JP5533508B2 - Spherical surface acoustic wave device - Google Patents

Spherical surface acoustic wave device Download PDF

Info

Publication number
JP5533508B2
JP5533508B2 JP2010219287A JP2010219287A JP5533508B2 JP 5533508 B2 JP5533508 B2 JP 5533508B2 JP 2010219287 A JP2010219287 A JP 2010219287A JP 2010219287 A JP2010219287 A JP 2010219287A JP 5533508 B2 JP5533508 B2 JP 5533508B2
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
spherical
region
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010219287A
Other languages
Japanese (ja)
Other versions
JP2012075002A (en
Inventor
教尊 中曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2010219287A priority Critical patent/JP5533508B2/en
Publication of JP2012075002A publication Critical patent/JP2012075002A/en
Application granted granted Critical
Publication of JP5533508B2 publication Critical patent/JP5533508B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

本発明は、弾性表面波(SAW:Surface Acoustic Wave)の解析によりガスの状態など各種の計測を行なうための球状弾性表面波素子に関する。   The present invention relates to a spherical surface acoustic wave element for performing various measurements such as a gas state by analyzing a surface acoustic wave (SAW).

従来、圧電材料で形成されている平坦な表面を有する基材の上記表面上の相互に離れた2つの位置に電気音響変換素子を設けた板状の弾性表面波素子が知られている。電気音響変換素子は通常、たとえば、すだれ状電極のごとき高周波励起/高周波受信手段である。   2. Description of the Related Art Conventionally, a plate-like surface acoustic wave element in which electroacoustic transducers are provided at two positions apart from each other on the surface of a substrate having a flat surface made of a piezoelectric material is known. The electroacoustic transducer is usually a high-frequency excitation / high-frequency receiving means such as an interdigital electrode.

この従来の弾性表面波素子においては、一方の電気音響変換素子に高周波電流を供給すると、この一方の電気音響変換素子が弾性表面波を基材の表面に発生させ、所定の方向に伝搬させることができる。そして、他方の電気音響変換素子は、上記表面上で一方の電気音響変換素子からの弾性表面波を受信し、受信した弾性表面波に対応した高周波電流を生じさせることができる。   In this conventional surface acoustic wave element, when a high frequency current is supplied to one electroacoustic transducer, the one electroacoustic transducer generates a surface acoustic wave on the surface of the substrate and propagates it in a predetermined direction. Can do. The other electroacoustic transducer can receive the surface acoustic wave from one electroacoustic transducer on the surface and generate a high-frequency current corresponding to the received surface acoustic wave.

電気音響変換素子がすだれ状電極の場合には、すだれ状電極の複数の電極枝が並んでいる方向がすだれ状電極により発生された弾性表面波が伝搬する方向となり、また上記弾性表面波を効率よく受信する方向となる。   When the electroacoustic transducer is an interdigital electrode, the direction in which multiple electrode branches of the interdigital electrode are aligned is the direction in which the surface acoustic wave generated by the interdigital electrode propagates, and the surface acoustic wave is efficiently used. It becomes the direction to receive well.

なお、弾性表面波とは、通常のバルク波と呼ばれる縦波や横波と異なり、物質表面にそのエネルギーの多くを集中して伝搬する弾性波である。弾性表面波としては、レーリー波、セザワ波、擬セザワ波、ラブ波等を例示することができ、異方性材料の表面にも存在しえる。   A surface acoustic wave is a surface acoustic wave that propagates while concentrating much of its energy on a material surface, unlike a longitudinal wave or a transverse wave called a normal bulk wave. Examples of the surface acoustic wave include a Rayleigh wave, a Sezawa wave, a pseudo Sezawa wave, a Love wave, and the like, and may also exist on the surface of an anisotropic material.

球状弾性表面波素子の周回経路を伝搬する弾性表面波の周回速度や周回に要する時間は、一般には温度依存性を持つことから、その変化を計測することで高精度の温度計として使用できる。この弾性表面波の伝搬状態の変化から温度計測する方法は、現在様々な用途で使用されており、公知の技術である。   The surface velocity of the surface acoustic wave propagating through the circular path of the spherical surface acoustic wave element and the time required for the rotation generally have temperature dependence. Therefore, by measuring the change, it can be used as a highly accurate thermometer. This method of measuring the temperature from the change of the propagation state of the surface acoustic wave is currently used in various applications and is a known technique.

従来の板状の弾性表面波素子は、遅延線、発振器のための発振素子および共振素子、周波数選択フィルタ、化学センサ、バイオセンサ、リモートタグ等に使用されている。そして、圧電体の上面の弾性表面波励起手段と弾性表面波検知手段との間の距離を長くとれればとれるほど、弾性表面波素子を利用したこれら種々の装置の精度は高まる。   Conventional plate-like surface acoustic wave devices are used in delay lines, oscillation and resonance devices for oscillators, frequency selective filters, chemical sensors, biosensors, remote tags, and the like. The longer the distance between the surface acoustic wave excitation means and the surface acoustic wave detection means on the upper surface of the piezoelectric body, the higher the accuracy of these various devices using surface acoustic wave elements.

しかしながら、このような従来の板状の弾性表面波素子においては、平坦な基体上に配置された圧電体が平坦であるために、弾性表面波励起手段が圧電体の上面に励起した弾性表面波は平坦な圧電体の上面に沿い弾性表面波検知手段に向かい伝搬される間に、その伝搬方向に対し直交する方向に拡散してしまい、そのエネルギーを失う。したがって、平坦な圧電体の上面において設定可能な弾性表面波励起手段と弾性表面波検知手段との間の距離は、おのずと限りがある。   However, in such a conventional plate-shaped surface acoustic wave element, since the piezoelectric body disposed on the flat substrate is flat, the surface acoustic wave excited by the surface acoustic wave excitation means on the upper surface of the piezoelectric body is provided. While propagating along the upper surface of the flat piezoelectric body toward the surface acoustic wave detecting means, it diffuses in a direction perpendicular to the propagation direction and loses its energy. Therefore, the distance between the surface acoustic wave excitation means and the surface acoustic wave detection means that can be set on the upper surface of the flat piezoelectric body is naturally limited.

球状弾性表面波素子は、弾性表面波を励起させ伝搬させることができる球形状の基体の表面に対し弾性表面波励起検知手段としてのすだれ状電極を載置し、基体の半径とすだれ状電極により基体の表面に励起させる弾性表面波の周波数および幅(基体の表面を弾性表面波が伝搬する方向に対し基体の表面に沿い直交する方向における弾性表面波の寸法)とを所定の条件に設定することにより、すだれ状電極により基体の表面に励起された弾性表面波を、基体の表面に沿い伝搬する方向に対し基体の表面に沿い直交する方向に無限に拡散させることなく、伝搬させることができ、ひいては繰り返し周回させることができることが明らかにされている。   A spherical surface acoustic wave element has a comb-like electrode as a surface acoustic wave excitation detecting means placed on the surface of a spherical substrate capable of exciting and propagating surface acoustic waves. The frequency and width of the surface acoustic wave excited on the surface of the substrate (the size of the surface acoustic wave in the direction orthogonal to the direction of propagation of the surface acoustic wave on the surface of the substrate) are set to predetermined conditions. Therefore, the surface acoustic wave excited on the surface of the substrate by the interdigital electrode can be propagated without infinitely diffusing in the direction orthogonal to the direction of propagation along the surface of the substrate. As a result, it has been clarified that it can be repeatedly circulated.

球形状の基体の表面を弾性表面波が周回する軌跡は、球形状の基体の表面において球形状の基体の最大外周線を含んでいる球面の一部が円環状に連続している領域内にあり、この領域を弾性表面波周回路と呼んでいる。そして、球形状の基体を使用したこのような球状弾性表面波素子は、弾性表面波周回路に沿い弾性表面波周回路の延出方向と交差する方向に拡散することなく弾性表面波を多数回周回させることができる(すなわち、すだれ状電極が弾性表面波を励起させてから弾性表面波周回路を周回する弾性表面波をすだれ状電極が正確に検知することができなくなるまでに弾性表面が周回する回数が多い)ので、周回数の増大に伴う弾性表面波の伝搬速度の減速の程度や弾性表面波の位相の遅れの程度や弾性表面波の強度の減少の程度を精密に測定することができる。   The trajectory of the surface acoustic wave that circulates on the surface of the spherical substrate is within a region where a part of the spherical surface including the maximum outer circumference of the spherical substrate is continuous in an annular shape on the surface of the spherical substrate. This area is called a surface acoustic wave circuit. Such a spherical surface acoustic wave element using a spherical base body generates surface acoustic waves many times without diffusing along the surface acoustic wave circuit in a direction crossing the extending direction of the surface acoustic wave circuit. (I.e., the surface of the elastic surface circulates until the interdigital electrode cannot accurately detect the surface acoustic wave that circulates the surface acoustic wave circuit after the interdigital electrode excites the surface acoustic wave.) Therefore, it is possible to accurately measure the degree of deceleration of the surface acoustic wave propagation velocity, the degree of phase lag of the surface acoustic wave, and the degree of reduction of the intensity of the surface acoustic wave as the number of laps increases. it can.

伝搬速度の減速の程度や弾性表面波の位相の遅れの程度や弾性表面波の強度の減少の程度は、球状弾性表面波素子の弾性表面波周回路が接している環境の変化(たとえば、ガス濃度の増加)の程度に対応する。したがって、上述した種々の程度を測定することは球状弾性表面波素子の弾性表面波周回路が接している環境の変化を測定することを意味する。   The degree of propagation speed deceleration, the degree of surface acoustic wave phase lag, and the degree of surface acoustic wave intensity decrease depend on changes in the environment in which the surface acoustic wave circuit of the spherical surface acoustic wave element is in contact (for example, gas Corresponding to the degree of increase in density) Therefore, measuring the various degrees described above means measuring changes in the environment in which the surface acoustic wave circuit of the spherical surface acoustic wave element is in contact.

そのひとつの応用例が、流速計への応用として提案されている。
特許文献1には、球状弾性表面波素子の球形基材の表面、あるいは、それに接触させて加熱するヒータが説明されている。特に、特許文献1では、弾性表面波の周回経路の両側に抵抗加熱のための配線パターンを実装している。球形基材を加熱しながら、周囲のガスの流がれに伴って熱が奪われる現象を計測してガスの流速を計測する。
One such application is proposed as an application to an anemometer.
Patent Document 1 describes a heater that is heated in contact with the surface of a spherical substrate of a spherical surface acoustic wave element or in contact therewith. In particular, in Patent Document 1, wiring patterns for resistance heating are mounted on both sides of a surface acoustic wave circulation path. While the spherical base material is heated, the phenomenon of heat deprived as the surrounding gas flows is measured to measure the gas flow velocity.

用いる計測アルゴリズムは、弾性表面波素子を周回する弾性表面波の周回速度をその位相速度が一定になるための温度調節するためのヒータ電流値を計測する方法がある。あるいは、さらに単純に、一定の電流を流すことで同じ熱量が球状弾性表面波素子に印加される状態を作り、弾性表面波の周回速度の変化から素子温度を計測することで、間接的に周囲のガスによって熱が奪われる量を計測するものである。   As a measurement algorithm to be used, there is a method of measuring a heater current value for adjusting the temperature of the circumferential velocity of the surface acoustic wave that circulates the surface acoustic wave element so that the phase velocity becomes constant. Or, more simply, by creating a state in which the same amount of heat is applied to the spherical surface acoustic wave element by flowing a constant current, and measuring the element temperature from the change in the circumferential speed of the surface acoustic wave, The amount of heat taken away by the gas is measured.

これらの加熱配線付の球状弾性表面波素子は、球状弾性表面波素子が高精度の温度計になることが期待されているが、球形基材が大きな熱容量を有しているために、高速の応答を得ることが難しかった。   These spherical surface acoustic wave elements with a heating wiring are expected to be a highly accurate thermometer. However, since the spherical base material has a large heat capacity, it has a high speed. It was difficult to get a response.

さらに、従来の加熱配線付の球状弾性表面波素子は、温度計測の対象である弾性表面波素子の周回経路とは異なる位置に加熱配線が形成されているために、温度計測位置と加熱位置が異なり、最も放熱が大きくなる領域の温度が正確に計測できない。   Furthermore, since the conventional spherical surface acoustic wave element with a heating wiring has a heating wiring formed at a position different from the circulation path of the surface acoustic wave element that is the object of temperature measurement, the temperature measurement position and the heating position are different. In contrast, the temperature in the region where heat dissipation is greatest cannot be measured accurately.

特許文献2には、弾性表面波素子の弾性表面波の位相速度から温度を計測するのではなく、弾性表面波の周回する伝搬路上に直接抵抗測温体を形成することが示されている。   Patent Document 2 discloses that a resistance temperature sensor is directly formed on a propagation path around a surface acoustic wave, instead of measuring the temperature from the phase velocity of the surface acoustic wave of the surface acoustic wave element.

なお、本発明では、電気音響変換素子としてすだれ状電極を使用するとともに、すだれ状電極は球形基材の表面に実装することを前提に説明する。しかし、結晶球とは別個の基材の上にすだれ状電極を形成してすだれ状電極を結晶球の表面に接近することでも球状弾性表面波素子として機能する。本発明では、この場合も「球形結晶球の表面にすだれ状電極を形成する」と表現するものとする。   In the present invention, description will be made on the assumption that the interdigital electrode is used as the electroacoustic transducer and the interdigital electrode is mounted on the surface of the spherical base material. However, a comb-like electrode is formed on a base material separate from the crystal sphere and the comb-like electrode is brought close to the surface of the crystal sphere to function as a spherical surface acoustic wave element. In the present invention, this case is also expressed as “forms a comb-shaped electrode on the surface of a spherical crystal sphere”.

特開2007−101450号公報JP 2007-101450 A 特開2008−082984号公報JP 2008-082884 A

表面に加熱用配線を有した球状弾性表面波素子は、周囲のガスの流れ等の変化を計測する用途において、その使用が期待されているに関わらず、球形基材の大きな熱容量や、加熱用配線が弾性表面波の伝搬位置と位置的に離れていることから、応答が遅く正確な計測ができなくなるという課題がある。   Spherical surface acoustic wave elements with heating wiring on the surface are used for measuring changes in the flow of surrounding gas, etc., regardless of their expected use. Since the wiring is positioned apart from the surface acoustic wave propagation position, there is a problem that the response is slow and accurate measurement cannot be performed.

そこで、本発明は、たとえば、球状基材を加熱しながらその熱を周囲に放出する程度を計測することによってガスの状態の計測を行なう用途において、球形基材の大きな熱容量による応答速度の低下、あるいは、加熱部分と温度計測を行なう弾性表面波の周回領域の位置的なずれによる計測精度の低下をもたらさない加熱配線付の球状弾性表面波素子を提供することを目的とする。   Therefore, the present invention, for example, in applications in which the state of gas is measured by measuring the degree to which the heat is released to the surroundings while heating the spherical substrate, the response speed decreases due to the large heat capacity of the spherical substrate, Alternatively, it is an object to provide a spherical surface acoustic wave element with a heating wiring that does not cause a decrease in measurement accuracy due to a positional shift between a heated portion and a circumferential region of a surface acoustic wave that performs temperature measurement.

上記課題を解決するために、本発明の請求項1に係る球状弾性表面波素子は、球面の一部で形成され前記球面の最大径の外周線を含み円環上に延出している表面領域を含んでおり、前記表面領域に当該表面領域の円環状の延出方向に沿い励起された弾性表面波が前記外周線に沿い周回する基材と、前記基材の前記表面領域に当該表面領域の円環状の延出方向に沿い弾性表面波を励起させる電気音響変換素子と、前記弾性表面波の伝搬する円環状の球形領域を挟む2つの表面領域は平面であって、この2つの平面状の表面領域に形成された加熱用の配線パターンとを具備している。   In order to solve the above-mentioned problems, a spherical surface acoustic wave element according to claim 1 of the present invention is a surface region that is formed as a part of a spherical surface and includes an outer circumferential line having the maximum diameter of the spherical surface and extending on an annular ring. A base material in which surface acoustic waves excited along the ring-shaped extending direction of the surface region circulate along the outer circumferential line, and the surface region in the surface region of the base material. The two surface areas sandwiching the electroacoustic transducer for exciting the surface acoustic wave along the extending direction of the ring and the annular spherical area in which the surface acoustic wave propagates are planes, and the two plane shapes And a wiring pattern for heating formed in the surface region.

また、本発明の請求項2に係る球状弾性表面波素子は、球面の一部で形成され前記球面の最大径の外周線を含み円環上に延出している表面領域を含んでおり、前記表面領域に当該表面領域の円環状の延出方向に沿い励起された弾性表面波が前記外周線に沿い周回する基材と、前記基材の前記表面領域に当該表面領域の円環状の延出方向に沿い弾性表面波を励起させる電気音響変換素子と、前記弾性表面波の伝搬する円環状の球形領域を挟む2つの表面領域を連通する貫通孔と、前記円環状の球形表面以外の表面領域に形成された加熱用の配線パターンとを具備している。   A spherical surface acoustic wave element according to claim 2 of the present invention includes a surface region that is formed of a part of a spherical surface and includes an outer circumferential line having a maximum diameter of the spherical surface and extending on an annular shape, A base material in which a surface acoustic wave excited along the annular extension direction of the surface region on the surface region circulates along the outer circumferential line; and an annular extension of the surface region on the surface region of the base material An electroacoustic transducer for exciting a surface acoustic wave along a direction, a through-hole communicating two surface regions sandwiching an annular spherical region in which the surface acoustic wave propagates, and a surface region other than the annular spherical surface And a wiring pattern for heating formed on the substrate.

また、本発明の請求項3に係る球状弾性表面波素子は、球面の一部で形成され前記球面の最大径の外周線を含み円環上に延出している表面領域を含んでおり、前記表面領域に当該表面領域の円環状の延出方向に沿い励起された弾性表面波が前記外周線に沿い周回する基材と、前記基材の前記表面領域に当該表面領域の円環状の延出方向に沿い弾性表面波を励起させる電気音響変換素子と、前記弾性表面波の伝搬する円環状の球形領域を挟む2つの表面領域は平面であって、この2つの平面状の表面領域を連通する貫通孔と、前記円環状の球形領域以外の表面領域に形成された加熱用の配線パターンと、前記円環状の球形表面以外の表面領域であって、前記貫通孔の周面を除く平面部分に形成され、前記電気音響変換素子に対し電気信号の送受を行なうための第1の結線部と、前記円環状の球形表面以外の表面領域であって、前記貫通孔の周面を除く平面部分に形成され、前記加熱用の配線パターンに対し電力を供給するための第2の結線部とを具備している。   A spherical surface acoustic wave element according to claim 3 of the present invention includes a surface region that is formed of a part of a spherical surface and includes an outer circumferential line having a maximum diameter of the spherical surface and extending on an annular shape, A base material in which a surface acoustic wave excited along the annular extension direction of the surface region on the surface region circulates along the outer circumferential line; and an annular extension of the surface region on the surface region of the base material The two surface regions sandwiching the electroacoustic transducer that excites the surface acoustic wave along the direction and the annular spherical region in which the surface acoustic wave propagates are flat surfaces, and the two planar surface regions communicate with each other. A through-hole, a heating wiring pattern formed in a surface region other than the annular spherical region, and a surface region other than the annular spherical surface in a plane portion excluding the peripheral surface of the through-hole An electric signal is transmitted to and received from the electroacoustic transducer. A first connection portion for performing and a surface region other than the annular spherical surface, which is formed in a plane portion excluding the peripheral surface of the through hole, and supplies power to the wiring pattern for heating. And a second connection portion.

本発明によれば、たとえば、球状基材を加熱しながらその熱を周囲に放出する程度を計測することによってガスの状態の計測を行なう用途において、球形基材の大きな熱容量による応答速度の低下、あるいは、加熱部分と温度計測を行なう弾性表面波の周回領域の位置的なずれによる計測精度の低下をもたらさない加熱配線付の球状弾性表面波素子を提供できる。   According to the present invention, for example, in the application of measuring the state of gas by measuring the degree to which the heat is released to the surroundings while heating the spherical base material, the response speed decreases due to the large heat capacity of the spherical base material, Alternatively, it is possible to provide a spherical surface acoustic wave element with a heating wiring that does not cause a decrease in measurement accuracy due to a positional shift between a heated portion and a circumferential region of a surface acoustic wave that performs temperature measurement.

本発明の第1の実施形態に係る球状弾性表面波素子の構成を概略的に示す斜視図。1 is a perspective view schematically showing a configuration of a spherical surface acoustic wave element according to a first embodiment of the present invention. 本発明の第2の実施形態に係る球状弾性表面波素子の構成を概略的に示す斜視図。The perspective view which shows schematically the structure of the spherical surface acoustic wave element concerning the 2nd Embodiment of this invention. 本発明の第2の実施の態に係る球状弾性表面波素子に対して結線を行なう状況を概略的に示す側面図。The side view which shows schematically the condition which connects with respect to the spherical surface acoustic wave element which concerns on the 2nd Embodiment of this invention.

以下、本発明の実施形態について図面を参照して説明する。
まず、第1の実施形態について説明する。
Embodiments of the present invention will be described below with reference to the drawings.
First, the first embodiment will be described.

図1は、第1の実施形態に係る球状弾性表面波素子の構成を概略的に示すものである。図1において、球状弾性表面波素子10は、たとえば、水晶またはランガサイトのような三方晶系圧電性単結晶の基材11を備えている。基材11は、本実施形態では直径が3.3mmの水晶を使用した。水晶によりなる基材11は、水晶の単結晶基材を球形に加工されて後に、水晶のZ軸を地軸として赤道近傍を弾性表面波の周回経路12とすることができる。   FIG. 1 schematically shows the configuration of a spherical surface acoustic wave device according to the first embodiment. In FIG. 1, a spherical surface acoustic wave element 10 includes a base material 11 of a trigonal piezoelectric single crystal such as quartz or langasite. In this embodiment, the base material 11 is a crystal having a diameter of 3.3 mm. The base material 11 made of quartz can be formed into a spherical surface after the single crystal base material made of quartz is processed into a spherical shape, and the vicinity of the equator can be used as the circumferential path 12 of the surface acoustic wave with the Z axis of the quartz as the ground axis.

本実施形態に使用する圧電性結晶の基材11は温度が変わると、弾性表面波の周回速度が変わる温度依存性を持った圧電性結晶基材であることが求められる。たとえば、水晶球を用いた球状弾性表面波素子の温度依存性は室温付近で25ppm/度であり、ランガサイト結晶球を使用した場合は40ppm/度である。温度依存性が高いほど正確に弾性表面波の周回速度から温度を計測できる。   The piezoelectric crystal base material 11 used in the present embodiment is required to be a piezoelectric crystal base material having temperature dependency in which the circumferential velocity of the surface acoustic wave changes as the temperature changes. For example, the temperature dependence of a spherical surface acoustic wave element using a crystal sphere is 25 ppm / degree near room temperature, and 40 ppm / degree when a langasite crystal sphere is used. The higher the temperature dependency, the more accurately the temperature can be measured from the circumferential velocity of the surface acoustic wave.

赤道にそって弾性表面波が周回するように、すだれ状電極13を赤道にその電極枝が赤道に垂直になる方向に形成している。すだれ状電極13の周期は、励起あるいは検出する弾性表面波の周波数を決定するが、本実施形態では150MHzの弾性表面波を励起するために21ミクロンの周期にすだれ状電極13を形成する。   The interdigital electrode 13 is formed on the equator so that the surface of the interdigital transducer 13 is perpendicular to the equator so that the surface acoustic wave circulates along the equator. The period of the interdigital electrode 13 determines the frequency of the surface acoustic wave to be excited or detected. In this embodiment, the interdigital electrode 13 is formed with a period of 21 microns in order to excite the surface acoustic wave of 150 MHz.

なお、三方晶系圧電性単結晶を用いて球形基材11を作る場合には、Z軸を結晶方位を地軸とする赤道に沿って(Z軸シリンダ経路と呼称される)弾性表面波の周回経路を形成できるが、たとえば、ニオブ酸リチウムやタンタル酸リチウムなど多くの圧電結晶でZ軸シリンダ経路以外の経路で弾性表面波が周回することが知られており、本実施形態は弾性表面波の多重周回が可能で、その周回速度が温度依存性を有していればよく、赤道に沿った経路以外を除外するものではない。   When the spherical base material 11 is made using a trigonal piezoelectric single crystal, the surface acoustic wave circulates along the equator (referred to as the Z-axis cylinder path) with the Z-axis as the ground axis. Although a path can be formed, for example, it is known that surface acoustic waves circulate in paths other than the Z-axis cylinder path in many piezoelectric crystals such as lithium niobate and lithium tantalate. Multiple laps are possible as long as the lap speed is temperature-dependent, and other than the route along the equator is not excluded.

球形基材11は、Z軸を地軸として両極を切削、研磨して樽型形状とする。Z軸シリンダ領域は、幅0.8mmにわたって球形表面を残している。加工方法は、製作した球形の水晶球を樹脂に埋め込み、樹脂ごと研磨を北極側と南極側の両面について行なって、その後に樹脂を溶解除去して樽型の結晶球を作ることができる。   The spherical base material 11 has a barrel shape by cutting and polishing both poles with the Z axis as the ground axis. The Z-axis cylinder region leaves a spherical surface over a width of 0.8 mm. In the processing method, the manufactured spherical crystal sphere is embedded in a resin, and the entire resin is polished on both the north pole side and the south pole side, and then the resin is dissolved and removed to form a barrel-shaped crystal sphere.

すだれ状電極13は、少なくとも弾性表面波の周回経路12の領域にアルミ薄膜(1000Å)、あるいは、クロム(500Å)と金(1000Å)の積層薄膜を真空成膜によって成膜後、フォトリソグラフィ方法にしたがってパターン化して形成した。すだれ状電極13は、2つの電極取出部(第1の結線部)14a,14bを有している。   The interdigital electrode 13 is formed by vacuum deposition of an aluminum thin film (1000 Å) or a laminated thin film of chromium (500 Å) and gold (1000 Å) at least in the region of the surface acoustic wave circulation path 12 and then applied to a photolithography method. Therefore, it was formed by patterning. The interdigital electrode 13 has two electrode extraction portions (first connection portions) 14a and 14b.

すだれ状電極13を形成した後、前記切削研磨した2つの平面状の領域11a,11bに、クロム薄膜をスパッタによって形成した後にエッチングを行なって抵抗加熱用の配線パターン15a,15bを形成する。なお、配線パターン15a,15bの形状や膜厚は、使用する加熱用途にしたがって設計を行なえばよい。   After forming the interdigital electrode 13, a chromium thin film is formed by sputtering on the two planar regions 11a and 11b that have been cut and polished, and etching is performed to form wiring patterns 15a and 15b for resistance heating. In addition, what is necessary is just to design the shape and film thickness of wiring pattern 15a, 15b according to the heating use to be used.

本実施形態において、樽型形状の基材11は、球形状と比較して3分の1以下の水晶基材の体積となり、熱容量が小さくなる。加熱用の配線パターン15a,15bに加熱用電源16から電流を流して発熱させ、その際の弾性表面波素子10の温度上昇を弾性表面波の周回速度の計測によって行なうことができる。   In the present embodiment, the barrel-shaped base material 11 has a volume of a crystal base material of 1/3 or less as compared with the spherical shape, and the heat capacity becomes small. A current is supplied from the heating power supply 16 to the heating wiring patterns 15a and 15b to generate heat, and the temperature of the surface acoustic wave element 10 at that time can be increased by measuring the circumferential speed of the surface acoustic wave.

これにより、圧電性結晶球の比熱も小さく、より高速に加熱や冷却が可能で、もって周囲のガスとの熱の送受が圧電性結晶基材11の温度に正確に反映する。つまり、周囲のガスの状況をより正確かつ高速に計測できる。   As a result, the specific heat of the piezoelectric crystal sphere is small, and heating and cooling can be performed at a higher speed, so that the transmission and reception of heat with the surrounding gas accurately reflects the temperature of the piezoelectric crystal substrate 11. That is, the surrounding gas condition can be measured more accurately and at high speed.

なお、本実施形態の例では、すだれ状電極13は単一に形成し、励起用(送信用)と受信用の役割を兼ねているが、弾性表面波の送信用と受信用に別個に製作することができる。   In the example of this embodiment, the interdigital electrode 13 is formed as a single unit and serves as an excitation (transmission) and reception, but is separately manufactured for the transmission and reception of surface acoustic waves. can do.

このように、平面形状に切削した面11a,11bに加熱用の配線パターン15a,15bを形成することで、配線パターン15a,15bと弾性表面波の周回経路12が3次元的に近いだけでなく、切削して生まれた平面への形成であるために配線パターン15a,15bの形成プロセスが簡単で、また、配線パターン15a,15bへの加熱用電源16の結線も容易になるなどの加工上のメリットを有している。   Thus, by forming the wiring patterns 15a and 15b for heating on the surfaces 11a and 11b cut into a planar shape, the wiring patterns 15a and 15b and the surface acoustic wave circulation path 12 are not only three-dimensionally close. The process of forming the wiring patterns 15a and 15b is simple because it is formed on a plane formed by cutting, and the wiring of the heating power supply 16 to the wiring patterns 15a and 15b is easy. Has a merit.

さらに、上記切削によって生じた平面11a,11bに、弾性表面波の励起検出用のすだれ状電極13の電極取出部(第1の結線部)14a,14bを形成することがよい。すだれ状電極13との接続が切削平面11a,11bで可能であり、実装が容易である。   Furthermore, it is preferable to form electrode extraction portions (first connection portions) 14a and 14b of the interdigital electrode 13 for detecting excitation of surface acoustic waves on the flat surfaces 11a and 11b generated by the cutting. Connection to the interdigital electrode 13 is possible on the cutting planes 11a and 11b, and mounting is easy.

なお、切削によって生じた平面11a,11bに形成する加熱用の配線パターン15a,15bは、図1に示すような単純な形状でもよいし、蛇行形状に形成してもよい。蛇行形状に形成することで、抵抗値の増大と発熱分布の均一化やその分布の均一化のための制御が可能である。   The heating wiring patterns 15a and 15b formed on the flat surfaces 11a and 11b generated by cutting may have a simple shape as shown in FIG. 1 or a meandering shape. By forming it in a meandering shape, it is possible to increase the resistance value, make the heat generation distribution uniform, and control for making the distribution uniform.

本実施形態における基材11の切削平面11a,11bに対して、加熱用の配線パターン15a,15bにより大気中で加熱を行ないながら、すだれ状電極13に対して150MHzの搬送周波数でバースト信号の継続時間が1マイクロ秒の高周波信号を加えて弾性表面波を励起する。周回経路12を周回してすだれ状電極13を通過する度に発生する電圧を増幅して、周回周期を計測すると、温度にしたがった所定の時間間隔となることで温度計測が可能である。   While the cutting planes 11a and 11b of the substrate 11 in the present embodiment are heated in the atmosphere by the wiring patterns 15a and 15b for heating, the burst signal is continued at the carrier frequency of 150 MHz with respect to the interdigital electrode 13. A high frequency signal having a time of 1 microsecond is applied to excite a surface acoustic wave. When the voltage generated every time it passes around the interdigital electrode 13 after passing around the circuit 12 is measured and the circuit period is measured, the temperature can be measured at a predetermined time interval according to the temperature.

たとえば、流量計測では、計測対象となる大気流(風)の環境に設置することで、無風の状態で加熱用の配線パターン15a,15bにより45度に上昇して安定化した温度が、毎秒1mの風の中では約10度以上に低下することが観測できる。   For example, in the flow rate measurement, the temperature stabilized at 45 ° C. by the wiring patterns 15a and 15b for heating in a windless state is set to 1 m per second by being installed in an environment of atmospheric flow (wind) to be measured. It can be observed that it drops to about 10 degrees or more in the wind.

本実施形態は、基材の体積(熱容量に比例)の減少よりその表面積(熱放射に比例)の減少が小さく、加熱した基材11の熱放射に伴う温度変化を大きくすることは明らかで、その効果は、熱放射の速度を利用する他の用途についても応答速度の向上として期待される。   In this embodiment, the decrease in the surface area (proportional to thermal radiation) is smaller than the decrease in the volume (proportional to heat capacity) of the substrate, and it is clear that the temperature change associated with the thermal radiation of the heated substrate 11 is increased. The effect is expected as an improvement in response speed for other applications using the speed of thermal radiation.

次に、第2の実施形態について説明する。
なお、前述した第1の実施形態と同一部分には同一符号を付して説明は省略し、異なる部分についてだけ説明する。
Next, a second embodiment will be described.
The same parts as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted, and only different parts will be described.

図2は、第2の実施形態に係る球状弾性表面波素子の構成を概略的に示すものである。第2の実施形態は、前述した第1の実施形態の球状弾性表面波素子よりもさらに熱容量を小さくしたものであり、以下、詳細に説明する。   FIG. 2 schematically shows the configuration of a spherical surface acoustic wave device according to the second embodiment. The second embodiment has a smaller heat capacity than the spherical surface acoustic wave element of the first embodiment described above, and will be described in detail below.

基材11として用いる結晶球は、直径が3.3mmのランガサイト球であって、Z軸シリンダ経路近傍を0.7mmの厚さを残して平面部11a,11bを両極に形成し、さらに、地軸に沿って平面部11a,11bを連通する貫通孔17を有している。ここに、貫通孔17の直径Dは2mmである。   The crystal sphere used as the substrate 11 is a Langasite sphere having a diameter of 3.3 mm, the plane portions 11a and 11b are formed in both poles, leaving a thickness of 0.7 mm in the vicinity of the Z-axis cylinder path, It has a through hole 17 that communicates the flat portions 11a and 11b along the ground axis. Here, the diameter D of the through hole 17 is 2 mm.

本実施形態では、少なくとも貫通孔17の周面に加熱用の配線パターン15として作用するクロム薄膜よりなる薄膜をスパッタ法等によって形成する。加熱用の配線パターン15に電力を供給するための2つの電極取出部(第2の結線部)18a,18bは、貫通孔17以外の残された平面部、この例では平面部11aに形成する。また、すだれ状電極13の電極取出部(第1の結線部)14a,14bも同様に平面部11a,11bに形成する。   In the present embodiment, a thin film made of a chromium thin film that acts as the wiring pattern 15 for heating is formed at least on the peripheral surface of the through hole 17 by a sputtering method or the like. Two electrode extraction portions (second connection portions) 18a and 18b for supplying electric power to the heating wiring pattern 15 are formed in the remaining plane portion other than the through hole 17, in this example, the plane portion 11a. . Similarly, the electrode extraction portions (first connection portions) 14a and 14b of the interdigital electrodes 13 are also formed on the flat portions 11a and 11b.

貫通孔17の大きさは、大きい方がより結晶基材の11熱容量を小さくできることから望まれるが、大きくすると結晶基材11そのものの剛性が弱くなり、加熱用の配線パターン15との結線プロセスや、すだれ状電極13との結線プロセスで結晶基材11に圧力が掛かる際に結晶基材11そのものの破壊に繋がる。さらに、弾性表面波の波長に比較して例えば20倍以上の厚さが弾性表面波の周回経路12の幅にわたってないと、弾性表面波の伝搬自体を阻害することから問題が生じる。   A larger size of the through hole 17 is desired because the 11 heat capacity of the crystal base material can be made smaller. However, if the through hole 17 is made larger, the rigidity of the crystal base material 11 itself becomes weaker. When the pressure is applied to the crystal substrate 11 in the connection process with the interdigital electrode 13, the crystal substrate 11 itself is destroyed. Further, if the thickness of the surface acoustic wave is not more than 20 times the width of the circumferential path 12 of the surface acoustic wave, a problem arises because the propagation of the surface acoustic wave itself is inhibited.

本実施形態では、150MHzの水晶結晶中の代表的な波長は約21ミクロンであり、420ミクロンの幅を残すために、[3300マイクロメートル−(420マイクロメートル×2)=2480マイクロメートル]により、2480マイクロメートル以上の直径を持った貫通孔17を設けることは、弾性表面波素子として動作しなくなる。このように、周回経路12の肉厚を薄くする限度については、弾性表面波の周波数や伝搬モード、結晶材料についても考慮して弾性表面波が伝搬可能な大きさに選べばよい。   In this embodiment, a typical wavelength in a 150 MHz quartz crystal is about 21 microns, and [3300 micrometers-(420 micrometers x 2) = 2480 micrometers] to leave a width of 420 microns, Providing the through hole 17 having a diameter of 2480 micrometers or more does not operate as a surface acoustic wave element. As described above, the limit for reducing the thickness of the circulation path 12 may be selected so that the surface acoustic wave can propagate in consideration of the surface acoustic wave frequency, propagation mode, and crystal material.

平面部11a,11bにすだれ状電極13の電極取出部(第1の結線部)14a,14bおよび加熱用の配線パターン15の電極取出部(第2の結線部)18a,18bを位置させることには次のような利点がある。   Positioning the electrode extraction portions (first connection portions) 14a, 14b of the interdigital electrodes 13 and the electrode extraction portions (second connection portions) 18a, 18b of the heating wiring pattern 15 on the flat portions 11a, 11b. Has the following advantages.

すなわち、プリント配線板への実装や、超音波結線機を用いて結線する際に、基材11にかかる圧力や超音波振動が結晶材を破壊することを防ぐよう、平面のテーブルに基材11を設置して上方から圧力や超音波振動を印加できる。   That is, when mounting on a printed wiring board or connecting with an ultrasonic connecting machine, the base 11 is placed on a flat table so as to prevent pressure or ultrasonic vibration applied to the base 11 from destroying the crystal material. It is possible to apply pressure and ultrasonic vibration from above.

たとえば、図3に示すように、超音波結線機は、通常、平面のテーブル(結線機定盤)21に基材11を設置し、上方から超音波結線機のヘッド22により超音波振動を加えながら、金ワイヤ23等を金薄膜等で形成された電極取出部(図3の例の場合、電極取出部14a)に対して力をかけながら結線する。平面部に結線を行なうのがリング状に加工されることで剛性の弱くなった結晶基材11に破壊に繋がる力をかけることなく行なうのに適している。   For example, as shown in FIG. 3, an ultrasonic connecting machine usually has a base 11 placed on a flat table (connecting machine surface plate) 21, and ultrasonic vibration is applied from above by a head 22 of the ultrasonic connecting machine. On the other hand, the gold wire 23 and the like are connected while applying a force to the electrode extraction portion (in the example of FIG. 3, the electrode extraction portion 14a) formed of a gold thin film or the like. The connection to the flat portion is suitable for the crystal base material 11 whose rigidity has been weakened by being processed into a ring shape without applying a force leading to breakage.

なお、上記第2の実施形態では、加熱用の配線パターン15は貫通孔17の周面に形成した例を示したが、基材11の平面部11a,11bに形成してもよいことは明らかである。   In the second embodiment, the example in which the wiring pattern 15 for heating is formed on the peripheral surface of the through-hole 17 is shown. However, it is obvious that the heating wiring pattern 15 may be formed on the flat portions 11a and 11b of the substrate 11. It is.

以上説明したように上記実施形態によれば、球形基材11を、弾性表面波の周回経路12によって分けられる2つの領域を周回経路以外の領域について切削した樽型形状とすることで、球形基材11の熱容量を相対的に小さくするとともに、上記切削によって生じた平面11a,11bに、加熱用の配線パターン15a,15bを形成することで、加熱領域と弾性表面波の伝搬領域(周回経路12)と3次元的に接近した加熱配線付の球状弾性表面波素子10を提供できる。   As described above, according to the above-described embodiment, the spherical base 11 is formed into a barrel shape in which two regions divided by the surface acoustic wave circulation path 12 are cut in regions other than the circulation path. By making the heat capacity of the material 11 relatively small and forming the wiring patterns 15a and 15b for heating on the flat surfaces 11a and 11b generated by the cutting, the heating region and the surface acoustic wave propagation region (circular path 12) are formed. ) And a spherical surface acoustic wave element 10 with a heating wiring that is close in three dimensions.

このように構成された球状弾性表面波素子10によれば、球状弾性表面波素子10が加熱用の配線パターン15a,15bを有して自身を加熱しながら、周囲のガスの流速などの熱の漏出の程度を弾性表面波の周回速度の変化に基づく温度計測を高速かつ正確に行なうことが可能になる。   According to the spherical surface acoustic wave element 10 configured as described above, the spherical surface acoustic wave element 10 has the wiring patterns 15a and 15b for heating and heats itself such as the flow rate of the surrounding gas while heating itself. It becomes possible to measure the temperature of the leak based on the change in the circumferential velocity of the surface acoustic wave at high speed and accurately.

10…球状弾性表面波素子、11…基材、11a,11b…平面状の領域(平面)、12…周回経路、13…すだれ状電極(電気音響変換素子)、14,14a,14b…すだれ状電極の電極取出部(第1の結線部)、15,15a,15b…加熱用の配線パターン、16…加熱用電源、17…貫通孔、18a,18b…配線パターンの電極取出部(第2の結線部)。   DESCRIPTION OF SYMBOLS 10 ... Spherical surface acoustic wave element, 11 ... Base material, 11a, 11b ... Planar area | region (plane), 12 ... Circulation path | route, 13 ... Interdigital electrode (electroacoustic transducer), 14, 14a, 14b ... Interdigital shape Electrode extraction part (first connection part), 15, 15a, 15b ... heating wiring pattern, 16 ... heating power source, 17 ... through hole, 18a, 18b ... electrode extraction part of wiring pattern (second Connection part).

Claims (3)

球面の一部で形成され前記球面の最大径の外周線を含み円環状に延出している表面領域を含んでおり、前記表面領域に当該表面領域の円環状の延出方向に沿い励起された弾性表面波が前記外周線に沿い周回する基材と、
前記基材の前記表面領域に当該表面領域の円環状の延出方向に沿い弾性表面波を励起させる電気音響変換素子と、
前記弾性表面波の伝搬する円環状の球形領域を挟む2つの表面領域は平面であって、この2つの平面状の表面領域に形成された加熱用の配線パターンと、
を具備したことを特徴とする球状弾性表面波素子。
A surface region formed of a part of a spherical surface and including an outer circumferential line of the maximum diameter of the spherical surface and extending in an annular shape, and excited in the surface region along the annular extending direction of the surface region A substrate on which a surface acoustic wave circulates along the outer circumferential line;
An electroacoustic transducer that excites a surface acoustic wave along an annular extending direction of the surface region on the surface region of the substrate;
Two surface regions sandwiching the annular spherical region in which the surface acoustic wave propagates are flat, and a heating wiring pattern formed on the two planar surface regions;
A spherical surface acoustic wave device comprising:
球面の一部で形成され前記球面の最大径の外周線を含み円環状に延出している表面領域を含んでおり、前記表面領域に当該表面領域の円環状の延出方向に沿い励起された弾性表面波が前記外周線に沿い周回する基材と、
前記基材の前記表面領域に当該表面領域の円環状の延出方向に沿い弾性表面波を励起させる電気音響変換素子と、
前記弾性表面波の伝搬する円環状の球形領域を挟む2つの表面領域を連通する貫通孔と、
前記円環状の球形表面以外の表面領域に形成された加熱用の配線パターンと、
を具備したことを特徴とする球状弾性表面波素子。
A surface region formed of a part of a spherical surface and including an outer circumferential line of the maximum diameter of the spherical surface and extending in an annular shape, and excited in the surface region along the annular extending direction of the surface region A substrate on which a surface acoustic wave circulates along the outer circumferential line;
An electroacoustic transducer that excites a surface acoustic wave along an annular extending direction of the surface region on the surface region of the substrate;
A through hole communicating two surface regions sandwiching an annular spherical region through which the surface acoustic wave propagates;
A wiring pattern for heating formed in a surface region other than the annular spherical surface;
A spherical surface acoustic wave device comprising:
球面の一部で形成され前記球面の最大径の外周線を含み円環状に延出している表面領域を含んでおり、前記表面領域に当該表面領域の円環状の延出方向に沿い励起された弾性表面波が前記外周線に沿い周回する基材と、
前記基材の前記表面領域に当該表面領域の円環状の延出方向に沿い弾性表面波を励起させる電気音響変換素子と、
前記弾性表面波の伝搬する円環状の球形領域を挟む2つの表面領域は平面であって、この2つの平面状の表面領域を連通する貫通孔と、
前記円環状の球形領域以外の表面領域に形成された加熱用の配線パターンと、
前記円環状の球形表面以外の表面領域であって、前記貫通孔の周面を除く平面部分に形成され、前記電気音響変換素子に対し電気信号の送受を行なうための第1の結線部と、
前記円環状の球形表面以外の表面領域であって、前記貫通孔の周面を除く平面部分に形成され、前記加熱用の配線パターンに対し電力を供給するための第2の結線部と、
を具備したことを特徴とする球状弾性表面波素子。
A surface region formed of a part of a spherical surface and including an outer circumferential line of the maximum diameter of the spherical surface and extending in an annular shape, and excited in the surface region along the annular extending direction of the surface region A substrate on which a surface acoustic wave circulates along the outer circumferential line;
An electroacoustic transducer that excites a surface acoustic wave along an annular extending direction of the surface region on the surface region of the substrate;
Two surface regions sandwiching the annular spherical region through which the surface acoustic wave propagates are flat surfaces, and a through-hole communicating these two planar surface regions;
A wiring pattern for heating formed in a surface region other than the annular spherical region;
A first connection portion that is a surface region other than the annular spherical surface, is formed in a plane portion excluding a peripheral surface of the through-hole, and transmits and receives an electrical signal to and from the electroacoustic transducer;
A second connection portion for supplying power to the heating wiring pattern, which is a surface region other than the annular spherical surface, formed in a plane portion excluding the peripheral surface of the through-hole,
A spherical surface acoustic wave device comprising:
JP2010219287A 2010-09-29 2010-09-29 Spherical surface acoustic wave device Expired - Fee Related JP5533508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010219287A JP5533508B2 (en) 2010-09-29 2010-09-29 Spherical surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010219287A JP5533508B2 (en) 2010-09-29 2010-09-29 Spherical surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2012075002A JP2012075002A (en) 2012-04-12
JP5533508B2 true JP5533508B2 (en) 2014-06-25

Family

ID=46170740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010219287A Expired - Fee Related JP5533508B2 (en) 2010-09-29 2010-09-29 Spherical surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP5533508B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4604335B2 (en) * 2000-11-01 2011-01-05 凸版印刷株式会社 Spherical boundary wave element
JP4379090B2 (en) * 2003-11-12 2009-12-09 凸版印刷株式会社 Liquid measuring method and liquid measuring apparatus using surface acoustic wave
JP4569097B2 (en) * 2003-11-18 2010-10-27 凸版印刷株式会社 Spherical surface acoustic wave device and manufacturing method thereof
JP4634270B2 (en) * 2005-10-06 2011-02-16 凸版印刷株式会社 An anemometer using a surface acoustic wave device, its element, and a method for measuring the velocity
JP4952124B2 (en) * 2006-08-04 2012-06-13 凸版印刷株式会社 Surface acoustic wave device

Also Published As

Publication number Publication date
JP2012075002A (en) 2012-04-12

Similar Documents

Publication Publication Date Title
US7302864B2 (en) Torque sensor
JP4561251B2 (en) Method of analyzing propagation surface of multi-circular surface acoustic wave element and element
JP5533508B2 (en) Spherical surface acoustic wave device
JP5533509B2 (en) Spherical surface acoustic wave device
JP4426803B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP3974766B2 (en) Surface acoustic wave device
JP4426802B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP2007225509A (en) Dew point recorder
JP4700749B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP2012073170A (en) Spherical elastic surface wave element and manufacturing method thereof
JP2005191650A (en) Surface acoustic wave element using langasite crystal and environment difference detector employing surface acoustic wave element
JP2012075003A (en) Spherical surface acoustic wave element
JP4798544B2 (en) Dew point meter
JP2008042498A (en) Surface acoustic wave element
JP4700748B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP4700750B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP5532697B2 (en) Spherical surface acoustic wave device
JPH10239191A (en) Sound pressure sensor
JP4816915B2 (en) Surface cleaning method for surface acoustic wave device
JP2002071413A (en) Thermal flowmeter
JP5000473B2 (en) Spherical surface acoustic wave device
JP2002081981A (en) Thermal flowmeter
JP2004053504A (en) Ultrasonic liquid level gauge
JP4696550B2 (en) Usage of surface acoustic wave device
JP4479438B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5533508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

LAPS Cancellation because of no payment of annual fees