JP4952050B2 - Sensor holder - Google Patents

Sensor holder Download PDF

Info

Publication number
JP4952050B2
JP4952050B2 JP2006131303A JP2006131303A JP4952050B2 JP 4952050 B2 JP4952050 B2 JP 4952050B2 JP 2006131303 A JP2006131303 A JP 2006131303A JP 2006131303 A JP2006131303 A JP 2006131303A JP 4952050 B2 JP4952050 B2 JP 4952050B2
Authority
JP
Japan
Prior art keywords
sensor holder
acoustic wave
liquid
surface acoustic
spherical surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006131303A
Other languages
Japanese (ja)
Other versions
JP2007303911A (en
Inventor
恒郎 大木
教尊 中曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2006131303A priority Critical patent/JP4952050B2/en
Publication of JP2007303911A publication Critical patent/JP2007303911A/en
Application granted granted Critical
Publication of JP4952050B2 publication Critical patent/JP4952050B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は球形状のセンサー素子を保持するセンサーホルダーに関する。   The present invention relates to a sensor holder that holds a spherical sensor element.

球状弾性表面波素子を用いたセンサーを使って生体物質の評価、例えば、蛋白質の有無を評価する技術が提案されている(特許文献1参照)。
この場合、1マイクロリットル程度の非常に少量の被分析用液体を球状弾性表面波素子に接触させなくてはならない。
特開2005−147736号公報
There has been proposed a technique for evaluating a biological substance, for example, the presence or absence of a protein, using a sensor using a spherical surface acoustic wave element (see Patent Document 1).
In this case, a very small amount of liquid for analysis of about 1 microliter must be brought into contact with the spherical surface acoustic wave element.
JP 2005-147736 A

少量の液体を球状弾性表面波素子に接触させる方法として、図1(A)、(B)に示すように、複数の球形の孔2を持った樹脂基板からなるセンサーホルダー4に球状弾性表面波素子6を埋め込み、流路7を介して薬液を孔2に供給する方法が考案されている。
しかしながら、この方法では、球状弾性表面波素子6の再利用に為に球状弾性表面波素子6を取り外すことが困難で、また球状弾性表面波素子6を薬液に接触させた後にリンスさせるために大量の液体を流す事が困難となる不利があった。
つまり、液体状のサンプルを処理して測定するセンサーにおいては、少量の薬液やサンプルを効率的に球状弾性表面波素子6に接触させるとともに、球状弾性表面波素子6をリンスするなどの大量の薬液処理を容易に行なうことが望まれている。
さらに、球状弾性表面波素子6においては、その駆動において、電極6A(少なくともすだれ状電極あるいは櫛型電極が2極)と外部高周波回路と接続する配線8が必要であるが、このようなセンサーホルダー4を用いた場合には、センサーホルダー4に配線8をパターニングする必要がありセンサーホルダー4を使い捨てとした場合にコスト高となることが懸念される。
本発明は、従来の技術における、前記の様な問題点を解決するためになされたものであり、その目的は、球形状のセンサー素子の再利用が可能で、少量の薬液やサンプルなどを球形状のセンサー素子に対して効率よく接触させ、リンス処理などにおける大量の薬液処理を容易に行なうことができ、コスト低減を図る上でも有利なセンサーホルダーを提供することにある。
As a method of bringing a small amount of liquid into contact with a spherical surface acoustic wave element, as shown in FIGS. 1A and 1B, a spherical surface acoustic wave is applied to a sensor holder 4 made of a resin substrate having a plurality of spherical holes 2. A method has been devised in which the element 6 is embedded and a chemical solution is supplied to the hole 2 through the flow path 7.
However, in this method, it is difficult to remove the spherical surface acoustic wave element 6 in order to reuse the spherical surface acoustic wave element 6, and a large amount is required to rinse the spherical surface acoustic wave element 6 after contacting the chemical liquid. There was a disadvantage that it was difficult to flow the liquid.
In other words, in a sensor that processes and measures a liquid sample, a large amount of chemical liquid such as a small amount of chemical liquid or sample that efficiently contacts the spherical surface acoustic wave element 6 and rinses the spherical surface acoustic wave element 6. It is desirable to perform the processing easily.
Further, the spherical surface acoustic wave element 6 requires a wiring 8 for connecting the electrode 6A (at least two interdigital electrodes or comb-shaped electrodes) and an external high-frequency circuit for driving thereof. When 4 is used, it is necessary to pattern the wiring 8 on the sensor holder 4, and there is a concern that the cost increases when the sensor holder 4 is disposable.
The present invention has been made in order to solve the above-mentioned problems in the prior art, and the purpose thereof is to enable reuse of a spherical sensor element, and a small amount of a chemical solution or sample can be used as a sphere. An object of the present invention is to provide a sensor holder that can be efficiently brought into contact with a sensor element in a shape, can easily perform a large amount of chemical treatment in a rinsing process, etc., and is advantageous for cost reduction.

本発明は前記課題を解決するためになされたものであり、請求項1記載の発明は、球面の一部で形成され円環状に連続する周面を有し前記周面でその外径が最も大きい円周に沿って感受領域が形成されたセンサー素子を保持するセンサーホルダーであって、板状のセンサーホルダー基材と、前記センサーホルダー基材の厚さ方向に貫通形成された貫通孔と、前記貫通孔の内周面の下部に前記感受領域の外径よりも小さい寸法の内径で形成され前記センサー素子を保持する保持部と、記感受領域に対向する前記貫通孔の内周面の部分に、前記内周面の半径方向外方に窪むように形成された液体保持用凹部と、前記液体保持用凹部に液体が導入される導入路とを備え、前記液体保持用凹部に導入された液体が表面張力によって前記感受領域に接触するように構成され、前記センサー素子は、球状弾性表面波素子であり、前記感受領域の周方向の一部に弾性表面波を発生させるためのすだれ状電極が形成され、前記貫通孔の内周面が前記すだれ状電極に臨む箇所に、前記液体保持用凹部よりも前記内周面の径方向外方に窪む凹部が、前記センサーホルダー基材の厚さ方向に貫通形成され、この凹部により前記液体保持用凹部に導入された液体が前記すだれ状電極に接触しないように構成されていることを特徴とする。
請求項2の発明は、前記貫通孔が複数設けられ、各貫通孔に前記保持部と前記液体保持用凹部がそれぞれ設けられ、かつ、各貫通孔にそれぞれ前記導入路が接続されていることを特徴とする。
請求項3の発明は、前記液体保持用凹部とは異なる前記センサーホルダー基材の箇所に前記導入路に前記液体を供給するための液体投入口が設けられていることを特徴とする。
請求項4の発明は、前記センサーホルダーのうち、前記貫通孔の内周面を除く箇所の表面に疎水処理が施されていることを特徴とする。
請求項5の発明は、前記液体保持用凹部の上下方向の寸法は前記感受領域と同じ寸法かあるいは前記感受領域よりも大きな寸法で形成されていることを特徴とする。
請求項6の発明は、前記センサー素子は、球状弾性表面波素子であり、前記球状弾性表面波素子で発生する弾性表面波は前記感受領域に沿って周回することを特徴とする。
請求項7の発明は、前記センサー素子は、球状弾性表面波素子であり、前記感受領域の周方向の一部に弾性表面波を発生させるためのすだれ状電極が形成され、前記すだれ状電極に導通する接続用電極が前記球状弾性表面波素子の表面に形成され、前記センサー素子が前記保持部に保持された状態で、前記接続用電極が前記貫通孔から露出していることを特徴とする。
The present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 has a peripheral surface formed of a part of a spherical surface and continuing in an annular shape, and the outer diameter of the peripheral surface is the largest. A sensor holder for holding a sensor element in which a sensitive area is formed along a large circumference, a plate-shaped sensor holder base material, and a through-hole formed through in the thickness direction of the sensor holder base material, A holding portion for holding the sensor element formed at an inner diameter smaller than the outer diameter of the sensing area at a lower portion of the inner circumferential surface of the through hole, and a portion of the inner circumferential surface of the through hole facing the sensing area A liquid holding recess formed so as to be recessed outward in the radial direction of the inner peripheral surface, and an introduction path through which liquid is introduced into the liquid holding recess, and the liquid introduced into the liquid holding recess Contacts the sensitive area by surface tension Is configured so that the sensor element is a spherical surface acoustic wave device, the interdigital electrodes for generating a surface acoustic wave on a part of circumferential direction of the sensitive region is formed, the inner periphery of the through hole A concave portion that is recessed outward in the radial direction of the inner peripheral surface from the concave portion for holding the liquid is formed so as to penetrate in the thickness direction of the sensor holder base material at a location where the surface faces the interdigital electrode. The liquid introduced into the liquid holding recess is configured not to contact the interdigital electrode .
According to a second aspect of the present invention, a plurality of the through holes are provided, the holding portions and the liquid holding concave portions are respectively provided in the through holes, and the introduction path is connected to the through holes. Features.
The invention of claim 3 is characterized in that a liquid inlet for supplying the liquid to the introduction path is provided at a position of the sensor holder base material different from the liquid holding recess.
The invention of claim 4 is characterized in that the surface of the sensor holder excluding the inner peripheral surface of the through hole is subjected to a hydrophobic treatment.
The invention according to claim 5 is characterized in that the dimension of the liquid holding recess in the vertical direction is the same as that of the sensitive area or larger than the sensitive area.
The invention according to claim 6 is characterized in that the sensor element is a spherical surface acoustic wave element, and the surface acoustic wave generated by the spherical surface acoustic wave element circulates along the sensitive region.
According to a seventh aspect of the invention, the sensor element is a spherical surface acoustic wave element, and an interdigital electrode for generating a surface acoustic wave is formed in a part of a circumferential direction of the sensitive region, and the interdigital electrode is formed on the interdigital electrode. A conductive connection electrode is formed on the surface of the spherical surface acoustic wave element, and the connection electrode is exposed from the through hole in a state where the sensor element is held by the holding portion. .

本発明によれば、球形状のセンサー素子の再利用が可能で、少量の液体を球形状のセンサー素子に効率よくかつ容易に接触させることができ、リンス処理などにおける大量の薬液処理を容易に行なうことができ、コスト低減を図る上でも有利となる。   According to the present invention, a spherical sensor element can be reused, a small amount of liquid can be brought into contact with the spherical sensor element efficiently and easily, and a large amount of chemical processing in a rinsing process or the like can be easily performed. This is advantageous in terms of cost reduction.

(第1の実施の形態)
以下、本発明の実施の形態を図面を参照して詳細に説明する。
図2は第1の実施の形態のセンサーホルダー30の断面図、図3は図2のA矢視図である。
センサーホルダー30に保持される球状弾性表面波素子10(特許請求の範囲のセンサー素子に相当)から説明する。
図2、図3に示すように、球状弾性表面波素子10は、球面の一部で形成されていて円環状に連続している領域12を含む表面14を有する基材16と、表面14に設けられ弾性表面波を領域12に沿って発生させる弾性表面波発生部18とを含んでいる。基材16は圧電性材料で形成され、圧電性材料として例えば水晶が用いられる。
本実施の形態では、領域12は、前記球面の最大円周線に沿った感受領域12A(周回領域)を含んでいる。
弾性表面波発生部18は、領域12上に設けられた2つのすだれ状(櫛歯状)の電極20、22で構成されている。電極20、22に高周波信号が印加されることで発生する弾性表面波は感受領域12Aに沿って周回する。
領域12を挟んで基材16の直径方向の両端の表面14に位置する箇所には、一方の電極20に導通する接続用電極24と、他方の電極22に導通する接続用電極26とがそれぞれ形成されている。
(First embodiment)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
2 is a cross-sectional view of the sensor holder 30 according to the first embodiment, and FIG. 3 is a view taken in the direction of arrow A in FIG.
The spherical surface acoustic wave element 10 (corresponding to the sensor element in the claims) held by the sensor holder 30 will be described.
As shown in FIGS. 2 and 3, the spherical surface acoustic wave element 10 includes a base material 16 having a surface 14 including a region 12 formed of a part of a spherical surface and continuous in an annular shape, and a surface 14. And a surface acoustic wave generator 18 that generates surface acoustic waves along the region 12. The base material 16 is formed of a piezoelectric material, and for example, quartz is used as the piezoelectric material.
In the present embodiment, the region 12 includes a sensitive region 12A (circular region) along the maximum circumference of the spherical surface.
The surface acoustic wave generator 18 includes two interdigital electrodes 20 and 22 provided on the region 12. A surface acoustic wave generated by applying a high frequency signal to the electrodes 20 and 22 circulates along the sensitive region 12A.
A connection electrode 24 that is electrically connected to one electrode 20 and a connection electrode 26 that is electrically connected to the other electrode 22 are respectively located at positions located on the surfaces 14 at both ends in the diameter direction of the base material 16 with the region 12 interposed therebetween. Is formed.

図2、図3に示すように、センサーホルダー30は、センサーホルダー基材32と、保持部34と、液体保持用凹部36と、導入路38とを含んで構成されている。
センサーホルダー基材32は板状に形成され、センサーホルダー基材32には、球状弾性表面波素子10が保持される貫通孔40が厚さ方向に貫通形成されている。
保持部34は、貫通孔40の内周面の下部に感受領域12Aの外径よりも小さい寸法の内径で形成され球状弾性表面波素子10を着脱可能に保持するように構成され、球状弾性表面波素子10の再利用が可能となっている。
また、センサーホルダー30は、球状弾性表面波素子10が保持部34に保持された状態で、接続用電極24、26が貫通孔40から露出するように構成されている。
液体保持用凹部36は、感受領域12Aに対向する貫通孔40の内周面の部分に、その内周面の半径方向外方に窪むように形成されている。液体保持用凹部36の上下方向の寸法は感受領域12Aと同じ寸法かあるいは感受領域12Aよりも大きな寸法で形成されている。
導入路38は、液体保持用凹部36に液体L(薬液、サンプル)が導入されるように構成されている。
本実施の形態では、保持部34に球状弾性表面波素子10が保持された状態で、感受領域12Aの全周と液体保持用凹部36を構成するセンサーホルダー基材32の壁面との間には1mm以下の隙間が確保されている。
そして、液体保持用凹部36に導入された液体Lが表面張力によって感受領域12Aに接触するように構成されている。したがって、少量の液体Lを球状弾性表面波素子10に対して効率よく接触させる上で有利となっている。
センサーホルダー基材32の表面は、流路38を流れる液体Lが外部に漏れることが無いように、疎水性の膜、すなわち撥水膜42が形成されていることが有用である。
疎水性の膜を形成する材料は、例えば、ポリ弗化エチレンであり、流路38に進入しない粘度の高い材料を塗布することが望まれる。塗布方法としては、印刷、あるいは、スパッタ真空膜技術など従来公知の様々な方法が採用可能である。
As shown in FIGS. 2 and 3, the sensor holder 30 includes a sensor holder base 32, a holding part 34, a liquid holding recess 36, and an introduction path 38.
The sensor holder base material 32 is formed in a plate shape, and a through hole 40 for holding the spherical surface acoustic wave element 10 is formed through the sensor holder base material 32 in the thickness direction.
The holding part 34 is formed in the lower part of the inner peripheral surface of the through hole 40 with an inner diameter smaller than the outer diameter of the sensitive region 12A, and is configured to detachably hold the spherical surface acoustic wave element 10, and has a spherical elastic surface. The wave element 10 can be reused.
The sensor holder 30 is configured such that the connection electrodes 24 and 26 are exposed from the through hole 40 in a state where the spherical surface acoustic wave element 10 is held by the holding portion 34.
The liquid holding recess 36 is formed in a portion of the inner peripheral surface of the through hole 40 facing the sensitive area 12A so as to be recessed outward in the radial direction of the inner peripheral surface. The vertical dimension of the liquid holding recess 36 is the same as the sensitive area 12A or larger than the sensitive area 12A.
The introduction path 38 is configured such that the liquid L (chemical solution, sample) is introduced into the liquid holding recess 36.
In the present embodiment, in a state where the spherical surface acoustic wave element 10 is held by the holding portion 34, it is between the entire circumference of the sensitive area 12 </ b> A and the wall surface of the sensor holder base material 32 constituting the liquid holding recess 36. A gap of 1 mm or less is secured.
And it is comprised so that the liquid L introduced into the recessed part 36 for liquid holding | maintenance may contact the sensitive area | region 12A with surface tension. Therefore, it is advantageous for bringing a small amount of the liquid L into contact with the spherical surface acoustic wave element 10 efficiently.
It is useful that a hydrophobic film, that is, a water repellent film 42 is formed on the surface of the sensor holder base 32 so that the liquid L flowing through the flow path 38 does not leak to the outside.
The material forming the hydrophobic film is, for example, polyfluorinated ethylene, and it is desirable to apply a material having a high viscosity that does not enter the flow path 38. As a coating method, various conventionally known methods such as printing or sputtering vacuum film technology can be adopted.

また、センサーホルダー基材32を構成する材料を球状弾性表面波素子10の基材16よりも硬度が低い合成樹脂、例えば、PVAなどで形成すると、測定が終わり球状弾性表面波素子10の再利用に際にも、球状弾性表面波素子10を保持部34から容易に取り外すことが可能となり、また、球状弾性表面波素子10の感受領域12A(周回経路)がセンサーホルダー基材32によって損傷されることがないので、弾性表面波の周回に伴う減衰量を抑制する上で有利となる。
また、図3に示すように、感受領域12Aに対向する貫通孔40の内周面の部分に、貫通孔40の内周面の径方向外方に窪む凹部40Aを、センサーホルダー基材32の厚さ方向に貫通形成すると、電極20、22部分に対する貫通孔40の内周面の接触を防止でき、電極20、22を保護する上で有利となる。また、このような凹部40Aを設けることにより、液体保持用凹部36に導入された液体Lが電極20、22に接触することが防止される。
すなわち、純水処理などでは問題が無いが、例えば、液体Lが導電性を有する樹脂である場合、その液体Lが電極20、22に回りこむと、電極20、22間の抵抗を低くし、高周波信号を電極20、22に印加して出力信号を引き出す際に、十分な強度の信号を取り出す事が出来ないばかりか、弾性表面波の減衰率測定においてその誤差の要因になることが懸念されるが、本実施の形態のように、凹部40Aの形成により液体Lの回り込みを防止することで、上述の不具合を回避することができ有利となる。
また、凹部40Aを形成することに代えて電極20、22に臨む液体保持用凹部36の壁面の部分に疎水処理を施し、この疎水処理により液体保持用凹部36に導入された液体Lが電極20、22に接触しないように構成しても上述と同様の効果が奏される。
なお、本実施の形態では、貫通孔40の内周面は、保持部34の壁面と、液体保持用凹部36の壁面と、液体保持用凹部36の上部に残存する内周面部分とで構成されているので、前記疎水処理は、電極20、22に臨む液体保持用凹部36の壁面の部分に施せばよい。
Further, when the material constituting the sensor holder base material 32 is formed of a synthetic resin having a hardness lower than that of the base material 16 of the spherical surface acoustic wave element 10, such as PVA, the measurement is finished and the reuse of the spherical surface acoustic wave element 10 is performed. At this time, the spherical surface acoustic wave element 10 can be easily detached from the holding portion 34, and the sensitive area 12 </ b> A (circular path) of the spherical surface acoustic wave element 10 is damaged by the sensor holder base 32. This is advantageous in suppressing the amount of attenuation associated with the circulation of the surface acoustic wave.
Further, as shown in FIG. 3, a recess 40 </ b> A that is recessed radially outward of the inner peripheral surface of the through hole 40 is formed on the inner peripheral surface portion of the through hole 40 facing the sensing area 12 </ b> A. When the through holes are formed in the thickness direction, contact of the inner peripheral surface of the through hole 40 with the electrodes 20 and 22 can be prevented, which is advantageous in protecting the electrodes 20 and 22. Further, by providing such a recess 40A, the liquid L introduced into the liquid holding recess 36 is prevented from coming into contact with the electrodes 20 and 22.
That is, there is no problem in pure water treatment or the like. For example, when the liquid L is a conductive resin, when the liquid L wraps around the electrodes 20, 22, the resistance between the electrodes 20, 22 is reduced, When a high-frequency signal is applied to the electrodes 20 and 22 to extract an output signal, it is not only possible to extract a signal with sufficient strength, but there is also a concern that it may cause an error in measuring the surface acoustic wave attenuation rate. However, as described in the present embodiment, the formation of the recess 40A prevents the liquid L from wrapping around, which is advantageous because the above-described problems can be avoided.
Further, instead of forming the recess 40A, the wall surface of the liquid holding recess 36 facing the electrodes 20 and 22 is subjected to a hydrophobic treatment, and the liquid L introduced into the liquid holding recess 36 by this hydrophobic treatment is applied to the electrode 20. , 22 is configured so as not to contact the same, the same effect as described above can be obtained.
In the present embodiment, the inner peripheral surface of the through hole 40 is composed of the wall surface of the holding portion 34, the wall surface of the liquid holding concave portion 36, and the inner peripheral surface portion remaining on the upper portion of the liquid holding concave portion 36. Therefore, the hydrophobic treatment may be performed on the wall surface portion of the liquid holding recess 36 facing the electrodes 20 and 22.

(第2の実施の形態)
次に第2の実施の形態について説明する。
図4は第2の実施の形態のセンサーホルダー30に多数の球状弾性表面波素子10が装着された状態を示す平面図、図5は第2の実施の形態のセンサーホルダー30をリンスした状態を示す説明図である。
なお、以下の実施の形態において、第1の実施の形態と同一または同様の箇所、部材には同一の符号を付して説明する。
図4に示すように、1つのセンサーホルダー30に多数の貫通孔40が設けられ、各貫通孔40に保持部34と液体保持用凹部36とが設けられ、各貫通孔40にそれぞれ導入路38が接続されている。
液体保持用凹部36とは異なるセンサーホルダー基材32の箇所に導入路38に液体を供給するための液体投入口44が設けられている。
液体投入口44から投入された液体は、液体投入口44に接続された導入路38を介して液体保持用凹部36に導入され、次いで、その液体保持用凹部36に接続された導入路38を介して隣接する貫通孔40の液体保持用凹部36に順次導入される。
その結果、液体投入口44に投入された薬液は、表面張力に従って全ての球状弾性表面波素子10の間を流れ、各球状弾性表面波素子10の感受領域12A(感受面)に作用することとなり、多数の球状弾性表面波素子10に対して少量の薬液を作用させることが可能になる。
(Second Embodiment)
Next, a second embodiment will be described.
FIG. 4 is a plan view showing a state in which a large number of spherical surface acoustic wave elements 10 are mounted on the sensor holder 30 of the second embodiment, and FIG. 5 shows a state in which the sensor holder 30 of the second embodiment is rinsed. It is explanatory drawing shown.
In the following embodiments, the same or similar parts and members as those in the first embodiment will be described with the same reference numerals.
As shown in FIG. 4, a large number of through holes 40 are provided in one sensor holder 30, a holding portion 34 and a liquid holding recess 36 are provided in each through hole 40, and an introduction path 38 is provided in each through hole 40. Is connected.
A liquid inlet 44 for supplying a liquid to the introduction path 38 is provided at a position of the sensor holder base 32 different from the liquid holding recess 36.
The liquid introduced from the liquid inlet 44 is introduced into the liquid holding recess 36 through the introduction path 38 connected to the liquid inlet 44, and then passes through the introduction path 38 connected to the liquid holding recess 36. Then, the liquid is sequentially introduced into the liquid holding recess 36 of the adjacent through hole 40.
As a result, the chemical liquid charged into the liquid inlet 44 flows between all the spherical surface acoustic wave elements 10 according to the surface tension, and acts on the sensitive area 12A (sensitive surface) of each spherical surface acoustic wave element 10. A small amount of chemical solution can be applied to the large number of spherical surface acoustic wave elements 10.

また、センサーホルダー30に装着された多数の球状弾性表面波素子10をリンス処理する場合、図5に示すように、球状弾性表面波素子10の表面14のうち、液体保持用凹部36に臨む部分(少なくとも感受領域12A部分)以外の箇所がセンサーホルダー30の外部に露出していることから、センサーホルダー30ごとリンス処理を行なうことができ、大量の薬液処理を容易に行なう上で有利となる。
特に、センサーホルダー30を純水46が満たされたビーカー48に浸漬した場合、球状弾性表面波素子10の感受領域12A、すなわち、感受部分である周回経路がセンサーホルダー30の外方に露出していないことから、それら感受領域12Aをビーカー44の底部などに接触させる心配が無く、多数の球状弾性表面波素子10を全く同じ条件でリンス処理することができ有利となる。
Further, when rinsing a large number of spherical surface acoustic wave elements 10 mounted on the sensor holder 30, as shown in FIG. 5, a portion of the surface 14 of the spherical surface acoustic wave element 10 that faces the liquid holding recess 36. Since portions other than (at least the sensitive area 12A portion) are exposed to the outside of the sensor holder 30, the entire sensor holder 30 can be rinsed, which is advantageous in easily performing a large amount of chemical treatment.
In particular, when the sensor holder 30 is immersed in a beaker 48 filled with pure water 46, the sensitive area 12A of the spherical surface acoustic wave element 10, that is, the circular path that is the sensitive part, is exposed to the outside of the sensor holder 30. Therefore, there is no concern that these sensitive areas 12A are brought into contact with the bottom of the beaker 44 and the like, and it is advantageous that a large number of spherical surface acoustic wave elements 10 can be rinsed under exactly the same conditions.

図6はセンサーホルダー30に多数の球状弾性表面波素子10を装着した状態で測定を行なう際の説明図、図7は球状弾性表面波素子10による蛋白質の検出の説明図である。
図6に示すように、球状弾性表面波素子10が保持部34に保持された状態で、接続用電極24、26が貫通孔40から露出している。
球状弾性表面波素子10が装着されたセンサーホルダー30は、下側保持部材70と上側保持部材72の間に挟持されている。
全ての球状弾性表面波素子10の下部の接続電極26は、下側保持部材70の上面に形成された電極70Aを介してアース電極50に接続している。
球状弾性表面波素子10の上部の接続電極24は、上側保持部材72を貫通する配線部材72Aを介してプリント基板52に接続され、このプリント基板52を介して高周波切り替えスイッチ54に接続されている。
信号発生器56はバースト信号からなる高周波信号をサーキュレーター58を介して各球状弾性表面波素子10に順次印加する。
各球状弾性表面波素子10からの出力は、信号解析装置60によって計測され、不図示の計算機でそのデータが解析されて、球状弾性表面波素子10の周囲を周回する弾性表面波の周回速度の変化や減衰量の変化が測定されることとなる。
得られた周回速度の変化から、図7に示すように、球状弾性表面波素子10の表面14の感受領域12Aに形成された各抗体Xに蛋白質Yが結合したか否かを判断することが可能になる。
本実施の形態によれば、従来と違って、センサーホルダー30に球状弾性表面波素子10の電極20、22に接続される配線をパターニングする必要がないため、センサーホルダー30を使い捨てにする必要がなく、コストを抑制する上で有利となる。
FIG. 6 is an explanatory diagram when measurement is performed with a large number of spherical surface acoustic wave elements 10 mounted on the sensor holder 30, and FIG. 7 is an explanatory diagram of protein detection by the spherical surface acoustic wave elements 10.
As shown in FIG. 6, the connection electrodes 24 and 26 are exposed from the through hole 40 in a state where the spherical surface acoustic wave element 10 is held by the holding portion 34.
The sensor holder 30 to which the spherical surface acoustic wave element 10 is attached is sandwiched between the lower holding member 70 and the upper holding member 72.
The lower connection electrodes 26 of all the spherical surface acoustic wave elements 10 are connected to the ground electrode 50 through electrodes 70A formed on the upper surface of the lower holding member 70.
The connection electrode 24 on the upper surface of the spherical surface acoustic wave element 10 is connected to the printed circuit board 52 via a wiring member 72A penetrating the upper holding member 72, and is connected to the high frequency changeover switch 54 via the printed circuit board 52. .
The signal generator 56 sequentially applies a high-frequency signal composed of a burst signal to each spherical surface acoustic wave element 10 via a circulator 58.
The output from each of the spherical surface acoustic wave elements 10 is measured by the signal analysis device 60, and the data is analyzed by a computer (not shown) to determine the rotation speed of the surface acoustic wave that circulates around the spherical surface acoustic wave element 10. Changes and changes in attenuation will be measured.
As shown in FIG. 7, it is possible to determine whether or not the protein Y is bound to each antibody X formed in the sensitive region 12 </ b> A of the surface 14 of the spherical surface acoustic wave element 10 from the obtained change in the circumferential speed. It becomes possible.
According to the present embodiment, unlike the conventional case, it is not necessary to pattern the wiring connected to the electrodes 20 and 22 of the spherical surface acoustic wave element 10 on the sensor holder 30, so the sensor holder 30 needs to be disposable. This is advantageous in reducing costs.

(A)は従来のセンサーホルダー4の断面図、(B)は(A)の平面図である。(A) is sectional drawing of the conventional sensor holder 4, (B) is a top view of (A). 第1の実施の形態のセンサーホルダー30の断面図である。It is sectional drawing of the sensor holder 30 of 1st Embodiment. 図2のA矢視図である。FIG. 3 is a view as seen from an arrow A in FIG. 2. 第2の実施の形態のセンサーホルダー30に多数の球状弾性表面波素子10が装着された状態を示す平面図である。It is a top view which shows the state by which many spherical surface acoustic wave elements 10 were mounted | worn with the sensor holder 30 of 2nd Embodiment. 第2の実施の形態のセンサーホルダー30のリンス処理の説明図である。It is explanatory drawing of the rinse process of the sensor holder 30 of 2nd Embodiment. センサーホルダー30に多数の球状弾性表面波素子10を装着した状態で測定を行なう際の説明図である。FIG. 5 is an explanatory diagram when measurement is performed in a state where a large number of spherical surface acoustic wave elements 10 are mounted on the sensor holder 30. 球状弾性表面波素子10による蛋白質の検出の説明図である。3 is an explanatory diagram of protein detection by the spherical surface acoustic wave element 10. FIG.

符号の説明Explanation of symbols

10…球状弾性表面波素子、12A…感受領域、30…センサーホルダー、32…センサーホルダー基材、34…貫通孔、34…保持部、36…液体保持用凹部、38…導入路。
DESCRIPTION OF SYMBOLS 10 ... Spherical surface acoustic wave element, 12A ... Sensitive area | region, 30 ... Sensor holder, 32 ... Sensor holder base material, 34 ... Through-hole, 34 ... Holding part, 36 ... Recessed part for liquid holding, 38 ... Introduction path.

Claims (7)

球面の一部で形成され円環状に連続する周面を有し前記周面でその外径が最も大きい円周に沿って感受領域が形成されたセンサー素子を保持するセンサーホルダーであって、
板状のセンサーホルダー基材と、
前記センサーホルダー基材の厚さ方向に貫通形成された貫通孔と、
前記貫通孔の内周面の下部に前記感受領域の外径よりも小さい寸法の内径で形成され前記センサー素子を保持する保持部と、
前記感受領域に対向する前記貫通孔の内周面の部分に、前記内周面の半径方向外方に窪むように形成された液体保持用凹部と、
前記液体保持用凹部に液体が導入される導入路とを備え、
前記液体保持用凹部に導入された液体が表面張力によって前記感受領域に接触するように構成され
前記センサー素子は、球状弾性表面波素子であり、
前記感受領域の周方向の一部に弾性表面波を発生させるためのすだれ状電極が形成され、
前記貫通孔の内周面が前記すだれ状電極に臨む箇所に、前記液体保持用凹部よりも前記内周面の径方向外方に窪む凹部が、前記センサーホルダー基材の厚さ方向に貫通形成され、
この凹部により前記液体保持用凹部に導入された液体が前記すだれ状電極に接触しないように構成されている、
ことを特徴とするセンサーホルダー。
A sensor holder that holds a sensor element that is formed of a part of a spherical surface and has a circumferential surface that is continuous in an annular shape and has a sensing region formed along a circumference having the largest outer diameter on the circumferential surface,
A plate-shaped sensor holder substrate;
A through hole formed in the sensor holder base material in the thickness direction;
A holding part for holding the sensor element, which is formed with an inner diameter smaller than the outer diameter of the sensing area at the lower part of the inner peripheral surface of the through hole;
A liquid holding recess formed in a portion of the inner peripheral surface of the through-hole facing the sensitive area so as to be recessed outward in the radial direction of the inner peripheral surface;
An introduction path through which liquid is introduced into the liquid holding recess,
The liquid introduced into the liquid holding recess is configured to contact the sensitive area by surface tension ,
The sensor element is a spherical surface acoustic wave element,
An interdigital electrode for generating a surface acoustic wave is formed in a part of the circumferential direction of the sensitive region,
A recess recessed radially outward of the inner peripheral surface from the liquid retaining recess penetrates in the thickness direction of the sensor holder base material at a location where the inner peripheral surface of the through hole faces the interdigital electrode. Formed,
The liquid introduced into the liquid holding recess by the recess is configured not to contact the interdigital electrode.
Sensor holder characterized by that.
前記貫通孔が複数設けられ、各貫通孔に前記保持部と前記液体保持用凹部がそれぞれ設けられ、かつ、各貫通孔にそれぞれ前記導入路が接続されている、
ことを特徴とする請求項1記載のセンサーホルダー。
A plurality of the through holes are provided, the holding portions and the liquid holding recesses are provided in the respective through holes, and the introduction path is connected to the through holes, respectively.
The sensor holder according to claim 1.
前記液体保持用凹部とは異なる前記センサーホルダー基材の箇所に前記導入路に前記液体を供給するための液体投入口が設けられている、
ことを特徴とする請求項1記載のセンサーホルダー。
A liquid inlet for supplying the liquid to the introduction path is provided at a position of the sensor holder base different from the liquid holding recess.
The sensor holder according to claim 1.
前記センサーホルダーのうち、前記貫通孔の内周面を除く箇所の表面に疎水処理が施されていることを特徴とする請求項1記載のセンサーホルダー。   The sensor holder according to claim 1, wherein a surface of the sensor holder excluding the inner peripheral surface of the through hole is subjected to a hydrophobic treatment. 前記液体保持用凹部の上下方向の寸法は前記感受領域と同じ寸法かあるいは前記感受領域よりも大きな寸法で形成されている、
ことを特徴とする請求項1記載のセンサーホルダー。
The vertical dimension of the liquid holding recess is the same as the sensitive area or larger than the sensitive area.
The sensor holder according to claim 1.
前記センサー素子は、球状弾性表面波素子であり、
前記球状弾性表面波素子で発生する弾性表面波は前記感受領域に沿って周回する、
ことを特徴とする請求項1記載のセンサーホルダー。
The sensor element is a spherical surface acoustic wave element,
The surface acoustic wave generated by the spherical surface acoustic wave element circulates along the sensitive area.
The sensor holder according to claim 1.
前記センサー素子は、球状弾性表面波素子であり、
前記感受領域の周方向の一部に弾性表面波を発生させるためのすだれ状電極が形成され、
前記すだれ状電極に導通する接続用電極が前記球状弾性表面波素子の表面に形成され、
前記センサー素子が前記保持部に保持された状態で、前記接続用電極が前記貫通孔から露出している、
ことを特徴とする請求項1記載のセンサーホルダー。
The sensor element is a spherical surface acoustic wave element,
An interdigital electrode for generating a surface acoustic wave is formed in a part of the circumferential direction of the sensitive region,
A connection electrode that is electrically connected to the interdigital electrode is formed on the surface of the spherical surface acoustic wave element,
In the state where the sensor element is held by the holding portion, the connection electrode is exposed from the through hole,
The sensor holder according to claim 1.
JP2006131303A 2006-05-10 2006-05-10 Sensor holder Expired - Fee Related JP4952050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006131303A JP4952050B2 (en) 2006-05-10 2006-05-10 Sensor holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006131303A JP4952050B2 (en) 2006-05-10 2006-05-10 Sensor holder

Publications (2)

Publication Number Publication Date
JP2007303911A JP2007303911A (en) 2007-11-22
JP4952050B2 true JP4952050B2 (en) 2012-06-13

Family

ID=38837958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006131303A Expired - Fee Related JP4952050B2 (en) 2006-05-10 2006-05-10 Sensor holder

Country Status (1)

Country Link
JP (1) JP4952050B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5505616B2 (en) * 2009-12-08 2014-05-28 凸版印刷株式会社 Gas analyzer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3841713B2 (en) * 2002-03-29 2006-11-01 凸版印刷株式会社 Substance inspection equipment
JP4379090B2 (en) * 2003-11-12 2009-12-09 凸版印刷株式会社 Liquid measuring method and liquid measuring apparatus using surface acoustic wave
JP2006038584A (en) * 2004-07-26 2006-02-09 Ulvac Japan Ltd Chemical sensor and measuring instrument
WO2006027893A1 (en) * 2004-09-10 2006-03-16 Murata Manufacturing Co., Ltd. Sensor for detecting substance in liquid and device for detecting substance in liquid employing the sensor

Also Published As

Publication number Publication date
JP2007303911A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP3801617B2 (en) Pharmacological measurement apparatus and system and well container used therefor
US8920727B2 (en) Arrangement and method for electrochemically measuring biochemical reactions and method for producing the arrangement
WO2006103439A2 (en) Cartridge for a fluid sample analyser
SE0403189L (en) Methods and devices for welding crack detection
WO2018105229A1 (en) Liquid tank formation method, measurement device, and analysis device
JP4952050B2 (en) Sensor holder
US6545469B1 (en) Embedded eddy current inspection apparatus, system, and method
WO2004079354A1 (en) Extracellular potential measuring device and its manufacturing method
JP4910687B2 (en) Surface acoustic wave device
KR100741270B1 (en) Lab-on-a-chip for electrochemical analysis having dual fluid flow channel
JP2007327914A (en) Ultrasonic inspection method
JP4223997B2 (en) Microsensor for analysis
US10620157B2 (en) Single point detection type microfluidic isoelectric focusing assay and chips using the same
JP6061429B2 (en) Method for manufacturing apparatus for detecting specimen
JP5162967B2 (en) Surface acoustic wave device
JP2003307480A (en) Apparatus and system for measuring smallmass and method of taking out electrodes
JP2005147736A (en) Liquid measuring method by surface acoustic wave
JP2008042498A (en) Surface acoustic wave element
JP2003240694A (en) Multichannel micro mass sensor
JP5186839B2 (en) Surface acoustic wave device
JPH09257758A (en) Water immersion type ultrasonic flaw inspection method
JP2008278149A (en) Surface acoustic wave apparatus
JP5239149B2 (en) Surface acoustic wave revolving element and device for measuring substances in solution
Martinho et al. Side-shifted dual PPM EMATs with multiple rows of magnets and reduced lateral gap by flexible printed circuit board racetrack coils
JP5109871B2 (en) Spherical surface acoustic wave device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees