極が一方のすだれ状電極から発生される弾性表面波の移動方向に配置されていて上記弾性表面波を受け取る。弾性表面波素子は、遅延線,発信機の為の発振素子及び共振素子,周波数を選択する為のフィルター,化学センサー,バイオセンサー,またはリモートタグ等に使用されている。   2. Description of the Related Art A surface acoustic wave element has been well known as one that generates surface acoustic waves on a substrate and receives surface acoustic waves generated on the substrate. In a conventional surface acoustic wave element, a pair of interdigital electrodes are provided on a piezoelectric body, and by supplying a high frequency voltage to one interdigital electrode, a surface acoustic wave is generated in the direction in which the interdigital electrodes are arranged. The other interdigital electrode is disposed in the moving direction of the surface acoustic wave generated from one interdigital electrode and receives the surface acoustic wave. The surface acoustic wave element is used for a delay line, an oscillation element and a resonance element for a transmitter, a filter for selecting a frequency, a chemical sensor, a biosensor, or a remote tag.

そして弾性表面波素子において共振周波数の精度を高める為には、1対のすだれ状電極相互間を弾性表面波が伝搬する際の伝搬損失を出来る限り小さくすることが望まれていたが、通常の弾性表面波素子は1対のすだれ状電極が設けられている圧電体の表面及び基材の表面が平坦であるので、一方のすだれ状電極から発生された弾性表面波は他方のすだれ状電極に向かい伝搬する間に上記表面上で伝搬方向と直交する方向に拡散し弱まってしまう。     In order to increase the accuracy of the resonance frequency in the surface acoustic wave device, it has been desired to reduce the propagation loss when the surface acoustic wave propagates between a pair of interdigital electrodes. In the surface acoustic wave element, the surface of the piezoelectric body on which the pair of interdigital electrodes are provided and the surface of the substrate are flat, so that the surface acoustic wave generated from one interdigital electrode is applied to the other interdigital electrode. While propagating in the opposite direction, it diffuses and weakens in the direction perpendicular to the propagation direction on the surface.

この現象は伝搬する距離が長くなると顕著である。この為に弾性表面波の伝搬損失を小さくすることが出来ず、ひいては弾性表面波素子における性能を高めることに限界があったので、従来の弾性表面波素子に比べ遥かに性能を高めることが出来るばかりでなく、コンパクトでもある球状弾性表面波素子を提供する為に、特許文献1の様な球状弾性表面波素子が提案されている。   This phenomenon becomes prominent when the propagation distance becomes longer. For this reason, the propagation loss of the surface acoustic wave cannot be reduced, and as a result, there is a limit to improving the performance of the surface acoustic wave device, so that the performance can be improved much more than the conventional surface acoustic wave device. In order to provide not only a compact surface acoustic wave element that is compact, a surface acoustic wave element as disclosed in Patent Document 1 has been proposed.

それは、少なくとも球面の一部で形成されていて円環状に連続している外表面を有した基材と、上記基材の外表面に設けられ、上記基材の外表面の連続する方向に向かう弾性表面波を発生する弾性表面波発生手段とを備えており、弾性表面波発生手段が上記外表面に沿い上記連続する方向と交差する方向に拡散せずに上記連続する方向にのみ向かうよう弾性表面波を発生させる球状弾性表面波素子である。
国際公開 WO 01/45255号公報
It is formed on at least a part of a spherical surface and has a base having an outer surface that is continuous in an annular shape, and is provided on the outer surface of the base and is directed in a direction in which the outer surface of the base is continuous. A surface acoustic wave generating means for generating surface acoustic waves, and the surface acoustic wave generating means is elastic so as to be directed only in the continuous direction without diffusing along the outer surface in a direction crossing the continuous direction. It is a spherical surface acoustic wave element that generates surface waves.
International Publication WO 01/45255

ところが、用途として弾性表面波はその伝搬する材料表面に、物質が付着したりあるいは表面に形成した材料が化学的な反応を起して弾性物性が変化すると、その周回する速度を変化させることを用いてセンサーとして利用される場合があるが、その場合、基材表面に特定の抗体を結合させておき、被分析蛋白質が溶解している溶液をその表面に結合させると、抗体特有の蛋白質が溶液中に存在すると抗体分子に蛋白質が結合する。この現象を球状弾性表面波素子に応用すると、様々な抗体を付着した素子を用意しておき、そのすべてにサンプル溶液を接触させ、リンス乾燥後に球状弾性表面波素子の、表面を周回する弾
性表面波の周回速度の変化を測定すると蛋白質が付着した素子だけが周回速度を遅くする事からサンプル溶液の中の特定の蛋白質を検出できる。
However, as an application, surface acoustic waves can change the speed of circulation when substances adhere to the propagating material surface or when the material formed on the surface undergoes a chemical reaction and changes in elastic properties. In some cases, a specific antibody is bound to the surface of the substrate, and a solution in which the protein to be analyzed is dissolved is bound to the surface. Proteins bind to antibody molecules when present in solution. When this phenomenon is applied to a spherical surface acoustic wave device, devices with various antibodies attached are prepared, the sample solution is brought into contact with all of them, and the surface of the spherical surface acoustic wave device that circulates around the surface after rinsing is dried. When the change in the speed of the wave is measured, only the element to which the protein is attached slows the speed of the loop, so that a specific protein in the sample solution can be detected.

このような医療や生化学において測定に用いることが出来るサンプルは、生体内から採取を行い、処理して準備される為に非常に量が少ない。一方球状弾性表面波素子の受感部は円環状に連続している領域31である弾性表面波が周回する部分だけなので、其れ以外の領域にサンプルを接触させても無駄になるばかりか、たとえ表面に抗体が存在しないとしても多少は付着するために被検出対象である物質が減少してしまう。球状弾性表面波素子を円筒形の容器を使って浸漬する場合も図9に示すように被測定液体が多く必要となる空間32が発生し、多くのサンプル溶液が必要になるのは明らかである。   Samples that can be used for measurement in such medical treatment and biochemistry are collected in vivo, processed, and prepared, so that the amount thereof is very small. On the other hand, since the sensitive part of the spherical surface acoustic wave element is only the part where the surface acoustic wave that is the annular continuous region 31 circulates, not only is it wasted even if the sample is brought into contact with other regions, Even if there is no antibody on the surface, the substance to be detected decreases because it adheres to some extent. Even when the spherical surface acoustic wave element is immersed using a cylindrical container, it is clear that a space 32 that requires a large amount of liquid to be measured is generated as shown in FIG. 9, and that many sample solutions are required. .

一方、図10に示すように底面の丸い容器を使って浸漬することも出来が、蛋白質の解析のように数十数千種類の抗体に対して浸漬しなくてはならない場合にこのような容器に対してその回数、異なる球状弾性表面波素子を浸漬して出力を見ることは非常な時間とサンプル量を必要とする。   On the other hand, it is possible to immerse using a container having a round bottom as shown in FIG. 10, but such a container is necessary when it is necessary to immerse several tens of thousands of antibodies as in protein analysis. On the other hand, immersing different spherical surface acoustic wave elements and observing the output requires a lot of time and sample amount.

以上、述べたように球状弾性表面波素子を用いて抗原抗体反応を用いた薬液処理のような測定を行う場合に、素子の表面において実際に必要な薬液量は球状弾性表面波素子の弾性表面波が周回する経路上だけでもよいのにもかかわらず、実際は非常に多くのサンプル量と手間を必要とする事がわかる。   As described above, when a measurement such as a chemical treatment using an antigen-antibody reaction is performed using a spherical surface acoustic wave device, the amount of chemical actually required on the surface of the device is the elastic surface of the spherical surface acoustic wave device. It can be seen that, in spite of the fact that it may be only on the path that the wave goes around, it actually requires a very large amount of sample and labor.

また、図11に示すようなたる型の球状弾性表面波素子を用いても素子表面の面積は若干小さくはなるが被測定液体中の被検出物質が平面部分に吸着されてしまうことで、相対的に実際に測定される円環状に連続している領域に付着する被検出物質の量が減少するという問題があった。   Further, even when a barrel-shaped spherical surface acoustic wave device as shown in FIG. 11 is used, the surface area of the device is slightly reduced, but the detected substance in the liquid to be measured is adsorbed on the plane portion, so that In other words, there is a problem that the amount of a substance to be detected that adheres to an area that is continuously measured in an annular shape that is actually measured is reduced.

なお、図12に示すように六方充填にサンプルを配置して1度の多数の球状弾性表面波素子の表面に接触させる事も可能であるがそれでもかなりの量のサンプルが無ければその測定は困難である。   As shown in FIG. 12, it is possible to place the sample in a hexagonal packing and bring it into contact with the surface of a large number of spherical surface acoustic wave elements at one time. However, if there is no significant amount of sample, the measurement is difficult. It is.

請求項1に記載の本発明は、表面中に少なくとも球面の一部で形成されていて円環状に連続している領域を有している基材と、上記基材の上記表面に設けられた上記表面に弾性表面波を上記表面領域に沿い上記連続する方向に発生させる弾性表面波発生器とを備えている弾性表面波素子を、それと嵌合する容器に収め、容器と弾性表面波素子の円環状に連続している領域との隙間に被測定液体を注入し、被測定液体から取出すか被測定液体を取り除いた後、前記弾性表面波発生器により弾性表面波を励起し、前記励起された弾性表面波の速度を測定する弾性表面波による液体測定方法であり、表面中に少なくとも球面の一部で形成されていて円環状に連続している領域を有している前記基材が、球形から両極を欠落させた形状の球状弾性表面波素子を極部分で複数個連結した形状であり、前記両極を欠落させた両極部分表面が被測定液体反発性処理が施されていることを特徴とする弾性表面波による液体測定方法である。 The present invention according to claim 1 is provided on the surface of the base material having a region formed in at least a part of a spherical surface in the surface and having an annularly continuous region, and the surface of the base material. A surface acoustic wave element having a surface acoustic wave generator for generating surface acoustic waves on the surface in the continuous direction along the surface region is housed in a container fitted therein, and the container and the surface acoustic wave element are After injecting the liquid to be measured into the gap between the annularly continuous area and taking out from the liquid to be measured or removing the liquid to be measured, the surface acoustic wave generator is used to excite the surface acoustic wave and the excitation is performed. A surface acoustic wave liquid measuring method for measuring the surface acoustic wave velocity, wherein the base material has a region formed in at least a part of a spherical surface and continuous in an annular shape in the surface, Spherical elastic surface with both poles missing from a sphere A shape in which a plurality connecting element in polar moiety, bipolar partial surface which is missing the poles is a liquid measuring method of the surface acoustic wave, characterized in that the measured liquid repellant treated.

本発明の一実施形態は、基材のすくなくとも円環状に連続している領域が圧電材料であることを特徴とする請求項1に記載の弾性表面波による液体測定方法である。 One embodiment of the present invention is the method for measuring liquid by surface acoustic waves according to claim 1, wherein at least the region of the base material that is continuous in an annular shape is a piezoelectric material .

本発明の一実施形態は、前記円環状に連続している領域にすだれ状電極が形成されていることを特徴とする請求項2に記載の弾性表面波による液体測定方法である。 One embodiment of the present invention is the method for measuring a liquid by surface acoustic waves according to claim 2 , wherein interdigital electrodes are formed in the annularly continuous region .

本発明の一実施形態は、前記両極を欠落させた両極部分表面が密着され、かつ被測定液体反発性処理が施されていることを特徴とする請求項1に記載の弾性表面波による液体測定方法である。 2. The liquid measurement by surface acoustic waves according to claim 1 , wherein one embodiment of the present invention is such that the two-electrode partial surfaces lacking the two electrodes are in close contact with each other and subjected to a liquid repulsion process to be measured. Is the method .

本発明の一実施形態は、前記球形から両極を欠落させた形状の球状弾性表面波素子を極部分で複数個連結した形状で薬液あるいはガス処理を行うことを特徴とする請求項1から4のいずれかに記載の弾性表面波による液体測定方法である。 One embodiment of the present invention performs chemical treatment or gas treatment in a shape in which a plurality of spherical surface acoustic wave elements each having a shape in which both poles are missing from the spherical shape are connected at the pole portions. A liquid measurement method using surface acoustic waves according to any one of the above .

本発明の一実施形態は、前記薬液あるいはガス処理を前記嵌合する容器内で行うと共に、容器は円筒形で且つその円筒直径は前記球形の直径より1mmより大きくないことを特徴とする請求項5に記載の弾性表面波による液体測定方法である。 In one embodiment of the present invention, the chemical solution or gas treatment is performed in the container to be fitted, and the container is cylindrical and the diameter of the cylinder is not larger than 1 mm from the diameter of the spherical shape. 5. A liquid measurement method using surface acoustic waves according to 5 .

本発明の一実施形態は、表面中に少なくとも球面の一部で形成されていて円環状に連続している領域を有している基材と、上記基材の上記表面に設けられた上記表面に弾性表面波を上記表面領域に沿い上記連続する方向に発生させる弾性表面波発生器と有する弾性表面波素子と、前記弾性表面波素子と嵌合する容器と、を備え、表面中に少なくとも球面の一部で形成されていて円環状に連続している領域を有している前記基材が、球形から両極を欠落させた形状の球状弾性表面波素子を極部分で複数個連結した形状であり、前記両極を欠落させた両極部分表面が被測定液体反発性処理が施されていることを特徴とする液体測定装置である。 One embodiment of the present invention includes a base material having a region formed in at least a part of a spherical surface in a surface and continuous in an annular shape, and the surface provided on the surface of the base material. A surface acoustic wave element having a surface acoustic wave generator for generating a surface acoustic wave in the continuous direction along the surface region, and a container fitted with the surface acoustic wave element, and at least a spherical surface in the surface The base material having a region that is formed in a part of the ring and continuous in an annular shape has a shape in which a plurality of spherical surface acoustic wave elements having a shape in which both poles are missing from a spherical shape are connected at the pole portions. The liquid measuring apparatus is characterized in that a measured liquid repulsion process is performed on a surface of a bipolar part from which both the electrodes are missing .

このように構成された弾性表面波素子においては、少なくとも球面の一部で形成されていて円環状領域上に設けられている弾性表面波発生器が上記基材の外表面の連続する方向に向かうよう弾性表面波を発生させると、弾性表面波が円環状領域に沿い上記連続する方向と交差する方向に拡散せずに連続する方向にのみ向かう。この為に弾性表面波は円環状表面領域に沿い少なくとも円環状領域の円周距離を非常に多数回伝搬することが出来る。   In the surface acoustic wave element configured as described above, the surface acoustic wave generator formed on at least a part of the spherical surface and provided on the annular region is directed in the direction in which the outer surface of the base material continues. When the surface acoustic wave is generated, the surface acoustic wave is directed only in the continuous direction without diffusing in the direction intersecting with the continuous direction along the annular region. For this reason, the surface acoustic wave can propagate along the annular surface region at least a circumferential distance of the annular region very many times.

上述した如く構成されたことを特徴とするこの発明に従った弾性表面波素子においては、基材が圧電材料が好ましいが、非圧電材料で形成することも出来る。この場合には、弾性表面波発生器は、基材の円環状領域に設けられた圧電材料膜と圧電材料膜の表面に設けられ圧電材料膜に電界を印加することで連続する方向に弾性表面波を発生させる振動発振器とを備える。振動発振器は、高周波電源に接続されるすだれ状電極を含んでいることが出来る。   In the surface acoustic wave device according to the present invention, which is configured as described above, the base material is preferably a piezoelectric material, but may be formed of a non-piezoelectric material. In this case, the surface acoustic wave generator has a piezoelectric material film provided in the annular region of the substrate and an elastic surface in a continuous direction by applying an electric field to the piezoelectric material film provided on the surface of the piezoelectric material film. A vibration oscillator for generating a wave. The oscillating oscillator can include an interdigital electrode connected to a high frequency power source.

基材は圧電材料で形成されていることが好ましい。この場合には、弾性表面波発生器は、基材の表面の円環状領域に設けられ基材の円環状領域に周期的な電界を印可することで連続する方向に弾性表面波を発生させる振動発振器を備えていることが出来る。   The substrate is preferably formed of a piezoelectric material. In this case, the surface acoustic wave generator is provided in an annular region on the surface of the substrate, and generates a surface acoustic wave in a continuous direction by applying a periodic electric field to the annular region of the substrate. An oscillator can be provided.

振動発振器は、高周波電源に接続されるすだれ状電極を含んでいることが出来る。振動発振器が高周波電源に接続されるすだれ状電極を含んでいる場合、すだれ状電極の複数の電極片の配列周期は上記基材の球面の半径の1/10以下に設定されていることが好ましい。振動発振器が発生させる弾性表面波の波長は、基材全体の固有振動ではなく、すだれ状電極の複数の電極片の配列周期に略等しくなる。   The oscillating oscillator can include an interdigital electrode connected to a high frequency power source. When the vibration oscillator includes an interdigital electrode connected to a high frequency power supply, the arrangement period of the plurality of electrode pieces of the interdigital electrode is preferably set to 1/10 or less of the radius of the spherical surface of the substrate. . The wavelength of the surface acoustic wave generated by the vibration oscillator is not equal to the natural vibration of the entire substrate, but is approximately equal to the arrangement period of the plurality of electrode pieces of the interdigital electrode.

振動発振器が高周波電源に接続されるすだれ状電極を含んでいる場合、すだれ状電極の複数の電極片が相互に対面する長さ(電極幅)は基材の球面の直径の半分以下で上記球面の半径の1/100以上に設定されていることが好ましい。   When the vibration oscillator includes an interdigital electrode connected to a high frequency power supply, the length (electrode width) where the electrode pieces of the interdigital electrode face each other is less than half of the diameter of the spherical surface of the base material, and the spherical surface It is preferable that it is set to 1/100 or more of the radius.

円環状領域に配置されるすだれ状電極及びこれに付随した電気回路パターン等の上記連続する方向に対し直交する方向に沿った長さは、基材の球面の円周長さの半分以下である必要があるだけでなく、特に圧電結晶を圧電材に使用する際には長くても発生する弾性表
面波の強度はあまり大きくならないばかりか、素子を小型化することも困難にする。
The length along the direction perpendicular to the continuous direction of the interdigital electrode and the electric circuit pattern attached to the interdigital electrode is not more than half of the circumferential length of the spherical surface of the substrate. Not only is it necessary, but particularly when a piezoelectric crystal is used as a piezoelectric material, the strength of the surface acoustic wave generated even if it is long does not increase so much, and it is difficult to reduce the size of the element.

従って、すだれ状電極の複数の電極片が相互に対面する長さ(電極幅)は上記基材の球面の直径の半分以下であることが合理的である。また、対面する長さ(電極幅)が基材の円環状領域の半径の1/100以下になると、すだれ状電極において発生した表面弾性波は円環状領域の連続する方向に伝播しながら連続する方向と直交する方向に拡散する。そして、連続する方向と直交する方向に拡散した表面弾性波がすだれ状電極に入力されるようになると、すだれ状電極が拡散する領域に存在する障害物からの影響を受け、例えばすだれ状電極の周波数特性が悪影響を受ける可能性がある。   Therefore, it is reasonable that the length (electrode width) at which the plurality of electrode pieces of the interdigital electrode face each other is not more than half the diameter of the spherical surface of the substrate. When the facing length (electrode width) is 1/100 or less of the radius of the annular region of the substrate, the surface acoustic wave generated in the interdigital electrode continues while propagating in the continuous direction of the annular region. It spreads in the direction orthogonal to the direction. When the surface acoustic wave diffused in the direction orthogonal to the continuous direction is input to the interdigital electrode, it is affected by an obstacle existing in the region where the interdigital electrode diffuses, for example, the interdigital electrode Frequency characteristics may be adversely affected.

そして実際には、波長パラメータ(球面の連続する方向における周囲長さ/弾性表面波波長)が60乃至800であり、直交する方向においてすだれ状電極の複数の電極片が相互に対面する長さ(電極幅)はコリメート角(弾性表面波の周回経路の最大幅がもっとも小さくなる角)に近いことが好ましい。   In actuality, the wavelength parameter (peripheral length in the continuous direction of the spherical surface / surface acoustic wave wavelength) is 60 to 800, and the length of the plurality of interdigital electrodes facing each other in the orthogonal direction ( The electrode width is preferably close to the collimating angle (the angle at which the maximum width of the circumferential path of the surface acoustic wave is minimized).

すだれ状電極の複数の電極片の配列周期(発生する弾性表面波の波長に一致する)は上記球面の半径の1/10以下であることが好ましい。また、すだれ状電極の複数の電極片の相互間の距離は上記球面の半径の1/10以下であることが好ましい。   The arrangement period of the plurality of electrode pieces of the interdigital electrode (corresponding to the wavelength of the generated surface acoustic wave) is preferably 1/10 or less of the radius of the spherical surface. Moreover, it is preferable that the distance between the electrode pieces of the interdigital electrode is 1/10 or less of the radius of the spherical surface.

本発明において、「球面の一部で形成されていて円環状に連続している領域を含む表面を有した基材」とは、球形状をした基材を含むのは勿論のこと、球形状から上記領域以外が切り取られた樽形状や外方に凸に湾曲している周面を有する略円盤形状も含み、さらには、球形状,樽形状,または略円盤形状の空洞を含む基材も含まれる。特に樽形状にすることで、平面部を重ねれば複数の球状弾性表面波素子をその表面積を抑えた形態に組むことが可能で、被検出物質を円環状部分にのみ接触させることが出来る。   In the present invention, “a base material having a surface including a region formed of a part of a spherical surface and continuous in an annular shape” includes a spherical base material, as well as a spherical shape. Including a barrel shape in which a region other than the above region is cut out, a substantially disk shape having a circumferentially curved outer surface, and a base material including a spherical shape, a barrel shape, or a substantially disk shaped cavity. included. In particular, by forming a barrel shape, it is possible to assemble a plurality of spherical surface acoustic wave elements in a form in which the surface area is suppressed by overlapping the plane portion, and the substance to be detected can be brought into contact only with the annular portion.

従って、基材は、少なくとも球面の一部で形成されていて円環状に連続している領域を有している内表面を含む空洞と、空洞内部と上記基材の外部とを連通させる溝等の開口と、を備えていることが出来る。   Therefore, the base material is formed of at least a part of a spherical surface and includes a cavity including an inner surface having a region that is continuous in an annular shape, a groove that communicates the inside of the cavity and the outside of the base material, and the like. And an opening.

この場合、空洞は球状弾性表面波素子を連結した場合、連結空洞になり、被測定液体の流路になるのが好ましい。この場合は、被測定液体が流れ、かつ最低限の量で機能する様に、被測定液体の性質に応じて適当な大きさを選定するのが好ましい。   In this case, when the spherical surface acoustic wave element is connected, the cavity is preferably a connection cavity and a flow path for the liquid to be measured. In this case, it is preferable to select an appropriate size according to the properties of the liquid to be measured so that the liquid to be measured flows and functions in a minimum amount.

以上詳述したことから明かなように、この発明に従った球状弾性表面波素子は、従来の弾性表面波素子に比べ遥かに性能を高めることが出来るばかりでなく、被測定液体が少量の場合の測定に適したものである。     As is clear from the above detailed description, the spherical surface acoustic wave device according to the present invention can not only greatly improve the performance compared to the conventional surface acoustic wave device, but also the amount of liquid to be measured is small. It is suitable for measurement.

図1以下を用いて本発明を詳細に説明する。図1で示すのはこの実施例で作成した連結球状弾性表面波素子を構成する一つの球状弾性表面波素子の単体である。   The present invention will be described in detail with reference to FIG. FIG. 1 shows a single spherical surface acoustic wave element constituting the coupled spherical surface acoustic wave element produced in this embodiment.

基材は直径1mmの水晶球の二面をカットしたものである。水晶材料を用いて球状弾性表面波素子の水晶基材1を作成する際に、水晶のZ軸(=C軸)を地軸と見なした時の赤道に沿って弾性表面波3が効率良く伝播することが知られている。また、すだれ状電極2を赤道上に赤道に垂直方向にすだれ上電極の電極端子がなるように蒸着とフォトリソグラフィーを用いる事で実現出来る。この実施例に用いたすだれ状電極の形状を図1に模擬的に示す。   The base material is obtained by cutting two surfaces of a crystal ball having a diameter of 1 mm. When the quartz crystal substrate 1 of the spherical surface acoustic wave element is made using a quartz material, the surface acoustic wave 3 efficiently propagates along the equator when the Z axis (= C axis) of the quartz is regarded as the ground axis. It is known to do. Further, the interdigital electrode 2 can be realized by using vapor deposition and photolithography so that the electrode terminal of the interdigital electrode is formed on the equator in a direction perpendicular to the equator. The shape of the interdigital electrode used in this example is schematically shown in FIG.

ここに使用したすだれ状電極対数は4であり、交互に配置される電荷のラインアンドスペースは約2ミクロンで、重なり幅は0.11mmである。基材は直径の1mmの水晶球の極にあたる2面を研磨して厚さ0.4mmに作成した。平面部分はこの素子が複数連結される場合に、その隙間にサンプル溶液が侵入するのを防ぐためにポリ弗化エチレン被膜等の形成等によって疎水性処理を平面部外周に沿って形成しても良い。或いは平面部をくり貫いたり窪ませるなどの加工を行っても良い。   The number of interdigital electrodes used here is 4, the line and space of alternately arranged charges is about 2 microns, and the overlap width is 0.11 mm. The base material was made to have a thickness of 0.4 mm by polishing two surfaces corresponding to the poles of a 1 mm diameter crystal ball. When a plurality of elements are connected to the planar portion, a hydrophobic treatment may be formed along the outer periphery of the planar portion by forming a polyfluoroethylene film or the like in order to prevent the sample solution from entering the gap. . Or you may perform the process of piercing or hollowing a flat part.

この様に疎水加工を行うまでもなく、平面部分を密着、もしくは連結して後に薬液を投入する手順をとることによって、密着が確実になされていれば薬液の侵入を防ぎ、結果として薬液中の被検出物質の消耗を防ぐことによって同様の効果を得ることが出来る。   In this way, it is not necessary to carry out hydrophobic processing, and the procedure of injecting the chemical solution after connecting or connecting the flat portions is prevented, so that the intrusion of the chemical solution is prevented if the adhesion is ensured. A similar effect can be obtained by preventing consumption of the substance to be detected.

この効果とは、特に樽形状に球状弾性表面波素子を用いる場合、平面間の距離、すなわち樽の高さが小さくなればなるほど効果が大きくなり、理論的には球の表面積と、円環領域の面積の比率に逆比例して被検出物質を高い感度で検出出来ることは容易に想像される。   This effect is particularly significant when the spherical surface acoustic wave element is used in a barrel shape, and the effect increases as the distance between the planes, that is, the height of the barrel decreases, theoretically the surface area of the sphere and the annular region. It is easily imagined that the substance to be detected can be detected with high sensitivity in inverse proportion to the ratio of the area.

よって本発明に使用される球状弾性表面波素子の円環領域は狭い方が好ましく、大きく欠落を行った素子に有効である。好ましくは樽形状であり、その平面部分の間隔の距離、つまり高さは、円環領域の曲率半径の1.5分の1以下であると倍程度の感度向上が見込まれるから望ましい。   Therefore, it is preferable that the annular region of the spherical surface acoustic wave device used in the present invention is narrow, and this is effective for a device having a large missing portion. Preferably, it is barrel-shaped, and it is desirable that the distance between the planar portions, that is, the height, is 1 / 1.5 or less of the radius of curvature of the annular region, since a sensitivity improvement of about twice is expected.

この球状弾性表面波素子を計4個作成して、内1個をタンパクAに対する抗体の溶液に浸漬し、他1個をタンパクBの抗体、他1個をタンパクCの抗体に残り1個を純水に浸漬し、後リンスを行って乾燥し、図2に示すように平面部分を連結した。   A total of four spherical surface acoustic wave devices are prepared, one of which is immersed in a solution of an antibody against protein A, the other is an antibody of protein B, the other is an antibody of protein C, and the remaining one is It was immersed in pure water, followed by rinsing and drying, and the planar portions were connected as shown in FIG.

3個の球状弾性表面波素子を図3に示す円筒形の容器に挿入して、サンプルである被測定液体5を注入した。円形の容器の直径は1.1mmであり、高さは1.7mmであり、図示しないが底部に薬品吸引用の空洞が空いており処理が完了したら吸引を行ってサンプル液やリンス液の回収を行う。   Three spherical surface acoustic wave elements were inserted into the cylindrical container shown in FIG. 3, and the sample liquid 5 to be measured was injected. The circular container has a diameter of 1.1 mm and a height of 1.7 mm. Although not shown, a medicine suction cavity is open at the bottom, and when processing is completed, suction is performed to collect the sample liquid and rinse liquid. I do.

なお、この場合の容器は、図4に示す様に容器の内壁面に連結して挿入された球状弾性表面波素子をその中央に位置決めする突起を有している。球状弾性表面波素子の円環領域に満遍なく薬液が接する為に設けられている。   In addition, the container in this case has a protrusion for positioning the spherical surface acoustic wave element inserted in a manner connected to the inner wall surface of the container as shown in FIG. It is provided so that the chemical solution is uniformly in contact with the annular region of the spherical surface acoustic wave element.

なお、容器は上記突起を除いて円筒形が好ましいが、球状弾性表面波素子の円環領域の直径に比較して0.5mmよりも小さいと、円筒容器と円環領域の空間に薬液の表面張力によって自ずと容器内に薬液が侵入することから望まれる。よって、円筒容器内径と球状弾性表面波素子の直径は1mm以下の差以内に抑えられることが好ましい。   The container is preferably cylindrical except for the above-mentioned protrusions, but if the diameter is smaller than 0.5 mm compared to the diameter of the annular region of the spherical surface acoustic wave element, the surface of the chemical solution is placed in the space between the cylindrical container and the annular region. This is desirable because the chemical solution naturally enters the container due to the tension. Therefore, it is preferable that the inner diameter of the cylindrical container and the diameter of the spherical surface acoustic wave element are suppressed within a difference of 1 mm or less.

円筒形容器にセットされた球状弾性表面波素子は本容器内で上部より圧力約10g重を印加しながら行い、サンプル液の注入を行った。サンプル液は毛細管現象により即座に球状弾性表面波素子と円筒形容器の隙間に侵入して4個の球状弾性表面波素子の表面を処理する事が可能であった。ここで円筒形容器と表現したが底の無いパイプでも表面張力等によって液体を保持反応させることが可能でサンプルの交換も容易であり、本発明はそれを除外しない。   The spherical surface acoustic wave element set in the cylindrical container was injected while applying a pressure of about 10 g weight from the upper part in the container to inject the sample liquid. It was possible for the sample liquid to immediately enter the gap between the spherical surface acoustic wave element and the cylindrical container by capillary action to treat the surface of the four spherical surface acoustic wave elements. Although expressed as a cylindrical container here, even a pipe without a bottom can hold and react the liquid by surface tension or the like, and the sample can be easily exchanged, and the present invention does not exclude it.

注入したサンプルの量は0.1cc以下でたりた。平面部を持たない球形の球状弾性表面波素子を一括して処理する場合はその10倍以上のサンプルを要し、微量サンプルによる測定が容易な事を示した。特に素子と素子を平面で連結した境界から薬液が侵入しないためにサンプル中の蛋白質が弾性表面波の伝搬経路外のこれらの領域に付着して結果的に
感度の悪化をきたす事を防ぐ事が出来た。
The amount of sample injected was 0.1 cc or less. When processing spherical spherical surface acoustic wave elements that do not have a flat surface in a lump, more than 10 times as many samples were required, indicating that measurement with a small amount of sample was easy. In particular, it is possible to prevent the protein from adhering to these regions outside the propagation path of the surface acoustic wave and resulting in deterioration of sensitivity because the chemical solution does not enter from the boundary where the elements are connected in a plane. done.

このように複数の球状弾性表面波素子を連結して一括した測定を行う事の利点は使用する素子に対して同じ条件の処理を行いやすい事に加えて、次に示すように多数の球状弾性表面波素子についての測定が容易に行える点である。各球状弾性表面波素子の表面に蛋白質が付着したかどうかを、実際にすだれ状電極の電極に電極プローブ6を接触させる事によって信号を取り出し、球状弾性表面波素子駆動測定装置7により測定を行った。   In addition to the fact that multiple spherical surface acoustic wave elements are connected together to perform measurement in this way, in addition to the fact that the same conditions can be easily applied to the elements used, a large number of spherical elastic elements are used as shown below. The surface wave element can be easily measured. Whether or not protein has adhered to the surface of each spherical surface acoustic wave element is actually obtained by bringing the electrode probe 6 into contact with the interdigital electrode and measuring it with the spherical surface acoustic wave element drive measuring device 7. It was.

この図では複数の素子から並行して評価を行えるように多数のプローブを用いて測定を行っているが、このように連結したままで測定を行えば、3つの素子のうちの1個について表面には抗体をつけていなかった素子からの測定結果を温度校正用に使用する事が出来る。各素子の平面部が密着してる為に温度差が殆ど無く正確な校正を行う事が可能である。   In this figure, measurement is performed using a large number of probes so that evaluation can be performed in parallel from a plurality of elements. However, if measurement is performed while being connected in this manner, one of the three elements is subjected to surface measurement. The measurement results from the element without the antibody can be used for temperature calibration. Since the flat portion of each element is in close contact, there is almost no temperature difference and accurate calibration can be performed.

尚、以上記載した利点を得るためには、球状弾性表面波素子の円環領域の曲率半径以下、少なくとも半径の1.5倍以下になっていることが望ましい、水晶のような圧電結晶球を利用する球状弾性表面波素子において、あまりに大きな幅を持った帯状に弾性表面波を励起して周回させようとすると周回の効率が悪かったり、あるいは高い周波数の弾性表面波を周回させる事が出来ず表面に付着する被検出物質の影響をあまり敏感に反応する事が出来なくなる。平面部間の厚さが厚いと当然、必要サンプル量を低減する効果も小さくなる。特に、チューブあるいは筒の中に無造作に球状弾性表面波素子を複数挿入して全体を振動させる事で自然に平面部同士が対向することが困難になる。このスケールで薬液を挿入する場合、空気が内部に閉じ込められて薬液の侵入を疎外する為に図示しないが、円筒形容器の底部に空気抜きの穴か、あるいは底自体が無い管に形成してあることが望まれる。   In order to obtain the advantages described above, a piezoelectric crystal sphere such as quartz, preferably having a radius of curvature of the annular region of the spherical surface acoustic wave element, preferably at least 1.5 times the radius, is desirable. In the spherical surface acoustic wave element to be used, if the surface acoustic wave is excited to circulate in a band shape with an excessively large width, the circulatory efficiency is poor or the surface acoustic wave of high frequency cannot be circulated. It becomes impossible to react very sensitively to the influence of the substance to be detected adhering to the surface. Naturally, when the thickness between the flat portions is large, the effect of reducing the required sample amount is also small. In particular, it becomes difficult for the planar portions to naturally face each other by inserting a plurality of spherical surface acoustic wave elements in a tube or cylinder and vibrating the whole. When inserting a chemical solution with this scale, it is not shown in the figure because the air is trapped inside and alienates the intrusion of the chemical solution, but it is formed in the bottom of the cylindrical container or a tube without the bottom itself It is desirable.

また、別な変形実施形態を図5を用いて以下に示す。ここに使用したすだれ状電極2の対数は4であり、交互に配置される電荷のラインアンドスペースは約2ミクロンで、重なり幅は0.1mmである。基材は直径の1mmの水晶球の極にあたる2面を研磨して厚さ0.4mmに作成した水晶基材1、2つの平面部には測定時に結線を行う為の電極パットを形成し電極端子8としている。図5に示した電極パットはリング形であり、図で反対側(下側)は中央に円形のパットが形成してある。平面部分はこの素子が複数連結される場合に、その隙間にサンプル溶液が侵入するのを防ぐために疎水性処理を平面部外周に沿って形成しても良い。或いは平面部をくり貫いたり窪ませるなどの加工を行っても良い。このような素子を連結する事によって薬液処理を行うが、先ほど説明した例とは測定方法が異なる。このデバイスでは薬液処理は連結して行うが、測定については1個1個の素子に分解して、夫々の素子の平面部を用いて分析装置に結線を行って測定する。   Another modified embodiment will be described below with reference to FIG. The logarithm of the interdigital electrode 2 used here is 4, the line and space of the alternately arranged charges is about 2 microns, and the overlapping width is 0.1 mm. The base material is made by polishing two surfaces corresponding to the poles of a 1 mm diameter crystal ball to a thickness of 0.4 mm. An electrode pad is formed on each of the two flat portions for connection at the time of measurement. Terminal 8 is used. The electrode pad shown in FIG. 5 has a ring shape, and a circular pad is formed in the center on the opposite side (lower side) in the figure. In the case where a plurality of elements are connected to the planar portion, a hydrophobic treatment may be formed along the outer periphery of the planar portion in order to prevent the sample solution from entering the gap. Or you may perform the process of piercing or hollowing a flat part. Chemical treatment is performed by connecting such elements, but the measurement method is different from the example described above. In this device, chemical treatment is performed in a coupled manner, but the measurement is performed by disassembling each element one by one and connecting to the analyzer using the plane portion of each element.

別な実施形態として、球状弾性表面波素子が、その表面にすだれ状電極を有していない素子或いはその使用方法を示すことも可能である。この例で使用する球状弾性表面波素子は実施例1で使用した球状弾性表面波素子と同じ基材を使用するが大きさが異なる。前もっては電極が形成されていない事が特徴である。実際に測定を行うときに基材表面に櫛型電極を接近させる事で表面に弾性表面波を励起する。   As another embodiment, the spherical surface acoustic wave element may indicate an element having no interdigital electrode on its surface or a method of using the element. The spherical surface acoustic wave element used in this example uses the same base material as the spherical surface acoustic wave element used in Example 1, but is different in size. It is characterized in that no electrode is formed in advance. When actually measuring, a surface acoustic wave is excited on the surface by bringing a comb-shaped electrode closer to the surface of the substrate.

各球状弾性表面波素子(すだれ状電極が近接されていないがここではこのように呼ぶ)の表面について実施例と同様の処理を行なうが、実際に弾性表面波を円環領域に励起して測定する時だけが違う。   The surface of each spherical surface acoustic wave element (where the interdigital electrode is not close but called here) is processed in the same manner as in the example, but actually measured by exciting the surface acoustic wave to the annular region. Only when you do.

図6に、測定状況を示す。曲率半径が5mmで開口6mmの凹面窪みを形成し、その凹面上に実施例1で示したと同じ、金とクロム膜の蒸着膜から、ラインアンドスペースが1
8ミクロンで重なり幅が1.1mmのすだれ状電極をフォトリソグラフィーを用いて形成した。
FIG. 6 shows the measurement situation. A concave depression having a radius of curvature of 5 mm and an opening of 6 mm is formed, and the same line and space is formed on the concave surface from the deposited film of gold and chromium film as shown in the first embodiment.
An interdigital electrode having an overlap width of 1.1 mm and 8 microns was formed using photolithography.

この凹面に対して、電極を持たない球状弾性表面波素子を上より設置して、凹面状に形成されたすだれ状電極に対して45MHz近傍のRFバースト信号を印加し、球状弾性表面波素子を周回する弾性表面波を励起してZ軸の周りを周回させ、その出力の測定を、整合回路9を通して高周波発振器10を用いてアンプ11で増幅した上で信号解析装置12で解析を行うことで行うことができる。素子の表面に対して、弾性表面波の素子状における波長71μmの4分の1以下、好ましくは十分の一以下の距離まで接近させる事が効率良く表面波を測定するためには必要であり、距離を適性に保つ為にスペーサー構造を表面に構成しなくてはならないが様々な形状が考えられ可能である。   A spherical surface acoustic wave element having no electrode is installed on the concave surface from above, an RF burst signal in the vicinity of 45 MHz is applied to the interdigital electrode formed in a concave shape, and the spherical surface acoustic wave element is By exciting the surface acoustic wave that circulates and circulates around the Z-axis, the output measurement is amplified by the amplifier 11 using the high-frequency oscillator 10 through the matching circuit 9 and then analyzed by the signal analyzer 12. It can be carried out. In order to efficiently measure the surface wave, it is necessary to approach the surface of the element to a distance of one quarter or less of the wavelength of 71 μm in the surface acoustic wave element shape, preferably one-tenth or less. In order to keep the distance appropriate, the spacer structure must be constructed on the surface, but various shapes can be considered.

また別な実施形態として、図7に示すのは球状弾性表面波素子の内部に連結した被測定液体である薬液導入路を形成した形態を示すこともできる。個々で使用した球状弾性表面波素子の直径は10mmであり厚さ(平面部間の距離)は4mmである。すだれ状電極のラインアンドスペースは17μmであり、発振周波数は45MHzである。この大きさの球状弾性表面波素子21の場合は、表面張力によって液体が自然に入り込む事は出来ない為に強制的に供給される被測定液体23である薬液を注入する機構が必要である。この為に図8に示すように内部に連結される事によってトンネルを形成するように空洞を持った球状弾性表面波素子が有効であった。   As another embodiment, FIG. 7 shows a form in which a chemical solution introduction path which is a liquid to be measured connected to the inside of a spherical surface acoustic wave element is formed. The diameter of the spherical surface acoustic wave element used individually is 10 mm, and the thickness (distance between plane portions) is 4 mm. The interdigital electrode has a line and space of 17 μm and an oscillation frequency of 45 MHz. In the case of the spherical surface acoustic wave element 21 of this size, since the liquid cannot naturally enter due to the surface tension, a mechanism for injecting the chemical liquid as the liquid 23 to be measured forcibly supplied is necessary. For this reason, as shown in FIG. 8, a spherical surface acoustic wave element having a cavity so as to form a tunnel by being connected to the inside is effective.

球状弾性表面波素子21の平面部には小さな溝が形成されており、素子を連結しても個々から薬液や空気(泡)を抜くことが出きる。さらに、内部の連結空洞22を利用して全ての球状弾性表面波素子21の表面に対して容器25内にて均一に被測定液体24である薬液を供給し、且つ吸引することで排出する事が可能になる。   A small groove is formed in the flat surface portion of the spherical surface acoustic wave element 21, and even when the elements are connected, it is possible to extract chemicals and air (bubbles) from each individual. Further, the chemical liquid as the liquid to be measured 24 is supplied uniformly to the surface of all the spherical surface acoustic wave elements 21 using the internal connection cavity 22 and is discharged by suction. Is possible.

基板上にレジスト液などの各種薬液を塗布液として塗布する装置などとして利用できる。   It can be used as an apparatus for applying various chemical solutions such as a resist solution as a coating solution on a substrate.

本実施形態の弾性表面波素子に用いられる球状弾性波表面波素子の斜視図である。It is a perspective view of the spherical surface acoustic wave element used for the surface acoustic wave element of this embodiment. 本実施形態の球状弾性波表面波素子から弾性表面波素子を構成するまでの処理の状態を示す斜視図工程図である。It is a perspective view process drawing which shows the state of the process until it comprises a surface acoustic wave element from the spherical surface acoustic wave element of this embodiment. 図2に従って本実施形態の球状弾性波表面波素子から弾性表面波素子を構成した後の処理の状態を示す斜視図工程図である。It is a perspective view process drawing which shows the state of the process after comprising a surface acoustic wave element from the spherical surface acoustic wave element of this embodiment according to FIG. 図2の本実施形態の球状弾性波表面波素子が容器内に収まっている状態を示す平面図である。It is a top view which shows the state in which the spherical elastic wave surface acoustic wave element of this embodiment of FIG. 2 was settled in the container. 図1とは違う本実施形態の弾性表面波素子に用いられる球状弾性波表面波素子の斜視図である。FIG. 2 is a perspective view of a spherical surface acoustic wave element used for the surface acoustic wave element of the present embodiment different from FIG. 1. 本実施形態の球状弾性波表面波素子の測定状態を示す斜視工程図である。It is a perspective process figure which shows the measurement state of the spherical surface acoustic wave element of this embodiment. 別な実施形態に係る球状弾性波表面波素子を用いた場合の弾性波表面波素子の浸漬状態を示す斜視工程図である。It is a perspective process figure which shows the immersion state of the surface acoustic wave element at the time of using the spherical surface acoustic wave element which concerns on another embodiment. 図7の実施形態に係る球状弾性波表面波素子を用いた場合の弾性波表面波素子の浸漬状態を示す断面図である。It is sectional drawing which shows the immersion state of the surface acoustic wave element at the time of using the spherical surface acoustic wave element which concerns on embodiment of FIG. 従来の製造工程の一例を示す斜視図である。It is a perspective view which shows an example of the conventional manufacturing process. 図9とは別な従来の製造工程の一例を示す斜視図である。It is a perspective view which shows an example of the conventional manufacturing process different from FIG. 図9、9とは別な従来の製造工程の一例を示す斜視図である。It is a perspective view which shows an example of the conventional manufacturing process different from FIG. 図9、9、10とは別な従来の製造工程の一例を示す斜視図である。It is a perspective view which shows an example of the conventional manufacturing process different from FIG.

符号の説明Explanation of symbols

1 水晶基材
2 すだれ状電極
3 弾性表面波
4 Z軸
5 サンプル溶液
6 電極プローブ
7 球状弾性表面波素子駆動測定装置
8 電極端子
9 整合回路
10 高周波発信器
11 アンプ
12 信号解析装置
13 溝
21 弾性表面波素子
22 連結空洞
23 供給される被測定液体
24 被測定液体
25 容器
31 円環状に連続している領域
32 被測定液体が多く必要になる空間
DESCRIPTION OF SYMBOLS 1 Crystal base material 2 Interdigital electrode 3 Surface acoustic wave 4 Z-axis 5 Sample solution 6 Electrode probe 7 Spherical surface acoustic wave element drive measuring device 8 Electrode terminal 9 Matching circuit 10 High frequency transmitter 11 Amplifier 12 Signal analysis device 13 Groove 21 Elasticity Surface wave element 22 Connection cavity 23 Liquid to be measured 24 Liquid to be measured 24 Liquid to be measured 25 Container 31 Annular region 32 Space where a large amount of liquid to be measured is required

Claims (7)

表面中に少なくとも球面の一部で形成されていて円環状に連続している領域を有している基材と、上記基材の上記表面に設けられた上記表面に弾性表面波を上記表面領域に沿い上記連続する方向に発生させる弾性表面波発生器とを備えている弾性表面波素子を、それと嵌合する容器に収め、容器と弾性表面波素子の円環状に連続している領域との隙間に被測定液体を注入し、被測定液体から取出すか被測定液体を取り除いた後、前記弾性表面波発生器により弾性表面波を励起し、前記励起された弾性表面波の速度を測定する弾性表面波による液体測定方法であり、
表面中に少なくとも球面の一部で形成されていて円環状に連続している領域を有している前記基材が、球形から両極を欠落させた形状の球状弾性表面波素子を極部分で複数個連結した形状であり、
前記両極を欠落させた両極部分表面が被測定液体反発性処理が施されていること
を特徴とする弾性表面波による液体測定方法。
A base material having a region formed in at least a part of a spherical surface in the surface and continuous in an annular shape, and a surface acoustic wave is applied to the surface provided on the surface of the base material. A surface acoustic wave element including a surface acoustic wave generator that is generated in the continuous direction along the surface of the container, and is placed in a container fitted with the surface acoustic wave element. After injecting the liquid to be measured into the gap and taking it out of the liquid to be measured or removing the liquid to be measured, the surface acoustic wave generator is used to excite the surface acoustic wave and measure the velocity of the excited surface acoustic wave. A liquid measurement method using surface waves ,
The base material having at least a part of a spherical surface and having an annularly continuous region in the surface includes a plurality of spherical surface acoustic wave elements having a shape in which both poles are omitted from a spherical shape. It is a shape that is connected individually,
The electrode partial surface from which both the electrodes are missing is subjected to a liquid repulsion treatment to be measured.
A liquid measuring method using surface acoustic waves.
基材のすくなくとも円環状に連続している領域が圧電材料であること
を特徴とする請求項1に記載の弾性表面波による液体測定方法。
2. The method of measuring liquid by surface acoustic wave according to claim 1, wherein at least the region of the base material that is continuous in an annular shape is a piezoelectric material.
前記円環状に連続している領域にすだれ状電極が形成されていること
を特徴とする請求項2に記載の弾性表面波による液体測定方法。
3. A liquid measuring method using surface acoustic waves according to claim 2, wherein interdigital electrodes are formed in the annularly continuous region.
前記両極を欠落させた両極部分表面が密着され、かつ被測定液体反発性処理が施されていること
を特徴とする請求項1に記載の弾性表面波による液体測定方法。
2. The liquid measuring method using surface acoustic waves according to claim 1, wherein the two electrode partial surfaces from which the two electrodes are missing are in close contact with each other and subjected to a liquid repulsion process to be measured.
前記球形から両極を欠落させた形状の球状弾性表面波素子を極部分で複数個連結した形状で薬液あるいはガス処理を行うこと
を特徴とする請求項1から4のいずれかに記載の弾性表面波による液体測定方法。
5. The surface acoustic wave according to claim 1 , wherein chemical treatment or gas treatment is performed in a shape in which a plurality of spherical surface acoustic wave elements each having a shape in which both poles are missing from the spherical shape are connected at a pole portion. Liquid measurement method by.
前記薬液あるいはガス処理を前記嵌合する容器内で行うと共に、容器は円筒形で且つその円筒直径は前記球形の直径より1mmより大きくないこと
を特徴とする請求項5に記載の弾性表面波による液体測定方法。
6. The surface acoustic wave according to claim 5, wherein the chemical solution or gas treatment is performed in the container to be fitted, and the container has a cylindrical shape, and the diameter of the cylinder is not larger than 1 mm from the diameter of the spherical shape. Liquid measurement method.
表面中に少なくとも球面の一部で形成されていて円環状に連続している領域を有している基材と、上記基材の上記表面に設けられた上記表面に弾性表面波を上記表面領域に沿い上記連続する方向に発生させる弾性表面波発生器と有する弾性表面波素子と、  A base material having a region formed in at least a part of a spherical surface in the surface and continuous in an annular shape, and a surface acoustic wave is applied to the surface provided on the surface of the base material. A surface acoustic wave element having a surface acoustic wave generator for generating in a continuous direction along the surface, and
前記弾性表面波素子と嵌合する容器と、を備え、  A container fitted with the surface acoustic wave element,
表面中に少なくとも球面の一部で形成されていて円環状に連続している領域を有している前記基材が、球形から両極を欠落させた形状の球状弾性表面波素子を極部分で複数個連結した形状であり、  The base material having at least a part of a spherical surface and having an annularly continuous region in the surface includes a plurality of spherical surface acoustic wave elements having a shape in which both poles are omitted from a spherical shape. It is a shape that is connected individually,
前記両極を欠落させた両極部分表面が被測定液体反発性処理が施されていること  The electrode partial surface from which both the electrodes are missing is subjected to a liquid repulsion treatment to be measured.
を特徴とする液体測定装置。A liquid measuring apparatus characterized by the above.
JP2003382203A 2003-11-12 2003-11-12 Liquid measuring method and liquid measuring apparatus using surface acoustic wave Expired - Fee Related JP4379090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003382203A JP4379090B2 (en) 2003-11-12 2003-11-12 Liquid measuring method and liquid measuring apparatus using surface acoustic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003382203A JP4379090B2 (en) 2003-11-12 2003-11-12 Liquid measuring method and liquid measuring apparatus using surface acoustic wave

Publications (2)

Publication Number Publication Date
JP2005147736A JP2005147736A (en) 2005-06-09
JP4379090B2 true JP4379090B2 (en) 2009-12-09

Family

ID=34691347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003382203A Expired - Fee Related JP4379090B2 (en) 2003-11-12 2003-11-12 Liquid measuring method and liquid measuring apparatus using surface acoustic wave

Country Status (1)

Country Link
JP (1) JP4379090B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4816915B2 (en) * 2006-03-02 2011-11-16 凸版印刷株式会社 Surface cleaning method for surface acoustic wave device
JP2007233816A (en) * 2006-03-02 2007-09-13 Toppan Printing Co Ltd Environment detection information collecting method
JP4952050B2 (en) * 2006-05-10 2012-06-13 凸版印刷株式会社 Sensor holder
JP5239149B2 (en) * 2006-11-29 2013-07-17 凸版印刷株式会社 Surface acoustic wave revolving element and device for measuring substances in solution
JP2008278149A (en) * 2007-04-27 2008-11-13 Toppan Printing Co Ltd Surface acoustic wave apparatus
JP5186839B2 (en) * 2007-08-27 2013-04-24 凸版印刷株式会社 Surface acoustic wave device
JP5533508B2 (en) * 2010-09-29 2014-06-25 凸版印刷株式会社 Spherical surface acoustic wave device
JP5533509B2 (en) * 2010-09-29 2014-06-25 凸版印刷株式会社 Spherical surface acoustic wave device

Also Published As

Publication number Publication date
JP2005147736A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
Liu et al. Surface acoustic wave devices for sensor applications
JP4379090B2 (en) Liquid measuring method and liquid measuring apparatus using surface acoustic wave
WO2020062675A1 (en) Acoustic micro-mass sensor and detection method
JP2006510901A (en) Piezoelectric sensor device
Durmuş et al. Acoustic-based biosensors
Wang et al. A micro-machined thin film electro-acoustic biosensor for detection of pesticide residuals
CN106253875A (en) High flux piezoelectric resonator chip preparation method and the system of measurement
JP4594148B2 (en) Cell volume measuring method and cell volume measuring apparatus
KR20100133254A (en) Saw sensor device
JP3841713B2 (en) Substance inspection equipment
US20050069864A1 (en) Measurement method and biosensor apparatus using resonator
JP5599172B2 (en) Wave sensor device having gas removal unit and method for detecting target substance in liquid sample
JPH09210999A (en) Chemical analyzing device
JP2004512528A (en) Sensing device and method for fluid sample using acoustic waves
JP4437022B2 (en) Measuring method and biosensor device using a vibrator used for tracking chemical reactions and analyzing conditions in the fields of biochemistry, medicine and food
JP2006038584A (en) Chemical sensor and measuring instrument
CN111811983A (en) Biological sensing detection by quartz crystal shearing vibration amplitude modulation frequency modulation throwing-off method
Ogi et al. Wireless electrodeless piezomagnetic biosensor with an isolated nickel oscillator
JP4816915B2 (en) Surface cleaning method for surface acoustic wave device
JP2003315235A (en) Analytical method
JP6284220B2 (en) Surface acoustic wave sensor and surface acoustic wave sensor device
Dickherber et al. Lateral field excitation (LFE) of thickness shear mode (TSM) acoustic waves in thin film bulk acoustic resonators (FBAR) as a potential biosensor
da Silva Granja et al. Characterisation of particle-surface interactions via anharmonic acoustic transduction
JP4180472B2 (en) Mass sensor
Iiboshi et al. Energy trapping of circumferential shear horizontal wave in a hollow cylinder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees