JP4918758B2 - Temperature calibration method for spherical surface acoustic wave device - Google Patents

Temperature calibration method for spherical surface acoustic wave device Download PDF

Info

Publication number
JP4918758B2
JP4918758B2 JP2005197267A JP2005197267A JP4918758B2 JP 4918758 B2 JP4918758 B2 JP 4918758B2 JP 2005197267 A JP2005197267 A JP 2005197267A JP 2005197267 A JP2005197267 A JP 2005197267A JP 4918758 B2 JP4918758 B2 JP 4918758B2
Authority
JP
Japan
Prior art keywords
electrode
surface acoustic
acoustic wave
spherical surface
wave device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005197267A
Other languages
Japanese (ja)
Other versions
JP2007019701A (en
Inventor
琢也 中務
教尊 中曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2005197267A priority Critical patent/JP4918758B2/en
Publication of JP2007019701A publication Critical patent/JP2007019701A/en
Application granted granted Critical
Publication of JP4918758B2 publication Critical patent/JP4918758B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

本発明は、試料中における被測定対象物の物理化学的特性の測定方法に用いられる球状表面弾性波素子、およびその温度校正に必要な表面弾性波励振方法に関する。   The present invention relates to a spherical surface acoustic wave device used in a method for measuring a physicochemical property of an object to be measured in a sample, and a surface acoustic wave excitation method necessary for temperature calibration thereof.

通常、圧電材料基板上に形成された表面弾性波素子の電極は平面のマスクを用いてフォトリソグラフィーを用いて形成されている。   Usually, the electrode of the surface acoustic wave element formed on the piezoelectric material substrate is formed by photolithography using a flat mask.

特許文献1には複数の周波数の表面弾性波素子が挙げられている。平面型の表面弾性波素子の場合にはそれぞれの周波数の表面弾性波はそれぞれ別の経路を通るような素子が一般的である。また、特許文献には一つの導波路に複数の周波数の表面弾性波を伝播させる素子が挙げられている。この場合、円環状弾性表面波経路の両側から突出部を交互に張り出させた櫛型電極を凹型に配置することによって複数の周波数の表面弾性波が収束されている。   Patent Document 1 discloses a surface acoustic wave device having a plurality of frequencies. In the case of a planar type surface acoustic wave element, an element is generally used in which surface acoustic waves of each frequency pass through different paths. In addition, the patent literature includes an element that propagates surface acoustic waves having a plurality of frequencies in one waveguide. In this case, the surface acoustic waves having a plurality of frequencies are converged by disposing the comb-shaped electrodes having protrusions alternately protruding from both sides of the annular surface acoustic wave path.

特許文献は以下の通りである。
特開平11−340772号公報 特開平7−50548号公報
Patent documents are as follows.
Japanese Patent Laid-Open No. 11-340772 Japanese Patent Laid-Open No. 7-50548

球状表面弾性波素子においてフォトリソグラフィー技術を用いて表面に櫛型電極を形成するとき、理想的には球状の球面に沿って光の焦点が合う光学系を用いることが望ましいが、これは非常に複雑な光学系になり、コストも高くなる。一方、図2に示したように平面基板上に電極パターンを形成するのと同様に平面のマスクを用いて球面に露光する場合、コストを抑えることはできるが曲面の影響で周辺部ほど球面上でパターンが大きく露光されてしまい、また焦点が合わなくなり像がぼやけてしまう。ここで1は平面マスク、2は平面マスク上のパターン、5は材料球、4は材料球表面に形成した感光性材料膜である。この効果は露光する電極パターンが大きくなるほど顕著になるのは明らかである。   When a comb-shaped electrode is formed on the surface using a photolithographic technique in a spherical surface acoustic wave device, it is ideally desirable to use an optical system that focuses light along a spherical spherical surface. It becomes a complicated optical system and the cost becomes high. On the other hand, as shown in FIG. 2, when a spherical surface is exposed using a flat mask as in the case of forming an electrode pattern on a flat substrate, the cost can be reduced, but the peripheral portion is more spherical on the periphery due to the influence of the curved surface. As a result, the pattern is exposed greatly, and the image is blurred due to out of focus. Here, 1 is a plane mask, 2 is a pattern on the plane mask, 5 is a material ball, and 4 is a photosensitive material film formed on the surface of the material ball. Obviously, this effect becomes more prominent as the electrode pattern to be exposed becomes larger.

