JP4696550B2 - Usage of surface acoustic wave device - Google Patents

Usage of surface acoustic wave device Download PDF

Info

Publication number
JP4696550B2
JP4696550B2 JP2004361831A JP2004361831A JP4696550B2 JP 4696550 B2 JP4696550 B2 JP 4696550B2 JP 2004361831 A JP2004361831 A JP 2004361831A JP 2004361831 A JP2004361831 A JP 2004361831A JP 4696550 B2 JP4696550 B2 JP 4696550B2
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
time
dimensional substrate
attenuation rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004361831A
Other languages
Japanese (ja)
Other versions
JP2006173917A (en
Inventor
教尊 中曽
恒郎 大木
慎吾 赤尾
好夫 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2004361831A priority Critical patent/JP4696550B2/en
Publication of JP2006173917A publication Critical patent/JP2006173917A/en
Application granted granted Critical
Publication of JP4696550B2 publication Critical patent/JP4696550B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、環状の弾性表面波伝搬路を有した弾性表面波素子の使用方法に関係している。   The present invention relates to a method of using a surface acoustic wave element having an annular surface acoustic wave propagation path.

弾性表面波(SAW:Surface Acoustic Wave)が励起可能であり励起された弾性表面波を伝搬させることが可能な表面を有する基体と、この基体の表面に前記弾性表面波を励起し前記表面に沿い前記弾性表面波を伝搬させるとともに前記伝搬する前記弾性表面波を受信可能な電気音響変換素子と、を備えた弾性表面波素子は従来から良く知られている。   A substrate having a surface capable of exciting a surface acoustic wave (SAW) and capable of propagating the excited surface acoustic wave, and exciting the surface acoustic wave on the surface of the substrate along the surface. BACKGROUND ART A surface acoustic wave element including an electroacoustic transducer that propagates the surface acoustic wave and can receive the surface acoustic wave propagating is well known.

弾性表面波素子は、遅延線,発振素子,共振素子,周波数選択素子,例えば化学センサやバイオセンサや圧力センサを含む種々のセンサ,或いはリモートタグ等として使用されている。   The surface acoustic wave element is used as a delay line, an oscillation element, a resonance element, a frequency selection element, for example, various sensors including a chemical sensor, a biosensor, and a pressure sensor, or a remote tag.

そして、ここにおいて弾性表面波は、基体の表面に沿い伝搬する回廊波やレーリー波や基体の表面を基体を構成している物質とは異なる物質で覆っている薄膜と基体の表面との間の界面に沿い伝搬する境界波を含む。   In this case, the surface acoustic wave is generated between the surface of the substrate and the thin film covering the corridor wave or Rayleigh wave propagating along the surface of the substrate or the material different from the material constituting the substrate. Includes boundary waves propagating along the interface.

国際公開 WO 01/45255 A1 号公報は、球形状の弾性表面波素子を開示している。この球形状の弾性表面波素子の基体は、弾性表面波が励起可能であり励起された弾性表面波を伝搬させることが可能な球形状の表面を有している。この球形状の弾性表面波素子の電気音響変換素子は、基体の球形状の表面において円環状に連続している所定の幅を有した帯域に配置されていて、前記表面に励起した弾性表面波を前記帯域が連続している方向に沿い伝搬させ繰り返し周回させるよう構成されている。   International publication WO 01/45255 A1 discloses a spherical surface acoustic wave element. The substrate of the spherical surface acoustic wave element has a spherical surface that can excite the surface acoustic wave and propagate the excited surface acoustic wave. The electroacoustic transducer of the spherical surface acoustic wave element is arranged in a band having a predetermined width that is continuous in an annular shape on the spherical surface of the base, and the surface acoustic wave excited on the surface. Is propagated along the direction in which the bands are continuous and repeatedly circulated.

球形状の弾性表面波素子では、基体の表面の円環状に連続している弾性表面波伝搬帯域に電気音響変換素子により励起された弾性表面波を、弾性表面波伝搬帯域内で実質的に減衰することなく前記表面を繰り返し周回させることが出来る。
国際公開 WO 01/45255 A1 号公報
In the spherical surface acoustic wave element, the surface acoustic wave excited by the electroacoustic transducer is substantially attenuated within the surface acoustic wave propagation band in the annular surface acoustic wave propagation band on the surface of the substrate. The surface can be circulated repeatedly without the need to do so.
International Publication WO 01/45255 A1

球状弾性表面波素子は、球形の例えば圧電結晶基材の表面にすだれ状電極を形成することによって構成されている。すだれ状電極に電界を印可し、もって球表面に弾性表面波を励起して球表面を多重周回させる。   A spherical surface acoustic wave element is formed by forming a comb-like electrode on the surface of a spherical, for example, piezoelectric crystal substrate. An electric field is applied to the interdigital electrode, thereby exciting a surface acoustic wave on the surface of the sphere and causing the sphere surface to make multiple turns.

圧電結晶を球形基材に使用する際に弾性表面波を励起周回させることが出来る経路は圧電結晶の材料とその結晶軸によって決まっておりその研究が成されてきた。球状弾性表面波素子において、すだれ状電極の電極幅を弾性表面波の波長と球表面の直径によって決まる所定の範囲に設計すると、弾性表面波はビーム状に周回を行い、ビームの外には殆どエネルギーを漏らさない事が知られており、このようにビームから離れた場所で固定したり、材料を両極から接触しても従来の測定では、球状表面の弾性表面波の伝搬への影響は観測されていない。   When a piezoelectric crystal is used for a spherical substrate, the path through which the surface acoustic wave can be excited is determined by the material of the piezoelectric crystal and its crystal axis, and has been studied. In a spherical surface acoustic wave device, when the electrode width of the interdigital electrode is designed within a predetermined range determined by the surface acoustic wave wavelength and the sphere surface diameter, the surface acoustic wave circulates in a beam shape and is almost out of the beam. It is known that it does not leak energy. Even if the material is fixed at a location away from the beam or the material is contacted from both poles, the influence on the propagation of the surface acoustic wave on the spherical surface is observed in the conventional measurement. It has not been.

弾性表面波が多重周回することで、限られた領域でありながら長い距離を伝搬させることになり、球形表面の状態変化に基いて伝搬状態の変化があった際に、それを伝搬時間の差(位相変化)や弾性表面波の強度変化として非常に感度良くその変化を検出することから超高感度センサーとして期待されている。   The surface acoustic wave travels multiple times and propagates a long distance in a limited area.When there is a change in the propagation state based on the change in the state of the spherical surface, It is expected to be an ultra-sensitive sensor because it can detect changes in phase (phase change) and surface acoustic wave intensity with high sensitivity.

しかし、所定の周波数を有したバースト信号を入力して、その後の周回に伴う信号の位相を測定する場合、周回に伴い(励起させた時刻から時間が経過するに従って)強度が低下するために、素子からの出力信号を増幅するに際して、周回が多くなり、周回時間が長くなるに連れて増幅率を大幅に大きくしなくてはならず、増幅率可変の回路か、可変の減衰器か、あるいは高価な非常にダイナミックレンジの広いデジタイザーを利用したり、あるいはログアンプをもちいることで対処をしなくてはならなかった。   However, when a burst signal having a predetermined frequency is input and the phase of the signal accompanying the subsequent lap is measured, the intensity decreases with the lap (as time elapses from the time of excitation). When amplifying the output signal from the element, the number of laps increases, and as the lap time increases, the gain must be significantly increased, either a variable gain circuit, a variable attenuator, or We had to deal with it by using an expensive, very dynamic range digitizer or using a log amp.

さらに、従来の球状弾性表面波素子の使用において、周回時間と励起する弾性表面波の周波数によっては、周囲の温度が変化する際に出力信号の位相が不規則な振る舞いが観測される事があり、測定の安定性確保の点で課題とされていた。   In addition, when using a conventional spherical surface acoustic wave device, an irregular behavior of the phase of the output signal may be observed when the ambient temperature changes depending on the lap time and the frequency of the excited surface acoustic wave. This was a problem in terms of ensuring measurement stability.

本発明は上記事情の下でなされ、本発明の目的は、所定の周波数を有したバースト信号を入力して、その後の周回に伴う信号の位相を測定するのが容易であり、さらに、周回時間と励起する弾性表面波の周波数によっても測定の安定性を確保することが出来る、弾性表面波素子の使用方法を提供することである。   The present invention has been made under the above circumstances, and an object of the present invention is to easily input a burst signal having a predetermined frequency and measure the phase of the signal accompanying the subsequent lap, and further, the lap time Another object of the present invention is to provide a method of using a surface acoustic wave device that can ensure measurement stability even with the frequency of the surface acoustic wave excited.

上述した如きこの発明の目的を達成する為に、この発明に従った状弾性表面波素子の使用方法は:
弾性表面波が伝搬可能な完全球形表面を有する3次元基体と、前記表面に前記弾性表面波を励起し前記表面に沿い前記弾性表面波を伝搬させ周回させるとともに前記表面を伝搬する前記弾性表面波を受信可能な電気音響変換素子と、前記電気音響変換素子により前記表面に励起された前記弾性表面波の前記表面における伝搬を遮断しないよう前記3次元基体を支持する3次元基体支持体と、を備えていて、
前記3次元基体の完全球形表面において前記3次元基体支持体及び弾性表面波の伝搬を阻害する外部物質接触していない部分の表面積が、前記3次元基体の完全形表面の面積に対して95%以上であるとともに、前記3次元基体が圧電性結晶材料で構成されている球状弾性表面波素子を用い、
前記電気音響変換素子に入力されて弾性表面波を励起する電気信号は時間的に限られたバースト信号であり、前記弾性表面波の励起の終了後に、表面における弾性表面波の周回に伴って減衰する前記電気音響変換素子からの高周波信号の強度の時間あたりの減衰率が変化する時刻よりも後の時刻で前記電気音響変換素子から出力される高周波信号の位相あるいは強度の測定に基いて前記弾性表面波の伝搬状態を計測する、
ことを特徴としている。
To achieve as mentioned above object of the present invention, the use of spherical shaped surface acoustic wave device in accordance with the invention:
A three-dimensional substrate having a perfect spherical surface capable of propagating surface acoustic waves, and the surface acoustic waves that excite the surface acoustic waves on the surface and propagate and circulate the surface acoustic waves along the surface and propagate through the surface And a three-dimensional substrate support that supports the three-dimensional substrate so as not to block propagation of the surface acoustic waves excited on the surface by the electroacoustic transducer on the surface. Have
Surface area of the portion not in contact with the external substance which inhibits the propagation of pre-Symbol 3-dimensional substrate support and a surface acoustic wave Te complete spherical surface smell of the 3-dimensional substrate, the entire full sphere shape table surface of the three-dimensional substrate Using a spherical surface acoustic wave element that is 95% or more with respect to the area and in which the three-dimensional substrate is made of a piezoelectric crystal material,
Electrical signals to excite the inputted surface acoustic wave to the electro-acoustic transducer element is a burst signal is limited in time, the after termination of excitation of a surface acoustic wave, the circulation of the surface acoustic wave in the sphere-shaped surface in after time the attenuation rate changes per hour of the intensity of the high frequency signal from the electroacoustic transducer to attenuate with the measurement of the phase or the intensity of the high-frequency signal output from the electroacoustic transducer based on measuring the propagation state before Symbol surface acoustic wave,
It is characterized by that.

上述した如きこの発明の目的を達成する為に、この発明に従ったもう1つの球状弾性表面波素子の使用方法は:前記電気音響変換素子からの高周波信号強度の時間あたりの減衰率が変化する時刻よりも後の時刻で前記弾性表面波の伝搬状態を計測する時に、前記減衰率が変化する時刻より前の時間あたりの減衰率(A)と前記減衰率が変化する時刻より後ろの時間あたりの減衰率(B)との差が5dBよりも大きくなる時刻における電気音響変換素子からの出力を利用して、前記弾性表面波の伝搬状態を計測する、ことを特徴としている。 In order to achieve the object of the present invention as described above, another method of using a spherical surface acoustic wave device according to the present invention is as follows: The attenuation rate per time of the high-frequency signal intensity from the electroacoustic transducer is changed. wherein in after time when measuring the propagation state of the surface acoustic wave, the attenuation ratio per time prior to the time when the attenuation rate changes (a) and the time per behind the time when the attenuation rate changes The propagation state of the surface acoustic wave is measured using the output from the electroacoustic transducer at the time when the difference from the attenuation factor (B) becomes larger than 5 dB .

上述した如く構成されていることを特徴としているこの発明に従った弾性表面波素子によれば、所定の周波数を有したバースト信号を入力して、その後の周回に伴う信号の位相を測定するのが容易であり、さらに、周回時間と励起する弾性表面波の周波数によっても測定の安定性を確保することが出来る。   According to the surface acoustic wave device according to the present invention which is configured as described above, a burst signal having a predetermined frequency is input, and the phase of the signal accompanying the subsequent round is measured. In addition, the measurement stability can be ensured by the circulation time and the frequency of the excited surface acoustic wave.

本発明で弾性表面波と称する弾性表面波は、表面にエネルギーを集中させて伝搬する弾性波であればよく、球内部の球形表面に沿って伝搬する回廊波であっても、漏洩弾性表面波でもよく、また擬似弾性表面波でもよいものとする。   The surface acoustic wave referred to as surface acoustic wave in the present invention may be an acoustic wave that propagates while concentrating energy on the surface, and even if it is a corridor wave that propagates along the spherical surface inside the sphere, it is a leaky surface acoustic wave. Alternatively, a pseudo surface acoustic wave may be used.

電気音響変換素子は、弾性表面波の励起(電気信号を弾性表面波に変換)する機能をもたせたものと、周回する弾性表面波を検出するものとを同一の電気音響変換素子によって担わせても、あるいは上記2つの役割に応じて別個の電気音響変換素子に担わせてもよい。   The electroacoustic transducer has a function of exciting surface acoustic waves (converting an electrical signal into a surface acoustic wave) and one that detects circulating surface acoustic waves by the same electroacoustic transducer. Alternatively, separate electroacoustic transducers may be assigned to the two roles.

発明者は、3次元基体の完全球形表面において3次元基体支持体及び弾性表面波の伝搬を阻害する外部物質と接触していない部分の表面積が、3次元基体の完全球形表面の全表面積に対して95%以上であれば、励起されて最初に検出される弾性表面波の強度の40dB以上減衰し従来観測されていたより小さな減衰率で球表面上を周回する弾性表面波の伝搬が存在する時刻があることを、微弱な出力を検出できたことから発見した。 The inventor has determined that the surface area of the three-dimensional substrate that is not in contact with the three-dimensional substrate support and the external material that inhibits the propagation of the surface acoustic wave is the total surface area of the three-dimensional substrate. if 95% or more Te, excited first attenuated more than 40dB in the intensity of surface acoustic wave detected propagation of surface acoustic waves circulate on spherical-shaped surface with a small attenuation rate than had been observed prior are there that the time to be there, it was discovered it was able to detect fine-weak output.

この発明において、「電気音響変換素子からの高周波信号の強度の時間あたりの減衰率が変化する時刻」とは実際には以下に示すように、すだれ状電極の励起する弾性表面波が前記周回経路近辺から球の中心角30度以上離れた球表面上の領域の5%以上の面積に亘って、弾性波の吸収体あるいは拡散体によって阻害するとき(95%以上の面積を持つ弾性波吸収体あるいは拡散体を少なくとも有する)と、阻害しない時に得られる電気音響変換素子からの出力の減衰曲線の比較によって定める。実際には、阻害する場合と阻害しない場合で時間あたりの出力の減衰率が変化する時間によって実験的に求める事が出来る。   In the present invention, “the time at which the rate of attenuation per time of the intensity of the high-frequency signal from the electroacoustic transducer changes” actually means that the surface acoustic wave excited by the interdigital electrode is the circular path as described below. When obstructed by an elastic wave absorber or diffuser over an area of 5% or more of the area on the surface of the sphere that is 30 ° or more away from the central angle of the sphere (an elastic wave absorber having an area of 95% or more) Or at least having a diffuser) and an attenuation curve of the output from the electroacoustic transducer obtained when not obstructing. Actually, it can be experimentally determined by the time when the attenuation rate of the output per hour changes with and without inhibition.

本発明を添付図面を参照しながら実施の形態を用いて説明する。   The present invention will be described using embodiments with reference to the accompanying drawings.

図1の(a)及び図1の(b)中に示されているこの球状弾性表面波素子10において水晶球11は直径1cmの完全球形であり、この素子において電気音響変換素子とは金とクロム膜を水晶球11の表面に蒸着してフォトリソグラフィーによるエッチングによりパターニングして形成したすだれ状電極12であり、水晶球11のZ軸を地軸として赤道上に且つ、すだれ状電極12から励起された弾性表面波14が赤道を周回する方位(Z軸シリンダー)に形成され、直径5mmパイプ切断によるリング形状のテフロン(登録商標)製支持体16によって支持されている。   In the spherical surface acoustic wave element 10 shown in FIGS. 1A and 1B, the crystal sphere 11 is a perfect sphere having a diameter of 1 cm. In this element, the electroacoustic transducer is gold and The interdigital electrode 12 is formed by depositing a chromium film on the surface of the crystal ball 11 and patterning it by etching by photolithography. The interdigital electrode 12 is excited on the equator with the Z axis of the crystal ball 11 as the ground axis and from the interdigital electrode 12. The surface acoustic wave 14 is formed in an orientation (Z-axis cylinder) that goes around the equator, and is supported by a ring-shaped Teflon (registered trademark) support 16 by cutting a pipe with a diameter of 5 mm.

球状弾性表面波素子10のすだれ状電極12に、純金製の接触型電極棒(接触面積0.01mm 以下)を用いて周波数45MHz、バースト信号幅3マイクロ秒の高周波信号を入力してのちに、同じすだれ状電極12から出力される高周波出力が時間の経過とともに減衰する様子を図1の(c)に実線で示す。横軸を時間、縦軸をデシベル表示によって示している。 A high frequency signal having a frequency of 45 MHz and a burst signal width of 3 microseconds is input to the interdigital electrode 12 of the spherical surface acoustic wave element 10 using a contact electrode bar made of pure gold (contact area of 0.01 mm 2 or less). In addition, a state in which the high-frequency output output from the same interdigital electrode 12 is attenuated as time passes is shown by a solid line in FIG. The horizontal axis indicates time, and the vertical axis indicates decibel display.

次に、図1の(b)中に示すように、前記テフロン(登録商標)製支持体16を外し、水晶球11を赤道から30度以上離れた位置で、鋭角の3本のステンレス製支持針18によって固定した際に出力される信号の同様の強度変化を同じく図1の(c)に破線で示す。この球状弾性表面波素子10の場合1周回に要する時間は0.01msecであって、例えば100周回に相当する時間は1msecになる。   Next, as shown in FIG. 1 (b), the Teflon (registered trademark) support 16 is removed, and the quartz ball 11 is supported at three positions 30 degrees or more away from the equator at three acute angles made of stainless steel. A similar intensity change of a signal output when the needle 18 is fixed is indicated by a broken line in FIG. In the case of this spherical surface acoustic wave element 10, the time required for one round is 0.01 msec, and for example, the time corresponding to 100 rounds is 1 msec.

鋭角の支持針18と水晶球11の接点の面積は一本が0.01mm 以下であり合わせても水晶球11の表面積314mm の一万分の1以下である。120周以上の周回の相当する時間(1.2msec)以降の時刻で、観測時刻(横軸)に対して信号強度の減衰率が小さいことが判る。時間に対する減衰率は、1週目から120周目までは約33dB/msecであり、120周以上では約20dB/msecの時間あたりの減衰率である。 The area of the contact point between the acute-angle support needle 18 and the crystal ball 11 is 0.01 mm 2 or less, and even when combined, the surface area of the crystal ball 11 is 10000 mm 2 or less of 1 / 10,000. It can be seen that the attenuation rate of the signal intensity is small with respect to the observation time (horizontal axis) at a time after a time corresponding to 120 laps or more (1.2 msec). The attenuation rate with respect to time is about 33 dB / msec from the first week to the 120th lap, and is about 20 dB / msec over 120 laps.

図1の(c)において減衰率変化点GHPは減衰率の微分係数が極大を取る時間と表現することも出きるのは当然である。   In FIG. 1C, the attenuation rate change point GHP can naturally be expressed as the time when the differential coefficient of the attenuation rate takes a maximum.

この球状弾性表面波素子10の場合、弾性波吸収体や拡散体の面積が球表面の少なくとも5%以下とし、さらに120周以降で球状弾性表面波素子10の出力の位相計測を行えば、周回数の変化に対して強度が大きく変化しない事から、適当なリミッターによって入力制限を行った後に一定増幅率の増幅を行えば、周回数の異なる時刻の強度変化や位相変化を計測する際に、計測回路の増幅部品の前段に可変アッテネーターを組みこむ必要や、非常に大きなダイナミックレンジを持つデジタイザーを利用したりする必要がなく、広い周回時刻範囲での出力計測が可能なことが明らかである。当然、非常に長く伝搬させた弾性表面波14を電気信号として検出して出力するために、高感度に弾性表面波14の伝搬状態モニター出来る方法になる。   In the case of this spherical surface acoustic wave element 10, if the area of the elastic wave absorber or diffuser is at least 5% or less of the sphere surface and the phase of the output of the spherical surface acoustic wave element 10 is measured after 120 laps, Since the intensity does not change greatly with the change in the number of times, if you limit the input with an appropriate limiter and perform amplification with a constant amplification factor, when measuring the intensity change and phase change at different times of laps, It is clear that it is not necessary to incorporate a variable attenuator in front of the amplification component of the measurement circuit or to use a digitizer with a very large dynamic range, and it is clear that output measurement can be performed in a wide range of lap times. Naturally, since the surface acoustic wave 14 propagated for a very long time is detected and output as an electrical signal, the propagation state of the surface acoustic wave 14 can be monitored with high sensitivity.

次に、弾性波の吸収や拡散させる面積と減衰率の小さな領域の発生する条件の出し方について説明を加える。   Next, a description will be given of how to generate conditions for generating an area where the elastic wave is absorbed and diffused and a region having a small attenuation rate.

図2中に示されているように、水晶球11の表面の何れの場所においても(例えばA点、B点、C点)、球表面を5%以上の面積で弾性波14の伝搬を阻害する例えば先端断面の直径がDmmのシリコンゴム20を接触させると上記破線で示す長時間の周回を観測する事は困難であることを実験で確認した。確認の方法は、直径の異なるシリコンゴム20製の棒材を水晶球11の様々な位置で圧迫する際の信号の変化によって容易であるが、C点の様に周回経路22から十分離れた例えば緯度方向に赤道から30度離れた位置で行なう。周回経路22に近いと周回現象自体を阻害する。   As shown in FIG. 2, at any location on the surface of the crystal sphere 11 (for example, point A, point B, point C), the propagation of the elastic wave 14 is inhibited by an area of 5% or more on the sphere surface. For example, when silicon rubber 20 having a tip cross-sectional diameter of D mm is brought into contact, it has been experimentally confirmed that it is difficult to observe the long-time rotation indicated by the broken line. The confirmation method is easy due to changes in the signal when the rods made of silicon rubber 20 having different diameters are pressed at various positions of the crystal ball 11, but are sufficiently separated from the circulation path 22 such as point C, for example. It is performed at a position 30 degrees away from the equator in the latitude direction. If it is close to the circulation path 22, the circulation phenomenon itself is inhibited.

シリコンゴム20の直径Dが3mmの場合(球面積の2.2%)の場合、は図1の(c)で破線に近い出力変化のグラフを得ることが出来たが、直径Dが5mmの場合(6.3%)の場合では雑音レベルを除いて完全に実線同様の出力となり、時間あたりの減衰率の小さな信号を検出できなかった。

When the diameter D of the silicon rubber 20 is in the case of 3 mm (2.2% of the spherical product), has been able to obtain a graph of output change close to the dashed line in the FIG. 1 (c), the diameter D of 5mm In the case (6.3%), the output was completely the same as the solid line except for the noise level, and a signal with a small attenuation rate per time could not be detected.

さらに、図2中において、A点とB点で外部の接触があった場合、図1の(c)中の1.3msecより遠い時刻の信号出力は10dB以上の低下を示したが、1msecの時刻の信号強度は殆ど変化がなかった。上記減衰の小さい領域の信号は球表面の広い範囲で外部付着物の検出や濡れに対して感度を有しており、球状弾性表面波素子10の表面状態の検証を信号の変化に従って行う事も可能である。   Furthermore, in FIG. 2, when there was an external contact at points A and B, the signal output at a time farther than 1.3 msec in FIG. 1 (c) showed a drop of 10 dB or more, but 1 msec. The signal strength at the time was almost unchanged. The signal of the small attenuation region has sensitivity to detection of external deposits and wetting over a wide range of the sphere surface, and the surface state of the spherical surface acoustic wave element 10 can be verified according to the change of the signal. Is possible.

球状弾性表面波素子10を用いて、球状弾性表面波素子10の表面に付着する物質が存在したり、その量が増えるに従って、電気音響変換素子(この場合は、すだれ状電極12)から出力される信号の位相は遅くなる。この現象を用いて、球状弾性表面波素子10の表面にアルブミンを付着させる時の45MHz素子の位相変化を、図1の(c)中の0.7msec、1.3msec、1.5msecの時刻で測定したところ、1.3msecの時刻の信号を持ちいて測定した位相によっては測定値が15%以上変動した。測定値が変動する領域は、図1の(c)において実線と破線の差(G)が5dBの範囲であり、それよりも時間的に離れた時刻で測定することが望まれた。   Using the spherical surface acoustic wave element 10, the substance that is attached to the surface of the spherical surface acoustic wave element 10 is output from the electroacoustic transducer (in this case, the interdigital electrode 12) as the amount thereof increases. The signal phase is delayed. Using this phenomenon, the phase change of the 45 MHz element when albumin is attached to the surface of the spherical surface acoustic wave element 10 is represented by the time of 0.7 msec, 1.3 msec, and 1.5 msec in FIG. As a result of measurement, the measured value fluctuated by 15% or more depending on the phase measured with a time signal of 1.3 msec. In the region where the measured value fluctuates, the difference (G) between the solid line and the broken line in FIG. 1C is in the range of 5 dB, and it was desired to measure at a time that is further away from that time.

0.7msecの時刻で測定する場合は高いSN比が得られるが、1.5msecの測定では周回数が大きいことからSN比は低下するが、実際上は極微量の付着を検出する際に、位相変化が時刻に周回時間に比例して大きく測定出来る。結果的に、位相測定における最小計測単位による制限を受けにくいために最も精度の高い測定を実現できる長所を有している。   When measuring at a time of 0.7 msec, a high S / N ratio is obtained, but with a measurement of 1.5 msec, the S / N ratio decreases because the number of laps is large, but in practice, when detecting a very small amount of adhesion, The phase change can be measured greatly in proportion to the lap time at the time. As a result, since it is difficult to be limited by the minimum measurement unit in the phase measurement, it has an advantage that the most accurate measurement can be realized.

(a)は、この発明の一実施の形態に従った球状弾性表面波素子の使用方法において比較のために使用される球状弾性表面波素子を概略的に示す図であり; (b)は、この発明の一実施の形態に従った球状弾性表面波素子の使用方法において使用される球状弾性表面波素子の一例を概略的に示す図であり; (c)は、(a)に示されている球状弾性表面波素子における時間の経過に伴う信号強度の低下を実線で、そして(b)に示されている球状弾性表面波素子における時間の経過に伴う信号強度の低下を破線で、示す図である。(A) is a figure which shows roughly the spherical surface acoustic wave element used for the comparison in the usage method of the spherical surface acoustic wave element according to one embodiment of this invention; It is a figure which shows roughly an example of the spherical surface acoustic wave element used in the usage method of the spherical surface acoustic wave element according to one embodiment of this invention; (c) is shown by (a) The figure which shows the fall of the signal strength with the progress of time in the spherical surface acoustic wave element which is a solid line, and the broken line the signal intensity with the passage of time in the spherical surface acoustic wave element shown in (b) It is. 球状弾性表面波素子の水晶球の表面の何れの場所においても(例えばA点、B点、C点)、球表面を5%以上の面積で弾性波の伝搬を阻害する例えば先端断面の直径がDmmのシリコンゴムを接触させると上記破線で示す長時間の周回を観測する事は困難であることを確認する実験の様子を概略的に示す斜視図である。At any location on the surface of the crystal ball of the spherical surface acoustic wave element (for example, point A, point B, point C), the diameter of the tip cross-section that obstructs the propagation of the acoustic wave with an area of 5% or more on the sphere surface It is a perspective view which shows roughly the mode of the experiment which confirms that it is difficult to observe the circumference | surroundings for a long time shown with the said broken line, when a Dmm silicon rubber is made to contact.

符号の説明Explanation of symbols

10…球状弾性表面波素子、11…水晶球、12…すだれ状電極(電気音響変換素子)、14…弾性表面波、16…テフロン(登録商標)製支持体、18…ステンレス製支持針、20…シリコンゴム、22…周回経路。   DESCRIPTION OF SYMBOLS 10 ... Spherical surface acoustic wave element, 11 ... Quartz ball, 12 ... Interdigital electrode (electroacoustic transducer), 14 ... Surface acoustic wave, 16 ... Teflon (trademark) support body, 18 ... Stainless steel support needle, 20 ... Silicone rubber, 22 ... Circular route.

Claims (2)

弾性表面波が伝搬可能な完全球形表面を有する3次元基体と、前記表面に前記弾性表面波を励起し前記表面に沿い前記弾性表面波を伝搬させ周回させるとともに前記表面を伝搬する前記弾性表面波を受信可能な電気音響変換素子と、前記電気音響変換素子により前記表面に励起された前記弾性表面波の前記表面における伝搬を遮断しないよう前記3次元基体を支持する3次元基体支持体と、を備えていて、
前記3次元基体の完全球形表面において前記3次元基体支持体及び弾性表面波の伝搬を阻害する外部物質接触していない部分の表面積が、前記3次元基体の完全形表面の面積に対して95%以上であるとともに、前記3次元基体が圧電性結晶材料で構成されている球状弾性表面波素子を用い、
前記電気音響変換素子に入力されて弾性表面波を励起する電気信号は時間的に限られたバースト信号であり、前記弾性表面波の励起の終了後に、表面における弾性表面波の周回に伴って減衰する前記電気音響変換素子からの高周波信号の強度の時間あたりの減衰率が変化する時刻よりも後の時刻で前記電気音響変換素子から出力される高周波信号の位相あるいは強度の測定に基いて前記弾性表面波の伝搬状態を計測する、ことを特徴とする球状弾性表面波素子の使用方法。
A three-dimensional substrate having a perfect spherical surface capable of propagating surface acoustic waves, and the surface acoustic waves that excite the surface acoustic waves on the surface and propagate and circulate the surface acoustic waves along the surface and propagate through the surface And a three-dimensional substrate support that supports the three-dimensional substrate so as not to block propagation of the surface acoustic waves excited on the surface by the electroacoustic transducer on the surface. Have
Surface area of the portion not in contact with the external substance which inhibits the propagation of pre-Symbol 3-dimensional substrate support and a surface acoustic wave Te complete spherical surface smell of the 3-dimensional substrate, the entire full sphere shape table surface of the three-dimensional substrate Using a spherical surface acoustic wave element that is 95% or more with respect to the area and in which the three-dimensional substrate is made of a piezoelectric crystal material,
Electrical signals to excite the inputted surface acoustic wave to the electro-acoustic transducer element is a burst signal is limited in time, the after termination of excitation of a surface acoustic wave, the circulation of the surface acoustic wave in the sphere-shaped surface in after time the attenuation rate changes per hour of the intensity of the high frequency signal from the electroacoustic transducer to attenuate with the measurement of the phase or the intensity of the high-frequency signal output from the electroacoustic transducer based measure the propagation condition before Symbol surface acoustic waves, the use of spherical surface acoustic wave device characterized by.
前記電気音響変換素子からの高周波信号強度の時間あたりの減衰率が変化する時刻よりも後の時刻で前記弾性表面波の伝搬状態を計測する時に、前記減衰率が変化する時刻より前の時間あたりの減衰率(A)と前記減衰率が変化する時刻より後ろの時間あたりの減衰率(B)との差が5dBよりも大きくなる時刻における電気音響変換素子からの出力を利用して、前記弾性表面波の伝搬状態を計測する、ことを特徴とする請求項1に記載の球状弾性表面波素子の使用方法。 When measuring the propagation state of the surface acoustic wave at a time later than the time when the attenuation rate per hour of the high-frequency signal intensity from the electroacoustic transducer changes, per time before the time when the attenuation rate changes The output from the electroacoustic transducer at the time when the difference between the attenuation rate (A) and the attenuation rate per time (B) after the time when the attenuation rate changes is greater than 5 dB , 2. The method of using a spherical surface acoustic wave device according to claim 1, wherein a propagation state of the surface wave is measured.
JP2004361831A 2004-12-14 2004-12-14 Usage of surface acoustic wave device Expired - Fee Related JP4696550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004361831A JP4696550B2 (en) 2004-12-14 2004-12-14 Usage of surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004361831A JP4696550B2 (en) 2004-12-14 2004-12-14 Usage of surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2006173917A JP2006173917A (en) 2006-06-29
JP4696550B2 true JP4696550B2 (en) 2011-06-08

Family

ID=36674211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004361831A Expired - Fee Related JP4696550B2 (en) 2004-12-14 2004-12-14 Usage of surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP4696550B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5186839B2 (en) * 2007-08-27 2013-04-24 凸版印刷株式会社 Surface acoustic wave device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045255A1 (en) * 1999-12-17 2001-06-21 Toppan Printing Co., Ltd. Saw device
JP2005101974A (en) * 2003-09-25 2005-04-14 Toppan Printing Co Ltd Method and instrument for driving and measuring spherical surface acoustic wave element
JP2005291955A (en) * 2004-03-31 2005-10-20 Toppan Printing Co Ltd Environmental difference detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045255A1 (en) * 1999-12-17 2001-06-21 Toppan Printing Co., Ltd. Saw device
JP2005101974A (en) * 2003-09-25 2005-04-14 Toppan Printing Co Ltd Method and instrument for driving and measuring spherical surface acoustic wave element
JP2005291955A (en) * 2004-03-31 2005-10-20 Toppan Printing Co Ltd Environmental difference detector

Also Published As

Publication number Publication date
JP2006173917A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
US20130233080A1 (en) System for detecting and locating a disturbance in a medium, and corresponding method and computer program
Aindow et al. AMPLITUDE AND PHASE DIRECTIONALITY MEASUREMENTS ON PIEZOELECTRIC CERAMIC HYDROPHONES IN THE LOW MEGA HERTZ FREQUENCY RANGE
JP4696550B2 (en) Usage of surface acoustic wave device
JP2006071482A (en) Analysis method of propagation face of multiple round surface acoustic wave element and element of the same
JP4337488B2 (en) Method and apparatus for measuring drive of spherical surface acoustic wave device
US20110247419A1 (en) Time reversal acoustic noncontact source
JP4556442B2 (en) Surface acoustic wave device
JP2007225509A (en) Dew point recorder
JP4631615B2 (en) Surface acoustic wave propagation state measuring device, surface acoustic wave propagation state measuring method, environment change measuring device, environment change measuring method, and multi-round surface acoustic wave element
JP4426803B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP2005191650A (en) Surface acoustic wave element using langasite crystal and environment difference detector employing surface acoustic wave element
JP2004264221A (en) Ultrasonic sensor
JP4876562B2 (en) Spherical surface acoustic wave device
US9038472B2 (en) Testing method using guided wave
WO2022030251A1 (en) Propagation time measurement device
JP2008116404A (en) Humidity sensor
RU2550697C1 (en) Sensor based on surface acoustic waves to measure concentration of carbon dioxide
Nakaso et al. Diffraction-free propagation of collimated SAW around a quartz ball
JP2010004567A (en) Surface acoustic wave element and environmental difference detection apparatus using the same
JPH07198428A (en) Surface acoustic wave sensor
JP5533509B2 (en) Spherical surface acoustic wave device
JP4700748B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP2001124863A (en) Object detector
JP2971361B2 (en) Ultrasonic flaw detector for metal sheet
JP5310362B2 (en) Spherical surface acoustic wave device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

LAPS Cancellation because of no payment of annual fees