球状表面弾性波素子において、用いられる周波数が10MHz〜100GHz程度なので、表面弾性波の減衰特性は重要な要素である。表面弾性波を減衰させる原因のひとつとして表面弾性波を励起するための電極があげられる。表面弾性波を励起するためには表面に電極が必要であるのだがその電極もまた表面弾性波を減衰させてしまう。よってこの効果による減衰を抑えるためには電極をより少なくするとよい。しかし強力に励起させようとすると多くの電極が必要になる。   In the spherical surface acoustic wave element, since the frequency used is about 10 MHz to 100 GHz, the attenuation characteristic of the surface acoustic wave is an important factor. One of the causes for attenuating the surface acoustic wave is an electrode for exciting the surface acoustic wave. In order to excite the surface acoustic wave, an electrode is required on the surface, but the electrode also attenuates the surface acoustic wave. Therefore, in order to suppress attenuation due to this effect, it is preferable to reduce the number of electrodes. However, a large number of electrodes are required for strong excitation.

球状表面弾性波素子においては複数の周波数の表面弾性波を用いることにより温度を校正することが可能である。しかし、これを行うためには複数の周波数の表面弾性波を励起できるような電極構造を形成する必要がある。このときひとつの経路に複数の表面弾性波を励起できれば特性のばらつきを抑えることができてよい。球状表面弾性波素子においては特許文献2のような手法は使うことができない。なぜなら球状表面弾性波素子においては一つの経路が帯状に球表面を1周しておりこの表面弾性波はこの経路上で励起される必要があり凹型に電極を配置することができないからである。これを解決するひとつ方法としては周回経路に周波数の異なる二つの電極を並べて配置することである。ただしこの場
合には二つの周波数の電極を別個に形成することになるので露光する電極パターンが大きくなってしまい、結局その分だけ電極パターンが歪んでしまう。
In the spherical surface acoustic wave element, the temperature can be calibrated by using surface acoustic waves having a plurality of frequencies. However, in order to do this, it is necessary to form an electrode structure that can excite surface acoustic waves of a plurality of frequencies. At this time, if a plurality of surface acoustic waves can be excited in one path, variation in characteristics may be suppressed. In the spherical surface acoustic wave element, the technique as in Patent Document 2 cannot be used. This is because, in a spherical surface acoustic wave element, one path makes a round circle around the surface of the sphere, and this surface acoustic wave needs to be excited on this path, so that an electrode cannot be disposed in a concave shape. One way to solve this is to arrange two electrodes with different frequencies side by side in the circuit path. However, in this case, since electrodes having two frequencies are formed separately, the electrode pattern to be exposed becomes large, and the electrode pattern is eventually distorted accordingly.

前記の問題を解決するために請求項1に係る発明においては、圧電結晶球、あるいは圧電材料膜を表面に形成した球上の円環状弾性表面波経路上に第1の電極と第2の電極から交互に突出部を設け、かつ、前記円環状弾性表面波経路上に感応膜を設け、かつ、各第1の電極の突出部と第2の電極の突出部との間に第3の電極を設けた球状表面弾性波(Surface Acoustic Wave)素子の温度校正方法であって、前記第1の電極と前記第2の電極の間及び前記第1電極と前記第2電極を結線したものと第3の電極の間に電気信号を印加することで複数の周波数の弾性表面波を励起し該弾性表面波信号を検出し、該複数の周波数の表面弾性波の信号により温度校正をおこない前記感応膜以外の要因による信号を校正することを特徴とする球状表面弾性波素子の温度校正方法を提供するものである。
In order to solve the above problem, in the invention according to claim 1, the first electrode and the second electrode are arranged on the annular surface acoustic wave path on the piezoelectric crystal sphere or the sphere formed with the piezoelectric material film on the surface. a protrusion provided alternately from and the circle sensitive film provided on the annular surface acoustic wave paths, and a third electrode between the projecting portion and the projecting portion of the second electrode of each first electrode A method of temperature calibration of a spherical surface acoustic wave element provided with a first electrode and a second electrode, and the first electrode and the second electrode connected to each other, and a first method The surface sensitive wave is detected by exciting a surface acoustic wave of a plurality of frequencies by applying an electrical signal between the electrodes of the three electrodes, detecting the surface acoustic wave signal, and performing temperature calibration using the surface acoustic wave signal of the plurality of frequencies. spherical surface acoustic wave device characterized by calibrating the signal due to factors other than There is provided a temperature correction method.

また、問題を解決するために請求項2に係る発明においては、前記球状表面弾性波素子において、第3の電極が第1の電極と第2の電極の間で連続していることを特徴とする請求項1記載の球状表面弾性波素子の温度校正方法を提供するものである。
In the invention according to claim 2 in order to solve the problem, in the spherical surface acoustic wave element, and characterized in that the third electrode is continuous between the first electrode and the second electrode A temperature calibration method for a spherical surface acoustic wave device according to claim 1 is provided.

具体的には、例えば図1に示すように、円環状弾性表面波経路の両側から突出部を交互に張り出させた、単純な簾状電極である第1の電極と第2の電極が互いに組み合わせられている様になっており、その第1の電極と第2の電極の電極間を縫うようにジグザグに通る第3の電極用いる。これにより、既存の第1の電極や第2の電極を利用することにより第3の電極に対応する新たな対電極を設ける必要がなくなり、露光面積を少なくでき、これにより歪みを最小限度に抑えることが可能になったものである。   Specifically, for example, as shown in FIG. 1, the first electrode and the second electrode, which are simple saddle-shaped electrodes in which protruding portions alternately protrude from both sides of the annular surface acoustic wave path, are connected to each other. A third electrode is used that passes in a zigzag so as to sew between the first electrode and the second electrode. This eliminates the need to provide a new counter electrode corresponding to the third electrode by utilizing the existing first electrode and second electrode, and can reduce the exposure area, thereby minimizing distortion. It has become possible.

ここでは簡単な例を挙げて発明の説明を行う。周波数fの表面弾性波を励起するための4対の突出部を持つ一組の簾状電極と周波数2×fの表面弾性波を励起するための8対の突出部を持つ一組の簾状電極を素子表面に形成するとき、単純に2組の電極を形成するとトータルで12対、24本の突出部が必要で、周波数fの表面弾性波を励起するための簾状電極二つ分の表面積が必要になる。   Here, the invention will be described with a simple example. A set of saddle-shaped electrodes having four pairs of protrusions for exciting surface acoustic waves of frequency f and a pair of saddle-shaped electrodes having eight pairs of protrusions for exciting surface acoustic waves of frequency 2 × f When the electrodes are formed on the element surface, if two pairs of electrodes are simply formed, a total of 12 pairs and 24 protrusions are required, which is equivalent to two saddle-shaped electrodes for exciting surface acoustic waves of frequency f. A surface area is required.

一方、図1のようなパターンの場合に第1の電極と第2の電極の間隔が音速と波長の関係から周波数がfに対応しているとするとこの第1の電極と第2の電極の間に周波数fの電気信号を印加することにより周波数fの表面弾性波を励起することができる。また、第1の電極と第2の電極を結線した電極と、第3の電極の間に周波数2×fの電気信号を印加すると周波数2×fの表面弾性波を励起することができる。この場合、16本の円環状弾性表面波経路上の突出部、つまり上記の3分の2の本数の突出部で上記の表面弾性波と同等の電極を周波数fの表面弾性波を励起する電極一つ分の面積に形成することができる。   On the other hand, in the case of the pattern as shown in FIG. 1, if the distance between the first electrode and the second electrode corresponds to the frequency f from the relationship between the sound speed and the wavelength, the first electrode and the second electrode By applying an electric signal having a frequency f between them, a surface acoustic wave having a frequency f can be excited. Further, when an electric signal having a frequency of 2 × f is applied between the electrode connecting the first electrode and the second electrode and the third electrode, a surface acoustic wave having a frequency of 2 × f can be excited. In this case, the protrusions on the 16 annular surface acoustic wave paths, that is, the electrodes that excite the surface acoustic waves having the frequency f by using the two-thirds of the protrusions are equivalent to the surface acoustic waves. One area can be formed.

このように一組の櫛型電極である第1の電極と第2の電極、その間を縫うように通る第3の電極を用いることで全体として簾状電極を構成して電極の本数を少なくすることができ、また電極を形成するのに必要な面積も狭くてすむ。   Thus, by using the first electrode and the second electrode, which are a pair of comb-shaped electrodes, and the third electrode passing through between them, a hook-shaped electrode is formed as a whole, and the number of electrodes is reduced. In addition, the area necessary for forming the electrode can be reduced.

本発明により複数の周波数を用いる球状表面弾性波素子の電極を従来の面積より小さい面積で形成することが可能になった。これにより、通常の平面型のフォトリソグラフィーを用いて容易に形成することができる。これによりひとつの経路に複数の周波数の表面弾性波を励起することができる。さらに、全体として電極数を抑えることで電極による減衰
を抑えることができるとともに、露光面積が小さくなったために歪みを最小限に抑えることが可能になり、球状表面弾性波素子としての性能を向上させることが可能になったものである。
According to the present invention, it is possible to form an electrode of a spherical surface acoustic wave device using a plurality of frequencies with an area smaller than the conventional area. Thereby, it can form easily using normal planar photolithography. Thereby, surface acoustic waves having a plurality of frequencies can be excited in one path. Furthermore, by reducing the number of electrodes as a whole, attenuation due to the electrodes can be suppressed, and since the exposure area has become smaller, distortion can be minimized and the performance as a spherical surface acoustic wave device is improved. It has become possible.

以下、図示した実施の形態例に基づいて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail based on the illustrated embodiment.

図1は本発明の実施の形態nの球状表面弾性波素子の電極の模式図である。6,7,8は形成した電極である。いま第1の電極6と第2の電極7の間に周波数fの電気信号を印加すると図3のように周波数fの表面弾性波9が励起される。このとき第3の電極8は電気的にフローティングな状態にしておいてよい。   FIG. 1 is a schematic diagram of electrodes of a spherical surface acoustic wave device according to Embodiment n of the present invention. Reference numerals 6, 7, and 8 denote formed electrodes. When an electric signal having a frequency f is applied between the first electrode 6 and the second electrode 7, a surface acoustic wave 9 having a frequency f is excited as shown in FIG. At this time, the third electrode 8 may be in an electrically floating state.

また、第1の電極6と第2の電極7を結線したものと第3の電極8の間に周波数2×fの周波数の電気信号を印加すると図4に示すように2×fの表面弾性波9が励起される。   When an electric signal having a frequency of 2 × f is applied between the first electrode 6 and the second electrode 7 connected to each other and the third electrode 8, the surface elasticity of 2 × f is obtained as shown in FIG. Wave 9 is excited.

励起された表面弾性波は球状表面を周回し、1周回って励起した電極に戻ってくるたびに櫛型電極から電気信号を出力する。球状表面に感応膜を形成しておき、この表面弾性波の信号を観測することで高感度なセンサとして使用することができる。また、複数の周波数の表面弾性波を周回させることにより温度などの感応膜以外の要因による信号を校正することができる。 The excited surface acoustic wave circulates around the spherical surface and outputs an electrical signal from the comb-shaped electrode every time it returns to the excited electrode after one round. By forming a sensitive film on the spherical surface and observing the surface acoustic wave signal, it can be used as a highly sensitive sensor. Further, by causing the surface acoustic waves of a plurality of frequencies to circulate, it is possible to calibrate signals due to factors other than the sensitive film such as temperature.

図5はそれぞれ本発明の球状表面弾性波素子の表面弾性波の周回現象を示す図である。A、Bはそれぞれ図1の模式図での第1の電極6と第2の電極7の間に周波数30MHzの電気信号を印加したとき、および第1の電極6と第2の電極7を結線した電極と第3の電極8の間に60MHzの電気信号を印加したときに表面弾性波が球上を周回する様子を示す出力信号を示したものである。電極の接続および入力信号の周波数を変えることで複数の周波数が励起できていることがわかる。   FIG. 5 is a diagram showing the surface acoustic wave circulation phenomenon of the spherical surface acoustic wave device of the present invention. A and B respectively connect the first electrode 6 and the second electrode 7 when an electric signal having a frequency of 30 MHz is applied between the first electrode 6 and the second electrode 7 in the schematic diagram of FIG. 3 shows an output signal indicating that a surface acoustic wave circulates on a sphere when an electrical signal of 60 MHz is applied between the electrode and the third electrode 8. It can be seen that a plurality of frequencies can be excited by changing the connection of the electrodes and the frequency of the input signal.

本発明は球状表面弾性波素子における電極パターンおよび温度校正技術に用いることが可能な表面弾性波素子における電極パターン関する。   The present invention relates to an electrode pattern in a spherical surface acoustic wave device and an electrode pattern in a surface acoustic wave device that can be used for a temperature calibration technique.

本願発明に係る複数周波数を励起できる電極パターンの平面図Plan view of electrode pattern capable of exciting multiple frequencies according to the present invention 平面マスクを用いて球面上に露光する様子の説明断面図Explanatory cross-sectional view of exposure on a spherical surface using a planar mask 図1の電極パターンを用いてfの周波数を励起した状態から出力される表面弾性波の説明図。FIG. 3 is an explanatory diagram of a surface acoustic wave output from a state where the frequency of f is excited using the electrode pattern of FIG. 1. 図1の電極パターンを用いて2×fの周波数を励起した状態から出力される表面弾性波の説明図。FIG. 2 is an explanatory diagram of surface acoustic waves output from a state where a frequency of 2 × f is excited using the electrode pattern of FIG. 1. 図1の電極パターンを用いてfおよび2×fの周波数を励起した状態から出力される表面弾性波の説明図。FIG. 2 is an explanatory diagram of surface acoustic waves output from a state where f and 2 × f frequencies are excited using the electrode pattern of FIG. 1.

符号の説明Explanation of symbols

1…平面マスク
2…平面マスク上のパターン
4…材料球表面にコートされた感光性材料膜
5…材料球
7…第1の電極(fおよび2×fの周波数を励起するための電極)
8…第2の電極(fおよび2×fの周波数を励起するための電極)
9…第3の電極(2×fの周波数を励起するための電極)
DESCRIPTION OF SYMBOLS 1 ... Plane mask 2 ... Pattern 4 on plane mask ... Photosensitive material film 5 coated on material sphere surface ... Material sphere 7 ... First electrode (electrode for exciting frequency of f and 2xf)
8 ... 2nd electrode (electrode for exciting the frequency of f and 2xf)
9 ... 3rd electrode (electrode for exciting the frequency of 2xf)

Claims (2)

圧電結晶球、あるいは圧電材料膜を表面に形成した球上の円環状弾性表面波経路上に第1の電極と第2の電極から交互に突出部を設け、かつ、
前記円環状弾性表面波経路上に感応膜を設け、かつ、
各第1の電極の突出部と第2の電極の突出部との間に第3の電極を設けた球状表面弾性波(Surface Acoustic Wave)素子の温度校正方法であって、
前記第1の電極と前記第2の電極の間及び前記第1電極と前記第2電極を結線したものと第3の電極の間に電気信号を印加することで複数の周波数の弾性表面波を励起し該弾性表面波信号を検出し、該複数の周波数の表面弾性波の信号により温度校正をおこない前記感応膜以外の要因による信号を校正する
ことを特徴とする球状表面弾性波素子の温度校正方法
Protruding portions are alternately provided from the first electrode and the second electrode on the annular surface acoustic wave path on the surface of the piezoelectric crystal sphere or the sphere formed with the piezoelectric material film , and
Providing a sensitive film on the annular surface acoustic wave path; and
A method for temperature calibration of a spherical surface acoustic wave element in which a third electrode is provided between a protruding portion of each first electrode and a protruding portion of a second electrode ,
By applying an electric signal between the first electrode and the second electrode, and between the first electrode and the second electrode connected to each other and the third electrode, surface acoustic waves having a plurality of frequencies are generated. A temperature calibration of a spherical surface acoustic wave device , wherein the surface acoustic wave signal is excited, the surface acoustic wave signal is detected, a temperature calibration is performed with the surface acoustic wave signals of the plurality of frequencies, and a signal due to a factor other than the sensitive film is calibrated Way .
前記球状表面弾性波素子において、第3の電極が第1の電極と第2の電極の間で連続していることを特徴とする請求項1記載の球状表面弾性波素子の温度校正方法
In the spherical surface acoustic wave device, temperature correction method of the spherical surface acoustic wave device according to claim 1, wherein the third electrode, characterized in that continuous between the first electrode and the second electrode.
JP2005197267A 2005-07-06 2005-07-06 Temperature calibration method for spherical surface acoustic wave device Expired - Fee Related JP4918758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005197267A JP4918758B2 (en) 2005-07-06 2005-07-06 Temperature calibration method for spherical surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005197267A JP4918758B2 (en) 2005-07-06 2005-07-06 Temperature calibration method for spherical surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2007019701A JP2007019701A (en) 2007-01-25
JP4918758B2 true JP4918758B2 (en) 2012-04-18

Family

ID=37756483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005197267A Expired - Fee Related JP4918758B2 (en) 2005-07-06 2005-07-06 Temperature calibration method for spherical surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP4918758B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5092490B2 (en) * 2007-03-28 2012-12-05 凸版印刷株式会社 Multi-frequency drive measuring device for spherical surface acoustic wave element
JP5977181B2 (en) * 2013-01-28 2016-08-24 京セラ株式会社 Elastic wave device, duplexer and communication module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216411A (en) * 1987-02-18 1987-09-24 Kimio Shibayama Unidirection converter for surface acoustic wave
JPH06232680A (en) * 1993-02-02 1994-08-19 Hitachi Ltd Surface acoustic wave device, its external circuit and communications equipment employing it
JP3677384B2 (en) * 1997-12-22 2005-07-27 京セラ株式会社 Surface acoustic wave device
JP4143296B2 (en) * 1999-12-17 2008-09-03 凸版印刷株式会社 Surface acoustic wave device

Also Published As

Publication number Publication date
JP2007019701A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
US6771006B2 (en) Cylindrical ultrasound transceivers
KR100364968B1 (en) Vibrating Gyroscope
JP2007264610A (en) Method for designing light transmission device, optical element, imaging element, optical switching element, and chemical sensor device
US20080001239A1 (en) Method for manufacturing semiconductor device and semiconductor device
JP2004030083A (en) Touch panel device
JP6975828B2 (en) Sensor device
JP4918758B2 (en) Temperature calibration method for spherical surface acoustic wave device
US20170055950A1 (en) Ultrasonic device, ultrasonic module, and ultrasonic measurement apparatus
CN103575429B (en) Vibrating reed, electronic installation and electronic equipment
JP6298134B2 (en) Sensor device
US20180109239A1 (en) Piezoelectric transducer device with resonance region
JP5672920B2 (en) Pellicle and exposure apparatus
JP2020060588A (en) Sensor element and sensor device
JP4337488B2 (en) Method and apparatus for measuring drive of spherical surface acoustic wave device
CN110023725B (en) Light detector
JP4556442B2 (en) Surface acoustic wave device
JP2005502287A (en) Cylindrical ultrasonic receiver and transceiver formed of piezoelectric film
JP2005265423A (en) Surface elastic wave device
JPH035753A (en) Formation of thin film pattern
JP5109871B2 (en) Spherical surface acoustic wave device
US8436511B2 (en) Spherical surface acoustic wave apparatus
JP2017169161A (en) Ultrasonic device, ultrasonic measurement device, and ultrasonic image processor
JP7142470B2 (en) photodetector
JP5000473B2 (en) Spherical surface acoustic wave device
WO2019235060A1 (en) Photodetector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees