WO2019235060A1 - Photodetector - Google Patents

Photodetector Download PDF

Info

Publication number
WO2019235060A1
WO2019235060A1 PCT/JP2019/015642 JP2019015642W WO2019235060A1 WO 2019235060 A1 WO2019235060 A1 WO 2019235060A1 JP 2019015642 W JP2019015642 W JP 2019015642W WO 2019235060 A1 WO2019235060 A1 WO 2019235060A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
dummy
outer edge
film body
substrate
Prior art date
Application number
PCT/JP2019/015642
Other languages
French (fr)
Japanese (ja)
Inventor
理弘 山崎
柴山 勝己
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Publication of WO2019235060A1 publication Critical patent/WO2019235060A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits

Definitions

  • This disclosure relates to a photodetector.
  • Known photodetectors include a light detection element for detecting light based on a temperature change due to light reception, and a reference element for compensating for a temperature change due to factors other than light reception in the light detection element. (For example, refer to Patent Document 1).
  • an object of the present disclosure is to provide a photodetector that can ensure detection accuracy while suppressing the complexity of the structure.
  • a photodetector includes a substrate having a surface, a photodetecting element having a first film body disposed on the surface via a gap, and a second disposed on the surface via the gap.
  • a reference element having a film body, a dummy element having a film body disposed on the surface through a gap, and a circuit portion provided on the substrate and electrically connected to the light detection element and the reference element.
  • the light detection element is an element for detecting light based on a temperature change due to light reception, and is disposed in the first region of the surface.
  • the reference element is a temperature due to a factor other than light reception in the light detection element.
  • An element for compensating for the change which is disposed in the second region of the surface, and the dummy element is formed in a region other than the first region and the second region of the surface in the outer edge of the first region and the second region.
  • dummy elements are circuit electrically insulated.
  • the dummy element when the dummy element is arranged along the outer edge of the first region, for example, at least one is compared with a case where a space is formed without the dummy element.
  • the first film body of the light detection element is placed in a uniform environment, and as a result, the detection accuracy of at least one light detection element is improved.
  • the dummy element when the dummy element is arranged along the outer edge of the second region, for example, compared with a case where a space is formed without the dummy element, the first element of the at least one reference element.
  • the two-film body is placed in a uniform environment, and as a result, the detection accuracy of at least one reference element is improved.
  • the dummy elements are arranged on a surface other than the first region and the second region so as to be arranged in a direction intersecting with at least one of the outer edge of the first region and the outer edge of the second region.
  • a plurality may be arranged in the region.
  • the dummy element is further provided in a region between the first region and the second region on the surface, along at least one of the outer edge of the first region and the outer edge of the second region. It may be arranged. According to this configuration, in addition to the dummy element being disposed along the outer edge of the first region, when the dummy element is disposed in a region between the first region and the second region, The first film body of at least one photodetecting element is placed in a more uniform environment, and as a result, the detection accuracy of the at least one photodetecting element is further improved.
  • the dummy element being disposed along the outer edge of the second region, when the dummy element is disposed in a region between the first region and the second region, at least one reference The second film body of the element is placed in a more uniform environment, and as a result, the detection accuracy of at least one reference element is further improved.
  • the dummy element is disposed along the outer edge of the second region, and the film body of the dummy element disposed along the outer edge of the second region has a thickness of the substrate. When viewed from the direction, it may have the same shape as the second film body of the reference element. According to this configuration, the second film body of at least one reference element is placed in a more uniform environment, and as a result, the detection accuracy of at least one reference element is further improved.
  • the dummy element is disposed along the outer edge of the first region, and the film body of the dummy element disposed along the outer edge of the first region has a thickness of the substrate. When viewed from the direction, it may have the same shape as the first film body of the light detection element. According to this configuration, the first film body of the at least one photodetecting element is placed in a more uniform environment, and as a result, the detection accuracy of the at least one photodetecting element is further improved.
  • a plurality of dummy elements may be arranged on the surface along the outer edge of the second region so as to surround the second region in at least one row. According to this configuration, the second film body of at least one reference element is placed in a uniform environment, and as a result, the detection accuracy of at least one reference element is improved.
  • a plurality of dummy elements are arranged on the surface along the outer edges of the first region and the second region so as to surround the first region and the second region in at least one row. Also good.
  • the second film body of at least one reference element and the first film body of at least one photodetecting element are placed in a uniform environment, and as a result, the detection accuracy of at least one reference element, And the detection accuracy of at least one photodetection element improves.
  • the dummy element has a surface along each of the outer edge of the first region and the outer edge of the second region so as to surround each of the first region and the second region in at least one row. A plurality of them may be arranged. According to this configuration, the second film body of at least one reference element and the first film body of at least one photodetecting element are placed in a uniform environment, and as a result, the detection accuracy of at least one reference element, And the detection accuracy of at least one photodetection element improves.
  • the film body of the dummy element disposed along the outer edge of the second region is the same as the second film body of the reference element when viewed from the thickness direction of the substrate.
  • the film body of the dummy element disposed along the outer edge of the first region has the same shape as the first film body of the light detection element when viewed from the thickness direction of the substrate. May be.
  • the second film body of at least one reference element and the first film body of at least one photodetecting element are placed in a more uniform environment, and as a result, the detection accuracy of at least one reference element , And the detection accuracy of at least one photodetecting element is further improved.
  • the circuit unit may include a signal readout circuit, and the dummy element may overlap with the signal readout circuit when viewed from the thickness direction of the substrate. According to this configuration, it is possible to reduce the size of the photodetector while suppressing the complexity of the structure of the photodetector.
  • FIG. 1 is a plan view of the photodetector according to the first embodiment.
  • FIG. 2 is a diagram showing each region on the surface of the substrate of FIG.
  • FIG. 3 is a plan view of the light detection element, the reference element, the first dummy element, and the second dummy element arranged in each region of FIG. 4 is a perspective view of the photodetecting element of FIG.
  • FIG. 5 is a plan view of the photodetecting element of FIG. 6 is a cross-sectional view of the photodetecting element of FIG.
  • FIG. 7 is a diagram showing the principle of the optical resonance structure.
  • FIG. 8 is a perspective view of the reference element of FIG.
  • FIG. 9 is a plan view of the reference element of FIG.
  • FIG. 10 is a cross-sectional view of the reference element of FIG.
  • FIG. 11 is a perspective view of the first dummy element of FIG.
  • FIG. 12 is a plan view of the first dummy element of FIG.
  • FIG. 13 is a cross-sectional view of the first dummy element of FIG.
  • FIG. 14 is a perspective view of the second dummy element of FIG.
  • FIG. 15 is a plan view of the second dummy element of FIG.
  • FIG. 16 is a cross-sectional view of the second dummy element of FIG.
  • FIG. 17 is a diagram illustrating a method of manufacturing the photodetecting element of FIG.
  • FIG. 18 is a diagram showing a method for manufacturing the photodetecting element of FIG.
  • FIG. 19 is a diagram showing a manufacturing method of the photodetecting element of FIG. FIG.
  • FIG. 20 is a diagram showing a manufacturing method of the photodetecting element of FIG.
  • FIG. 21 is a diagram showing a method for manufacturing the photodetecting element of FIG.
  • FIG. 22 is a diagram showing a method for manufacturing the photodetecting element of FIG.
  • FIG. 23 is a diagram showing a method for manufacturing the photodetecting element of FIG.
  • FIG. 24 is a diagram showing a manufacturing method of the photodetecting element of FIG.
  • FIG. 25 is a diagram showing a manufacturing method of the photodetecting element of FIG.
  • FIG. 26 is a diagram showing a method for manufacturing the photodetecting element of FIG.
  • FIG. 27 is a diagram illustrating each region on the surface of the substrate according to the modification of the first embodiment.
  • FIG. 28 is a diagram illustrating each region on the surface of the substrate according to the modified example of the first embodiment.
  • FIG. 29 is a diagram illustrating each region on the surface of the substrate according to the modification of the first embodiment.
  • FIG. 30 is a diagram illustrating each region on the surface of the substrate according to the modified example of the first embodiment.
  • FIG. 31 is a diagram illustrating each region on the surface of the substrate according to the modified example of the first embodiment.
  • FIG. 32 is a diagram illustrating each region on the surface of the substrate according to the modification of the first embodiment.
  • FIG. 33 is a diagram illustrating each region on the surface of the substrate according to the modification of the first embodiment.
  • FIG. 34 is a diagram illustrating each region on the surface of the substrate according to the modification of the first embodiment.
  • FIG. 35 is a diagram illustrating each region on the surface of the substrate according to the modification of the first embodiment.
  • FIG. 36 is a diagram illustrating each region on the surface of the substrate according to the modification of the first embodiment.
  • FIG. 37 is a diagram illustrating each region on the surface of the substrate according to the modification of the first embodiment.
  • FIG. 38 is a plan view of the photodetector of the second embodiment.
  • FIG. 39 is a diagram showing each region on the surface of the substrate of FIG.
  • FIG. 40 is a diagram illustrating each region on the surface of the substrate according to the modification of the second embodiment.
  • FIG. 41 is a diagram illustrating each region on the surface of the substrate according to the modified example of the second embodiment.
  • FIG. 42 is a diagram illustrating each region on the surface of the substrate according to the modification of the second embodiment.
  • FIG. 43 is a diagram illustrating each region on the surface of the substrate according to the modified example of the second embodiment.
  • FIG. 44 is a diagram illustrating each region on the surface of the substrate according to the modified example of the second embodiment.
  • the photodetector 1A shown in FIG. 1 detects light by utilizing a function as a bolometer.
  • the light is, for example, infrared including terahertz waves.
  • the photodetector 1A is used for an infrared imager, thermography, or the like.
  • the photodetector 1A has particularly excellent characteristics for detecting light in the wavelength band of 1 ⁇ m to several tens of ⁇ m.
  • the photodetector 1A includes a substrate 2A having a surface 2a, a pixel unit 3, a reference unit 4, a first dummy unit 5, and a second dummy unit 6. .
  • the thickness of the substrate 2A is, for example, about several hundred ⁇ m.
  • the pixel unit 3, the reference unit 4, the first dummy unit 5, and the second dummy unit 6 are formed on the surface 2a of the substrate 2A.
  • the pixel unit 3 and the reference unit 4 are arranged so as to be aligned in the X-axis direction (direction orthogonal to the Z-axis) parallel to the surface 2a. Yes.
  • the pixel unit 3 and the reference unit 4 are separated from each other.
  • the first dummy part 5 surrounds the pixel part 3.
  • the second dummy part 6 surrounds the reference part 4.
  • the first dummy part 5 and the second dummy part 6 are adjacent to each other.
  • the circuit board 22A and a plurality of I / O pads 12 are provided on the substrate 2A.
  • the circuit portion 22A is provided in a layered manner on the surface 2a side of the substrate 2A.
  • the I / O pad 12 is composed of a metal film formed on the surface 2a of the substrate 2A.
  • the circuit unit 22A includes the signal readout circuit 7 and a plurality of wirings (not shown) that electrically connect the components to each other.
  • the signal readout circuit 7 includes a correction circuit 8, a lead-out circuit 9, and a plurality of shift registers (scanning circuits) 11a, 11b, and 11c.
  • the correction circuit 8 is disposed on the side opposite to the pixel unit 3 with respect to the reference unit 4.
  • the lead-out circuit 9 is disposed on the side opposite to the reference unit 4 with respect to the correction circuit 8.
  • the shift register 11a is arranged so as to be aligned with the pixel unit 3 in the Y-axis direction (direction orthogonal to the Z-axis and the X-axis) parallel to the surface 2a.
  • the shift register 11b is arranged so as to be aligned with the reference unit 4 in the Y-axis direction.
  • the shift register 11 c is disposed on the opposite side of the correction circuit 8 with respect to the lead-out circuit 9.
  • the plurality of I / O pads 12 are arranged along the outer edge of the surface 2a.
  • the surface 2a of the substrate 2A includes a first region 3a, a second region 4a, a third region 5a, and a fourth region 6a.
  • the pixel part 3 is arrange
  • the reference part 4 is arrange
  • the first dummy portion 5 is disposed in the third region 5a of the surface 2a.
  • the second dummy portion 6 is disposed in the fourth region 6a of the surface 2a.
  • the first region 3a and the second region 4a are arranged so as to be aligned in the X-axis direction.
  • the first region 3a and the second region 4a are separated from each other.
  • the first region 3a has, for example, a rectangular shape.
  • the second region 4a has a rectangular shape, for example.
  • the length of the second region 4a in the Y-axis direction is the same as the length of the first region 3a in the Y-axis direction.
  • the length of the second region 4a in the X-axis direction is shorter than the length of the first region 3a in the X-axis direction.
  • the third region 5a has, for example, a rectangular ring shape.
  • the third region 5a surrounds the first region 3a so as to be adjacent to the first region 3a.
  • the fourth region 6a has, for example, a rectangular ring shape.
  • the fourth region 6a surrounds the second region 4a so as to be adjacent to the second region 4a.
  • the third region 5a and the fourth region 6a are adjacent to each other.
  • the length of the fourth region 6a in the Y-axis direction is the same as the length of the third region 5a in the Y-axis direction.
  • the length of the fourth region 6a in the X-axis direction is shorter than the length of the third region 5a in the X-axis direction.
  • the width of the fourth region 6a surrounding the second region 4a is the same as the width of the third region 5a surrounding the first region 3a.
  • the outer edge of the pixel unit 3 has, for example, a rectangular shape when viewed from the Z-axis direction.
  • the outer edge of the pixel unit 3 overlaps with the outer edge of the first region 3a when viewed from the Z-axis direction.
  • the outer edge of the reference unit 4 has, for example, a rectangular shape when viewed from the Z-axis direction.
  • the outer edge of the reference portion 4 overlaps with the outer edge of the second region 4a when viewed from the Z-axis direction.
  • the first dummy portion 5 has, for example, a rectangular ring shape when viewed from the Z-axis direction.
  • the second dummy portion 6 has, for example, a rectangular ring shape when viewed from the Z-axis direction.
  • Each of the outer edge and the inner edge of the second dummy portion 6 overlaps with the outer edge and the inner edge of the fourth region 6a when viewed from the Z-axis direction.
  • FIG. 3 is an enlarged view of region III in FIG.
  • the pixel unit 3 includes a plurality of light detection elements 30.
  • Each light detection element 30 is an element for detecting light based on a temperature change caused by light reception.
  • the plurality of photodetecting elements 30 are arranged in the first region 3a so as to be arranged in a two-dimensional matrix.
  • the photodetecting elements 30 are arranged to have, for example, about 64 columns ⁇ 64 rows to 128 columns ⁇ 128 rows.
  • the outer shape of the light detection element 30 when viewed from the Z-axis direction has, for example, a rectangular shape.
  • the reference unit 4 includes a plurality of reference elements 40.
  • Each reference element 40 is an element for compensating for a temperature change caused by factors other than light reception in the light detection element 30.
  • the plurality of reference elements 40 are arranged in the second region 4a so as to be arranged in a two-dimensional matrix.
  • the reference elements 40 are arranged to have, for example, about 16 columns ⁇ 64 rows to 16 columns ⁇ 128 rows.
  • the outer shape of the reference element 40 when viewed from the Z-axis direction has, for example, a rectangular shape.
  • one reference element 40 is used for compensation for a plurality of light detection elements 30 (for example, a plurality of light detection elements 30 arranged in the same row as the one reference element 40).
  • the first dummy section 5 is composed of a plurality of first dummy elements 50.
  • the plurality of first dummy elements 50 are arranged in the third region 5a so as to surround the pixel unit 3 in a plurality of columns (here, four columns).
  • a plurality of first dummy elements 50 are arranged on the surface 2a along the outer edge of the first region 3a so as to surround the first region 3a. That is, a plurality of first dummy elements 50 are arranged on the surface 2 a along the outer edge of the pixel unit 3 so as to surround the pixel unit 3.
  • the outer shape of the first dummy element 50 when viewed from the Z-axis direction has, for example, a rectangular shape.
  • the second dummy section 6 is composed of a plurality of second dummy elements 60.
  • the plurality of second dummy elements 60 are arranged in the fourth region 6a so as to surround the reference unit 4 in a plurality of columns (here, four columns).
  • a plurality of second dummy elements 60 are arranged on the surface 2a along the outer edge of the second region 4a so as to surround the second region 4a. That is, a plurality of second dummy elements 60 are arranged on the surface 2 a along the outer edge of the reference portion 4 so as to surround the reference portion 4.
  • the outer shape of the second dummy element 60 when viewed from the Z-axis direction has, for example, a rectangular shape.
  • the first dummy element 50 is disposed along the outer edge of the first region 3a in the region other than the first region 3a and the second region 4a on the surface 2a of the substrate 2A. Is arranged along the outer edge of the second region 4a.
  • a plurality of first dummy elements 50 are arranged in regions other than the first region 3a and the second region 4a on the surface 2a of the substrate 2A so as to be arranged in a direction intersecting with the outer edge of the first region 3a.
  • a plurality of second dummy elements 60 are arranged in regions other than the first region 3a and the second region 4a on the surface 2a of the substrate 2A so as to be aligned in a direction intersecting with the outer edge of the second region 4a.
  • the first dummy element 50 is disposed along the outer edge of the first region 3a
  • the second dummy element 60 is the second dummy element 60. It arrange
  • the light detection element 30 includes a first film body 31 and a pair of first electrode posts 32 and 33.
  • the first film body 31 is disposed on the surface 2a of the substrate 2A via the gap S1.
  • the first film body 31 is disposed substantially parallel to the surface 2a of the substrate 2A.
  • the distance between the first film body 31 and the surface 2a of the substrate 2A is, for example, about several ⁇ m.
  • the first film body 31 includes a light receiving portion 34, a pair of first connection portions 35 and 36, and a pair of first beam portions 37 and 38. .
  • the light receiving part 34, the pair of first connection parts 35, 36, and the pair of first beam parts 37, 38 are integrally formed.
  • the first connection portions 35 and 36 are located diagonally to the outer shape of the first film body 31.
  • the first connecting portions 35 and 36 each have, for example, a rectangular shape when viewed from the Z-axis direction.
  • the outer shape of the first film body 31 when viewed from the Z-axis direction is such that the light receiving unit 34, the pair of first connection units 35 and 36, and the pair of first beam units 37. , 38 to form a rectangular shape.
  • the outer shape of the first film body 31 when viewed from the Z-axis direction is a light receiving portion 34, a pair of first connection portions 35, 36, a pair of first beam portions 37, 38, and a first described later. This is the outer shape of the entire first film body 31 including the slits 31a and 31b.
  • the first beam portion 37 is disposed between the light receiving portion 34 and the first connection portion 35.
  • the first beam portion 37 extends along the outer edge of the light receiving portion 34 on one side of the light receiving portion 34.
  • One end of the first beam portion 37 is connected to the first connection portion 35, and the other end of the first beam portion 37 is connected to the light receiving portion 34 at a position near the first connection portion 36.
  • the first slits 31 a are continuously formed between the light receiving part 34 and the first connection part 35 and between the light receiving part 34 and the first beam part 37.
  • the first beam portion 38 is disposed between the light receiving portion 34 and the first connection portion 36. The first beam portion 38 extends along the outer edge of the light receiving portion 34 on the other side of the light receiving portion 34.
  • the first slits 31b are continuously formed between the light receiving part 34 and the first connection part 36, and between the light receiving part 34 and the first beam part 38.
  • the width of each of the first beam portions 37 and 38 is, for example, about several ⁇ m.
  • the length of each of the first beam portions 37 and 38 is, for example, about several tens to several hundreds ⁇ m.
  • the width of each of the first slits 31a and 31b is, for example, about several ⁇ m.
  • the first electrode post 32 is disposed between the substrate 2A and the first connecting portion 35.
  • the first electrode post 32 has a cylindrical shape that spreads from the substrate 2 ⁇ / b> A toward the first film body 31.
  • the first electrode post 33 is disposed between the substrate 2 ⁇ / b> A and the first connection portion 36.
  • the first electrode post 33 has a cylindrical shape that spreads from the substrate 2 ⁇ / b> A toward the first film body 31.
  • the height of each of the first electrode posts 32 and 33 is, for example, about several ⁇ m.
  • Each material of the first electrode posts 32 and 33 is a metal material such as Ti, for example.
  • FIG. 6 is a cross-sectional view of the light detection element 30.
  • II, II-II, III-III, IV-IV, and VV are respectively the II, II-II, III-III, IV-IV, and V lines of FIG.
  • FIG. 6 is a cross-sectional view taken along the line V.
  • the first film body 31 includes a pair of first wiring layers 71 and 72, insulating layers 73 and 74, a first resistance layer 75, a light absorption layer 76, and a separation layer 77. , Including.
  • the first wiring layers 71 and 72 are opposed to each other via the first gap G1 in the light receiving unit.
  • the first gap G1 extends along the first line L1.
  • the first line L1 extends between diagonals facing each other across the center of gravity position C1 of the first film body 31 when viewed from the Z-axis direction. Specifically, when viewed from the Z-axis direction, the first line L1 passes through the center of gravity position C1 of the first film body 31 and extends along the first diagonal line D1 that connects the first connection portions 35 and 36, respectively. It extends in a serpentine shape.
  • the first line L1 has a meandering portion.
  • the meandering part of the light receiving part 34 extends to one side of the light receiving part 34 and then turns back, for example, 180 °, extends to the other side of the light receiving part 34, and then turns back, for example, 180 °, again. It is configured by repeating extending to one side.
  • one side refers to one side (for example, the side on which the first beam portion 37 exists) with respect to the first diagonal line D ⁇ b> 1, and the other side Means a side opposite to one side with respect to the first diagonal line D1 when viewed from the Z-axis direction (for example, a side on which the first beam portion 38 exists).
  • the first wiring layers 71 and 72 are elongated in the direction along the first line L1 in the light receiving unit 34. That is, when viewed from the Z-axis direction, the length of each of the first wiring layers 71 and 72 in the direction along the first line L1 in the light receiving unit 34 is the first in the direction perpendicular to the first line L1. The width of each of the wiring layers 71 and 72 is larger.
  • the direction perpendicular to the first line L1 refers to a direction perpendicular to the tangent at each position of the first line L1 when viewed from the Z-axis direction. When the first line L1 includes a curved portion, the direction perpendicular to the first line L1 is different at each position of the curved portion.
  • the length of each of the first wiring layers 71 and 72 in the direction along the first line L1 in the light receiving unit 34 is, for example, about several tens to several hundreds ⁇ m.
  • the width of each of the first wiring layers 71 and 72 in the direction perpendicular to the first line L1 is, for example, about several ⁇ m.
  • the width of the first gap G1 in the direction perpendicular to the first line L1 is, for example, about several ⁇ m.
  • the thickness of each of the first wiring layers 71 and 72 is, for example, about several tens to several hundreds nm.
  • the first wiring layer 71 extends from the light receiving portion 34 to the first connecting portion 35 via the first beam portion 37.
  • the first wiring layer 71 is formed on the first electrode post 32 in the first connection portion 35.
  • the first wiring layer 71 is electrically connected to the first electrode post 32.
  • the first wiring layer 72 extends from the light receiving portion 34 to the first connecting portion 36 via the first beam portion 38.
  • the first wiring layer 72 is formed on the first electrode post 33 in the first connection portion 36.
  • the first wiring layer 72 is electrically connected to the first electrode post 33.
  • Each material of the first wiring layers 71 and 72 is a metal material such as Ti, for example.
  • the insulating layer 73 is formed on the light receiving portion 34, the first beam portions 37 and 38, and the first connection portions 35 and 36 so as to cover the surface of each of the first wiring layers 71 and 72 on the side opposite to the substrate 2A. It is formed across.
  • the insulating layer 73 is the substrate 2A in the first wiring layers 71 and 72 in a state where the region along the first line L1 is exposed on the surface of each of the first wiring layers 71 and 72 opposite to the substrate 2A. Is formed on the opposite surface.
  • the insulating layer 73 covers the side surfaces of the first wiring layers 71 and 72 in the first connection portions 35 and 36.
  • the insulating layer 74 is formed over the light receiving portion 34, the first beam portions 37 and 38, and the first connection portions 35 and 36 so as to cover the surface of the first wiring layers 71 and 72 on the substrate 2A side.
  • the insulating layer 74 covers the surface of the first wiring layers 71 and 72 on the substrate 2A side and the outer surfaces 32a and 33a of the first electrode posts 32 and 33 in the first connection portions 35 and 36, respectively.
  • the thickness of each of the insulating layer 73 and the insulating layer 74 is, for example, about several tens of nm.
  • Each material of the insulating layer 73 and the insulating layer 74 is, for example, a silicon nitride film (SiN).
  • the first resistance layer 75 is formed in the light receiving part 34 so as to cover the insulating layer 73 from the opposite side of the substrate 2A.
  • the first resistance layer 75 is in contact with a region along the first line L1 on the surface of the first wiring layers 71 and 72 opposite to the substrate 2A in the light receiving unit 34. That is, the first resistance layer 75 is electrically connected to each of the first wiring layers 71 and 72 in the light receiving unit 34.
  • the first resistance layer 75 has an electrical resistance that depends on temperature.
  • the thickness of the first resistance layer 75 is, for example, about several tens to several hundreds nm.
  • the material of the first resistance layer 75 is, for example, amorphous silicon (a-Si) that has a large change in electrical resistivity due to a temperature change.
  • the light receiving unit 34 includes an electrical connection region between each of the pair of first wiring layers 71 and 72 and the first resistance layer 75.
  • the first resistance layer 75 is provided not only in the light receiving part 34 but also in the first connection parts 35 and 36.
  • the first resistance layer 75 is not formed on portions of the first beam portions 37 and 38 except for both end portions thereof. That is, the first resistance layer 75 is divided at the first beam portions 37 and 38.
  • the light absorption layer 76 faces the surface 2 a of the substrate 2 ⁇ / b> A in the light receiving unit 34.
  • the light absorption layer 76 is disposed on the opposite side of the first resistance layer 75 from the substrate 2A.
  • the light absorption layer 76 extends over the entire region of the light receiving unit 34 when viewed from the Z-axis direction.
  • the thickness of the light absorption layer 76 is, for example, about ten and several nanometers.
  • the material of the light absorption layer 76 is, for example, WSi 2 or Ti.
  • the separation layer 77 is positioned between the first resistance layer 75 and the light absorption layer 76 in the light receiving unit 34, and the first connection 37, the first beam unit 37, the first beam unit 38, and the first connection. It is formed over the part 35 and the first connection part 36.
  • the thickness of the separation layer 77 is larger than the thickness of each of the first wiring layer 71, the first wiring layer 72, the first resistance layer 75, and the light absorption layer 76.
  • the thickness of the separation layer 77 is, for example, about several hundred nm.
  • the material of the separation layer 77 is, for example, a silicon nitride film (SiN).
  • the through hole 31c is a hole through which an etching gas for removing a sacrificial layer 39 described later passes.
  • the through hole 31c has, for example, a circular shape when viewed from the Z-axis direction.
  • the through hole 31c is located, for example, at the center of gravity C1 of the first film body 31 when viewed from the Z-axis direction.
  • the diameter of the through hole 31c is, for example, about several ⁇ m.
  • a light reflecting layer 24 and first electrode pads 25 and 26 are provided on the surface 2a of the substrate 2A.
  • the light reflecting layer 24 faces the light receiving unit 34 in the Z-axis direction (the thickness direction of the semiconductor substrate 21).
  • the light reflection layer 24 faces the light absorption layer 76 in the Z-axis direction, and forms an optical resonance structure together with the light absorption layer 76.
  • the thickness of the light reflection layer 24 is, for example, about several hundred nm.
  • the material of the light reflecting layer 24 is, for example, a metal material such as Al having a high reflectivity with respect to light (for example, infrared rays).
  • the first electrode pad 25 faces the first connection portion 35 in the Z-axis direction.
  • the first electrode pad 26 faces the first connection part 36 in the Z-axis direction.
  • the light reflection layer 24 and the first electrode pads 25 and 26 form, for example, a rectangular outer shape when viewed from the Z-axis direction.
  • the first electrode pads 25 and 26 are located diagonally to the outer shape.
  • the first electrode pads 25 and 26 have, for example, a rectangular shape when viewed from the Z-axis direction.
  • the first electrode pads 25 and 26 are electrically connected to the circuit unit 22A by wiring.
  • the thickness of each first electrode pad 25, 26 is, for example, about several hundred nm.
  • the material of each first electrode pad 25, 26 is, for example, a metal material such as Al having conductivity.
  • An insulating layer 27 is formed on the surface 2a of the substrate 2A.
  • the insulating layer 27 covers the outer edge portion of the light reflecting layer 24 so that a part of the surface of the light reflecting layer 24 opposite to the semiconductor substrate 21 is exposed.
  • the thickness of the insulating layer 27 is about several tens to several hundreds nm, for example.
  • the material of the insulating layer 27 is, for example, a silicon nitride film (SiN).
  • the insulating layer 27 covers the outer edge portions of the first electrode pads 25 and 26 so that part of the surface of each of the first electrode pads 25 and 26 opposite to the semiconductor substrate 21 is exposed.
  • the first electrode post 32 is joined to the first electrode pad 25 in a state where the protruding portion provided at the end portion on the substrate 2A side enters the through hole 27a.
  • the first electrode post 33 is joined to the first electrode pad 26 in a state where the protruding portion provided at the end portion on the substrate 2A side enters the through hole 27b.
  • the photodetection element 30 is electrically connected to the circuit unit 22A.
  • the first film body 31 is supported by the first electrode posts 32 and 33 on the surface 2a of the substrate 2A via the gap S1.
  • a part of incident light A (having a wavelength of ⁇ ) incident on the light absorption layer 76 is reflected as reflected light B1 by the light absorption layer 76, and the other part is light absorption layer. 76 is transmitted.
  • the other part of the incident light A that has passed through the light absorption layer 76 is reflected by the light reflection layer 24 as reflected light B2.
  • the reflected light B1 and the reflected light B2 are canceled by interference with each other on the reflection surface of the light absorption layer 76.
  • the incident light A is absorbed by the reflection surface of the light absorption layer 76. Heat is generated in the light absorption layer 76 by the energy of the absorbed incident light A.
  • the absorption rate of the incident light A is determined by the sheet resistance of the light absorption layer 76 and the optical distance t between the light absorption layer 76 and the light reflection layer 24.
  • the thickness of the light absorption layer 76 is set to about 16 nm (when the material of the light absorption layer 76 is WSi 2 ) so that the sheet resistance becomes a vacuum impedance (377 ⁇ / sq). According to this, the amplitude of the reflected light B ⁇ b> 1 reflected by the light absorbing layer 76 matches the amplitude of the reflected light B ⁇ b> 2 reflected by the light reflecting layer 24. For this reason, on the reflective surface of the light absorption layer 76, the reflected light B1 and the reflected light B2 efficiently interfere and cancel each other. Therefore, the absorption rate of the incident light A is improved.
  • the light reflection layer 24 forms an optical resonance structure with the light absorption layer 76. When viewed from the Z-axis direction, the larger the area of the overlapping portion of the light reflecting layer 24 and the light absorbing layer 76, the more efficiently the incident light A is absorbed.
  • the reference element 40 does not have the light absorption layer 76, and the second slits 41a and 41b are shorter than the first slits 31a and 31b. And is mainly different.
  • the reference element 40 includes a second film body 41 and a pair of second electrode posts 42 and 43.
  • the second film body 41 is disposed on the surface 2a of the substrate 2A via the gap S2.
  • the second film body 41 is disposed substantially parallel to the surface 2a of the substrate 2A.
  • the distance between the second film body 41 and the surface 2a of the substrate 2A is, for example, about several ⁇ m.
  • the second film body 41 includes a main body 44, a pair of second connection parts 45 and 46, and a pair of second beam parts 47 and 48. .
  • the main body portion 44, the pair of second connection portions 45, 46, and the pair of second beam portions 47, 48 are integrally formed.
  • the second connection parts 45 and 46 are located diagonally to the outer shape of the second film body 41.
  • Each of the second connection portions 45 and 46 has, for example, a rectangular shape when viewed from the Z-axis direction.
  • the outer shape of the second film body 41 when viewed from the Z-axis direction is such that the main body portion 44, the pair of second connection portions 45 and 46, and the pair of second beam portions 47. , 48 are formed in a rectangular shape.
  • the outer shape of the second film body 41 when viewed from the Z-axis direction is a main body 44, a pair of second connection portions 45, 46, a pair of second beam portions 47, 48, and a second to be described later. It is the external shape of the 2nd film body 41 whole containing slit 41a, 41b.
  • the second beam portion 47 is disposed between the main body portion 44 and the second connection portion 45.
  • the second beam portion 47 extends along the outer edge of the main body 44 on one side of the main body 44.
  • One end of the second beam portion 47 is connected to the second connection portion 45, and the other end of the second beam portion 47 is connected to the main body portion 44 at a position in the vicinity of the second connection portion 45. That is, the second beam portion 47 is shorter than the first beam portion 37.
  • a second slit 41 a is continuously formed between the main body 44 and the second connecting portion 45 and between the main body 44 and the second beam portion 47.
  • the second beam portion 48 is disposed between the main body portion 44 and the second connection portion 46.
  • the second beam portion 48 extends along the outer edge of the main body 44 on the other side of the main body 44. One end of the second beam portion 48 is connected to the second connection portion 46, and the other end of the second beam portion 48 is connected to the main body portion 44 at a position near the second connection portion 46. That is, the second beam portion 48 is shorter than the first beam portion 38.
  • the second slits 41 b are continuously formed between the main body 44 and the second connecting portion 46 and between the main body 44 and the second beam portion 48.
  • the width of each of the second beam portions 47 and 48 is, for example, about several ⁇ m.
  • the length of each of the second beam portions 47 and 48 is, for example, about several ⁇ m to several tens of ⁇ m.
  • the width of each of the second slits 41a and 41b is, for example, about several ⁇ m.
  • the second electrode post 42 is disposed between the substrate 2A and the second connection portion 45.
  • the second electrode post 42 has a cylindrical shape that spreads from the substrate 2 ⁇ / b> A toward the second film body 41.
  • the second electrode post 43 is disposed between the substrate 2 ⁇ / b> A and the second connection portion 46.
  • the second electrode post 43 has a cylindrical shape that spreads from the substrate 2 ⁇ / b> A toward the second film body 41.
  • the height of each of the second electrode posts 42 and 43 is, for example, about several ⁇ m.
  • Each material of the second electrode posts 42 and 43 is a metal material such as Ti, for example.
  • FIG. 10 is a cross-sectional view of the reference element 40.
  • II, II-II, III-III, IV-IV, and VV are respectively the II, II-II, III-III, IV-IV, and V lines of FIG.
  • FIG. 6 is a cross-sectional view taken along the line V.
  • the second film body 41 includes a pair of second wiring layers 81 and 82, insulating layers 83 and 84, a second resistance layer 85, and a separation layer 87.
  • the second wiring layers 81 and 82 face each other through the second gap G2 in the main body 44.
  • the second gap G2 extends along the second line L2.
  • the second line L2 extends between diagonals facing each other across the center of gravity position C2 of the second film body 41 when viewed from the Z-axis direction. Specifically, when viewed from the Z-axis direction, the second line L2 passes through the center of gravity position C2 of the second film body 41 and extends along the second diagonal line D2 connecting the second connection portions 45 and 46, respectively. It extends in a serpentine shape.
  • the second line L2 has a meandering portion.
  • the meandering portion extends to one side of the main body portion 44 in the main body portion 44, and then, for example, is folded back by 180 °. After extending to the other side of the main body portion 44, for example, it is folded back by 180 °, for example. It is configured by repeating extending to one side.
  • one side means one side (for example, the side where the second beam portion 47 exists) with respect to the second diagonal line D2 when viewed from the Z-axis direction
  • the other side means When viewed from the Z-axis direction, it refers to a side opposite to one side with respect to the second diagonal line D2 (for example, a side where the second beam portion 48 exists).
  • the second wiring layers 81 and 82 are elongated in the direction along the second line L2 in the main body 44. That is, when viewed from the Z-axis direction, the length of each of the second wiring layers 81 and 82 in the direction along the second line L2 in the main body 44 is the second in the direction perpendicular to the second line L2. It is larger than the width of each of the wiring layers 81 and 82.
  • the direction perpendicular to the second line L2 refers to a direction perpendicular to a tangent at each position of the second line L2 when viewed from the Z-axis direction. When the second line L2 includes a curved portion, the direction perpendicular to the second line L2 is different at each position of the curved portion.
  • the length of each of the second wiring layers 81 and 82 in the direction along the second line L2 in the main body 44 is, for example, about several tens to several hundreds ⁇ m.
  • the width of each of the second wiring layers 81 and 82 in the direction perpendicular to the second line L2 is, for example, about several ⁇ m.
  • the width of the second gap G2 in the direction perpendicular to the second line L2 is, for example, about several ⁇ m.
  • the thickness of each of the second wiring layers 81 and 82 is, for example, about several tens to several hundreds nm.
  • the second wiring layer 81 extends from the main body portion 44 to the second connection portion 45 via the second beam portion 47.
  • the second wiring layer 81 is formed on the second electrode post 42 in the second connection portion 45.
  • the second wiring layer 81 is electrically connected to the second electrode post 42.
  • the second wiring layer 82 extends from the main body portion 44 to the second connection portion 46 via the second beam portion 48.
  • the second wiring layer 82 is formed on the second electrode post 43 in the second connection portion 46.
  • the second wiring layer 82 is electrically connected to the second electrode post 43.
  • Each material of the second wiring layers 81 and 82 is a metal material such as Ti, for example.
  • the insulating layer 83 is formed on the main body 44, the second beam portions 47 and 48, and the second connection portions 45 and 46 so as to cover the surfaces of the second wiring layers 81 and 82 on the side opposite to the substrate 2A. It is formed across.
  • the insulating layer 83 is the substrate 2A in the second wiring layers 81 and 82 in a state where the region along the second line L2 is exposed on the surface of each of the second wiring layers 81 and 82 opposite to the substrate 2A. Is formed on the opposite surface.
  • the insulating layer 83 covers the side surfaces of the second wiring layers 81 and 82 in the second connection portions 45 and 46.
  • the insulating layer 84 is formed over the main body portion 44, the second beam portions 47, 48, and the second connection portions 45, 46 so as to cover the surface of the second wiring layers 81, 82 on the substrate 2A side.
  • the insulating layer 84 covers the surface of the second wiring layers 81 and 82 on the substrate 2A side and the outer surfaces 42a and 43a of the second electrode posts 42 and 43 in the second connection portions 45 and 46, respectively.
  • Each thickness of the insulating layer 83 and the insulating layer 84 is, for example, about several tens of nm.
  • Each material of the insulating layer 83 and the insulating layer 84 is, for example, a silicon nitride film (SiN).
  • the second resistance layer 85 is formed in the main body portion 44 so as to cover the insulating layer 83 from the opposite side of the substrate 2A.
  • the second resistance layer 85 is in contact with the region along the second line L ⁇ b> 2 on the surface of the main body portion 44 opposite to the substrate 2 ⁇ / b> A in each of the second wiring layers 81 and 82. That is, the second resistance layer 85 is electrically connected to each of the second wiring layers 81 and 82 in the main body 44.
  • the second resistance layer 85 has an electrical resistance that depends on temperature.
  • the thickness of the second resistance layer 85 is, for example, about several tens to several hundreds nm.
  • the material of the second resistance layer 85 is, for example, amorphous silicon (a-Si) that has a large change in electrical resistivity due to a temperature change.
  • the main body 44 includes an electrical connection region between each of the pair of second wiring layers 81 and 82 and the second resistance layer 85.
  • the second resistance layer 85 is provided not only on the main body portion 44 but also on the second connection portions 45 and 46.
  • the second resistance layer 85 is not formed on portions of the second beam portions 47 and 48 except for both end portions thereof. That is, the second resistance layer 85 is divided at the second beam portions 47 and 48.
  • the separation layer 87 is formed on the main body portion 44, the second beam portions 47 and 48, and the second connection portions 45 and 46 so as to cover the surface of the second resistance layer 85 and the insulating layer 83 on the side opposite to the substrate 2A. It is formed across.
  • the thickness of the separation layer 87 is larger than the thickness of each of the second wiring layer 81, the second wiring layer 82, and the second resistance layer 85.
  • the thickness of the separation layer 87 is, for example, about several hundred nm.
  • the material of the separation layer 87 is, for example, a silicon nitride film (SiN).
  • the through hole 41 c is a hole through which an etching gas for removing a sacrificial layer used in the manufacturing process of the reference element 40 passes.
  • the through hole 41c has, for example, a circular shape when viewed from the Z-axis direction.
  • the through hole 41c is located, for example, at the center of gravity C2 of the second film body 41 when viewed from the Z-axis direction.
  • the diameter of the through hole 41c is, for example, about several ⁇ m.
  • the second electrode pads 28 and 29 are further provided on the surface 2a of the substrate 2A.
  • the second electrode pad 28 faces the second connection portion 45 in the Z-axis direction.
  • the second electrode pad 29 faces the second connection portion 46 in the Z-axis direction.
  • the second electrode pads 28 and 29 have, for example, a rectangular shape when viewed from the Z-axis direction.
  • the second electrode pads 28 and 29 are electrically connected to the circuit unit 22A by wiring.
  • the thickness of each second electrode pad 28, 29 is, for example, about several hundred nm.
  • the material of each of the second electrode pads 28 and 29 is, for example, a metal material such as Al having conductivity.
  • the insulating layer 27 is further formed with through holes 27 c and 27 d that face the second connection portions 45 and 46. That is, the insulating layer 27 covers the outer edge portions of the second electrode pads 28 and 29 so that part of the surface of each of the second electrode pads 28 and 29 opposite to the semiconductor substrate 21 is exposed.
  • the second electrode post 42 is joined to the second electrode pad 28 in a state where the protruding portion provided at the end portion on the substrate 2A side enters the through hole 27c.
  • the second electrode post 43 is joined to the second electrode pad 29 in a state where the protruding portion provided at the end on the substrate 2A side enters the through hole 27d.
  • the reference element 40 is electrically connected to the circuit unit 22A.
  • the second film body 41 is supported on the surface 2a of the substrate 2A by the second electrode posts 42 and 43 via the gap S2.
  • the first dummy element 50 is different from the light detection element 30 in that it does not have the light absorption layer 76 and is electrically insulated from the circuit portion 22A. Mainly different.
  • the first dummy element 50 includes a third film body 51 and a pair of third electrode posts 52 and 53.
  • the third film body 51 is disposed on the surface 2a of the substrate 2A via the gap S3.
  • the third film body 51 is disposed substantially parallel to the surface 2a of the substrate 2A.
  • the distance between the third film body 51 and the surface 2a of the substrate 2A is, for example, about several ⁇ m.
  • the third film body 51 includes a main body portion 54, a pair of third connection portions 55 and 56, and a pair of third beam portions 57 and 58. .
  • the third film body 51 has the same shape as the first film body 31 when viewed from the Z-axis direction.
  • the main body portion 54, the pair of third connection portions 55, 56, and the pair of third beam portions 57, 58 are integrally formed.
  • the third connection portions 55 and 56 are located on the diagonal of the outer shape of the third film body 51.
  • the third connecting portions 55 and 56 each have, for example, a rectangular shape when viewed from the Z-axis direction.
  • the outer shape of the third film body 51 when viewed from the Z-axis direction is such that the main body portion 54, the pair of third connection portions 55 and 56, and the pair of third beam portions 57. , 58 to form a rectangular shape.
  • the outer shape of the third film body 51 when viewed from the Z-axis direction is a main body portion 54, a pair of third connection portions 55, 56, a pair of third beam portions 57, 58, and a third to be described later. This is the outer shape of the entire third film body 51 including the slits 51a and 51b.
  • the third beam portion 57 is disposed between the main body portion 54 and the third connection portion 55.
  • the third beam portion 57 extends along the outer edge of the main body portion 54 on one side of the main body portion 54.
  • One end of the third beam portion 57 is connected to the third connection portion 55, and the other end of the third beam portion 57 is connected to the main body portion 54 at a position near the third connection portion 56.
  • the third slits 51 a are continuously formed between the main body portion 54 and the third connection portion 55 and between the main body portion 54 and the third beam portion 57.
  • the third beam portion 58 is disposed between the main body portion 54 and the third connection portion 56.
  • the third beam portion 58 extends along the outer edge of the main body portion 54 on the other side of the main body portion 54.
  • the third slits 51b are continuously formed between the main body portion 54 and the third connection portion 56 and between the main body portion 54 and the third beam portion 58.
  • the width of each of the third beam portions 57 and 58 is, for example, about several ⁇ m.
  • the length of each of the third beam portions 57 and 58 is, for example, about several tens to several hundreds ⁇ m.
  • the width of each of the third slits 51a and 51b is, for example, about several ⁇ m.
  • FIG. 13 is a cross-sectional view of the first dummy element 50.
  • I-I, II-II, III-III, IV-IV, and VV in FIG. 13 are the lines I-I, II-II, III-III, IV-IV, and V-V in FIG. 12, respectively.
  • FIG. 6 is a cross-sectional view taken along the line V.
  • the third film body 51 is different from the first film body 31 only in that it does not have the light absorption layer 76, and the other structure is the same as that of the first film body 31. Are the same. Detailed description of the third film body 51 is omitted.
  • the surface 2 a of the substrate 2 ⁇ / b> A is completely covered with the insulating layer 27.
  • the third electrode posts 52 and 53 are bonded to the surface of the insulating layer 27.
  • the first dummy element 50 is electrically insulated from the circuit unit 22A.
  • the third film body 51 is supported by the third electrode posts 52 and 53 on the surface 2a of the substrate 2A via the gap S3.
  • the second dummy element 60 is mainly different from the reference element 40 in that it is electrically insulated from the circuit portion 22A.
  • the second dummy element 60 includes a fourth film body 61 and a pair of fourth electrode posts 62 and 63.
  • the fourth film body 61 is disposed on the surface 2a of the substrate 2A via the gap S4.
  • the fourth film body 61 is disposed substantially parallel to the surface 2a of the substrate 2A.
  • the distance between the fourth film body 61 and the surface 2a of the substrate 2A is, for example, about several ⁇ m.
  • the fourth film body 61 includes a main body portion 64, a pair of fourth connection portions 65 and 66, and a pair of fourth beam portions 67 and 68. .
  • the fourth film body 61 has the same shape as the second film body 41 when viewed from the Z-axis direction.
  • the main body portion 64, the pair of fourth connection portions 65, 66, and the pair of fourth beam portions 67, 68 are integrally formed.
  • the fourth connection portions 65 and 66 are located on the diagonal of the outer shape of the fourth film body 61.
  • the fourth connecting portions 65 and 66 each have, for example, a rectangular shape when viewed from the Z-axis direction.
  • the outer shape of the fourth film body 61 when viewed from the Z-axis direction is the main body portion 64, the pair of fourth connection portions 65 and 66, and the pair of fourth beam portions 67. , 68 to form a rectangular shape.
  • the outer shape of the fourth film body 61 when viewed from the Z-axis direction is a main body portion 64, a pair of fourth connection portions 65, 66, a pair of fourth beam portions 67, 68, and a fourth to be described later.
  • This is the overall shape of the fourth film body 61 including the slits 61a and 61b.
  • the fourth beam portion 67 is disposed between the main body portion 64 and the fourth connection portion 65.
  • the fourth beam portion 67 extends along the outer edge of the main body portion 64 on one side of the main body portion 64.
  • One end of the fourth beam portion 67 is connected to the fourth connection portion 65, and the other end of the fourth beam portion 67 is connected to the main body portion 64 at a position near the fourth connection portion 65. That is, the fourth beam portion 67 is shorter than the first beam portion 37 and the third beam portion 57.
  • a fourth slit 61 a is continuously formed between the main body portion 64 and the fourth connection portion 65 and between the main body portion 64 and the fourth beam portion 67.
  • the fourth beam portion 68 is disposed between the main body portion 64 and the fourth connection portion 66.
  • the fourth beam portion 68 extends along the outer edge of the main body portion 64 on the other side of the main body portion 64.
  • One end of the fourth beam portion 68 is connected to the fourth connection portion 66, and the other end of the fourth beam portion 68 is connected to the main body portion 64 at a position near the fourth connection portion 66. That is, the fourth beam portion 68 is shorter than the first beam portion 38 and the third beam portion 58.
  • the fourth slits 61 b are continuously formed between the main body portion 64 and the fourth connection portion 66 and between the main body portion 64 and the fourth beam portion 68.
  • the width of each of the fourth beam portions 67 and 68 is, for example, about several ⁇ m.
  • the length of each of the fourth beam portions 67 and 68 is, for example, about several ⁇ m to several tens of ⁇ m.
  • the width of each of the fourth slits 61a and 61b is, for example, about several ⁇ m.
  • FIG. 16 is a cross-sectional view of the second dummy element 60.
  • I-I, II-II, III-III, IV-IV, and VV in FIG. 16 are respectively the II, II-II, III-III, IV-IV, and V-V lines of FIG.
  • FIG. 6 is a cross-sectional view taken along the line V.
  • the structure of the fourth film body 61 is the same as that of the second film body 41. Detailed description of the fourth film body 61 is omitted.
  • the surface 2 a of the substrate 2 ⁇ / b> A is completely covered with the insulating layer 27 in the region facing the second dummy element 60.
  • the fourth electrode posts 62 and 63 are bonded to the surface of the insulating layer 27.
  • the second dummy element 60 is electrically insulated from the circuit portion 22A.
  • the fourth film body 61 is supported by the fourth electrode posts 62 and 63 on the surface 2a of the substrate 2A via the gap S4.
  • the substrate 2 ⁇ / b> A includes a semiconductor substrate 21, a circuit unit 22 ⁇ / b> A, and an insulating layer 23.
  • the material of the semiconductor substrate 21 is, for example, silicon.
  • the circuit portion 22 ⁇ / b> A is provided in a layered manner on the surface of the semiconductor substrate 21.
  • the insulating layer 23 is formed on the semiconductor substrate 21 so that the surface 2a of the substrate 2A becomes flat (ie, the correction circuit 8, the lead-out circuit 9, and the shift registers 11a, 11b, and 11c) And a plurality of wirings that electrically connect the components to each other).
  • the material of the insulating layer 23 is, for example, a silicon nitride film (SiN).
  • first dummy elements 50 and some of the second dummy elements 60 overlap the circuit portion 22A when viewed from the Z-axis direction. Specifically, some of the first dummy elements 50 and some of the second dummy elements 60 overlap with the signal readout circuit 7 when viewed from the Z-axis direction (see FIG. 1). More specifically, when viewed from the Z-axis direction, the first dummy element 50 disposed on the shift register 11a side with respect to the pixel unit 3 overlaps the shift register 11a. When viewed from the Z-axis direction, the second dummy element 60 disposed on the shift register 11b side with respect to the reference unit 4 overlaps the shift register 11b.
  • the second dummy element 60 disposed on the correction circuit 8 side with respect to the reference unit 4 overlaps the correction circuit 8.
  • the second dummy element 60 disposed on the correction circuit 8 side with respect to the reference unit 4 may overlap with the lead-out circuit 9. Note that, when viewed from the Z-axis direction, the dummy elements overlap with the signal readout circuit 7 that at least some of the dummy elements overlap with the signal readout circuit 7. Say.
  • the photodetector 1A configured as described above, light is detected as follows. First, when light enters the light receiving portion 34 of the light detection element 30, heat is generated in the light absorption layer 76 that constitutes the optical resonance structure described above. At this time, the light receiving unit 34 and the substrate 2A are thermally separated by the gap S1. In addition, the light receiving part 34, the first connection part 35, and the first beam part 37 are thermally separated by the first slit 31a. In addition, the light receiving part 34, the first connection part 36, and the first beam part 38 are thermally separated by the first slit 31b.
  • the heat generated in the light absorption layer 76 escapes to the substrate 2A side via the first beam portions 37 and 38 and the first connection portions 35 and 36. Further, the light absorption layer 76 and the first wiring layers 71 and 72 are thermally separated by the separation layer 77. For this reason, before the heat generated in the light absorption layer 76 is sufficiently transmitted to the first resistance layer 75 via the separation layer 77, the heat escapes to the substrate 2A side via the first wiring layers 71 and 72. It is suppressed.
  • the heat generated in the light absorption layer 76 is transmitted to the first resistance layer 75 through the separation layer 77. As a result of this heat, the temperature of the first resistance layer 75 increases and the electrical resistance decreases.
  • a signal due to the change in electrical resistance is sent to the signal readout circuit 7 via the first wiring layers 71 and 72, the first electrode posts 32 and 33, and the first electrode pads 25 and 26.
  • the shift register 11 a and the shift register 11 c specify the column and row addresses in the pixel unit 3 and select the signals in the respective light detection elements 30. Read out.
  • a signal due to a change in electrical resistance is also sent from the reference element 40 of the reference unit 4 to the signal readout circuit 7.
  • the shift register 11 b and the shift register 11 c specify the column and row addresses in the reference unit 4 and select the signals in each reference element 40. read out.
  • the correction circuit 8 corrects and outputs the signals read by the shift registers 11a, 11b, and 11c.
  • the lead-out circuit 9 amplifies, measures and holds the signal output by the correction circuit 8.
  • the I / O pad 12 sequentially outputs signals amplified, measured and held by the lead-out circuit 9.
  • the photodetector 1 ⁇ / b> A light is detected based on the difference between the signal from the light detection element 30 and the signal from the reference element 40.
  • a signal in one reference element 40 is read each time a signal in each of a plurality of corresponding light detection elements 30 is read. That is, one reference element 40 is used for compensation of a plurality of corresponding light detection elements 30. For this reason, the detection accuracy of one reference element 40 affects the detection accuracy of a plurality of light detection elements 30.
  • the number of times the signal is read from the reference element 40 is larger than the number of times the signal is read from the photodetecting element 30. For this reason, the reference element 40 is easily deteriorated as compared with the photodetecting element 30. For this reason, a device for ensuring the compensation accuracy by the reference element is indispensable.
  • the first dummy element 50 is disposed along the outer edge of the first region 3a, and the second dummy element 60 is disposed along the outer edge of the second region 4a. Therefore, the first film body 31 of the photodetecting element 30 and the second film of the reference element 40 are compared with the case where a space is formed without the first dummy element 50 and the second dummy element 60.
  • the body 41 is placed in a uniform environment. As a result, the detection accuracy of the light detection element 30 and the detection accuracy of the reference element 40 are improved.
  • the first dummy element 50 and the second dummy element 60 are electrically insulated from the circuit part 22A, the first dummy element 50 and the second dummy element 60 are electrically connected to the circuit part 22A. This eliminates the need for a circuit structure. Therefore, according to the photodetector 1A, detection accuracy can be ensured while suppressing the complexity of the structure.
  • a plurality of first dummy elements 50 are arranged in a region other than the first region 3a and the second region 4a on the surface 2a so as to be arranged in a direction intersecting with the outer edge of the first region 3a.
  • a plurality of second dummy elements 60 are arranged in regions other than the first region 3a and the second region 4a on the surface 2a so as to be arranged in a direction intersecting with the outer edge of the second region 4a.
  • the first dummy element 50 is disposed in the region between the first region 3a and the second region 4a on the surface 2a along the outer edge of the first region 3a, and the second dummy element 50A.
  • the element 60 is arranged along the outer edge of the second region 4a in the region between the first region 3a and the second region 4a on the surface 2a.
  • the first dummy element 50 is a region between the first region 3a and the second region 4a.
  • the second dummy element 60 is disposed in a region between the first region 3a and the second region 4a. Has been. Therefore, the first film body 31 of the light detection element 30 and the second film body 41 of the reference element 40 are placed in a more uniform environment. As a result, the detection accuracy of the light detection element 30 and the detection of the reference element 40 The accuracy is further improved.
  • the first dummy element 50 and the second dummy element 60 each surround the first region 3a and the second region 4a in four rows so as to surround the first region 3a and the second region 4a.
  • a plurality of surfaces 2a are arranged along the outer edges of the two regions 4a. According to this configuration, the second film body 41 of the reference element 40 and the first film body 31 of the light detection element 30 are placed in a uniform environment. As a result, the detection accuracy of the reference element 40 and the light detection element 30 detection accuracy is improved.
  • the fourth film body 61 of the second dummy element 60 disposed along the outer edge of the second region 4a is the second film body of the reference element 40 when viewed from the Z-axis direction. 41.
  • the third film body 51 of the first dummy element 50 disposed along the outer edge of the first region 3a has the same shape as that of the first region 3a. It has the same shape as the single film body 31. According to this configuration, the second film body 41 of the reference element 40 and the first film body 31 of the light detection element 30 are placed in a more uniform environment. As a result, the detection accuracy of the reference element 40 and the light detection The detection accuracy of the element 30 is further improved.
  • the circuit unit 22A includes the signal readout circuit 7, and signal readout is performed when some of the first dummy elements 50 and some of the second dummy elements 60 are viewed from the Z-axis direction. It overlaps with the circuit 7. According to this configuration, it is possible to reduce the size of the photodetector 1A while suppressing the complexity of the structure of the photodetector 1A. Further, by shortening the wiring length of the signal read circuit 7, the read characteristics of the signal read circuit 7 can be improved.
  • a plurality of first dummy elements 50 are arranged on the surface 2a along the outer edge of the first region 3a so as to surround the first region 3a. Therefore, stray light that enters the first film body 31 from the side of the light detection element 30 is blocked by the first dummy element 50. Thereby, the detection accuracy of the photodetecting element 30 is improved.
  • FIGS. 17 to 23 and FIG. 26 II, II-II, III-III, IV-IV, and VV in (b) are respectively taken along line II in (a), It is sectional drawing along the II-II line, the III-III line, the IV-IV line, and the VV line.
  • FIG. 24 and FIG. 25 the figure as in the above (a) is omitted.
  • a substrate 2A provided with a light reflecting layer 24, first electrode pads 25 and 26, and an insulating layer 27 is prepared.
  • a sacrificial layer 39 is formed on the surface 2a of the substrate 2A so as to cover the light reflecting layer 24, the first electrode pads 25 and 26, and the insulating layer 27.
  • the material of the sacrificial layer 39 is, for example, polyimide.
  • through holes 39 a and 39 b are formed in the sacrificial layer 39 by removing a part of the sacrificial layer 39 by etching.
  • the through holes 39a and 39b are formed on the first electrode pads 25 and 26, respectively, corresponding to the through holes 27a and 27b.
  • the inner surface of each through-hole 39a, 39b is, for example, a truncated cone-shaped tapered surface.
  • the inner surfaces of the through holes 39a and 39b extend from the first electrode pads 25 and 26 toward the opposite side of the substrate 2A, respectively.
  • the small diameters of the through holes 39a and 39b are larger than the diameters of the through holes 27a and 27b.
  • an insulating layer 74 is formed on the sacrificial layer 39.
  • the insulating layer 74 is formed so that the inner surface of each of the through holes 39a and 39b is a truncated cone-shaped tapered surface, for example.
  • a part of the insulating layer 74 is removed by etching, so that the surface of each of the first electrode pads 25 and 26 opposite to the substrate 2A is exposed.
  • the first electrode post 32 is formed on the insulating layer 74 in the through hole 39a, and the first electrode post 33 is formed on the insulating layer 74 in the through hole 39b.
  • Each of the first electrode posts 32 and 33 is formed by vapor deposition, for example.
  • the first electrode posts 32 and 33 are processed into a predetermined shape by dry etching, for example.
  • first wiring layers 71 and 72 are formed on the insulating layer 74 so as to cover the first electrode posts 32 and 33.
  • Each of the first wiring layers 71 and 72 is formed by vapor deposition, for example.
  • the 1st wiring layers 71 and 72 are processed into the shape mentioned above by dry etching, for example.
  • the light receiving unit 34, the first beam units 37 and 38, and the first connection units 35 and 36 so as to cover the first wiring layers 71 and 72 from the opposite side of the substrate 2 ⁇ / b> A.
  • an insulating layer 73 is formed.
  • the insulating layer 73 is processed into the shape described above by etching.
  • the first resistance layer 75 is formed so as to cover the insulating layer 73 from the opposite side of the substrate 2 ⁇ / b> A, and in the first connection parts 35 and 36, the insulating layer A first resistance layer 75 is formed on 73.
  • the first resistance layer 75 is processed into the shape described above, for example, by dry etching.
  • a separation layer 77 is formed so as to cover the first resistance layer 75 from the opposite side of the substrate 2A, and in the first beam portion 37 and the first beam portion 38, A separation layer 77 is formed on the insulating layer 73.
  • the light absorption layer 76 is formed on the separation layer 77, and the through hole 31c is further formed.
  • the light absorption layer 76 is processed into the shape described above by etching.
  • the through hole 31c is formed at the position described above by etching.
  • the first slits 31a and 31b are formed at the above-described positions by, for example, dry etching, and further, dry etching is advanced from the first slits 31a and 31b and the through holes 31c, thereby sacrificing layers.
  • the void S1 is formed.
  • the method for manufacturing the reference element 40 is different from the method for manufacturing the photodetecting element 30 described above in that the light absorption layer 76 is not formed. Further, in the manufacturing method of the first dummy element 50 and the second dummy element 60, the light absorption layer 76 is not formed, and the sacrificial layer 39 and a part of the insulating layer 84 are removed to be exposed. This is different from the method for manufacturing the photodetecting element 30 described above in that it is not the surface of the electrode pad but the surface of the insulating layer 27.
  • the plurality of photodetecting elements 30, the plurality of reference elements 40, the plurality of first dummy elements 50, and the plurality of second dummy elements 60 are manufactured by the light reflecting layer 24, the first electrode pads 25 and 26, and the insulation. It is carried out simultaneously with the substrate 2A provided with the layer 27.
  • the photodetecting element 30 when dry etching is performed, for example, near the center of the first region 3a and the edge of the first region 3a, an etchant (etching gas) is generated due to a loading effect or the like.
  • the density distribution may be biased, and the shapes of the first electrode posts 32 and 33, the first wiring layers 71 and 72, the first resistance layer 75, and the first film body 31 may be uneven. As a result, there is a possibility that the detection accuracy by the manufactured light detection element 30 may be lowered. Therefore, since the light detection element 30 is manufactured simultaneously with the plurality of first dummy elements 50 surrounding the first region 3a as described above, the vicinity of the center of the first region 3a and the first region 3a are manufactured.
  • the unevenness of the etching pattern is prevented from becoming non-uniform at the edge.
  • unevenness in the etchant density distribution is suppressed from occurring near the center of the first region 3a and the edge of the first region 3a due to the loading effect. Therefore, the first electrode posts 32 and 33, the first wiring layers 71 and 72, the first resistance layer 75, and the first film body 31 are prevented from being unevenly shaped. That is, the manufacturing process of the light detection element 30 is stabilized. Therefore, the detection accuracy by the light detection element 30 is ensured.
  • Such an effect is similarly achieved in the manufacture of the reference element 40. That is, since the reference element 40 is manufactured simultaneously with the plurality of second dummy elements 60 surrounding the second region 4a as described above, the reference element 40 is formed near the center of the second region 4a and the second region 4a. It is possible to prevent the etching pattern from becoming nonuniform at the edge. As a result, it is possible to suppress an uneven distribution of the etchant density distribution near the center of the second region 4a and the edge of the second region 4a due to the loading effect. Therefore, the second electrode posts 42 and 43, the second wiring layers 81 and 82, the second resistance layer 85, and the second film body 41 are prevented from being non-uniform in shape. That is, the manufacturing process of the reference element 40 is stabilized. Therefore, the detection accuracy by the reference element 40 is ensured.
  • the second film body 41 does not have the light absorption layer 76, it may be formed thinner than the first film body 31. For this reason, the second film body 41 is more easily deformed than the first film body 31. Therefore, it is important to manufacture the second film body 41 with high accuracy. That is, the effect of stabilizing the manufacturing process as described above is particularly effective for the reference element 40. Further, the second dummy element 60 has the same shape as the reference element 40 and the first dummy element 50 has the same shape as the light detection element 30 when viewed from the Z-axis direction. The effect of suppressing the non-uniformity of the density state of the etched pattern is further remarkable.
  • each of the third region 5a and the fourth region 6a surrounds each of the first region 3a and the second region 4a.
  • only the fourth region 6a has the second region 6a.
  • Each of the first region 3a and the second region 4a may be enclosed. That is, only the second dummy element 60 surrounds each of the first region 3a and the second region 4a on the surface 2a of the substrate 2A along the outer edge of the first region 3a and the outer edge of the second region 4a. A plurality of them may be arranged.
  • the third region 5a and the fourth region 6a may surround the entire outer edges of the first region 3a and the second region 4a. That is, the first dummy element 50 and the second dummy element 60 surround the entire outer edges of the first area 3a and the second area 4a along the outer edges of the first area 3a and the second area 4a.
  • a plurality of surfaces may be arranged on the surface 2a.
  • the third region 5a has a U shape that opens toward the second region 4a
  • the fourth region 6a has a U shape that opens toward the first region 3a. ing.
  • the third region 5a and the fourth region 6a are adjacent to each other so as to form a rectangular ring shape.
  • the first region 3a and the second region 4a are located inside the rectangular ring. In this case, the first region 3a and the second region 4a are adjacent to each other. The first region 3a and the second region 4a may be separated from each other. The first dummy element 50 and the second dummy element 60 are not disposed between the first region 3a and the second region 4a.
  • the second film body 41 of the reference element 40 and the first detection element 30 The film body 31 is placed in a uniform environment. As a result, the detection accuracy of the reference element 40 and the detection accuracy of the light detection element 30 are improved.
  • the entire outer edge of the first region 3a and the second region 4a refers to the outer edge of the region extending from the first region 3a to the second region 4a.
  • the total of the first region 3a, the second region 4a, and the region between the first region 3a and the second region 4a is This is an area extending from the first area 3a to the second area 4a.
  • only the fourth region 6a may surround the entire outer edges of the first region 3a and the second region 4a. That is, only the second dummy element 60 is disposed on the surface 2a of the substrate 2A along the outer edges of the first region 3a and the second region 4a so as to surround the entire outer edges of the first region 3a and the second region 4a. May be.
  • the first region 3a may not be surrounded by any region. That is, the first region 3a may not be surrounded by any dummy element.
  • the fourth area 6a surrounds only the second area 4a. That is, a plurality of second dummy elements 60 are arranged on the surface 2a of the substrate 2A along the outer edge of the second region 4a so as to surround only the second region 4a.
  • the fourth region 6a may surround only the side portion of the second region 4a other than the side portion on the first region 3a side. That is, a plurality of second dummy elements 60 are arranged on the surface 2a of the substrate 2A along the outer edge of the second region 4a so as to surround only the side portion of the second region 4a other than the side portion on the first region 3a side. It may be. In this case, the first region 3a and the second region 4a are adjacent to each other. The first region 3a and the second region 4a may be separated from each other.
  • the fourth region 6a may be formed only on the opposite side of the second region 4a from the first region 3a. That is, the second dummy element 60 may be disposed along the outer edge of the second region 4a only in the region opposite to the first region 3a with respect to the second region 4a. In this case, the first region 3a and the second region 4a are adjacent to each other. The first region 3a and the second region 4a may be separated from each other.
  • the fourth region 6a is formed only on the opposite side of the second region 4a from the first region 3a, and the third region 5a is formed with respect to the first region 3a.
  • the second dummy element 60 is arranged along the outer edge of the second region 4a only in the region opposite to the first region 3a with respect to the second region 4a. You may arrange
  • the first region 3a and the second region 4a are adjacent to each other.
  • the first region 3a and the second region 4a may be separated from each other.
  • the third region 5a may include a plurality of rectangular regions along each side of the first region 3a.
  • the length of the third region 5a along the side of the first region 3a is the same as the length of the side of the first region 3a.
  • the fourth region 6a may include a plurality of regions along each side of the second region 4a.
  • the length of the region of the fourth region 6a along the side of the second region 4a is the same as the length of the side of the second region 4a.
  • the fourth region 6a includes a plurality of regions along each side of the second region 4a. You may go out.
  • the third region 5a and the fourth region 6a may contain the some area
  • the first region 3a and the second region 4a are adjacent to each other.
  • the first region 3a and the second region 4a may be separated from each other.
  • the fourth region 6a is the second region.
  • a plurality of regions along each side of 4a may be included.
  • the first region 3a and the second region 4a are adjacent to each other.
  • the first region 3a and the second region 4a may be separated from each other.
  • the first dummy element 50 includes at least the first region 3a.
  • the second dummy elements 60 need only surround the second region 4a in at least one column. Even when the first dummy element 50 and the second dummy element 60 surround the entire outer edges of the first region 3a and the second region 4a, the first dummy element 50 and the second dummy element 60 are at least It is only necessary to surround the entire outer edges of the first region 3a and the second region 4a in one row.
  • the light detection elements 30 are arranged to have, for example, about 64 columns ⁇ 64 rows to 128 columns ⁇ 128 rows
  • the light detection elements 30 have, for example, 32 columns ⁇ 32 rows to 480 columns ⁇ It only needs to be arranged so as to have about 640 rows.
  • the example in which the reference elements 40 are arranged so as to have, for example, about 16 columns ⁇ 64 rows to 16 columns ⁇ 128 rows is shown.
  • the reference elements 40 are, for example, 1 column ⁇ 32 rows to 24 columns ⁇ 640 rows. It suffices if they are arranged so as to be approximately.
  • the first dummy element 50 is disposed along the outer edge of the first region 3a in the region between the first region 3a and the second region 4a in the surface 2a of the substrate 2A
  • the second dummy element 60 is Although an example in which the two regions 4a are arranged along the outer edge is shown, the first dummy element 50 is first in the region between the first region 3a and the second region 4a on the surface 2a of the substrate 2A.
  • the second dummy element 60 may be disposed along the outer edge of the second region 4a.
  • the second dummy element 60 may be disposed along the outer edge of the second region 4a.
  • At least one of the first dummy element 50 and the second dummy element 60 in the region between the first region 3a and the second region 4a on the surface 2a of the substrate 2A includes the outer edge of the first region 3a and the second region 4a. What is necessary is just to arrange
  • the types of the dummy elements arranged along the outer edge of the first region 3a and the dummy elements arranged along the outer edge of the second region 4a are not limited.
  • the second dummy element 60 may be disposed along the outer edge of the first region 3a
  • the first dummy element 50 may be disposed along the outer edge of the second region 4a.
  • the first dummy element 50 and the second dummy element 60 are arranged along the outer edge of the first region 3a
  • the first dummy element 50 and the second dummy element 60 are arranged along the outer edge of the second region 4a. May be.
  • a dummy element other than the first dummy element 50 and the second dummy element 60 may be arranged instead of the first dummy element 50 or the second dummy element 60.
  • region 4a are exhibiting the rectangular shape
  • region 4a are exhibiting polygonal shapes or circular shapes other than rectangular shape, for example.
  • the pixel unit 3 and the reference unit 4 may have, for example, a polygonal shape or a circular shape other than a rectangular shape when viewed from the Z-axis direction.
  • region 6a exhibits polygonal shapes other than rectangular shape, or circular shape, for example. It may be. That is, the outer edges of the first dummy portion 5 and the second dummy portion 6 may have, for example, a polygonal shape or a circular shape other than a rectangular shape when viewed from the Z-axis direction.
  • each of the 1st film body 31, the 2nd film body 41, the 3rd film body 51, and the 4th film body 61 showed from the Z-axis direction, the example which is exhibiting the rectangular shape was shown.
  • Each of the first film body 31, the second film body 41, the third film body 51, and the fourth film body 61 has, for example, a polygonal shape other than a rectangular shape when viewed from the Z-axis direction. Also good.
  • At least one of the first dummy element 50 and the second dummy element 60 has only one of the outer edge of the first region 3a and the outer edge of the second region 4a in a region other than the first region 3a and the second region 4a. It may be arranged along. That is, at least one of the first dummy element 50 and the second dummy element 60 extends along the at least one of the outer edge of the first region 3a and the outer edge of the second region 4a in a region other than the first region 3a and the second region 4a. As long as they are arranged.
  • a plurality of first dummy elements 50 are arranged in regions other than the first region 3a and the second region 4a on the surface 2a of the substrate 2A so as to be arranged in a direction intersecting with the outer edge of the first region 3a.
  • the dummy element 60 has been shown in an example in which a plurality of dummy elements 60 are arranged in regions other than the first region 3a and the second region 4a on the surface 2a of the substrate 2A so as to line up in the direction intersecting the outer edge of the second region 4a.
  • the present invention is not limited to this.
  • At least one of the first dummy element 50 and the second dummy element 60 is arranged in a direction intersecting only one of the outer edge of the first region 3a and the outer edge of the second region 4a.
  • a plurality of areas may be arranged in areas other than the first area 3a and the second area 4a. That is, of the surface 2a of the substrate 2A, at least one of the first dummy element 50 and the second dummy element 60 is arranged in a direction intersecting at least one of the outer edge of the first region 3a and the outer edge of the second region 4a. It suffices if a plurality of areas are arranged in areas other than the first area 3a and the second area 4a.
  • the first dummy element 50 may have the light absorption layer 76.
  • the example in which the light absorption layer 76 is not formed is shown.
  • the light absorption layer 76 may be formed. In this case, the manufacturing process of the light detection element 30 (light absorption layer 76) is stabilized.
  • the photodetector 1 ⁇ / b> B according to the second embodiment is the first in that the pixel unit is configured by one photodetecting element 30 and the reference unit is configured by one reference element 40. This is mainly different from the photodetector 1A of the embodiment.
  • the photodetector 1B includes a substrate 2B having a surface 2b, a light detection element 30, a reference element 40, a first dummy part 5, and a second dummy part 6.
  • the thickness of the substrate 2B is, for example, about several hundred ⁇ m.
  • the photodetecting element 30, the reference element 40, the first dummy portion 5, and the second dummy portion 6 are formed on the surface 2b of the substrate 2B.
  • the light detection element 30 and the reference element 40 When viewed from the Z-axis direction (thickness direction of the substrate 2B), the light detection element 30 and the reference element 40 are arranged so as to be aligned in the X-axis direction (direction perpendicular to the Z-axis) parallel to the surface 2b. ing.
  • the photodetecting element 30 and the reference element 40 are adjacent to each other.
  • one reference element 40 is used for compensation for one photodetector 30.
  • the first dummy part 5 surrounds the light detection element 30 and the reference element 40 together with the second dummy part 6.
  • the first dummy part 5 and the second dummy part 6 are adjacent to each other.
  • the circuit board 22B and a plurality of I / O pads 12 are provided on the substrate 2B.
  • the circuit portion 22B is provided in a layered manner on the surface 2b side of the substrate 2B.
  • the I / O pad 12 is composed of a metal film formed on the surface 2b of the substrate 2B.
  • the circuit unit 22B includes an analog read circuit (signal read circuit) 13, an AD converter 14, a DSP (digital signal processor) 15, a digital interface 16, a timing generator 17, and a plurality of components that electrically connect each other. Wiring (not shown).
  • the analog readout circuit 13 is provided in a rectangular annular region when viewed from the Z-axis direction.
  • the analog readout circuit 13 surrounds the light detection element 30 and the reference element 40 when viewed from the Z-axis direction.
  • the DSP 15 and the timing generator 17 are arranged on both sides in the X-axis direction (direction orthogonal to the Z-axis) parallel to the surface 2 b with respect to the analog readout circuit 13.
  • the digital interface 16 is arranged to line up with the DSP 15 in the Y-axis direction (direction orthogonal to the Z-axis and the X-axis) parallel to the surface 2b.
  • the AD converter 14 is arranged so as to be aligned with the timing generator 17, the analog readout circuit 13, the DSP 15, and the digital interface 16 in the Y-axis direction.
  • the plurality of I / O pads 12 are arranged along the outer edge of the surface 2b.
  • the first region 3a and the second region 4a are adjacent to each other.
  • the third region 5a and the fourth region 6a surround the entire outer edges of the first region 3a and the second region 4a.
  • the third region 5a has a shape in which one side is recessed by the size of the first region 3a
  • the fourth region 6a has one side that is the size of the second region 4a. It has a concave shape.
  • the third region 5a and the fourth region 6a are adjacent to each other so as to form a rectangular ring shape.
  • the first region 3a and the second region 4a are located inside the rectangular ring.
  • the outer edge of the light detection element 30 overlaps with the outer edge of the first region 3a when viewed from the Z-axis direction.
  • the outer edge of the reference element 40 overlaps with the outer edge of the second region 4a when viewed from the Z-axis direction.
  • the outer edge of the first dummy portion 5 overlaps with the outer edge of the third region 5a when viewed from the Z-axis direction.
  • the outer edge of the second dummy portion 6 overlaps with the outer edge of the fourth region 6a when viewed from the Z-axis direction.
  • the first dummy section 5 is composed of a plurality of first dummy elements 50.
  • the second dummy part 6 is constituted by a plurality of second dummy elements 60.
  • the plurality of first dummy elements 50 and the plurality of second dummy elements 60 are arranged in the third region 5a and the fourth region 6a so as to surround the light detection elements 30 and the reference elements 40 in a plurality of columns (here, four columns).
  • the first dummy element 50 and the second dummy element 60 have surfaces along the outer edges of the first region 3a and the second region 4a so as to surround the entire outer edges of the first region 3a and the second region 4a.
  • a plurality are arranged in 2a. That is, a plurality of the first dummy elements 50 and the second dummy elements 60 are arranged on the surface 2 a along the outer edges of the light detection elements 30 and the reference elements 40 so as to surround the light detection elements 30 and the reference elements 40.
  • the first dummy element 50 and the second dummy element 60 overlap the circuit portion 22B when viewed from the Z-axis direction (see FIG. 38). Specifically, the first dummy element 50 and the second dummy element 60 overlap the analog readout circuit 13 when viewed from the Z-axis direction.
  • the photodetector 1B configured as described above, light is detected as follows. First, similarly to the photodetector 1 ⁇ / b> A, heat generated in the light absorption layer 76 is transmitted to the first resistance layer 75 through the separation layer 77. As a result of this heat, the temperature of the first resistance layer 75 increases and the electrical resistance decreases. A signal resulting from the change in electrical resistance is sent to the analog readout circuit 13 via the first wiring layers 71 and 72, the first electrode posts 32 and 33, and the first electrode pads 25 and 26. At this time, a signal due to a change in electrical resistance is also sent from the reference element 40 to the analog readout circuit 13.
  • the analog readout circuit 13 amplifies and corrects a signal resulting from a change in the electrical resistance of the light detection element 30 and a signal resulting from a change in the electrical resistance of the reference element 40 and outputs the amplified signal.
  • the AD converter 14 converts the signal amplified and corrected by the analog readout circuit 13 into a digital signal.
  • the DSP 15 performs predetermined signal processing on the digital signal converted by the AD converter 14 and then outputs it to the digital interface 16.
  • the timing generator 17 outputs a drive timing signal to the DSP 15.
  • the digital interface 16 outputs a signal output from the DSP 15 to the outside via the I / O pad 12.
  • the I / O pad 12 sequentially outputs signals generated by the digital interface 16.
  • light is detected based on the difference between the signal from the light detection element 30 and the signal from the reference element 40.
  • the detection accuracy can be ensured while suppressing the complexity of the structure, similarly to the photodetector 1A of the first embodiment described above. .
  • the pixel unit is configured by one photodetecting element 30 and the reference unit is configured by one reference element 40
  • a plurality of elements are arranged in a two-dimensional matrix in the manufacturing process of the photodetector 1B. Apart from the arrangement, it is necessary to optimize the dry etching conditions.
  • the first dummy element 50 and the second dummy element 60 are arranged along the outer edges of the first area 3a and the second area 4a so as to surround the entire outer edges of the first area 3a and the second area 4a. Since a plurality of elements are arranged on the surface 2b of the substrate 2B, dry etching can be performed under the same conditions as in the case where a plurality of elements are arranged in a two-dimensional matrix. Therefore, the manufacturing process is simplified.
  • only the third region 5a may surround the entire outer edges of the first region 3a and the second region 4a. That is, only the first dummy element 50 is disposed on the surface 2a of the substrate 2A along the outer edges of the first region 3a and the second region 4a so as to surround the entire outer edges of the first region 3a and the second region 4a. May be. Further, instead of the third region 5a, only the fourth region 6a may surround the entire outer edges of the first region 3a and the second region 4a.
  • the second dummy element 60 is provided along the outer edges of the first area 3a and the second area 4a so as to surround the entire outer edges of the first area 3a and the second area 4a.
  • a plurality of substrates may be arranged on the surface 2a of the substrate 2A.
  • the third region 5a is on both sides in the Y-axis direction with respect to the first region 3a, and on the opposite side of the second region 4a with respect to the first region 3a.
  • You may extend along the Y-axis direction and the X-axis direction. That is, the first dummy element 50 has the Y-axis direction and the X-axis direction on both sides in the Y-axis direction with respect to the first region 3a and on the opposite side of the first region 3a from the second region 4a, respectively. A plurality of them may be arranged along.
  • the fourth region 6a has a Y-axis direction and an X-axis direction on both sides in the Y-axis direction with respect to the second region 4a and on the opposite side of the second region 4a from the first region 3a, respectively. It may extend along. That is, the second dummy element 60 has a Y-axis direction and an X-axis direction on both sides in the Y-axis direction with respect to the second region 4a and on the opposite side of the second region 4a from the first region 3a, respectively. A plurality of them may be arranged along.
  • the third region 5a is on both sides in the Y-axis direction with respect to the second region 4a, and on the opposite side of the first region 3a with respect to the second region 4a, respectively.
  • the fourth region 6a is on both sides in the Y-axis direction with respect to the first region 3a, and on the opposite side of the second region 4a with respect to the first region 3a, respectively.
  • And may extend along the Y-axis direction and the X-axis direction. That is, instead of the first dummy element 50, the second dummy element 60 is located on both sides in the Y-axis direction with respect to the first region 3a and on the opposite side of the first region 3a from the second region 4a. A plurality of them may be arranged along the Y-axis direction and the X-axis direction, respectively.
  • the first region 3a and the second region 4a may be separated from each other.
  • each of the third region 5a and the fourth region 6a surrounds each of the first region 3a and the second region 4a. That is, each of the first dummy element 50 and the second dummy element 60 surrounds each of the first region 3a and the second region 4a along the outer edge of the first region 3a and the outer edge of the second region 4a.
  • a plurality of surfaces are arranged on the surface 2a.
  • only the third region 5a may surround each of the first region 3a and the second region 4a. That is, only the first dummy element 50 is disposed on the surface 2a along the outer edge of the first region 3a and the outer edge of the second region 4a so as to surround each of the first region 3a and the second region 4a. It may be. Further, instead of the third region 5a, only the fourth region 6a may surround each of the first region 3a and the second region 4a. That is, instead of the first dummy element 50, only the second dummy element 60 surrounds each of the first region 3a and the second region 4a, and the outer edge of the first region 3a and the outer edge of the second region 4a, respectively. A plurality of surfaces may be arranged on the surface 2a.
  • the third region 5a has a Y-axis direction on both sides in the Y-axis direction with respect to the first region 3a and on both sides in the X-axis direction with respect to the first region 3a. And may extend along the X-axis direction. That is, the first dummy element 50 is along the Y-axis direction and the X-axis direction on both sides in the Y-axis direction with respect to the first region 3a and on both sides in the X-axis direction with respect to the first region 3a. A plurality of them may be arranged.
  • the fourth region 6a extends along the Y-axis direction and the X-axis direction on both sides in the Y-axis direction with respect to the second region 4a and on both sides in the X-axis direction with respect to the second region 4a, respectively. It may be extended. That is, the second dummy element 60 is along the Y-axis direction and the X-axis direction on both sides in the Y-axis direction with respect to the second region 4a and on both sides in the X-axis direction with respect to the second region 4a, respectively. A plurality of them may be arranged.
  • the third region 5a is in the Y-axis direction on both sides in the Y-axis direction with respect to the second region 4a and on both sides in the X-axis direction with respect to the second region 4a. And may extend along the X-axis direction.
  • the first dummy element 50 is provided on both sides in the Y-axis direction with respect to the second region 4a and on both sides in the X-axis direction with respect to the second region 4a.
  • a plurality may be arranged along the axial direction and the X-axis direction.
  • the fourth region 6a has a Y-axis on both sides in the Y-axis direction with respect to the first region 3a and on both sides in the X-axis direction with respect to the first region 3a. May extend along the direction and the X-axis direction.
  • the second dummy element 60 is Y on both sides in the Y-axis direction with respect to the first region 3a and on both sides in the X-axis direction with respect to the first region 3a.
  • a plurality may be arranged along the axial direction and the X-axis direction.
  • the analog readout circuit 13 may not overlap.

Abstract

A photodetector equipped with a substrate which has a surface, a photodetection element which has a first film body positioned on the surface with a gap interposed therebetween, a reference element which has a second film body positioned on the surface with a gap interposed therebetween, a dummy element which has a film body positioned on the surface with a gap interposed therebetween, and a circuit unit which is provided on the substrate and is electrically connected to the photodetection element and the reference element, wherein: the photodetection element detects light on the basis of a change in temperature caused by the receipt of light, and is positioned in a first region of the surface; the reference element compensates for changes in temperature caused by factors other than the receipt of light by the photodetection element, and is positioned in a second region of the surface; the dummy element is positioned on the surface along the outer edge of the first region and/or the outer edge of the second region in a region other than the first and second regions; and the dummy element is electrically insulated from the circuit unit.

Description

光検出器Photodetector
 本開示は、光検出器に関する。 This disclosure relates to a photodetector.
 光検出器として、受光による温度変化に基づいて光を検出するための光検出素子と、光検出素子における受光以外の要因による温度変化を補償するためのリファレンス素子と、を備えるものが知られている(例えば、特許文献1参照)。 Known photodetectors include a light detection element for detecting light based on a temperature change due to light reception, and a reference element for compensating for a temperature change due to factors other than light reception in the light detection element. (For example, refer to Patent Document 1).
特開2015-45641号公報JP 2015-45641 A
 上述したような光検出器では、光検出器としての検出精度を確保するために、例えば、信号処理の方法を工夫することが考えられる。しかしながら、その場合、光検出素子及びリファレンス素子を支持する基板に設けられる回路部の構造、延いては、光検出器の構造が複雑化するおそれがある。 In the photodetector as described above, in order to ensure detection accuracy as a photodetector, for example, it is conceivable to devise a signal processing method. However, in that case, there is a possibility that the structure of the circuit portion provided on the substrate supporting the light detection element and the reference element, and thus the structure of the light detector may be complicated.
 そこで、本開示は、構造の複雑化を抑制しつつ検出精度を確保することができる光検出器を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a photodetector that can ensure detection accuracy while suppressing the complexity of the structure.
 本開示の一側面の光検出器は、表面を有する基板と、空隙を介して表面上に配置された第1膜体を有する光検出素子と、空隙を介して表面上に配置された第2膜体を有するリファレンス素子と、空隙を介して表面上に配置された膜体を有するダミー素子と、基板に設けられ、光検出素子及びリファレンス素子と電気的に接続された回路部と、を備え、光検出素子は、受光による温度変化に基づいて光を検出するための素子であって、表面のうち第1領域に配置されており、リファレンス素子は、光検出素子における受光以外の要因による温度変化を補償するための素子であって、表面のうち第2領域に配置されており、ダミー素子は、表面のうち第1領域及び第2領域以外の領域に、第1領域の外縁及び第2領域の外縁の少なくとも一方に沿って配置されており、ダミー素子は、回路部と電気的に絶縁されている。 A photodetector according to one aspect of the present disclosure includes a substrate having a surface, a photodetecting element having a first film body disposed on the surface via a gap, and a second disposed on the surface via the gap. A reference element having a film body, a dummy element having a film body disposed on the surface through a gap, and a circuit portion provided on the substrate and electrically connected to the light detection element and the reference element. The light detection element is an element for detecting light based on a temperature change due to light reception, and is disposed in the first region of the surface. The reference element is a temperature due to a factor other than light reception in the light detection element. An element for compensating for the change, which is disposed in the second region of the surface, and the dummy element is formed in a region other than the first region and the second region of the surface in the outer edge of the first region and the second region. On at least one of the outer edges of the region Are arranged me, dummy elements are circuit electrically insulated.
 この光検出器では、ダミー素子が第1領域の外縁に沿って配置されている場合には、例えば、当該ダミー素子が存在せずに空間が形成されているような場合に比べ、少なくとも1つの光検出素子の第1膜体が均一な環境下に置かれ、その結果、少なくとも1つの光検出素子の検出精度が向上する。また、ダミー素子が第2領域の外縁に沿って配置されている場合には、例えば、当該ダミー素子が存在せずに空間が形成されているような場合に比べ、少なくとも1つのリファレンス素子の第2膜体が均一な環境下に置かれ、その結果、少なくとも1つのリファレンス素子の検出精度が向上する。その一方で、ダミー素子が回路部と電気的に絶縁されているため、ダミー素子を回路部に電気的に接続するための回路構造が不要となる。よって、この光検出器によれば、構造の複雑化を抑制しつつ検出精度を確保することができる。 In this photodetector, when the dummy element is arranged along the outer edge of the first region, for example, at least one is compared with a case where a space is formed without the dummy element. The first film body of the light detection element is placed in a uniform environment, and as a result, the detection accuracy of at least one light detection element is improved. In addition, when the dummy element is arranged along the outer edge of the second region, for example, compared with a case where a space is formed without the dummy element, the first element of the at least one reference element. The two-film body is placed in a uniform environment, and as a result, the detection accuracy of at least one reference element is improved. On the other hand, since the dummy element is electrically insulated from the circuit part, a circuit structure for electrically connecting the dummy element to the circuit part becomes unnecessary. Therefore, according to this photodetector, it is possible to ensure detection accuracy while suppressing the complexity of the structure.
 本開示の一側面の光検出器では、ダミー素子は、第1領域の外縁及び第2領域の外縁の少なくとも一方と交差する方向に並ぶように、表面のうち第1領域及び第2領域以外の領域に複数配置されていてもよい。この構成によれば、ダミー素子が第1領域の外縁に沿って配置されている場合には、少なくとも1つの光検出素子の第1膜体がより均一な環境下に置かれ、その結果、少なくとも1つの光検出素子の検出精度がより一層向上する。また、ダミー素子が第2領域の外縁に沿って配置されている場合には、少なくとも1つのリファレンス素子の第2膜体がより均一な環境下に置かれ、その結果、少なくとも1つのリファレンス素子の検出精度がより一層向上する。 In the photodetector according to one aspect of the present disclosure, the dummy elements are arranged on a surface other than the first region and the second region so as to be arranged in a direction intersecting with at least one of the outer edge of the first region and the outer edge of the second region. A plurality may be arranged in the region. According to this configuration, when the dummy element is arranged along the outer edge of the first region, the first film body of the at least one photodetecting element is placed in a more uniform environment, and as a result, at least The detection accuracy of one photodetecting element is further improved. When the dummy element is arranged along the outer edge of the second region, the second film body of at least one reference element is placed in a more uniform environment, and as a result, the at least one reference element The detection accuracy is further improved.
 本開示の一側面の光検出器では、ダミー素子は、表面のうち第1領域と第2領域との間の領域に、第1領域の外縁及び第2領域の外縁の少なくとも一方に沿って更に配置されていてもよい。この構成によれば、ダミー素子が第1領域の外縁に沿って配置されていることに加えて、ダミー素子が第1領域と第2領域との間の領域に配置されている場合には、少なくとも1つの光検出素子の第1膜体がより均一な環境下に置かれ、その結果、少なくとも1つの光検出素子の検出精度がより一層向上する。また、ダミー素子が第2領域の外縁に沿って配置されていることに加えて、ダミー素子が第1領域と第2領域との間の領域に配置されている場合には、少なくとも1つのリファレンス素子の第2膜体がより均一な環境下に置かれ、その結果、少なくとも1つのリファレンス素子の検出精度がより一層向上する。 In the photodetector according to one aspect of the present disclosure, the dummy element is further provided in a region between the first region and the second region on the surface, along at least one of the outer edge of the first region and the outer edge of the second region. It may be arranged. According to this configuration, in addition to the dummy element being disposed along the outer edge of the first region, when the dummy element is disposed in a region between the first region and the second region, The first film body of at least one photodetecting element is placed in a more uniform environment, and as a result, the detection accuracy of the at least one photodetecting element is further improved. Further, in addition to the dummy element being disposed along the outer edge of the second region, when the dummy element is disposed in a region between the first region and the second region, at least one reference The second film body of the element is placed in a more uniform environment, and as a result, the detection accuracy of at least one reference element is further improved.
 本開示の一側面の光検出器では、ダミー素子は、第2領域の外縁に沿って配置されており、第2領域の外縁に沿って配置されたダミー素子の膜体は、基板の厚さ方向から見た場合に、リファレンス素子の第2膜体と同一の形状を呈していてもよい。この構成によれば、少なくとも1つのリファレンス素子の第2膜体がより均一な環境下に置かれ、その結果、少なくとも1つのリファレンス素子の検出精度がより一層向上する。 In the photodetector according to one aspect of the present disclosure, the dummy element is disposed along the outer edge of the second region, and the film body of the dummy element disposed along the outer edge of the second region has a thickness of the substrate. When viewed from the direction, it may have the same shape as the second film body of the reference element. According to this configuration, the second film body of at least one reference element is placed in a more uniform environment, and as a result, the detection accuracy of at least one reference element is further improved.
 本開示の一側面の光検出器では、ダミー素子は、第1領域の外縁に沿って配置されており、第1領域の外縁に沿って配置されたダミー素子の膜体は、基板の厚さ方向から見た場合に、光検出素子の第1膜体と同一の形状を呈していてもよい。この構成によれば、少なくとも1つの光検出素子の第1膜体がより均一な環境下に置かれ、その結果、少なくとも1つの光検出素子の検出精度がより一層向上する。 In the photodetector according to one aspect of the present disclosure, the dummy element is disposed along the outer edge of the first region, and the film body of the dummy element disposed along the outer edge of the first region has a thickness of the substrate. When viewed from the direction, it may have the same shape as the first film body of the light detection element. According to this configuration, the first film body of the at least one photodetecting element is placed in a more uniform environment, and as a result, the detection accuracy of the at least one photodetecting element is further improved.
 本開示の一側面の光検出器では、ダミー素子は、第2領域を少なくとも1列で囲むように、第2領域の外縁に沿って表面に複数配置されていてもよい。この構成によれば、少なくとも1つのリファレンス素子の第2膜体が均一な環境下に置かれ、その結果、少なくとも1つのリファレンス素子の検出精度が向上する。 In the photodetector according to one aspect of the present disclosure, a plurality of dummy elements may be arranged on the surface along the outer edge of the second region so as to surround the second region in at least one row. According to this configuration, the second film body of at least one reference element is placed in a uniform environment, and as a result, the detection accuracy of at least one reference element is improved.
 本開示の一側面の光検出器では、ダミー素子は、第1領域及び第2領域を少なくとも1列で囲むように、第1領域及び第2領域の外縁に沿って表面に複数配置されていてもよい。この構成によれば、少なくとも1つのリファレンス素子の第2膜体、及び少なくとも1つの光検出素子の第1膜体が均一な環境下に置かれ、その結果、少なくとも1つのリファレンス素子の検出精度、及び少なくとも1つの光検出素子の検出精度が向上する。 In the photodetector according to one aspect of the present disclosure, a plurality of dummy elements are arranged on the surface along the outer edges of the first region and the second region so as to surround the first region and the second region in at least one row. Also good. According to this configuration, the second film body of at least one reference element and the first film body of at least one photodetecting element are placed in a uniform environment, and as a result, the detection accuracy of at least one reference element, And the detection accuracy of at least one photodetection element improves.
 本開示の一側面の光検出器では、ダミー素子は、第1領域及び第2領域のそれぞれを少なくとも1列で囲むように、第1領域の外縁及び第2領域の外縁のそれぞれに沿って表面に複数配置されていてもよい。この構成によれば、少なくとも1つのリファレンス素子の第2膜体、及び少なくとも1つの光検出素子の第1膜体が均一な環境下に置かれ、その結果、少なくとも1つのリファレンス素子の検出精度、及び少なくとも1つの光検出素子の検出精度が向上する。 In the photodetector according to one aspect of the present disclosure, the dummy element has a surface along each of the outer edge of the first region and the outer edge of the second region so as to surround each of the first region and the second region in at least one row. A plurality of them may be arranged. According to this configuration, the second film body of at least one reference element and the first film body of at least one photodetecting element are placed in a uniform environment, and as a result, the detection accuracy of at least one reference element, And the detection accuracy of at least one photodetection element improves.
 本開示の一側面の光検出器では、第2領域の外縁に沿って配置されたダミー素子の膜体は、基板の厚さ方向から見た場合に、リファレンス素子の第2膜体と同一の形状を呈しており、第1領域の外縁に沿って配置されたダミー素子の膜体は、基板の厚さ方向から見た場合に、光検出素子の第1膜体と同一の形状を呈していてもよい。この構成によれば、少なくとも1つのリファレンス素子の第2膜体、及び少なくとも1つの光検出素子の第1膜体がより均一な環境下に置かれ、その結果、少なくとも1つのリファレンス素子の検出精度、及び少なくとも1つの光検出素子の検出精度がより一層向上する。 In the photodetector according to one aspect of the present disclosure, the film body of the dummy element disposed along the outer edge of the second region is the same as the second film body of the reference element when viewed from the thickness direction of the substrate. The film body of the dummy element disposed along the outer edge of the first region has the same shape as the first film body of the light detection element when viewed from the thickness direction of the substrate. May be. According to this configuration, the second film body of at least one reference element and the first film body of at least one photodetecting element are placed in a more uniform environment, and as a result, the detection accuracy of at least one reference element , And the detection accuracy of at least one photodetecting element is further improved.
 本開示の一側面の光検出器では、回路部は、信号読出し回路を含み、ダミー素子は、基板の厚さ方向から見た場合に、信号読出し回路と重なっていてもよい。この構成によれば、光検出器の構造の複雑化を抑制しつつ、光検出器の小型化を図ることができる。 In the photodetector according to one aspect of the present disclosure, the circuit unit may include a signal readout circuit, and the dummy element may overlap with the signal readout circuit when viewed from the thickness direction of the substrate. According to this configuration, it is possible to reduce the size of the photodetector while suppressing the complexity of the structure of the photodetector.
 本開示によれば、構造の複雑化を抑制しつつ検出精度を確保することができる光検出器を提供することができる。 According to the present disclosure, it is possible to provide a photodetector that can ensure detection accuracy while suppressing the complexity of the structure.
図1は、第1実施形態の光検出器の平面図である。FIG. 1 is a plan view of the photodetector according to the first embodiment. 図2は、図1の基板の表面における各領域を示す図である。FIG. 2 is a diagram showing each region on the surface of the substrate of FIG. 図3は、図2の各領域に配置された光検出素子、リファレンス素子、第1ダミー素子及び第2ダミー素子の平面図である。FIG. 3 is a plan view of the light detection element, the reference element, the first dummy element, and the second dummy element arranged in each region of FIG. 図4は、図3の光検出素子の斜視図である。4 is a perspective view of the photodetecting element of FIG. 図5は、図4の光検出素子の平面図である。FIG. 5 is a plan view of the photodetecting element of FIG. 図6は、図4の光検出素子の断面図である。6 is a cross-sectional view of the photodetecting element of FIG. 図7は、光共振構造の原理を示す図である。FIG. 7 is a diagram showing the principle of the optical resonance structure. 図8は、図3のリファレンス素子の斜視図である。FIG. 8 is a perspective view of the reference element of FIG. 図9は、図8のリファレンス素子の平面図である。FIG. 9 is a plan view of the reference element of FIG. 図10は、図8のリファレンス素子の断面図である。FIG. 10 is a cross-sectional view of the reference element of FIG. 図11は、図3の第1ダミー素子の斜視図である。FIG. 11 is a perspective view of the first dummy element of FIG. 図12は、図11の第1ダミー素子の平面図である。FIG. 12 is a plan view of the first dummy element of FIG. 図13は、図11の第1ダミー素子の断面図である。FIG. 13 is a cross-sectional view of the first dummy element of FIG. 図14は、図3の第2ダミー素子の斜視図である。FIG. 14 is a perspective view of the second dummy element of FIG. 図15は、図14の第2ダミー素子の平面図である。FIG. 15 is a plan view of the second dummy element of FIG. 図16は、図14の第2ダミー素子の断面図である。FIG. 16 is a cross-sectional view of the second dummy element of FIG. 図17は、図6の光検出素子の製造方法を示す図である。FIG. 17 is a diagram illustrating a method of manufacturing the photodetecting element of FIG. 図18は、図6の光検出素子の製造方法を示す図である。FIG. 18 is a diagram showing a method for manufacturing the photodetecting element of FIG. 図19は、図6の光検出素子の製造方法を示す図である。FIG. 19 is a diagram showing a manufacturing method of the photodetecting element of FIG. 図20は、図6の光検出素子の製造方法を示す図である。FIG. 20 is a diagram showing a manufacturing method of the photodetecting element of FIG. 図21は、図6の光検出素子の製造方法を示す図である。FIG. 21 is a diagram showing a method for manufacturing the photodetecting element of FIG. 図22は、図6の光検出素子の製造方法を示す図である。FIG. 22 is a diagram showing a method for manufacturing the photodetecting element of FIG. 図23は、図6の光検出素子の製造方法を示す図である。FIG. 23 is a diagram showing a method for manufacturing the photodetecting element of FIG. 図24は、図6の光検出素子の製造方法を示す図である。FIG. 24 is a diagram showing a manufacturing method of the photodetecting element of FIG. 図25は、図6の光検出素子の製造方法を示す図である。FIG. 25 is a diagram showing a manufacturing method of the photodetecting element of FIG. 図26は、図6の光検出素子の製造方法を示す図である。FIG. 26 is a diagram showing a method for manufacturing the photodetecting element of FIG. 図27は、第1実施形態の変形例の基板の表面における各領域を示す図である。FIG. 27 is a diagram illustrating each region on the surface of the substrate according to the modification of the first embodiment. 図28は、第1実施形態の変形例の基板の表面における各領域を示す図である。FIG. 28 is a diagram illustrating each region on the surface of the substrate according to the modified example of the first embodiment. 図29は、第1実施形態の変形例の基板の表面における各領域を示す図である。FIG. 29 is a diagram illustrating each region on the surface of the substrate according to the modification of the first embodiment. 図30は、第1実施形態の変形例の基板の表面における各領域を示す図である。FIG. 30 is a diagram illustrating each region on the surface of the substrate according to the modified example of the first embodiment. 図31は、第1実施形態の変形例の基板の表面における各領域を示す図である。FIG. 31 is a diagram illustrating each region on the surface of the substrate according to the modified example of the first embodiment. 図32は、第1実施形態の変形例の基板の表面における各領域を示す図である。FIG. 32 is a diagram illustrating each region on the surface of the substrate according to the modification of the first embodiment. 図33は、第1実施形態の変形例の基板の表面における各領域を示す図である。FIG. 33 is a diagram illustrating each region on the surface of the substrate according to the modification of the first embodiment. 図34は、第1実施形態の変形例の基板の表面における各領域を示す図である。FIG. 34 is a diagram illustrating each region on the surface of the substrate according to the modification of the first embodiment. 図35は、第1実施形態の変形例の基板の表面における各領域を示す図である。FIG. 35 is a diagram illustrating each region on the surface of the substrate according to the modification of the first embodiment. 図36は、第1実施形態の変形例の基板の表面における各領域を示す図である。FIG. 36 is a diagram illustrating each region on the surface of the substrate according to the modification of the first embodiment. 図37は、第1実施形態の変形例の基板の表面における各領域を示す図である。FIG. 37 is a diagram illustrating each region on the surface of the substrate according to the modification of the first embodiment. 図38は、第2実施形態の光検出器の平面図である。FIG. 38 is a plan view of the photodetector of the second embodiment. 図39は、図38の基板の表面における各領域を示す図である。FIG. 39 is a diagram showing each region on the surface of the substrate of FIG. 図40は、第2実施形態の変形例の基板の表面における各領域を示す図である。FIG. 40 is a diagram illustrating each region on the surface of the substrate according to the modification of the second embodiment. 図41は、第2実施形態の変形例の基板の表面における各領域を示す図である。FIG. 41 is a diagram illustrating each region on the surface of the substrate according to the modified example of the second embodiment. 図42は、第2実施形態の変形例の基板の表面における各領域を示す図である。FIG. 42 is a diagram illustrating each region on the surface of the substrate according to the modification of the second embodiment. 図43は、第2実施形態の変形例の基板の表面における各領域を示す図である。FIG. 43 is a diagram illustrating each region on the surface of the substrate according to the modified example of the second embodiment. 図44は、第2実施形態の変形例の基板の表面における各領域を示す図である。FIG. 44 is a diagram illustrating each region on the surface of the substrate according to the modified example of the second embodiment.
 以下、本開示の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or equivalent part, and the overlapping description is abbreviate | omitted.
[第1実施形態]
[光検出器の構成]
 図1に示される光検出器1Aは、ボロメータとしての機能を利用することで、光を検出する。当該光は、例えばテラヘルツ波を含む赤外線である。当該光が赤外線である場合、光検出器1Aは、赤外イメージャ、又はサーモグラフィー等に用いられる。光検出器1Aは、特に1μm~数十μmの波長帯域の光の検出に優れた特性を有している。図1に示されるように、光検出器1Aは、表面2aを有する基板2Aと、画素部3と、リファレンス部4と、第1ダミー部5と、第2ダミー部6と、を備えている。基板2Aの厚さは、例えば数百μm程度である。画素部3、リファレンス部4、第1ダミー部5、及び第2ダミー部6は、基板2Aの表面2a上に形成されている。
[First Embodiment]
[Configuration of photodetector]
The photodetector 1A shown in FIG. 1 detects light by utilizing a function as a bolometer. The light is, for example, infrared including terahertz waves. When the light is infrared, the photodetector 1A is used for an infrared imager, thermography, or the like. The photodetector 1A has particularly excellent characteristics for detecting light in the wavelength band of 1 μm to several tens of μm. As shown in FIG. 1, the photodetector 1A includes a substrate 2A having a surface 2a, a pixel unit 3, a reference unit 4, a first dummy unit 5, and a second dummy unit 6. . The thickness of the substrate 2A is, for example, about several hundred μm. The pixel unit 3, the reference unit 4, the first dummy unit 5, and the second dummy unit 6 are formed on the surface 2a of the substrate 2A.
 Z軸方向(基板2Aの厚さ方向)から見た場合に、画素部3とリファレンス部4とは、表面2aに平行なX軸方向(Z軸に直交する方向)において並ぶように配置されている。画素部3とリファレンス部4とは、互いに離間している。第1ダミー部5は、画素部3を囲んでいる。第2ダミー部6は、リファレンス部4を囲んでいる。第1ダミー部5と第2ダミー部6とは、互いに隣接している。 When viewed from the Z-axis direction (thickness direction of the substrate 2A), the pixel unit 3 and the reference unit 4 are arranged so as to be aligned in the X-axis direction (direction orthogonal to the Z-axis) parallel to the surface 2a. Yes. The pixel unit 3 and the reference unit 4 are separated from each other. The first dummy part 5 surrounds the pixel part 3. The second dummy part 6 surrounds the reference part 4. The first dummy part 5 and the second dummy part 6 are adjacent to each other.
 基板2Aには、回路部22A、及び複数のI/Oパッド12が設けられている。回路部22Aは、基板2Aの表面2a側に層状に設けられている。I/Oパッド12は、基板2Aの表面2aに形成された金属膜によって構成されている。回路部22Aは、信号読出し回路7と、各構成を互いに電気的に接続する複数の配線(図示省略)と、を有している。信号読出し回路7は、補正回路8と、リードアウトサーキット9と、複数のシフトレジスタ(走査回路)11a,11b,11cと、を含んでいる。 The circuit board 22A and a plurality of I / O pads 12 are provided on the substrate 2A. The circuit portion 22A is provided in a layered manner on the surface 2a side of the substrate 2A. The I / O pad 12 is composed of a metal film formed on the surface 2a of the substrate 2A. The circuit unit 22A includes the signal readout circuit 7 and a plurality of wirings (not shown) that electrically connect the components to each other. The signal readout circuit 7 includes a correction circuit 8, a lead-out circuit 9, and a plurality of shift registers (scanning circuits) 11a, 11b, and 11c.
 補正回路8は、リファレンス部4に対して画素部3とは反対側に配置されている。リードアウトサーキット9は、補正回路8に対してリファレンス部4とは反対側に配置されている。シフトレジスタ11aは、表面2aに平行なY軸方向(Z軸及びX軸に直交する方向)において画素部3と並ぶように配置されている。シフトレジスタ11bは、Y軸方向においてリファレンス部4と並ぶように配置されている。シフトレジスタ11cは、リードアウトサーキット9に対して補正回路8とは反対側に配置されている。複数のI/Oパッド12は、表面2aの外縁に沿って配置されている。 The correction circuit 8 is disposed on the side opposite to the pixel unit 3 with respect to the reference unit 4. The lead-out circuit 9 is disposed on the side opposite to the reference unit 4 with respect to the correction circuit 8. The shift register 11a is arranged so as to be aligned with the pixel unit 3 in the Y-axis direction (direction orthogonal to the Z-axis and the X-axis) parallel to the surface 2a. The shift register 11b is arranged so as to be aligned with the reference unit 4 in the Y-axis direction. The shift register 11 c is disposed on the opposite side of the correction circuit 8 with respect to the lead-out circuit 9. The plurality of I / O pads 12 are arranged along the outer edge of the surface 2a.
 図2に示されるように、基板2Aの表面2aは、第1領域3a、第2領域4a、第3領域5a、及び第4領域6aを含んでいる。画素部3は、表面2aのうち第1領域3aに配置されている。リファレンス部4は、表面2aのうち第2領域4aに配置されている。第1ダミー部5は、表面2aのうち第3領域5aに配置されている。第2ダミー部6は、表面2aのうち第4領域6aに配置されている。 As shown in FIG. 2, the surface 2a of the substrate 2A includes a first region 3a, a second region 4a, a third region 5a, and a fourth region 6a. The pixel part 3 is arrange | positioned in the 1st area | region 3a among the surfaces 2a. The reference part 4 is arrange | positioned in the 2nd area | region 4a among the surfaces 2a. The first dummy portion 5 is disposed in the third region 5a of the surface 2a. The second dummy portion 6 is disposed in the fourth region 6a of the surface 2a.
 第1領域3aと第2領域4aとは、X軸方向において並ぶように配置されている。第1領域3aと第2領域4aとは、互いに離間している。第1領域3aは、例えば矩形状を呈している。第2領域4aは、例えば矩形状を呈している。Y軸方向における第2領域4aの長さは、Y軸方向における第1領域3aの長さと同一である。X軸方向における第2領域4aの長さは、X軸方向における第1領域3aの長さよりも短い。 The first region 3a and the second region 4a are arranged so as to be aligned in the X-axis direction. The first region 3a and the second region 4a are separated from each other. The first region 3a has, for example, a rectangular shape. The second region 4a has a rectangular shape, for example. The length of the second region 4a in the Y-axis direction is the same as the length of the first region 3a in the Y-axis direction. The length of the second region 4a in the X-axis direction is shorter than the length of the first region 3a in the X-axis direction.
 第3領域5aは、例えば矩形環状を呈している。第3領域5aは、第1領域3aに隣接するように第1領域3aを囲んでいる。第4領域6aは、例えば矩形環状を呈している。第4領域6aは、第2領域4aに隣接するように第2領域4aを囲んでいる。第3領域5aと第4領域6aとは、互いに隣接している。Y軸方向における第4領域6aの長さは、Y軸方向における第3領域5aの長さと同一である。X軸方向における第4領域6aの長さは、X軸方向における第3領域5aの長さよりも短い。第2領域4aを囲む第4領域6aの幅は、第1領域3aを囲む第3領域5aの幅と同一である。 The third region 5a has, for example, a rectangular ring shape. The third region 5a surrounds the first region 3a so as to be adjacent to the first region 3a. The fourth region 6a has, for example, a rectangular ring shape. The fourth region 6a surrounds the second region 4a so as to be adjacent to the second region 4a. The third region 5a and the fourth region 6a are adjacent to each other. The length of the fourth region 6a in the Y-axis direction is the same as the length of the third region 5a in the Y-axis direction. The length of the fourth region 6a in the X-axis direction is shorter than the length of the third region 5a in the X-axis direction. The width of the fourth region 6a surrounding the second region 4a is the same as the width of the third region 5a surrounding the first region 3a.
 画素部3の外縁は、Z軸方向から見た場合に、例えば矩形状を呈している。画素部3の外縁は、Z軸方向から見た場合に、第1領域3aの外縁と重なっている。リファレンス部4の外縁は、Z軸方向から見た場合に、例えば矩形状を呈している。リファレンス部4の外縁は、Z軸方向から見た場合に、第2領域4aの外縁と重なっている。第1ダミー部5は、Z軸方向から見た場合に、例えば矩形環状を呈している。第1ダミー部5の外縁及び内縁のそれぞれは、Z軸方向から見た場合に、第3領域5aの外縁及び内縁のそれぞれと重なっている。第2ダミー部6は、Z軸方向から見た場合に、例えば矩形環状を呈している。第2ダミー部6の外縁及び内縁のそれぞれは、Z軸方向から見た場合に、第4領域6aの外縁及び内縁のそれぞれと重なっている。 The outer edge of the pixel unit 3 has, for example, a rectangular shape when viewed from the Z-axis direction. The outer edge of the pixel unit 3 overlaps with the outer edge of the first region 3a when viewed from the Z-axis direction. The outer edge of the reference unit 4 has, for example, a rectangular shape when viewed from the Z-axis direction. The outer edge of the reference portion 4 overlaps with the outer edge of the second region 4a when viewed from the Z-axis direction. The first dummy portion 5 has, for example, a rectangular ring shape when viewed from the Z-axis direction. Each of the outer edge and the inner edge of the first dummy portion 5 overlaps with the outer edge and the inner edge of the third region 5a when viewed from the Z-axis direction. The second dummy portion 6 has, for example, a rectangular ring shape when viewed from the Z-axis direction. Each of the outer edge and the inner edge of the second dummy portion 6 overlaps with the outer edge and the inner edge of the fourth region 6a when viewed from the Z-axis direction.
 図3は、図2における領域IIIの拡大図である。図3に示されるように、画素部3は、複数の光検出素子30によって構成されている。各光検出素子30は、受光による温度変化に基づいて光を検出するための素子である。複数の光検出素子30は、二次元マトリックス状に配列されるように、第1領域3aに配置されている。光検出素子30は、例えば64列×64行~128列×128行程度となるように配置されている。Z軸方向から見た場合における光検出素子30の外形は、例えば矩形状を呈している。 FIG. 3 is an enlarged view of region III in FIG. As shown in FIG. 3, the pixel unit 3 includes a plurality of light detection elements 30. Each light detection element 30 is an element for detecting light based on a temperature change caused by light reception. The plurality of photodetecting elements 30 are arranged in the first region 3a so as to be arranged in a two-dimensional matrix. The photodetecting elements 30 are arranged to have, for example, about 64 columns × 64 rows to 128 columns × 128 rows. The outer shape of the light detection element 30 when viewed from the Z-axis direction has, for example, a rectangular shape.
 リファレンス部4は、複数のリファレンス素子40によって構成されている。各リファレンス素子40は、光検出素子30における受光以外の要因による温度変化を補償するための素子である。複数のリファレンス素子40は、二次元マトリックス状に配列されるように、第2領域4aに配置されている。リファレンス素子40は、例えば16列×64行~16列×128行程度となるように配置されている。Z軸方向から見た場合におけるリファレンス素子40の外形は、例えば矩形状を呈している。光検出器1Aでは、1つのリファレンス素子40が複数の光検出素子30(例えば、その1つのリファレンス素子40と同一の行に並んだ複数の光検出素子30)に対する補償に用いられている。 The reference unit 4 includes a plurality of reference elements 40. Each reference element 40 is an element for compensating for a temperature change caused by factors other than light reception in the light detection element 30. The plurality of reference elements 40 are arranged in the second region 4a so as to be arranged in a two-dimensional matrix. The reference elements 40 are arranged to have, for example, about 16 columns × 64 rows to 16 columns × 128 rows. The outer shape of the reference element 40 when viewed from the Z-axis direction has, for example, a rectangular shape. In the photodetector 1A, one reference element 40 is used for compensation for a plurality of light detection elements 30 (for example, a plurality of light detection elements 30 arranged in the same row as the one reference element 40).
 第1ダミー部5は、複数の第1ダミー素子50によって構成されている。複数の第1ダミー素子50は、画素部3を複数列(ここでは、4列)で囲むように、第3領域5aに配置されている。このように、第1ダミー素子50は、第1領域3aを囲むように第1領域3aの外縁に沿って表面2aに複数配置されている。つまり、第1ダミー素子50は、画素部3を囲むように画素部3の外縁に沿って表面2aに複数配置されている。Z軸方向から見た場合における第1ダミー素子50の外形は、例えば矩形状を呈している。 The first dummy section 5 is composed of a plurality of first dummy elements 50. The plurality of first dummy elements 50 are arranged in the third region 5a so as to surround the pixel unit 3 in a plurality of columns (here, four columns). Thus, a plurality of first dummy elements 50 are arranged on the surface 2a along the outer edge of the first region 3a so as to surround the first region 3a. That is, a plurality of first dummy elements 50 are arranged on the surface 2 a along the outer edge of the pixel unit 3 so as to surround the pixel unit 3. The outer shape of the first dummy element 50 when viewed from the Z-axis direction has, for example, a rectangular shape.
 第2ダミー部6は、複数の第2ダミー素子60によって構成されている。複数の第2ダミー素子60は、リファレンス部4を複数列(ここでは、4列)で囲むように、第4領域6aに配置されている。このように、第2ダミー素子60は、第2領域4aを囲むように第2領域4aの外縁に沿って表面2aに複数配置されている。つまり、第2ダミー素子60は、リファレンス部4を囲むようにリファレンス部4の外縁に沿って表面2aに複数配置されている。Z軸方向から見た場合における第2ダミー素子60の外形は、例えば矩形状を呈している。 The second dummy section 6 is composed of a plurality of second dummy elements 60. The plurality of second dummy elements 60 are arranged in the fourth region 6a so as to surround the reference unit 4 in a plurality of columns (here, four columns). Thus, a plurality of second dummy elements 60 are arranged on the surface 2a along the outer edge of the second region 4a so as to surround the second region 4a. That is, a plurality of second dummy elements 60 are arranged on the surface 2 a along the outer edge of the reference portion 4 so as to surround the reference portion 4. The outer shape of the second dummy element 60 when viewed from the Z-axis direction has, for example, a rectangular shape.
 以上のように、基板2Aの表面2aのうち第1領域3a及び第2領域4a以外の領域には、第1ダミー素子50が第1領域3aの外縁に沿って配置され、第2ダミー素子60が第2領域4aの外縁に沿って配置されている。第1ダミー素子50は、第1領域3aの外縁と交差する方向に並ぶように、基板2Aの表面2aのうち第1領域3a及び第2領域4a以外の領域に複数配置されている。第2ダミー素子60は、第2領域4aの外縁と交差する方向に並ぶように、基板2Aの表面2aのうち第1領域3a及び第2領域4a以外の領域に複数配置されている。基板2Aの表面2aのうち第1領域3aと第2領域4aとの間の領域には、第1ダミー素子50が第1領域3aの外縁に沿って配置され、第2ダミー素子60が第2領域4aの外縁に沿って配置されている。 As described above, the first dummy element 50 is disposed along the outer edge of the first region 3a in the region other than the first region 3a and the second region 4a on the surface 2a of the substrate 2A. Is arranged along the outer edge of the second region 4a. A plurality of first dummy elements 50 are arranged in regions other than the first region 3a and the second region 4a on the surface 2a of the substrate 2A so as to be arranged in a direction intersecting with the outer edge of the first region 3a. A plurality of second dummy elements 60 are arranged in regions other than the first region 3a and the second region 4a on the surface 2a of the substrate 2A so as to be aligned in a direction intersecting with the outer edge of the second region 4a. In the region between the first region 3a and the second region 4a in the surface 2a of the substrate 2A, the first dummy element 50 is disposed along the outer edge of the first region 3a, and the second dummy element 60 is the second dummy element 60. It arrange | positions along the outer edge of the area | region 4a.
[光検出素子の構成]
 図4に示されるように、光検出素子30は、第1膜体31と、一対の第1電極ポスト32,33と、を有している。
[Configuration of photodetection element]
As shown in FIG. 4, the light detection element 30 includes a first film body 31 and a pair of first electrode posts 32 and 33.
 第1膜体31は、空隙S1を介して基板2Aの表面2a上に配置されている。第1膜体31は、基板2Aの表面2aと略平行に配置されている。第1膜体31と基板2Aの表面2aとの距離は、例えば数μm程度である。図4及び図5に示されるように、第1膜体31は、受光部34と、一対の第1接続部35,36と、一対の第1梁部37,38と、を有している。受光部34、一対の第1接続部35,36、及び、一対の第1梁部37,38は、一体的に形成されている。第1接続部35,36は、第1膜体31の外形の対角に位置している。第1接続部35,36は、それぞれ、Z軸方向から見た場合に例えば矩形状を呈している。このように、光検出器1Aでは、Z軸方向から見た場合における第1膜体31の外形が、受光部34、一対の第1接続部35,36、及び、一対の第1梁部37,38によって矩形状に形成されている。なお、Z軸方向から見た場合における第1膜体31の外形とは、受光部34、一対の第1接続部35,36、一対の第1梁部37,38、及び、後述する第1スリット31a,31bを含んだ第1膜体31全体の外形である。 The first film body 31 is disposed on the surface 2a of the substrate 2A via the gap S1. The first film body 31 is disposed substantially parallel to the surface 2a of the substrate 2A. The distance between the first film body 31 and the surface 2a of the substrate 2A is, for example, about several μm. As shown in FIGS. 4 and 5, the first film body 31 includes a light receiving portion 34, a pair of first connection portions 35 and 36, and a pair of first beam portions 37 and 38. . The light receiving part 34, the pair of first connection parts 35, 36, and the pair of first beam parts 37, 38 are integrally formed. The first connection portions 35 and 36 are located diagonally to the outer shape of the first film body 31. The first connecting portions 35 and 36 each have, for example, a rectangular shape when viewed from the Z-axis direction. Thus, in the photodetector 1A, the outer shape of the first film body 31 when viewed from the Z-axis direction is such that the light receiving unit 34, the pair of first connection units 35 and 36, and the pair of first beam units 37. , 38 to form a rectangular shape. Note that the outer shape of the first film body 31 when viewed from the Z-axis direction is a light receiving portion 34, a pair of first connection portions 35, 36, a pair of first beam portions 37, 38, and a first described later. This is the outer shape of the entire first film body 31 including the slits 31a and 31b.
 第1梁部37は、受光部34と第1接続部35との間に配置されている。第1梁部37は、受光部34の一方の側において受光部34の外縁に沿って延在している。第1梁部37の一端は、第1接続部35と接続されており、第1梁部37の他端は、第1接続部36の近傍の位置で受光部34と接続されている。受光部34と第1接続部35との間、及び受光部34と第1梁部37との間には、第1スリット31aが一続きに形成されている。第1梁部38は、受光部34と第1接続部36との間に配置されている。第1梁部38は、受光部34の他方の側において受光部34の外縁に沿って延在している。第1梁部38の一端は、第1接続部36と接続されており、第1梁部38の他端は、第1接続部35の近傍の位置で受光部34と接続されている。受光部34と第1接続部36との間、及び受光部34と第1梁部38との間には、第1スリット31bが一続きに形成されている。第1梁部37,38のそれぞれの幅は、例えば数μm程度である。第1梁部37,38のそれぞれの長さは、例えば数十~数百μm程度である。第1スリット31a,31bのそれぞれの幅は、例えば数μm程度である。 The first beam portion 37 is disposed between the light receiving portion 34 and the first connection portion 35. The first beam portion 37 extends along the outer edge of the light receiving portion 34 on one side of the light receiving portion 34. One end of the first beam portion 37 is connected to the first connection portion 35, and the other end of the first beam portion 37 is connected to the light receiving portion 34 at a position near the first connection portion 36. The first slits 31 a are continuously formed between the light receiving part 34 and the first connection part 35 and between the light receiving part 34 and the first beam part 37. The first beam portion 38 is disposed between the light receiving portion 34 and the first connection portion 36. The first beam portion 38 extends along the outer edge of the light receiving portion 34 on the other side of the light receiving portion 34. One end of the first beam portion 38 is connected to the first connection portion 36, and the other end of the first beam portion 38 is connected to the light receiving portion 34 at a position near the first connection portion 35. The first slits 31b are continuously formed between the light receiving part 34 and the first connection part 36, and between the light receiving part 34 and the first beam part 38. The width of each of the first beam portions 37 and 38 is, for example, about several μm. The length of each of the first beam portions 37 and 38 is, for example, about several tens to several hundreds μm. The width of each of the first slits 31a and 31b is, for example, about several μm.
 第1電極ポスト32は、基板2Aと第1接続部35との間に配置されている。第1電極ポスト32は、基板2Aから第1膜体31に向かって広がる筒状を呈している。第1電極ポスト33は、基板2Aと第1接続部36との間に配置されている。第1電極ポスト33は、基板2Aから第1膜体31に向かって広がる筒状を呈している。第1電極ポスト32,33のそれぞれの高さは、例えば数μm程度である。第1電極ポスト32,33のそれぞれの材料は、例えばTi等の金属材料である。 The first electrode post 32 is disposed between the substrate 2A and the first connecting portion 35. The first electrode post 32 has a cylindrical shape that spreads from the substrate 2 </ b> A toward the first film body 31. The first electrode post 33 is disposed between the substrate 2 </ b> A and the first connection portion 36. The first electrode post 33 has a cylindrical shape that spreads from the substrate 2 </ b> A toward the first film body 31. The height of each of the first electrode posts 32 and 33 is, for example, about several μm. Each material of the first electrode posts 32 and 33 is a metal material such as Ti, for example.
 図6は、光検出素子30の断面図である。図6のI-I、II-II、III-III、IV-IV、V-Vは、それぞれ、図5のI-I線、II-II線、III-III線、IV-IV線、V-V線に沿っての断面図である。図6に示されるように、第1膜体31は、一対の第1配線層71,72と、絶縁層73,74と、第1抵抗層75と、光吸収層76と、分離層77と、を含んでいる。 FIG. 6 is a cross-sectional view of the light detection element 30. In FIG. 6, II, II-II, III-III, IV-IV, and VV are respectively the II, II-II, III-III, IV-IV, and V lines of FIG. FIG. 6 is a cross-sectional view taken along the line V. As shown in FIG. 6, the first film body 31 includes a pair of first wiring layers 71 and 72, insulating layers 73 and 74, a first resistance layer 75, a light absorption layer 76, and a separation layer 77. , Including.
 図5及び図6に示されるように、Z軸方向から見た場合に、第1配線層71,72は、受光部34において第1ギャップG1を介して互いに対向している。第1ギャップG1は、第1ラインL1に沿って延在している。第1ラインL1は、Z軸方向から見た場合に第1膜体31の重心位置C1を挟んで対向する対角間において延在している。具体的には、第1ラインL1は、Z軸方向から見た場合に、第1膜体31における重心位置C1を通り且つ第1接続部35,36のそれぞれを結ぶ第1対角線D1に沿って蛇行状に延在している。第1ラインL1は、蛇行部を有している。蛇行部は、受光部34において、受光部34の一方の側に延びた後、例えば180°折り返して、受光部34の他方の側に延びた後、例えば180°折り返して、再び受光部34の一方の側に延びることを繰り返すことによって構成されている。 As shown in FIGS. 5 and 6, when viewed from the Z-axis direction, the first wiring layers 71 and 72 are opposed to each other via the first gap G1 in the light receiving unit. The first gap G1 extends along the first line L1. The first line L1 extends between diagonals facing each other across the center of gravity position C1 of the first film body 31 when viewed from the Z-axis direction. Specifically, when viewed from the Z-axis direction, the first line L1 passes through the center of gravity position C1 of the first film body 31 and extends along the first diagonal line D1 that connects the first connection portions 35 and 36, respectively. It extends in a serpentine shape. The first line L1 has a meandering portion. The meandering part of the light receiving part 34 extends to one side of the light receiving part 34 and then turns back, for example, 180 °, extends to the other side of the light receiving part 34, and then turns back, for example, 180 °, again. It is configured by repeating extending to one side.
 光検出素子30では、一方の側とは、Z軸方向から見た場合に、第1対角線D1に対して一方の側(例えば第1梁部37が存在する側)をいい、他方の側とは、Z軸方向から見た場合に、第1対角線D1に対して一方の側とは反対の側(例えば第1梁部38が存在する側)をいう。 In the light detection element 30, when viewed from the Z-axis direction, one side refers to one side (for example, the side on which the first beam portion 37 exists) with respect to the first diagonal line D <b> 1, and the other side Means a side opposite to one side with respect to the first diagonal line D1 when viewed from the Z-axis direction (for example, a side on which the first beam portion 38 exists).
 第1配線層71,72は、受光部34において、第1ラインL1に沿った方向において細長く形成されている。つまり、Z軸方向から見た場合に、受光部34において、第1ラインL1に沿った方向における第1配線層71,72のそれぞれの長さは、第1ラインL1に垂直な方向における第1配線層71,72のそれぞれの幅よりも大きい。第1ラインL1に垂直な方向とは、Z軸方向から見た場合に、第1ラインL1の各位置における接線に垂直な方向をいう。第1ラインL1が曲線部を含んでいる場合に、曲線部の各位置においては、第1ラインL1に垂直な方向はそれぞれ相違する。 The first wiring layers 71 and 72 are elongated in the direction along the first line L1 in the light receiving unit 34. That is, when viewed from the Z-axis direction, the length of each of the first wiring layers 71 and 72 in the direction along the first line L1 in the light receiving unit 34 is the first in the direction perpendicular to the first line L1. The width of each of the wiring layers 71 and 72 is larger. The direction perpendicular to the first line L1 refers to a direction perpendicular to the tangent at each position of the first line L1 when viewed from the Z-axis direction. When the first line L1 includes a curved portion, the direction perpendicular to the first line L1 is different at each position of the curved portion.
 Z軸方向から見た場合に、受光部34において、第1ラインL1に沿った方向における第1配線層71,72のそれぞれの長さは、例えば、数十~数百μm程度である。Z軸方向から見た場合に、第1ラインL1に垂直な方向における第1配線層71,72のそれぞれの幅は、例えば数μm程度である。Z軸方向から見た場合に、第1ラインL1に垂直な方向における第1ギャップG1の幅は、例えば数μm程度である。第1配線層71,72のそれぞれの厚さは、例えば数十~数百nm程度である。 When viewed from the Z-axis direction, the length of each of the first wiring layers 71 and 72 in the direction along the first line L1 in the light receiving unit 34 is, for example, about several tens to several hundreds μm. When viewed from the Z-axis direction, the width of each of the first wiring layers 71 and 72 in the direction perpendicular to the first line L1 is, for example, about several μm. When viewed from the Z-axis direction, the width of the first gap G1 in the direction perpendicular to the first line L1 is, for example, about several μm. The thickness of each of the first wiring layers 71 and 72 is, for example, about several tens to several hundreds nm.
 第1配線層71は、受光部34から第1梁部37を介して第1接続部35に延在している。第1配線層71は、第1接続部35において第1電極ポスト32上に形成されている。第1配線層71は、第1電極ポスト32と電気的に接続されている。第1配線層72は、受光部34から第1梁部38を介して第1接続部36に延在している。第1配線層72は、第1接続部36において第1電極ポスト33上に形成されている。第1配線層72は、第1電極ポスト33と電気的に接続されている。第1配線層71,72のそれぞれの材料は、例えばTi等の金属材料である。 The first wiring layer 71 extends from the light receiving portion 34 to the first connecting portion 35 via the first beam portion 37. The first wiring layer 71 is formed on the first electrode post 32 in the first connection portion 35. The first wiring layer 71 is electrically connected to the first electrode post 32. The first wiring layer 72 extends from the light receiving portion 34 to the first connecting portion 36 via the first beam portion 38. The first wiring layer 72 is formed on the first electrode post 33 in the first connection portion 36. The first wiring layer 72 is electrically connected to the first electrode post 33. Each material of the first wiring layers 71 and 72 is a metal material such as Ti, for example.
 絶縁層73は、第1配線層71,72のそれぞれにおける基板2Aとは反対側の表面を覆うように、受光部34、第1梁部37,38、及び、第1接続部35,36に渡って形成されている。絶縁層73は、第1配線層71,72のそれぞれにおける基板2Aとは反対側の表面のうち第1ラインL1に沿った領域を露出させた状態で、第1配線層71,72における基板2Aとは反対側の表面に形成されている。絶縁層73は、第1接続部35,36において、第1配線層71,72のそれぞれの側面を覆っている。絶縁層74は、第1配線層71,72のそれぞれにおける基板2A側の表面を覆うように、受光部34、第1梁部37,38、及び、第1接続部35,36に渡って形成されている。絶縁層74は、第1接続部35,36において、第1配線層71,72のそれぞれにおける基板2A側の表面及び第1電極ポスト32,33のそれぞれの外面32a,33aを覆っている。絶縁層73及び絶縁層74のそれぞれの厚さは、例えば数十nm程度である。絶縁層73及び絶縁層74のそれぞれの材料は、例えばシリコン窒化膜(SiN)等である。 The insulating layer 73 is formed on the light receiving portion 34, the first beam portions 37 and 38, and the first connection portions 35 and 36 so as to cover the surface of each of the first wiring layers 71 and 72 on the side opposite to the substrate 2A. It is formed across. The insulating layer 73 is the substrate 2A in the first wiring layers 71 and 72 in a state where the region along the first line L1 is exposed on the surface of each of the first wiring layers 71 and 72 opposite to the substrate 2A. Is formed on the opposite surface. The insulating layer 73 covers the side surfaces of the first wiring layers 71 and 72 in the first connection portions 35 and 36. The insulating layer 74 is formed over the light receiving portion 34, the first beam portions 37 and 38, and the first connection portions 35 and 36 so as to cover the surface of the first wiring layers 71 and 72 on the substrate 2A side. Has been. The insulating layer 74 covers the surface of the first wiring layers 71 and 72 on the substrate 2A side and the outer surfaces 32a and 33a of the first electrode posts 32 and 33 in the first connection portions 35 and 36, respectively. The thickness of each of the insulating layer 73 and the insulating layer 74 is, for example, about several tens of nm. Each material of the insulating layer 73 and the insulating layer 74 is, for example, a silicon nitride film (SiN).
 第1抵抗層75は、受光部34において、基板2Aの反対側から絶縁層73を覆うように形成されている。第1抵抗層75は、受光部34において、第1配線層71,72のそれぞれにおける基板2Aとは反対側の表面のうち第1ラインL1に沿った領域に接触している。つまり、第1抵抗層75は、受光部34において、第1配線層71,72のそれぞれと電気的に接続されている。第1抵抗層75は、温度に依存する電気抵抗を有している。第1抵抗層75の厚さは、例えば数十~数百nm程度である。第1抵抗層75の材料は、例えば、温度変化による電気抵抗率の変化が大きいアモルファスシリコン(a-Si)等である。このように、受光部34は、一対の第1配線層71,72のそれぞれと第1抵抗層75との電気的な接続領域を含んでいる。第1抵抗層75は、受光部34だけでなく、第1接続部35,36にも設けられている。第1抵抗層75は、第1梁部37,38のそれぞれのうちその両端部を除く部分には形成されていない。つまり、第1抵抗層75は、第1梁部37,38において分断されている。 The first resistance layer 75 is formed in the light receiving part 34 so as to cover the insulating layer 73 from the opposite side of the substrate 2A. The first resistance layer 75 is in contact with a region along the first line L1 on the surface of the first wiring layers 71 and 72 opposite to the substrate 2A in the light receiving unit 34. That is, the first resistance layer 75 is electrically connected to each of the first wiring layers 71 and 72 in the light receiving unit 34. The first resistance layer 75 has an electrical resistance that depends on temperature. The thickness of the first resistance layer 75 is, for example, about several tens to several hundreds nm. The material of the first resistance layer 75 is, for example, amorphous silicon (a-Si) that has a large change in electrical resistivity due to a temperature change. As described above, the light receiving unit 34 includes an electrical connection region between each of the pair of first wiring layers 71 and 72 and the first resistance layer 75. The first resistance layer 75 is provided not only in the light receiving part 34 but also in the first connection parts 35 and 36. The first resistance layer 75 is not formed on portions of the first beam portions 37 and 38 except for both end portions thereof. That is, the first resistance layer 75 is divided at the first beam portions 37 and 38.
 光吸収層76は、受光部34において、基板2Aの表面2aと対向している。光吸収層76は、第1抵抗層75に対して基板2Aとは反対側に配置されている。光吸収層76は、Z軸方向から見た場合に、受光部34の全領域に広がっている。光吸収層76の厚さは、例えば十数nm程度である。光吸収層76の材料は、例えばWSi又はTi等である。 The light absorption layer 76 faces the surface 2 a of the substrate 2 </ b> A in the light receiving unit 34. The light absorption layer 76 is disposed on the opposite side of the first resistance layer 75 from the substrate 2A. The light absorption layer 76 extends over the entire region of the light receiving unit 34 when viewed from the Z-axis direction. The thickness of the light absorption layer 76 is, for example, about ten and several nanometers. The material of the light absorption layer 76 is, for example, WSi 2 or Ti.
 分離層77は、受光部34においては第1抵抗層75と光吸収層76との間に位置するように、受光部34、第1梁部37及び第1梁部38、並びに、第1接続部35及び第1接続部36に渡って形成されている。分離層77の厚さは、第1配線層71、第1配線層72、第1抵抗層75及び光吸収層76のそれぞれの厚さよりも大きい。分離層77の厚さは、例えば数百nm程度である。分離層77の材料は、例えばシリコン窒化膜(SiN)等である。 The separation layer 77 is positioned between the first resistance layer 75 and the light absorption layer 76 in the light receiving unit 34, and the first connection 37, the first beam unit 37, the first beam unit 38, and the first connection. It is formed over the part 35 and the first connection part 36. The thickness of the separation layer 77 is larger than the thickness of each of the first wiring layer 71, the first wiring layer 72, the first resistance layer 75, and the light absorption layer 76. The thickness of the separation layer 77 is, for example, about several hundred nm. The material of the separation layer 77 is, for example, a silicon nitride film (SiN).
 第1膜体31には、貫通孔31cが形成されている。貫通孔31cは、後述する犠牲層39を除去するエッチングガスが通過する孔である。貫通孔31cは、Z軸方向から見た場合に例えば円形状を呈している。貫通孔31cは、Z軸方向から見た場合に、例えば第1膜体31の重心位置C1に位置している。貫通孔31cの直径は、例えば数μm程度である。 In the first film body 31, a through hole 31c is formed. The through hole 31c is a hole through which an etching gas for removing a sacrificial layer 39 described later passes. The through hole 31c has, for example, a circular shape when viewed from the Z-axis direction. The through hole 31c is located, for example, at the center of gravity C1 of the first film body 31 when viewed from the Z-axis direction. The diameter of the through hole 31c is, for example, about several μm.
 基板2Aの表面2aには、光反射層24、及び第1電極パッド25,26が設けられている。光反射層24は、Z軸方向(半導体基板21の厚さ方向)において受光部34と対向している。光反射層24は、Z軸方向において光吸収層76と対向しており、光吸収層76と共に光共振構造を構成している。光反射層24の厚さは、例えば数百nm程度である。光反射層24の材料は、例えば、光(例えば赤外線)に対する反射率が大きいAl等の金属材料である。 A light reflecting layer 24 and first electrode pads 25 and 26 are provided on the surface 2a of the substrate 2A. The light reflecting layer 24 faces the light receiving unit 34 in the Z-axis direction (the thickness direction of the semiconductor substrate 21). The light reflection layer 24 faces the light absorption layer 76 in the Z-axis direction, and forms an optical resonance structure together with the light absorption layer 76. The thickness of the light reflection layer 24 is, for example, about several hundred nm. The material of the light reflecting layer 24 is, for example, a metal material such as Al having a high reflectivity with respect to light (for example, infrared rays).
 第1電極パッド25は、Z軸方向において第1接続部35と対向している。第1電極パッド26は、Z軸方向において第1接続部36と対向している。光反射層24、及び第1電極パッド25,26は、Z軸方向から見た場合に例えば矩形状の外形を構成している。第1電極パッド25,26は、当該外形の対角に位置している。第1電極パッド25,26は、Z軸方向から見た場合に例えば矩形状を呈している。第1電極パッド25,26は、配線によって回路部22Aと電気的に接続されている。各第1電極パッド25,26の厚さは、例えば数百nm程度である。各第1電極パッド25,26の材料は、例えば、導電性を有するAl等の金属材料である。 The first electrode pad 25 faces the first connection portion 35 in the Z-axis direction. The first electrode pad 26 faces the first connection part 36 in the Z-axis direction. The light reflection layer 24 and the first electrode pads 25 and 26 form, for example, a rectangular outer shape when viewed from the Z-axis direction. The first electrode pads 25 and 26 are located diagonally to the outer shape. The first electrode pads 25 and 26 have, for example, a rectangular shape when viewed from the Z-axis direction. The first electrode pads 25 and 26 are electrically connected to the circuit unit 22A by wiring. The thickness of each first electrode pad 25, 26 is, for example, about several hundred nm. The material of each first electrode pad 25, 26 is, for example, a metal material such as Al having conductivity.
 基板2Aの表面2aには、絶縁層27が形成されている。絶縁層27は、光反射層24における半導体基板21とは反対側の表面の一部が露出するように、光反射層24の外縁部を覆っている。絶縁層27の厚さは、例えば数十~数百nm程度である。絶縁層27の材料は、例えばシリコン窒化膜(SiN)等である。 An insulating layer 27 is formed on the surface 2a of the substrate 2A. The insulating layer 27 covers the outer edge portion of the light reflecting layer 24 so that a part of the surface of the light reflecting layer 24 opposite to the semiconductor substrate 21 is exposed. The thickness of the insulating layer 27 is about several tens to several hundreds nm, for example. The material of the insulating layer 27 is, for example, a silicon nitride film (SiN).
 絶縁層27には、第1接続部35,36に対向する貫通孔27a,27bが形成されている。つまり、絶縁層27は、第1電極パッド25,26のそれぞれにおける半導体基板21とは反対側の表面の一部が露出するように、第1電極パッド25,26の外縁部を覆っている。 In the insulating layer 27, through holes 27a and 27b facing the first connection portions 35 and 36 are formed. That is, the insulating layer 27 covers the outer edge portions of the first electrode pads 25 and 26 so that part of the surface of each of the first electrode pads 25 and 26 opposite to the semiconductor substrate 21 is exposed.
 第1電極ポスト32は、基板2A側の端部に設けられた突出部が貫通孔27aに入り込んだ状態で、第1電極パッド25と接合されている。第1電極ポスト33は、基板2A側の端部に設けられた突出部が貫通孔27bに入り込んだ状態で、第1電極パッド26と接合されている。これにより、光検出素子30は、回路部22Aと電気的に接続されている。また、第1膜体31は、第1電極ポスト32,33によって、空隙S1を介して基板2Aの表面2a上に支持されている。 The first electrode post 32 is joined to the first electrode pad 25 in a state where the protruding portion provided at the end portion on the substrate 2A side enters the through hole 27a. The first electrode post 33 is joined to the first electrode pad 26 in a state where the protruding portion provided at the end portion on the substrate 2A side enters the through hole 27b. Thereby, the photodetection element 30 is electrically connected to the circuit unit 22A. The first film body 31 is supported by the first electrode posts 32 and 33 on the surface 2a of the substrate 2A via the gap S1.
 次に、光共振構造について詳細に説明する。図7に示されるように、光吸収層76に入射した入射光A(波長がλである)は、一部が光吸収層76によって反射光B1として反射され、他の一部が光吸収層76を透過する。光吸収層76を透過した入射光Aの他の一部は、光反射層24によって反射光B2として反射される。そして、反射光B1と反射光B2とは、光吸収層76の反射面において、互いに干渉して打ち消される。これにより、光吸収層76の当該反射面において入射光Aが吸収される。吸収された入射光Aのエネルギーによって光吸収層76において熱が生じる。 Next, the optical resonant structure will be described in detail. As shown in FIG. 7, a part of incident light A (having a wavelength of λ) incident on the light absorption layer 76 is reflected as reflected light B1 by the light absorption layer 76, and the other part is light absorption layer. 76 is transmitted. The other part of the incident light A that has passed through the light absorption layer 76 is reflected by the light reflection layer 24 as reflected light B2. Then, the reflected light B1 and the reflected light B2 are canceled by interference with each other on the reflection surface of the light absorption layer 76. Thereby, the incident light A is absorbed by the reflection surface of the light absorption layer 76. Heat is generated in the light absorption layer 76 by the energy of the absorbed incident light A.
 入射光Aの吸収率は、光吸収層76のシート抵抗、及び、光吸収層76と光反射層24との間の光学距離tによって決められる。光吸収層76の厚さは、シート抵抗が真空インピーダンス(377Ω/sq)となるように略16nm(光吸収層76の材料が、WSiである場合)に設定されている。これによれば、光吸収層76によって反射された反射光B1の振幅が光反射層24によって反射された反射光B2の振幅と一致する。このため、光吸収層76の反射面において、反射光B1と反射光B2とが効率的に干渉して打ち消される。従って、入射光Aの吸収率が向上される。 The absorption rate of the incident light A is determined by the sheet resistance of the light absorption layer 76 and the optical distance t between the light absorption layer 76 and the light reflection layer 24. The thickness of the light absorption layer 76 is set to about 16 nm (when the material of the light absorption layer 76 is WSi 2 ) so that the sheet resistance becomes a vacuum impedance (377Ω / sq). According to this, the amplitude of the reflected light B <b> 1 reflected by the light absorbing layer 76 matches the amplitude of the reflected light B <b> 2 reflected by the light reflecting layer 24. For this reason, on the reflective surface of the light absorption layer 76, the reflected light B1 and the reflected light B2 efficiently interfere and cancel each other. Therefore, the absorption rate of the incident light A is improved.
 また、光学距離tは、t=(2m-1)λ/4(m=1、2、3、・・・)となるように設定されている。これによれば、反射光B1と反射光B2との位相が180°ずれる。このため、光吸収層76の反射面において、反射光B1と反射光B2とが効率的に干渉して打ち消される。従って、入射光Aの吸収率が向上される。このように、光反射層24は、光吸収層76と光共振構造を構成している。Z軸方向から見た場合に、光反射層24及び光吸収層76の重なっている部分の面積が広ければ広いほど、入射光Aが効率よく吸収される。 The optical distance t is set to be t = (2m−1) λ / 4 (m = 1, 2, 3,...). According to this, the phases of the reflected light B1 and the reflected light B2 are shifted by 180 °. For this reason, on the reflective surface of the light absorption layer 76, the reflected light B1 and the reflected light B2 efficiently interfere and cancel each other. Therefore, the absorption rate of the incident light A is improved. Thus, the light reflection layer 24 forms an optical resonance structure with the light absorption layer 76. When viewed from the Z-axis direction, the larger the area of the overlapping portion of the light reflecting layer 24 and the light absorbing layer 76, the more efficiently the incident light A is absorbed.
[リファレンス素子の構成]
 図8に示されるように、リファレンス素子40は、光吸収層76を有していない点、及び、第2スリット41a,41bが、第1スリット31a,31bよりも短い点において、光検出素子30と主に相違している。リファレンス素子40は、第2膜体41と、一対の第2電極ポスト42,43と、を有している。
[Configuration of reference element]
As shown in FIG. 8, the reference element 40 does not have the light absorption layer 76, and the second slits 41a and 41b are shorter than the first slits 31a and 31b. And is mainly different. The reference element 40 includes a second film body 41 and a pair of second electrode posts 42 and 43.
 第2膜体41は、空隙S2を介して基板2Aの表面2a上に配置されている。第2膜体41は、基板2Aの表面2aと略平行に配置されている。第2膜体41と基板2Aの表面2aとの距離は、例えば数μm程度である。図8及び図9に示されるように、第2膜体41は、本体部44と、一対の第2接続部45,46と、一対の第2梁部47,48と、を有している。本体部44、一対の第2接続部45,46、及び、一対の第2梁部47,48は、一体的に形成されている。第2接続部45,46は、第2膜体41の外形の対角に位置している。第2接続部45,46は、それぞれ、Z軸方向から見た場合に例えば矩形状を呈している。このように、光検出器1Aでは、Z軸方向から見た場合における第2膜体41の外形が、本体部44、一対の第2接続部45,46、及び、一対の第2梁部47,48によって矩形状に形成されている。なお、Z軸方向から見た場合における第2膜体41の外形とは、本体部44、一対の第2接続部45,46、一対の第2梁部47,48、及び、後述する第2スリット41a,41bを含んだ第2膜体41全体の外形である。 The second film body 41 is disposed on the surface 2a of the substrate 2A via the gap S2. The second film body 41 is disposed substantially parallel to the surface 2a of the substrate 2A. The distance between the second film body 41 and the surface 2a of the substrate 2A is, for example, about several μm. As shown in FIGS. 8 and 9, the second film body 41 includes a main body 44, a pair of second connection parts 45 and 46, and a pair of second beam parts 47 and 48. . The main body portion 44, the pair of second connection portions 45, 46, and the pair of second beam portions 47, 48 are integrally formed. The second connection parts 45 and 46 are located diagonally to the outer shape of the second film body 41. Each of the second connection portions 45 and 46 has, for example, a rectangular shape when viewed from the Z-axis direction. Thus, in the photodetector 1A, the outer shape of the second film body 41 when viewed from the Z-axis direction is such that the main body portion 44, the pair of second connection portions 45 and 46, and the pair of second beam portions 47. , 48 are formed in a rectangular shape. The outer shape of the second film body 41 when viewed from the Z-axis direction is a main body 44, a pair of second connection portions 45, 46, a pair of second beam portions 47, 48, and a second to be described later. It is the external shape of the 2nd film body 41 whole containing slit 41a, 41b.
 第2梁部47は、本体部44と第2接続部45との間に配置されている。第2梁部47は、本体部44の一方の側において本体部44の外縁に沿って延在している。第2梁部47の一端は、第2接続部45と接続されており、第2梁部47の他端は、第2接続部45の近傍の位置で本体部44と接続されている。つまり、第2梁部47は、第1梁部37よりも短い。本体部44と第2接続部45との間、及び本体部44と第2梁部47との間には、第2スリット41aが一続きに形成されている。第2梁部48は、本体部44と第2接続部46との間に配置されている。第2梁部48は、本体部44の他方の側において本体部44の外縁に沿って延在している。第2梁部48の一端は、第2接続部46と接続されており、第2梁部48の他端は、第2接続部46の近傍の位置で本体部44と接続されている。つまり、第2梁部48は、第1梁部38よりも短い。本体部44と第2接続部46との間、及び本体部44と第2梁部48との間には、第2スリット41bが一続きに形成されている。第2梁部47,48のそれぞれの幅は、例えば数μm程度である。第2梁部47,48のそれぞれの長さは、例えば数μm~数十μm程度である。第2スリット41a,41bのそれぞれの幅は、例えば数μm程度である。 The second beam portion 47 is disposed between the main body portion 44 and the second connection portion 45. The second beam portion 47 extends along the outer edge of the main body 44 on one side of the main body 44. One end of the second beam portion 47 is connected to the second connection portion 45, and the other end of the second beam portion 47 is connected to the main body portion 44 at a position in the vicinity of the second connection portion 45. That is, the second beam portion 47 is shorter than the first beam portion 37. A second slit 41 a is continuously formed between the main body 44 and the second connecting portion 45 and between the main body 44 and the second beam portion 47. The second beam portion 48 is disposed between the main body portion 44 and the second connection portion 46. The second beam portion 48 extends along the outer edge of the main body 44 on the other side of the main body 44. One end of the second beam portion 48 is connected to the second connection portion 46, and the other end of the second beam portion 48 is connected to the main body portion 44 at a position near the second connection portion 46. That is, the second beam portion 48 is shorter than the first beam portion 38. The second slits 41 b are continuously formed between the main body 44 and the second connecting portion 46 and between the main body 44 and the second beam portion 48. The width of each of the second beam portions 47 and 48 is, for example, about several μm. The length of each of the second beam portions 47 and 48 is, for example, about several μm to several tens of μm. The width of each of the second slits 41a and 41b is, for example, about several μm.
 第2電極ポスト42は、基板2Aと第2接続部45との間に配置されている。第2電極ポスト42は、基板2Aから第2膜体41に向かって広がる筒状を呈している。第2電極ポスト43は、基板2Aと第2接続部46との間に配置されている。第2電極ポスト43は、基板2Aから第2膜体41に向かって広がる筒状を呈している。第2電極ポスト42,43のそれぞれの高さは、例えば数μm程度である。第2電極ポスト42,43のそれぞれの材料は、例えばTi等の金属材料である。 The second electrode post 42 is disposed between the substrate 2A and the second connection portion 45. The second electrode post 42 has a cylindrical shape that spreads from the substrate 2 </ b> A toward the second film body 41. The second electrode post 43 is disposed between the substrate 2 </ b> A and the second connection portion 46. The second electrode post 43 has a cylindrical shape that spreads from the substrate 2 </ b> A toward the second film body 41. The height of each of the second electrode posts 42 and 43 is, for example, about several μm. Each material of the second electrode posts 42 and 43 is a metal material such as Ti, for example.
 図10は、リファレンス素子40の断面図である。図10のI-I、II-II、III-III、IV-IV、V-Vは、それぞれ、図9のI-I線、II-II線、III-III線、IV-IV線、V-V線に沿っての断面図である。図10に示されるように、第2膜体41は、一対の第2配線層81,82と、絶縁層83,84と、第2抵抗層85と、分離層87と、を含んでいる。 FIG. 10 is a cross-sectional view of the reference element 40. In FIG. 10, II, II-II, III-III, IV-IV, and VV are respectively the II, II-II, III-III, IV-IV, and V lines of FIG. FIG. 6 is a cross-sectional view taken along the line V. As shown in FIG. 10, the second film body 41 includes a pair of second wiring layers 81 and 82, insulating layers 83 and 84, a second resistance layer 85, and a separation layer 87.
 図9及び図10に示されるように、Z軸方向から見た場合に、第2配線層81,82は、本体部44において第2ギャップG2を介して互いに対向している。第2ギャップG2は、第2ラインL2に沿って延在している。第2ラインL2は、Z軸方向から見た場合に第2膜体41の重心位置C2を挟んで対向する対角間において延在している。具体的には、第2ラインL2は、Z軸方向から見た場合に、第2膜体41における重心位置C2を通り且つ第2接続部45,46のそれぞれを結ぶ第2対角線D2に沿って蛇行状に延在している。第2ラインL2は、蛇行部を有している。蛇行部は、本体部44において、本体部44の一方の側に延びた後、例えば180°折り返して、本体部44の他方の側に延びた後、例えば180°折り返して、再び本体部44の一方の側に延びることを繰り返すことによって構成されている。 As shown in FIGS. 9 and 10, when viewed from the Z-axis direction, the second wiring layers 81 and 82 face each other through the second gap G2 in the main body 44. The second gap G2 extends along the second line L2. The second line L2 extends between diagonals facing each other across the center of gravity position C2 of the second film body 41 when viewed from the Z-axis direction. Specifically, when viewed from the Z-axis direction, the second line L2 passes through the center of gravity position C2 of the second film body 41 and extends along the second diagonal line D2 connecting the second connection portions 45 and 46, respectively. It extends in a serpentine shape. The second line L2 has a meandering portion. The meandering portion extends to one side of the main body portion 44 in the main body portion 44, and then, for example, is folded back by 180 °. After extending to the other side of the main body portion 44, for example, it is folded back by 180 °, for example. It is configured by repeating extending to one side.
 リファレンス素子40では、一方の側とは、Z軸方向から見た場合に、第2対角線D2に対して一方の側(例えば第2梁部47が存在する側)をいい、他方の側とは、Z軸方向から見た場合に、第2対角線D2に対して一方の側とは反対の側(例えば第2梁部48が存在する側)をいう。 In the reference element 40, one side means one side (for example, the side where the second beam portion 47 exists) with respect to the second diagonal line D2 when viewed from the Z-axis direction, and the other side means , When viewed from the Z-axis direction, it refers to a side opposite to one side with respect to the second diagonal line D2 (for example, a side where the second beam portion 48 exists).
 第2配線層81,82は、本体部44において、第2ラインL2に沿った方向において細長く形成されている。つまり、Z軸方向から見た場合に、本体部44において、第2ラインL2に沿った方向における第2配線層81,82のそれぞれの長さは、第2ラインL2に垂直な方向における第2配線層81,82のそれぞれの幅よりも大きい。第2ラインL2に垂直な方向とは、Z軸方向から見た場合に、第2ラインL2の各位置における接線に垂直な方向をいう。第2ラインL2が曲線部を含んでいる場合に、曲線部の各位置においては、第2ラインL2に垂直な方向はそれぞれ相違する。 The second wiring layers 81 and 82 are elongated in the direction along the second line L2 in the main body 44. That is, when viewed from the Z-axis direction, the length of each of the second wiring layers 81 and 82 in the direction along the second line L2 in the main body 44 is the second in the direction perpendicular to the second line L2. It is larger than the width of each of the wiring layers 81 and 82. The direction perpendicular to the second line L2 refers to a direction perpendicular to a tangent at each position of the second line L2 when viewed from the Z-axis direction. When the second line L2 includes a curved portion, the direction perpendicular to the second line L2 is different at each position of the curved portion.
 Z軸方向から見た場合に、本体部44において、第2ラインL2に沿った方向における第2配線層81,82のそれぞれの長さは、例えば、数十~数百μm程度である。Z軸方向から見た場合に、第2ラインL2に垂直な方向における第2配線層81,82のそれぞれの幅は、例えば数μm程度である。Z軸方向から見た場合に、第2ラインL2に垂直な方向における第2ギャップG2の幅は、例えば数μm程度である。第2配線層81,82のそれぞれの厚さは、例えば数十~数百nm程度である。 When viewed from the Z-axis direction, the length of each of the second wiring layers 81 and 82 in the direction along the second line L2 in the main body 44 is, for example, about several tens to several hundreds μm. When viewed from the Z-axis direction, the width of each of the second wiring layers 81 and 82 in the direction perpendicular to the second line L2 is, for example, about several μm. When viewed from the Z-axis direction, the width of the second gap G2 in the direction perpendicular to the second line L2 is, for example, about several μm. The thickness of each of the second wiring layers 81 and 82 is, for example, about several tens to several hundreds nm.
 第2配線層81は、本体部44から第2梁部47を介して第2接続部45に延在している。第2配線層81は、第2接続部45において第2電極ポスト42上に形成されている。第2配線層81は、第2電極ポスト42と電気的に接続されている。第2配線層82は、本体部44から第2梁部48を介して第2接続部46に延在している。第2配線層82は、第2接続部46において第2電極ポスト43上に形成されている。第2配線層82は、第2電極ポスト43と電気的に接続されている。第2配線層81,82のそれぞれの材料は、例えばTi等の金属材料である。 The second wiring layer 81 extends from the main body portion 44 to the second connection portion 45 via the second beam portion 47. The second wiring layer 81 is formed on the second electrode post 42 in the second connection portion 45. The second wiring layer 81 is electrically connected to the second electrode post 42. The second wiring layer 82 extends from the main body portion 44 to the second connection portion 46 via the second beam portion 48. The second wiring layer 82 is formed on the second electrode post 43 in the second connection portion 46. The second wiring layer 82 is electrically connected to the second electrode post 43. Each material of the second wiring layers 81 and 82 is a metal material such as Ti, for example.
 絶縁層83は、第2配線層81,82のそれぞれにおける基板2Aとは反対側の表面を覆うように、本体部44、第2梁部47,48、及び、第2接続部45,46に渡って形成されている。絶縁層83は、第2配線層81,82のそれぞれにおける基板2Aとは反対側の表面のうち第2ラインL2に沿った領域を露出させた状態で、第2配線層81,82における基板2Aとは反対側の表面に形成されている。絶縁層83は、第2接続部45,46において、第2配線層81,82のそれぞれの側面を覆っている。絶縁層84は、第2配線層81,82のそれぞれにおける基板2A側の表面を覆うように、本体部44、第2梁部47,48、及び、第2接続部45,46に渡って形成されている。絶縁層84は、第2接続部45,46において、第2配線層81,82のそれぞれにおける基板2A側の表面及び第2電極ポスト42,43のそれぞれの外面42a,43aを覆っている。絶縁層83及び絶縁層84のそれぞれの厚さは、例えば数十nm程度である。絶縁層83及び絶縁層84のそれぞれの材料は、例えばシリコン窒化膜(SiN)等である。 The insulating layer 83 is formed on the main body 44, the second beam portions 47 and 48, and the second connection portions 45 and 46 so as to cover the surfaces of the second wiring layers 81 and 82 on the side opposite to the substrate 2A. It is formed across. The insulating layer 83 is the substrate 2A in the second wiring layers 81 and 82 in a state where the region along the second line L2 is exposed on the surface of each of the second wiring layers 81 and 82 opposite to the substrate 2A. Is formed on the opposite surface. The insulating layer 83 covers the side surfaces of the second wiring layers 81 and 82 in the second connection portions 45 and 46. The insulating layer 84 is formed over the main body portion 44, the second beam portions 47, 48, and the second connection portions 45, 46 so as to cover the surface of the second wiring layers 81, 82 on the substrate 2A side. Has been. The insulating layer 84 covers the surface of the second wiring layers 81 and 82 on the substrate 2A side and the outer surfaces 42a and 43a of the second electrode posts 42 and 43 in the second connection portions 45 and 46, respectively. Each thickness of the insulating layer 83 and the insulating layer 84 is, for example, about several tens of nm. Each material of the insulating layer 83 and the insulating layer 84 is, for example, a silicon nitride film (SiN).
 第2抵抗層85は、本体部44において、基板2Aの反対側から絶縁層83を覆うように形成されている。第2抵抗層85は、本体部44において、第2配線層81,82のそれぞれにおける基板2Aとは反対側の表面のうち第2ラインL2に沿った領域に接触している。つまり、第2抵抗層85は、本体部44において、第2配線層81,82のそれぞれと電気的に接続されている。第2抵抗層85は、温度に依存する電気抵抗を有している。第2抵抗層85の厚さは、例えば数十~数百nm程度である。第2抵抗層85の材料は、例えば、温度変化による電気抵抗率の変化が大きいアモルファスシリコン(a-Si)等である。このように、本体部44は、一対の第2配線層81,82のそれぞれと第2抵抗層85との電気的な接続領域を含んでいる。第2抵抗層85は、本体部44だけでなく、第2接続部45,46にも設けられている。第2抵抗層85は、第2梁部47,48のそれぞれのうちその両端部を除く部分には形成されていない。つまり、第2抵抗層85は、第2梁部47,48において分断されている。 The second resistance layer 85 is formed in the main body portion 44 so as to cover the insulating layer 83 from the opposite side of the substrate 2A. The second resistance layer 85 is in contact with the region along the second line L <b> 2 on the surface of the main body portion 44 opposite to the substrate 2 </ b> A in each of the second wiring layers 81 and 82. That is, the second resistance layer 85 is electrically connected to each of the second wiring layers 81 and 82 in the main body 44. The second resistance layer 85 has an electrical resistance that depends on temperature. The thickness of the second resistance layer 85 is, for example, about several tens to several hundreds nm. The material of the second resistance layer 85 is, for example, amorphous silicon (a-Si) that has a large change in electrical resistivity due to a temperature change. Thus, the main body 44 includes an electrical connection region between each of the pair of second wiring layers 81 and 82 and the second resistance layer 85. The second resistance layer 85 is provided not only on the main body portion 44 but also on the second connection portions 45 and 46. The second resistance layer 85 is not formed on portions of the second beam portions 47 and 48 except for both end portions thereof. That is, the second resistance layer 85 is divided at the second beam portions 47 and 48.
 分離層87は、第2抵抗層85及び絶縁層83における基板2Aとは反対側の表面を覆うように、本体部44、第2梁部47,48、及び、第2接続部45,46に渡って形成されている。分離層87の厚さは、第2配線層81、第2配線層82、及び第2抵抗層85のそれぞれの厚さよりも大きい。分離層87の厚さは、例えば数百nm程度である。分離層87の材料は、例えばシリコン窒化膜(SiN)等である。 The separation layer 87 is formed on the main body portion 44, the second beam portions 47 and 48, and the second connection portions 45 and 46 so as to cover the surface of the second resistance layer 85 and the insulating layer 83 on the side opposite to the substrate 2A. It is formed across. The thickness of the separation layer 87 is larger than the thickness of each of the second wiring layer 81, the second wiring layer 82, and the second resistance layer 85. The thickness of the separation layer 87 is, for example, about several hundred nm. The material of the separation layer 87 is, for example, a silicon nitride film (SiN).
 第2膜体41には、貫通孔41cが形成されている。貫通孔41cは、リファレンス素子40の製造工程において用いられる犠牲層を除去するエッチングガスが通過する孔である。貫通孔41cは、Z軸方向から見た場合に例えば円形状を呈している。貫通孔41cは、Z軸方向から見た場合に、例えば第2膜体41の重心位置C2に位置している。貫通孔41cの直径は、例えば数μm程度である。 In the second film body 41, a through hole 41c is formed. The through hole 41 c is a hole through which an etching gas for removing a sacrificial layer used in the manufacturing process of the reference element 40 passes. The through hole 41c has, for example, a circular shape when viewed from the Z-axis direction. The through hole 41c is located, for example, at the center of gravity C2 of the second film body 41 when viewed from the Z-axis direction. The diameter of the through hole 41c is, for example, about several μm.
 基板2Aの表面2aには、第2電極パッド28,29が更に設けられている。第2電極パッド28は、Z軸方向において第2接続部45と対向している。第2電極パッド29は、Z軸方向において第2接続部46と対向している。第2電極パッド28,29は、Z軸方向から見た場合に例えば矩形状を呈している。第2電極パッド28,29は、配線によって回路部22Aと電気的に接続されている。各第2電極パッド28,29の厚さは、例えば数百nm程度である。各第2電極パッド28,29の材料は、例えば、導電性を有するAl等の金属材料である。 The second electrode pads 28 and 29 are further provided on the surface 2a of the substrate 2A. The second electrode pad 28 faces the second connection portion 45 in the Z-axis direction. The second electrode pad 29 faces the second connection portion 46 in the Z-axis direction. The second electrode pads 28 and 29 have, for example, a rectangular shape when viewed from the Z-axis direction. The second electrode pads 28 and 29 are electrically connected to the circuit unit 22A by wiring. The thickness of each second electrode pad 28, 29 is, for example, about several hundred nm. The material of each of the second electrode pads 28 and 29 is, for example, a metal material such as Al having conductivity.
 絶縁層27には、第2接続部45,46に対向する貫通孔27c,27dが更に形成されている。つまり、絶縁層27は、第2電極パッド28,29のそれぞれにおける半導体基板21とは反対側の表面の一部が露出するように、第2電極パッド28,29の外縁部を覆っている。 The insulating layer 27 is further formed with through holes 27 c and 27 d that face the second connection portions 45 and 46. That is, the insulating layer 27 covers the outer edge portions of the second electrode pads 28 and 29 so that part of the surface of each of the second electrode pads 28 and 29 opposite to the semiconductor substrate 21 is exposed.
 第2電極ポスト42は、基板2A側の端部に設けられた突出部が貫通孔27cに入り込んだ状態で、第2電極パッド28と接合されている。第2電極ポスト43は、基板2A側の端部に設けられた突出部が貫通孔27dに入り込んだ状態で、第2電極パッド29と接合されている。これにより、リファレンス素子40は、回路部22Aと電気的に接続されている。また、第2膜体41は、第2電極ポスト42,43によって、空隙S2を介して基板2Aの表面2a上に支持されている。 The second electrode post 42 is joined to the second electrode pad 28 in a state where the protruding portion provided at the end portion on the substrate 2A side enters the through hole 27c. The second electrode post 43 is joined to the second electrode pad 29 in a state where the protruding portion provided at the end on the substrate 2A side enters the through hole 27d. Thereby, the reference element 40 is electrically connected to the circuit unit 22A. The second film body 41 is supported on the surface 2a of the substrate 2A by the second electrode posts 42 and 43 via the gap S2.
[第1ダミー素子の構成]
 図11及び図13に示されるように、第1ダミー素子50は、光吸収層76を有していない点、及び、回路部22Aと電気的に絶縁されている点において、光検出素子30と主に相違している。第1ダミー素子50は、第3膜体51と、一対の第3電極ポスト52,53と、を有している。
[Configuration of first dummy element]
As shown in FIGS. 11 and 13, the first dummy element 50 is different from the light detection element 30 in that it does not have the light absorption layer 76 and is electrically insulated from the circuit portion 22A. Mainly different. The first dummy element 50 includes a third film body 51 and a pair of third electrode posts 52 and 53.
 第3膜体51は、空隙S3を介して基板2Aの表面2a上に配置されている。第3膜体51は、基板2Aの表面2aと略平行に配置されている。第3膜体51と基板2Aの表面2aとの距離は、例えば数μm程度である。図11及び図12に示されるように、第3膜体51は、本体部54と、一対の第3接続部55,56と、一対の第3梁部57,58と、を有している。第3膜体51は、Z軸方向から見た場合に、第1膜体31と同一の形状を呈している。本体部54、一対の第3接続部55,56、及び、一対の第3梁部57,58は、一体的に形成されている。第3接続部55,56は、第3膜体51の外形の対角に位置している。第3接続部55,56は、それぞれ、Z軸方向から見た場合に例えば矩形状を呈している。このように、光検出器1Aでは、Z軸方向から見た場合における第3膜体51の外形が、本体部54、一対の第3接続部55,56、及び、一対の第3梁部57,58によって矩形状に形成されている。なお、Z軸方向から見た場合における第3膜体51の外形とは、本体部54、一対の第3接続部55,56、一対の第3梁部57,58、及び、後述する第3スリット51a,51bを含んだ第3膜体51全体の外形である。 The third film body 51 is disposed on the surface 2a of the substrate 2A via the gap S3. The third film body 51 is disposed substantially parallel to the surface 2a of the substrate 2A. The distance between the third film body 51 and the surface 2a of the substrate 2A is, for example, about several μm. As shown in FIGS. 11 and 12, the third film body 51 includes a main body portion 54, a pair of third connection portions 55 and 56, and a pair of third beam portions 57 and 58. . The third film body 51 has the same shape as the first film body 31 when viewed from the Z-axis direction. The main body portion 54, the pair of third connection portions 55, 56, and the pair of third beam portions 57, 58 are integrally formed. The third connection portions 55 and 56 are located on the diagonal of the outer shape of the third film body 51. The third connecting portions 55 and 56 each have, for example, a rectangular shape when viewed from the Z-axis direction. Thus, in the photodetector 1 </ b> A, the outer shape of the third film body 51 when viewed from the Z-axis direction is such that the main body portion 54, the pair of third connection portions 55 and 56, and the pair of third beam portions 57. , 58 to form a rectangular shape. Note that the outer shape of the third film body 51 when viewed from the Z-axis direction is a main body portion 54, a pair of third connection portions 55, 56, a pair of third beam portions 57, 58, and a third to be described later. This is the outer shape of the entire third film body 51 including the slits 51a and 51b.
 第3梁部57は、本体部54と第3接続部55との間に配置されている。第3梁部57は、本体部54の一方の側において本体部54の外縁に沿って延在している。第3梁部57の一端は、第3接続部55と接続されており、第3梁部57の他端は、第3接続部56の近傍の位置で本体部54と接続されている。本体部54と第3接続部55との間、及び本体部54と第3梁部57との間には、第3スリット51aが一続きに形成されている。第3梁部58は、本体部54と第3接続部56との間に配置されている。第3梁部58は、本体部54の他方の側において本体部54の外縁に沿って延在している。第3梁部58の一端は、第3接続部56と接続されており、第3梁部58の他端は、第3接続部55の近傍の位置で本体部54と接続されている。本体部54と第3接続部56との間、及び本体部54と第3梁部58との間には、第3スリット51bが一続きに形成されている。第3梁部57,58のそれぞれの幅は、例えば数μm程度である。第3梁部57,58のそれぞれの長さは、例えば数十~数百μm程度である。第3スリット51a,51bのそれぞれの幅は、例えば数μm程度である。 The third beam portion 57 is disposed between the main body portion 54 and the third connection portion 55. The third beam portion 57 extends along the outer edge of the main body portion 54 on one side of the main body portion 54. One end of the third beam portion 57 is connected to the third connection portion 55, and the other end of the third beam portion 57 is connected to the main body portion 54 at a position near the third connection portion 56. The third slits 51 a are continuously formed between the main body portion 54 and the third connection portion 55 and between the main body portion 54 and the third beam portion 57. The third beam portion 58 is disposed between the main body portion 54 and the third connection portion 56. The third beam portion 58 extends along the outer edge of the main body portion 54 on the other side of the main body portion 54. One end of the third beam portion 58 is connected to the third connection portion 56, and the other end of the third beam portion 58 is connected to the main body portion 54 at a position near the third connection portion 55. The third slits 51b are continuously formed between the main body portion 54 and the third connection portion 56 and between the main body portion 54 and the third beam portion 58. The width of each of the third beam portions 57 and 58 is, for example, about several μm. The length of each of the third beam portions 57 and 58 is, for example, about several tens to several hundreds μm. The width of each of the third slits 51a and 51b is, for example, about several μm.
 図13は、第1ダミー素子50の断面図である。図13のI-I、II-II、III-III、IV-IV、V-Vは、それぞれ、図12のI-I線、II-II線、III-III線、IV-IV線、V-V線に沿っての断面図である。図13に示されるように、第3膜体51は、光吸収層76を有していない点のみにおいて、第1膜体31と相違しており、その他の構造は、第1膜体31と同一である。第3膜体51の詳細な説明は、省略する。 FIG. 13 is a cross-sectional view of the first dummy element 50. I-I, II-II, III-III, IV-IV, and VV in FIG. 13 are the lines I-I, II-II, III-III, IV-IV, and V-V in FIG. 12, respectively. FIG. 6 is a cross-sectional view taken along the line V. As shown in FIG. 13, the third film body 51 is different from the first film body 31 only in that it does not have the light absorption layer 76, and the other structure is the same as that of the first film body 31. Are the same. Detailed description of the third film body 51 is omitted.
 図13に示されるように、第1ダミー素子50に対向する領域においては、基板2Aの表面2aは、絶縁層27によって完全に覆われている。第3電極ポスト52,53は、絶縁層27の表面に接合されている。これにより、第1ダミー素子50は、回路部22Aと電気的に絶縁されている。また、第3膜体51は、第3電極ポスト52,53によって、空隙S3を介して基板2Aの表面2a上に支持されている。 As shown in FIG. 13, in the region facing the first dummy element 50, the surface 2 a of the substrate 2 </ b> A is completely covered with the insulating layer 27. The third electrode posts 52 and 53 are bonded to the surface of the insulating layer 27. Thereby, the first dummy element 50 is electrically insulated from the circuit unit 22A. The third film body 51 is supported by the third electrode posts 52 and 53 on the surface 2a of the substrate 2A via the gap S3.
[第2ダミー素子の構成]
 図14及び図16に示されるように、第2ダミー素子60は、回路部22Aと電気的に絶縁されている点において、リファレンス素子40と主に相違している。第2ダミー素子60は、第4膜体61と、一対の第4電極ポスト62,63と、を有している。
[Configuration of second dummy element]
As shown in FIGS. 14 and 16, the second dummy element 60 is mainly different from the reference element 40 in that it is electrically insulated from the circuit portion 22A. The second dummy element 60 includes a fourth film body 61 and a pair of fourth electrode posts 62 and 63.
 第4膜体61は、空隙S4を介して基板2Aの表面2a上に配置されている。第4膜体61は、基板2Aの表面2aと略平行に配置されている。第4膜体61と基板2Aの表面2aとの距離は、例えば数μm程度である。図14及び図15に示されるように、第4膜体61は、本体部64と、一対の第4接続部65,66と、一対の第4梁部67,68と、を有している。第4膜体61は、Z軸方向から見た場合に、第2膜体41と同一の形状を呈している。本体部64、一対の第4接続部65,66、及び、一対の第4梁部67,68は、一体的に形成されている。第4接続部65,66は、第4膜体61の外形の対角に位置している。第4接続部65,66は、それぞれ、Z軸方向から見た場合に例えば矩形状を呈している。このように、光検出器1Aでは、Z軸方向から見た場合における第4膜体61の外形が、本体部64、一対の第4接続部65,66、及び、一対の第4梁部67,68によって矩形状に形成されている。なお、Z軸方向から見た場合における第4膜体61の外形とは、本体部64、一対の第4接続部65,66、一対の第4梁部67,68、及び、後述する第4スリット61a,61bを含んだ第4膜体61全体の外形である。 The fourth film body 61 is disposed on the surface 2a of the substrate 2A via the gap S4. The fourth film body 61 is disposed substantially parallel to the surface 2a of the substrate 2A. The distance between the fourth film body 61 and the surface 2a of the substrate 2A is, for example, about several μm. As shown in FIGS. 14 and 15, the fourth film body 61 includes a main body portion 64, a pair of fourth connection portions 65 and 66, and a pair of fourth beam portions 67 and 68. . The fourth film body 61 has the same shape as the second film body 41 when viewed from the Z-axis direction. The main body portion 64, the pair of fourth connection portions 65, 66, and the pair of fourth beam portions 67, 68 are integrally formed. The fourth connection portions 65 and 66 are located on the diagonal of the outer shape of the fourth film body 61. The fourth connecting portions 65 and 66 each have, for example, a rectangular shape when viewed from the Z-axis direction. Thus, in the photodetector 1 </ b> A, the outer shape of the fourth film body 61 when viewed from the Z-axis direction is the main body portion 64, the pair of fourth connection portions 65 and 66, and the pair of fourth beam portions 67. , 68 to form a rectangular shape. Note that the outer shape of the fourth film body 61 when viewed from the Z-axis direction is a main body portion 64, a pair of fourth connection portions 65, 66, a pair of fourth beam portions 67, 68, and a fourth to be described later. This is the overall shape of the fourth film body 61 including the slits 61a and 61b.
 第4梁部67は、本体部64と第4接続部65との間に配置されている。第4梁部67は、本体部64の一方の側において本体部64の外縁に沿って延在している。第4梁部67の一端は、第4接続部65と接続されており、第4梁部67の他端は、第4接続部65の近傍の位置で本体部64と接続されている。つまり、第4梁部67は、第1梁部37及び第3梁部57よりも短い。本体部64と第4接続部65との間、及び本体部64と第4梁部67との間には、第4スリット61aが一続きに形成されている。第4梁部68は、本体部64と第4接続部66との間に配置されている。第4梁部68は、本体部64の他方の側において本体部64の外縁に沿って延在している。第4梁部68の一端は、第4接続部66と接続されており、第4梁部68の他端は、第4接続部66の近傍の位置で本体部64と接続されている。つまり、第4梁部68は、第1梁部38及び第3梁部58よりも短い。本体部64と第4接続部66との間、及び本体部64と第4梁部68との間には、第4スリット61bが一続きに形成されている。第4梁部67,68のそれぞれの幅は、例えば数μm程度である。第4梁部67,68のそれぞれの長さは、例えば数μm~数十μm程度である。第4スリット61a,61bのそれぞれの幅は、例えば数μm程度である。 The fourth beam portion 67 is disposed between the main body portion 64 and the fourth connection portion 65. The fourth beam portion 67 extends along the outer edge of the main body portion 64 on one side of the main body portion 64. One end of the fourth beam portion 67 is connected to the fourth connection portion 65, and the other end of the fourth beam portion 67 is connected to the main body portion 64 at a position near the fourth connection portion 65. That is, the fourth beam portion 67 is shorter than the first beam portion 37 and the third beam portion 57. A fourth slit 61 a is continuously formed between the main body portion 64 and the fourth connection portion 65 and between the main body portion 64 and the fourth beam portion 67. The fourth beam portion 68 is disposed between the main body portion 64 and the fourth connection portion 66. The fourth beam portion 68 extends along the outer edge of the main body portion 64 on the other side of the main body portion 64. One end of the fourth beam portion 68 is connected to the fourth connection portion 66, and the other end of the fourth beam portion 68 is connected to the main body portion 64 at a position near the fourth connection portion 66. That is, the fourth beam portion 68 is shorter than the first beam portion 38 and the third beam portion 58. The fourth slits 61 b are continuously formed between the main body portion 64 and the fourth connection portion 66 and between the main body portion 64 and the fourth beam portion 68. The width of each of the fourth beam portions 67 and 68 is, for example, about several μm. The length of each of the fourth beam portions 67 and 68 is, for example, about several μm to several tens of μm. The width of each of the fourth slits 61a and 61b is, for example, about several μm.
 図16は、第2ダミー素子60の断面図である。図16のI-I、II-II、III-III、IV-IV、V-Vは、それぞれ、図15のI-I線、II-II線、III-III線、IV-IV線、V-V線に沿っての断面図である。図16に示されるように、第4膜体61の構造は、第2膜体41と同一である。第4膜体61の詳細な説明は、省略する。 FIG. 16 is a cross-sectional view of the second dummy element 60. I-I, II-II, III-III, IV-IV, and VV in FIG. 16 are respectively the II, II-II, III-III, IV-IV, and V-V lines of FIG. FIG. 6 is a cross-sectional view taken along the line V. As shown in FIG. 16, the structure of the fourth film body 61 is the same as that of the second film body 41. Detailed description of the fourth film body 61 is omitted.
 図16に示されるように、第2ダミー素子60に対向する領域においては、基板2Aの表面2aは、絶縁層27によって完全に覆われている。第4電極ポスト62,63は、絶縁層27の表面に接合されている。これにより、第2ダミー素子60は、回路部22Aと電気的に絶縁されている。また、第4膜体61は、第4電極ポスト62,63によって、空隙S4を介して基板2Aの表面2a上に支持されている。 As shown in FIG. 16, the surface 2 a of the substrate 2 </ b> A is completely covered with the insulating layer 27 in the region facing the second dummy element 60. The fourth electrode posts 62 and 63 are bonded to the surface of the insulating layer 27. Thereby, the second dummy element 60 is electrically insulated from the circuit portion 22A. The fourth film body 61 is supported by the fourth electrode posts 62 and 63 on the surface 2a of the substrate 2A via the gap S4.
[基板の構成]
 図6、図10、図13及び図16に示されるように、基板2Aは、半導体基板21と、回路部22Aと、絶縁層23と、を有している。半導体基板21の材料は、例えばシリコンである。回路部22Aは、半導体基板21の表面に層状に設けられている。絶縁層23は、基板2Aの表面2aが平坦となるように、半導体基板21上において回路部22Aの各構成(すなわち、補正回路8、リードアウトサーキット9、及び複数のシフトレジスタ11a,11b,11cによって構成される信号読出し回路7、並びに、各構成を互いに電気的に接続する複数の配線)を覆っている。絶縁層23の材料は、例えばシリコン窒化膜(SiN)等である。
[Substrate structure]
As shown in FIGS. 6, 10, 13, and 16, the substrate 2 </ b> A includes a semiconductor substrate 21, a circuit unit 22 </ b> A, and an insulating layer 23. The material of the semiconductor substrate 21 is, for example, silicon. The circuit portion 22 </ b> A is provided in a layered manner on the surface of the semiconductor substrate 21. The insulating layer 23 is formed on the semiconductor substrate 21 so that the surface 2a of the substrate 2A becomes flat (ie, the correction circuit 8, the lead-out circuit 9, and the shift registers 11a, 11b, and 11c) And a plurality of wirings that electrically connect the components to each other). The material of the insulating layer 23 is, for example, a silicon nitride film (SiN).
 一部の第1ダミー素子50及び一部の第2ダミー素子60は、Z軸方向から見た場合に、回路部22Aと重なっている。具体的には、一部の第1ダミー素子50及び一部の第2ダミー素子60は、Z軸方向から見た場合に、信号読出し回路7と重なっている(図1参照)。より具体的には、Z軸方向から見た場合に、画素部3に対してシフトレジスタ11a側に配置された第1ダミー素子50は、シフトレジスタ11aと重なっている。また、Z軸方向から見た場合に、リファレンス部4に対してシフトレジスタ11b側に配置された第2ダミー素子60は、シフトレジスタ11bと重なっている。また、Z軸方向から見た場合に、リファレンス部4に対して補正回路8側に配置された第2ダミー素子60は、補正回路8と重なっている。なお、リファレンス部4に対して補正回路8側に配置された第2ダミー素子60は、リードアウトサーキット9とも重なっていてもよい。なお、ダミー素子が、Z軸方向から見た場合に、信号読出し回路7と重なっているとは、複数のダミー素子のうち、少なくとも一部のダミー素子が、信号読出し回路7と重なっていることをいう。 Some of the first dummy elements 50 and some of the second dummy elements 60 overlap the circuit portion 22A when viewed from the Z-axis direction. Specifically, some of the first dummy elements 50 and some of the second dummy elements 60 overlap with the signal readout circuit 7 when viewed from the Z-axis direction (see FIG. 1). More specifically, when viewed from the Z-axis direction, the first dummy element 50 disposed on the shift register 11a side with respect to the pixel unit 3 overlaps the shift register 11a. When viewed from the Z-axis direction, the second dummy element 60 disposed on the shift register 11b side with respect to the reference unit 4 overlaps the shift register 11b. When viewed from the Z-axis direction, the second dummy element 60 disposed on the correction circuit 8 side with respect to the reference unit 4 overlaps the correction circuit 8. The second dummy element 60 disposed on the correction circuit 8 side with respect to the reference unit 4 may overlap with the lead-out circuit 9. Note that, when viewed from the Z-axis direction, the dummy elements overlap with the signal readout circuit 7 that at least some of the dummy elements overlap with the signal readout circuit 7. Say.
[光検出器の動作]
 以上のように構成された光検出器1Aでは、以下のように、光が検出される。まず、光が光検出素子30の受光部34に入射すると、上述した光共振構造を構成する光吸収層76において熱が生じる。このとき、受光部34と基板2Aとは、空隙S1によって熱的に分離されている。また、受光部34と第1接続部35及び第1梁部37とは、第1スリット31aによって熱的に分離されている。また、受光部34と第1接続部36及び第1梁部38とは、第1スリット31bによって熱的に分離されている。このため、光吸収層76において生じた熱が、第1梁部37,38及び第1接続部35,36を介して、基板2A側に逃げるようなことが抑制される。更に、光吸収層76と第1配線層71,72とは、分離層77によって熱的に分離されている。このため、光吸収層76において生じた熱が分離層77を介して第1抵抗層75に十分に伝わる前に、当該熱が第1配線層71,72を介して基板2A側に逃げるようなことが抑制される。
[Operation of photodetector]
In the photodetector 1A configured as described above, light is detected as follows. First, when light enters the light receiving portion 34 of the light detection element 30, heat is generated in the light absorption layer 76 that constitutes the optical resonance structure described above. At this time, the light receiving unit 34 and the substrate 2A are thermally separated by the gap S1. In addition, the light receiving part 34, the first connection part 35, and the first beam part 37 are thermally separated by the first slit 31a. In addition, the light receiving part 34, the first connection part 36, and the first beam part 38 are thermally separated by the first slit 31b. For this reason, it is suppressed that the heat generated in the light absorption layer 76 escapes to the substrate 2A side via the first beam portions 37 and 38 and the first connection portions 35 and 36. Further, the light absorption layer 76 and the first wiring layers 71 and 72 are thermally separated by the separation layer 77. For this reason, before the heat generated in the light absorption layer 76 is sufficiently transmitted to the first resistance layer 75 via the separation layer 77, the heat escapes to the substrate 2A side via the first wiring layers 71 and 72. It is suppressed.
 光吸収層76において生じた熱は、分離層77を介して第1抵抗層75に伝わる。そして、この熱によって第1抵抗層75は、温度が上昇すると共に電気抵抗が低下する。この電気抵抗の変化による信号は、第1配線層71,72、第1電極ポスト32,33、及び第1電極パッド25,26を介して、信号読出し回路7に送られる。シフトレジスタ11a及びシフトレジスタ11cは、I/Oパッド12を介して駆動信号が入力されると、画素部3における列及び行のアドレスを指定して、各光検出素子30における上記信号を選択して読み出す。このとき、リファレンス部4のリファレンス素子40からも、電気抵抗の変化による信号が信号読出し回路7に送られる。シフトレジスタ11b及びシフトレジスタ11cは、I/Oパッド12を介して駆動信号が入力されると、リファレンス部4における列及び行のアドレスを指定して、各リファレンス素子40における上記信号を選択して読み出す。補正回路8は、シフトレジスタ11a,11b,11cによって読み出された信号を補正して出力する。リードアウトサーキット9は、補正回路8によって出力された信号を増幅、測定及び保持する。I/Oパッド12は、リードアウトサーキット9によって増幅、測定及び保持された信号を、順次出力する。そして、光検出器1Aでは、光検出素子30からの信号とリファレンス素子40からの信号との差分に基づいて光が検出される。 The heat generated in the light absorption layer 76 is transmitted to the first resistance layer 75 through the separation layer 77. As a result of this heat, the temperature of the first resistance layer 75 increases and the electrical resistance decreases. A signal due to the change in electrical resistance is sent to the signal readout circuit 7 via the first wiring layers 71 and 72, the first electrode posts 32 and 33, and the first electrode pads 25 and 26. When a drive signal is input via the I / O pad 12, the shift register 11 a and the shift register 11 c specify the column and row addresses in the pixel unit 3 and select the signals in the respective light detection elements 30. Read out. At this time, a signal due to a change in electrical resistance is also sent from the reference element 40 of the reference unit 4 to the signal readout circuit 7. When a drive signal is input via the I / O pad 12, the shift register 11 b and the shift register 11 c specify the column and row addresses in the reference unit 4 and select the signals in each reference element 40. read out. The correction circuit 8 corrects and outputs the signals read by the shift registers 11a, 11b, and 11c. The lead-out circuit 9 amplifies, measures and holds the signal output by the correction circuit 8. The I / O pad 12 sequentially outputs signals amplified, measured and held by the lead-out circuit 9. In the photodetector 1 </ b> A, light is detected based on the difference between the signal from the light detection element 30 and the signal from the reference element 40.
 なお、1つのリファレンス素子40における信号は、対応する複数の光検出素子30のそれぞれにおける信号が読み出される毎に読み出される。つまり、1つのリファレンス素子40は、対応する複数の光検出素子30の補償に用いられる。このため、1つのリファレンス素子40の検出精度が、複数の光検出素子30の検出精度に影響を与える。また、リファレンス素子40における信号が読み出される回数は、光検出素子30における信号が読み出される回数よりも大きい。このため、リファレンス素子40は、光検出素子30に比べて劣化し易い。このような理由により、リファレンス素子による補償精度を確保するための工夫は欠かせない。 A signal in one reference element 40 is read each time a signal in each of a plurality of corresponding light detection elements 30 is read. That is, one reference element 40 is used for compensation of a plurality of corresponding light detection elements 30. For this reason, the detection accuracy of one reference element 40 affects the detection accuracy of a plurality of light detection elements 30. In addition, the number of times the signal is read from the reference element 40 is larger than the number of times the signal is read from the photodetecting element 30. For this reason, the reference element 40 is easily deteriorated as compared with the photodetecting element 30. For this reason, a device for ensuring the compensation accuracy by the reference element is indispensable.
[作用及び効果]
 以上説明したように、光検出器1Aでは、第1ダミー素子50が第1領域3aの外縁に沿って配置され、第2ダミー素子60が第2領域4aの外縁に沿って配置されている。このため、第1ダミー素子50及び第2ダミー素子60が存在せずに空間が形成されているような場合に比べ、光検出素子30の第1膜体31、及びリファレンス素子40の第2膜体41が均一な環境下に置かれ、その結果、光検出素子30の検出精度、及びリファレンス素子40の検出精度が向上する。その一方で、第1ダミー素子50及び第2ダミー素子60が、回路部22Aと電気的に絶縁されているため、第1ダミー素子50及び第2ダミー素子60を回路部22Aに電気的に接続するための回路構造が不要となる。よって、光検出器1Aによれば、構造の複雑化を抑制しつつ検出精度を確保することができる。
[Action and effect]
As described above, in the photodetector 1A, the first dummy element 50 is disposed along the outer edge of the first region 3a, and the second dummy element 60 is disposed along the outer edge of the second region 4a. Therefore, the first film body 31 of the photodetecting element 30 and the second film of the reference element 40 are compared with the case where a space is formed without the first dummy element 50 and the second dummy element 60. The body 41 is placed in a uniform environment. As a result, the detection accuracy of the light detection element 30 and the detection accuracy of the reference element 40 are improved. On the other hand, since the first dummy element 50 and the second dummy element 60 are electrically insulated from the circuit part 22A, the first dummy element 50 and the second dummy element 60 are electrically connected to the circuit part 22A. This eliminates the need for a circuit structure. Therefore, according to the photodetector 1A, detection accuracy can be ensured while suppressing the complexity of the structure.
 また、光検出器1Aでは、第1ダミー素子50が、第1領域3aの外縁と交差する方向に並ぶように、表面2aのうち第1領域3a及び第2領域4a以外の領域に複数配置され、第2ダミー素子60が、第2領域4aの外縁と交差する方向に並ぶように、表面2aのうち第1領域3a及び第2領域4a以外の領域に複数配置されている。この構成によれば、光検出素子30の第1膜体31、及びリファレンス素子40の第2膜体41がより均一な環境下に置かれ、その結果、光検出素子30の検出精度、及びリファレンス素子40の検出精度がより一層向上する。 In the photodetector 1A, a plurality of first dummy elements 50 are arranged in a region other than the first region 3a and the second region 4a on the surface 2a so as to be arranged in a direction intersecting with the outer edge of the first region 3a. A plurality of second dummy elements 60 are arranged in regions other than the first region 3a and the second region 4a on the surface 2a so as to be arranged in a direction intersecting with the outer edge of the second region 4a. According to this configuration, the first film body 31 of the light detection element 30 and the second film body 41 of the reference element 40 are placed in a more uniform environment. As a result, the detection accuracy of the light detection element 30 and the reference The detection accuracy of the element 40 is further improved.
 また、光検出器1Aでは、第1ダミー素子50が、表面2aのうち第1領域3aと第2領域4aとの間の領域に、第1領域3aの外縁に沿って配置され、第2ダミー素子60が、表面2aのうち第1領域3aと第2領域4aとの間の領域に、第2領域4aの外縁に沿って配置されている。この構成によれば、第1ダミー素子50が第1領域3aの外縁に沿って配置されていることに加えて、第1ダミー素子50が第1領域3aと第2領域4aとの間の領域に配置され、第2ダミー素子60が第2領域4aの外縁に沿って配置されていることに加えて、第2ダミー素子60が第1領域3aと第2領域4aとの間の領域に配置されている。このため、光検出素子30の第1膜体31、及びリファレンス素子40の第2膜体41がより均一な環境下に置かれ、その結果、光検出素子30の検出精度、リファレンス素子40の検出精度がより一層向上する。 In the photodetector 1A, the first dummy element 50 is disposed in the region between the first region 3a and the second region 4a on the surface 2a along the outer edge of the first region 3a, and the second dummy element 50A. The element 60 is arranged along the outer edge of the second region 4a in the region between the first region 3a and the second region 4a on the surface 2a. According to this configuration, in addition to the first dummy element 50 being disposed along the outer edge of the first region 3a, the first dummy element 50 is a region between the first region 3a and the second region 4a. In addition to the second dummy element 60 being disposed along the outer edge of the second region 4a, the second dummy element 60 is disposed in a region between the first region 3a and the second region 4a. Has been. Therefore, the first film body 31 of the light detection element 30 and the second film body 41 of the reference element 40 are placed in a more uniform environment. As a result, the detection accuracy of the light detection element 30 and the detection of the reference element 40 The accuracy is further improved.
 また、光検出器1Aでは、第1ダミー素子50及び第2ダミー素子60のそれぞれが、第1領域3a及び第2領域4aのそれぞれを4列で囲むように、第1領域3aの外縁及び第2領域4aの外縁のそれぞれに沿って表面2aに複数配置されている。この構成によれば、リファレンス素子40の第2膜体41、及び光検出素子30の第1膜体31が均一な環境下に置かれ、その結果、リファレンス素子40の検出精度、及び光検出素子30の検出精度が向上する。 In the photodetector 1A, the first dummy element 50 and the second dummy element 60 each surround the first region 3a and the second region 4a in four rows so as to surround the first region 3a and the second region 4a. A plurality of surfaces 2a are arranged along the outer edges of the two regions 4a. According to this configuration, the second film body 41 of the reference element 40 and the first film body 31 of the light detection element 30 are placed in a uniform environment. As a result, the detection accuracy of the reference element 40 and the light detection element 30 detection accuracy is improved.
 また、光検出器1Aでは、第2領域4aの外縁に沿って配置された第2ダミー素子60の第4膜体61は、Z軸方向から見た場合に、リファレンス素子40の第2膜体41と同一の形状を呈しており、第1領域3aの外縁に沿って配置された第1ダミー素子50の第3膜体51は、Z軸方向から見た場合に、光検出素子30の第1膜体31と同一の形状を呈している。この構成によれば、リファレンス素子40の第2膜体41、及び光検出素子30の第1膜体31がより均一な環境下に置かれ、その結果、リファレンス素子40の検出精度、及び光検出素子30の検出精度がより一層向上する。 In the photodetector 1A, the fourth film body 61 of the second dummy element 60 disposed along the outer edge of the second region 4a is the second film body of the reference element 40 when viewed from the Z-axis direction. 41. The third film body 51 of the first dummy element 50 disposed along the outer edge of the first region 3a has the same shape as that of the first region 3a. It has the same shape as the single film body 31. According to this configuration, the second film body 41 of the reference element 40 and the first film body 31 of the light detection element 30 are placed in a more uniform environment. As a result, the detection accuracy of the reference element 40 and the light detection The detection accuracy of the element 30 is further improved.
 また、光検出器1Aでは、回路部22Aが、信号読出し回路7を含み、一部の第1ダミー素子50及び一部の第2ダミー素子60が、Z軸方向から見た場合に、信号読出し回路7と重なっている。この構成によれば、光検出器1Aの構造の複雑化を抑制しつつ、光検出器1Aの小型化を図ることができる。また、信号読出し回路7の配線長を短縮することによって、信号読出し回路7の読出し特性を改善することができる。 Further, in the photodetector 1A, the circuit unit 22A includes the signal readout circuit 7, and signal readout is performed when some of the first dummy elements 50 and some of the second dummy elements 60 are viewed from the Z-axis direction. It overlaps with the circuit 7. According to this configuration, it is possible to reduce the size of the photodetector 1A while suppressing the complexity of the structure of the photodetector 1A. Further, by shortening the wiring length of the signal read circuit 7, the read characteristics of the signal read circuit 7 can be improved.
 また、光検出器1Aでは、第1ダミー素子50が、第1領域3aを囲むように、第1領域3aの外縁に沿って表面2aに複数配置されている。そのため、光検出素子30の側方から第1膜体31に入射する迷光が、第1ダミー素子50によって遮られる。これにより、光検出素子30の検出精度が向上する。 In the photodetector 1A, a plurality of first dummy elements 50 are arranged on the surface 2a along the outer edge of the first region 3a so as to surround the first region 3a. Therefore, stray light that enters the first film body 31 from the side of the light detection element 30 is blocked by the first dummy element 50. Thereby, the detection accuracy of the photodetecting element 30 is improved.
[光検出素子の製造方法]
 次に、光検出素子30の製造方法について、図17~図26を参照しつつ説明する。図17~図23、及び図26の各図において、(b)のI-I、II-II、III-III、IV-IV、V-Vは、それぞれ、(a)のI-I線、II-II線、III-III線、IV-IV線、V-V線に沿っての断面図である。図24及び図25においては、上記(a)のような図が省略されている。
[Method for Manufacturing Photodetection Element]
Next, a method for manufacturing the photodetecting element 30 will be described with reference to FIGS. In FIGS. 17 to 23 and FIG. 26, II, II-II, III-III, IV-IV, and VV in (b) are respectively taken along line II in (a), It is sectional drawing along the II-II line, the III-III line, the IV-IV line, and the VV line. In FIG. 24 and FIG. 25, the figure as in the above (a) is omitted.
 まず、図17に示されるように、光反射層24、第1電極パッド25,26、及び絶縁層27が設けられた基板2Aを用意する。続いて、図18に示されるように、光反射層24、第1電極パッド25,26、及び絶縁層27を覆うように基板2Aの表面2aに犠牲層39を形成する。犠牲層39の材料は、例えばポリイミド等である。続いて、図19に示されるように、犠牲層39の一部をエッチングによって除去することで、犠牲層39に貫通孔39a,39bを形成する。各貫通孔39a,39bは、それぞれ第1電極パッド25,26上において、貫通孔27a,27bに対応して形成される。そして、各貫通孔39a,39bにおいては、第1電極パッド25,26のそれぞれにおける基板2Aとは反対側の表面が露出させられる。各貫通孔39a,39bの内面は、それぞれ、例えば円錐台状のテーパ面である。各貫通孔39a,39bの内面は、それぞれ第1電極パッド25,26から基板2Aとは反対側に向かって広がっている。貫通孔39a,39bの小径は、貫通孔27a,27bの径よりも大きい。 First, as shown in FIG. 17, a substrate 2A provided with a light reflecting layer 24, first electrode pads 25 and 26, and an insulating layer 27 is prepared. Subsequently, as shown in FIG. 18, a sacrificial layer 39 is formed on the surface 2a of the substrate 2A so as to cover the light reflecting layer 24, the first electrode pads 25 and 26, and the insulating layer 27. The material of the sacrificial layer 39 is, for example, polyimide. Subsequently, as shown in FIG. 19, through holes 39 a and 39 b are formed in the sacrificial layer 39 by removing a part of the sacrificial layer 39 by etching. The through holes 39a and 39b are formed on the first electrode pads 25 and 26, respectively, corresponding to the through holes 27a and 27b. In the through holes 39a and 39b, the surfaces of the first electrode pads 25 and 26 opposite to the substrate 2A are exposed. The inner surface of each through- hole 39a, 39b is, for example, a truncated cone-shaped tapered surface. The inner surfaces of the through holes 39a and 39b extend from the first electrode pads 25 and 26 toward the opposite side of the substrate 2A, respectively. The small diameters of the through holes 39a and 39b are larger than the diameters of the through holes 27a and 27b.
 続いて、図20に示されるように、犠牲層39上に絶縁層74を形成する。絶縁層74は、各貫通孔39a,39bのそれぞれにおいて、内面が例えば円錐台状のテーパ面となるように形成される。続いて、絶縁層74の一部をエッチングによって除去することで、第1電極パッド25,26のそれぞれにおける基板2Aとは反対側の表面を露出させる。 Subsequently, as shown in FIG. 20, an insulating layer 74 is formed on the sacrificial layer 39. The insulating layer 74 is formed so that the inner surface of each of the through holes 39a and 39b is a truncated cone-shaped tapered surface, for example. Subsequently, a part of the insulating layer 74 is removed by etching, so that the surface of each of the first electrode pads 25 and 26 opposite to the substrate 2A is exposed.
 続いて、図21に示されるように、貫通孔39aにおける絶縁層74上に第1電極ポスト32を形成すると共に,貫通孔39bにおける絶縁層74上に第1電極ポスト33を形成する。第1電極ポスト32,33のそれぞれは、例えば蒸着によって形成される。そして、第1電極ポスト32,33は、例えばドライエッチングによって所定の形状に加工される。続いて、図22に示されるように、第1電極ポスト32,33を覆うように絶縁層74上に第1配線層71,72を形成する。第1配線層71,72のそれぞれは、例えば蒸着によって形成される。そして、第1配線層71,72は、例えばドライエッチングによって上述した形状に加工される。 Subsequently, as shown in FIG. 21, the first electrode post 32 is formed on the insulating layer 74 in the through hole 39a, and the first electrode post 33 is formed on the insulating layer 74 in the through hole 39b. Each of the first electrode posts 32 and 33 is formed by vapor deposition, for example. The first electrode posts 32 and 33 are processed into a predetermined shape by dry etching, for example. Subsequently, as shown in FIG. 22, first wiring layers 71 and 72 are formed on the insulating layer 74 so as to cover the first electrode posts 32 and 33. Each of the first wiring layers 71 and 72 is formed by vapor deposition, for example. And the 1st wiring layers 71 and 72 are processed into the shape mentioned above by dry etching, for example.
 続いて、図23に示されるように、基板2Aの反対側から第1配線層71,72を覆うように、受光部34、第1梁部37,38、及び、第1接続部35,36に渡って絶縁層73を形成する。絶縁層73は、エッチングによって上述した形状に加工される。続いて、図24に示されるように、受光部34において、基板2Aの反対側から絶縁層73を覆うように第1抵抗層75を形成すると共に、第1接続部35,36において、絶縁層73上に第1抵抗層75を形成する。第1抵抗層75は、例えばドライエッチングによって上述した形状に加工される。そして、受光部34及び第1接続部35,36において、基板2Aの反対側から第1抵抗層75を覆うように分離層77を形成すると共に、第1梁部37及び第1梁部38において、絶縁層73上に分離層77を形成する。 Subsequently, as shown in FIG. 23, the light receiving unit 34, the first beam units 37 and 38, and the first connection units 35 and 36 so as to cover the first wiring layers 71 and 72 from the opposite side of the substrate 2 </ b> A. Then, an insulating layer 73 is formed. The insulating layer 73 is processed into the shape described above by etching. Next, as shown in FIG. 24, in the light receiving part 34, the first resistance layer 75 is formed so as to cover the insulating layer 73 from the opposite side of the substrate 2 </ b> A, and in the first connection parts 35 and 36, the insulating layer A first resistance layer 75 is formed on 73. The first resistance layer 75 is processed into the shape described above, for example, by dry etching. Then, in the light receiving portion 34 and the first connection portions 35 and 36, a separation layer 77 is formed so as to cover the first resistance layer 75 from the opposite side of the substrate 2A, and in the first beam portion 37 and the first beam portion 38, A separation layer 77 is formed on the insulating layer 73.
 続いて、図25に示されるように、受光部34において、分離層77上に光吸収層76を形成し、更に貫通孔31cを形成する。光吸収層76は、エッチングによって上述した形状に加工される。貫通孔31cは、エッチングによって上述した位置に形成される。続いて、図26に示されるように、例えばドライエッチングによって第1スリット31a,31bを上述した位置に形成し、更に、第1スリット31a,31b及び貫通孔31cからドライエッチングを進行させ、犠牲層39を除去することで、空隙S1を形成する。 Subsequently, as shown in FIG. 25, in the light receiving part 34, the light absorption layer 76 is formed on the separation layer 77, and the through hole 31c is further formed. The light absorption layer 76 is processed into the shape described above by etching. The through hole 31c is formed at the position described above by etching. Subsequently, as shown in FIG. 26, the first slits 31a and 31b are formed at the above-described positions by, for example, dry etching, and further, dry etching is advanced from the first slits 31a and 31b and the through holes 31c, thereby sacrificing layers. By removing 39, the void S1 is formed.
 なお、リファレンス素子40の製造方法は、光吸収層76を形成しない点において、上述した光検出素子30の製造方法と相違している。また、第1ダミー素子50及び第2ダミー素子60の製造方法は、光吸収層76を形成しない点、及び、犠牲層39及び絶縁層84の一部を除去することで、露出させられるのが電極パッドの表面ではなく、絶縁層27の表面である点において、上述した光検出素子30の製造方法と相違している。なお、複数の光検出素子30、複数のリファレンス素子40、複数の第1ダミー素子50、及び複数の第2ダミー素子60の製造は、光反射層24、第1電極パッド25,26、及び絶縁層27が設けられた基板2Aに対して同時進行で実施される。 The method for manufacturing the reference element 40 is different from the method for manufacturing the photodetecting element 30 described above in that the light absorption layer 76 is not formed. Further, in the manufacturing method of the first dummy element 50 and the second dummy element 60, the light absorption layer 76 is not formed, and the sacrificial layer 39 and a part of the insulating layer 84 are removed to be exposed. This is different from the method for manufacturing the photodetecting element 30 described above in that it is not the surface of the electrode pad but the surface of the insulating layer 27. It should be noted that the plurality of photodetecting elements 30, the plurality of reference elements 40, the plurality of first dummy elements 50, and the plurality of second dummy elements 60 are manufactured by the light reflecting layer 24, the first electrode pads 25 and 26, and the insulation. It is carried out simultaneously with the substrate 2A provided with the layer 27.
 光検出素子30の製造方法において、ドライエッチングが施されるときには、例えば第1領域3aの中央付近と第1領域3aの縁部とにおいては、ローディング効果等に起因してエッチャント(エッチングガス)の密度分布に偏りが生じてしまい、第1電極ポスト32,33、第1配線層71,72、第1抵抗層75、及び第1膜体31の形状が不均一となることがある。その結果、製造された光検出素子30による検出精度が低下するおそれがある。そこで、光検出素子30の製造は、上述したように第1領域3aを囲んでいる複数の第1ダミー素子50と同時進行で実施されるため、第1領域3aの中央付近と第1領域3aの縁部とにおいて、エッチングパターンの疎密状態が不均一となることが抑制される。これにより、ローディング効果に起因して、第1領域3aの中央付近と第1領域3aの縁部とにおいて、エッチャントの密度分布に偏りが生じることが抑制される。従って、第1電極ポスト32,33、第1配線層71,72、第1抵抗層75、及び第1膜体31の形状が不均一となることが抑制される。つまり、光検出素子30の製造プロセスが安定化される。よって、光検出素子30による検出精度が確保される。 In the manufacturing method of the photodetecting element 30, when dry etching is performed, for example, near the center of the first region 3a and the edge of the first region 3a, an etchant (etching gas) is generated due to a loading effect or the like. The density distribution may be biased, and the shapes of the first electrode posts 32 and 33, the first wiring layers 71 and 72, the first resistance layer 75, and the first film body 31 may be uneven. As a result, there is a possibility that the detection accuracy by the manufactured light detection element 30 may be lowered. Therefore, since the light detection element 30 is manufactured simultaneously with the plurality of first dummy elements 50 surrounding the first region 3a as described above, the vicinity of the center of the first region 3a and the first region 3a are manufactured. The unevenness of the etching pattern is prevented from becoming non-uniform at the edge. As a result, unevenness in the etchant density distribution is suppressed from occurring near the center of the first region 3a and the edge of the first region 3a due to the loading effect. Therefore, the first electrode posts 32 and 33, the first wiring layers 71 and 72, the first resistance layer 75, and the first film body 31 are prevented from being unevenly shaped. That is, the manufacturing process of the light detection element 30 is stabilized. Therefore, the detection accuracy by the light detection element 30 is ensured.
 このような効果は、リファレンス素子40の製造においても同様に奏される。すなわち、リファレンス素子40の製造は、上述したように第2領域4aを囲んでいる複数の第2ダミー素子60と同時進行で実施されるため、第2領域4aの中央付近と第2領域4aの縁部とにおいて、エッチングパターンが不均一となることが抑制される。これにより、ローディング効果に起因して、第2領域4aの中央付近と第2領域4aの縁部とにおいて、エッチャントの密度分布に偏りが生じることが抑制される。従って、第2電極ポスト42,43、第2配線層81,82、第2抵抗層85、及び第2膜体41の形状が不均一となることが抑制される。つまり、リファレンス素子40の製造プロセスが安定化される。よって、リファレンス素子40による検出精度が確保される。 Such an effect is similarly achieved in the manufacture of the reference element 40. That is, since the reference element 40 is manufactured simultaneously with the plurality of second dummy elements 60 surrounding the second region 4a as described above, the reference element 40 is formed near the center of the second region 4a and the second region 4a. It is possible to prevent the etching pattern from becoming nonuniform at the edge. As a result, it is possible to suppress an uneven distribution of the etchant density distribution near the center of the second region 4a and the edge of the second region 4a due to the loading effect. Therefore, the second electrode posts 42 and 43, the second wiring layers 81 and 82, the second resistance layer 85, and the second film body 41 are prevented from being non-uniform in shape. That is, the manufacturing process of the reference element 40 is stabilized. Therefore, the detection accuracy by the reference element 40 is ensured.
 また、第2膜体41は、光吸収層76を有していないため、第1膜体31よりも薄く形成される場合がある。このため、第2膜体41は、第1膜体31に比べて変形し易い。従って、第2膜体41を精度よく製造することが重要になる。つまり、上述したような製造プロセスが安定化される効果は、リファレンス素子40にとって特に有効である。また、Z軸方向から見た場合に、第2ダミー素子60がリファレンス素子40と同一の形状を呈しており、第1ダミー素子50が光検出素子30と同一の形状を呈しているため、上述したエッチングパターンの疎密状態が不均一となることが抑制される効果が更に顕著となる。 Further, since the second film body 41 does not have the light absorption layer 76, it may be formed thinner than the first film body 31. For this reason, the second film body 41 is more easily deformed than the first film body 31. Therefore, it is important to manufacture the second film body 41 with high accuracy. That is, the effect of stabilizing the manufacturing process as described above is particularly effective for the reference element 40. Further, the second dummy element 60 has the same shape as the reference element 40 and the first dummy element 50 has the same shape as the light detection element 30 when viewed from the Z-axis direction. The effect of suppressing the non-uniformity of the density state of the etched pattern is further remarkable.
[第1実施形態の変形例]
 以上、本開示の第1実施形態について説明したが、本開示は、第1実施形態に限定されるものではない。
[Modification of First Embodiment]
The first embodiment of the present disclosure has been described above, but the present disclosure is not limited to the first embodiment.
 第3領域5a及び第4領域6aのそれぞれが、第1領域3a及び第2領域4aのそれぞれを囲んでいる例を示したが、図27に示されるように、第4領域6aのみが、第1領域3a及び第2領域4aのそれぞれを囲んでいてもよい。つまり、第2ダミー素子60のみが、第1領域3a及び第2領域4aのそれぞれを囲むように、第1領域3aの外縁及び第2領域4aの外縁のそれぞれに沿って基板2Aの表面2aに複数配置されていてもよい。 In the example, each of the third region 5a and the fourth region 6a surrounds each of the first region 3a and the second region 4a. However, as illustrated in FIG. 27, only the fourth region 6a has the second region 6a. Each of the first region 3a and the second region 4a may be enclosed. That is, only the second dummy element 60 surrounds each of the first region 3a and the second region 4a on the surface 2a of the substrate 2A along the outer edge of the first region 3a and the outer edge of the second region 4a. A plurality of them may be arranged.
 また、図28に示されるように、第3領域5a及び第4領域6aは、第1領域3a及び第2領域4aの外縁の全体を囲んでいてもよい。つまり、第1ダミー素子50及び第2ダミー素子60は、第1領域3a及び第2領域4aの外縁の全体を囲むように、第1領域3a及び第2領域4aの外縁に沿って基板2Aの表面2aに複数配置されていてもよい。具体的には、第3領域5aは、第2領域4a側に向けて開口するU字状を呈しており、第4領域6aは、第1領域3a側に向けて開口するU字状を呈している。第3領域5a及び第4領域6aは、矩形環状を呈するように互いに隣接している。そして、第1領域3a及び第2領域4aは、当該矩形環状の内側に位置している。この場合、第1領域3aと第2領域4aとは、互いに隣接している。第1領域3aと第2領域4aとは、互いに離間していてもよい。第1領域3aと第2領域4aとの間には、第1ダミー素子50及び第2ダミー素子60が配置されていない。 As shown in FIG. 28, the third region 5a and the fourth region 6a may surround the entire outer edges of the first region 3a and the second region 4a. That is, the first dummy element 50 and the second dummy element 60 surround the entire outer edges of the first area 3a and the second area 4a along the outer edges of the first area 3a and the second area 4a. A plurality of surfaces may be arranged on the surface 2a. Specifically, the third region 5a has a U shape that opens toward the second region 4a, and the fourth region 6a has a U shape that opens toward the first region 3a. ing. The third region 5a and the fourth region 6a are adjacent to each other so as to form a rectangular ring shape. The first region 3a and the second region 4a are located inside the rectangular ring. In this case, the first region 3a and the second region 4a are adjacent to each other. The first region 3a and the second region 4a may be separated from each other. The first dummy element 50 and the second dummy element 60 are not disposed between the first region 3a and the second region 4a.
 第3領域5a及び第4領域6aが、第1領域3a及び第2領域4aの外縁の全体を囲んでいる場合においても、リファレンス素子40の第2膜体41、及び光検出素子30の第1膜体31が均一な環境下に置かれ、その結果、リファレンス素子40の検出精度、及び光検出素子30の検出精度が向上する。第1領域3a及び第2領域4aの外縁の全体とは、第1領域3aから第2領域4aに渡った領域の外縁のことをいう。第1領域3aと第2領域4aとが互いに隣接している場合には、第1領域3a及び第2領域4aによって構成される領域が、第1領域3aから第2領域4aに渡った領域である。第1領域3aと第2領域4aとが互いに離間している場合には、第1領域3a、第2領域4a、及び第1領域3aと第2領域4aとの間の領域の合計が、第1領域3aから第2領域4aに渡った領域である。 Even when the third region 5a and the fourth region 6a surround the entire outer edges of the first region 3a and the second region 4a, the second film body 41 of the reference element 40 and the first detection element 30 The film body 31 is placed in a uniform environment. As a result, the detection accuracy of the reference element 40 and the detection accuracy of the light detection element 30 are improved. The entire outer edge of the first region 3a and the second region 4a refers to the outer edge of the region extending from the first region 3a to the second region 4a. When the first region 3a and the second region 4a are adjacent to each other, the region constituted by the first region 3a and the second region 4a is a region extending from the first region 3a to the second region 4a. is there. When the first region 3a and the second region 4a are separated from each other, the total of the first region 3a, the second region 4a, and the region between the first region 3a and the second region 4a is This is an area extending from the first area 3a to the second area 4a.
 また、図29に示されるように、第4領域6aのみが、第1領域3a及び第2領域4aの外縁の全体を囲んでいてもよい。つまり、第2ダミー素子60のみが、第1領域3a及び第2領域4aの外縁の全体を囲むように、第1領域3a及び第2領域4aの外縁に沿って基板2Aの表面2aに複数配置されていてもよい。 Further, as shown in FIG. 29, only the fourth region 6a may surround the entire outer edges of the first region 3a and the second region 4a. That is, only the second dummy element 60 is disposed on the surface 2a of the substrate 2A along the outer edges of the first region 3a and the second region 4a so as to surround the entire outer edges of the first region 3a and the second region 4a. May be.
 また、図30に示されるように、第1領域3aは、いずれの領域によっても囲まれていなくてもよい。つまり、第1領域3aは、いずれのダミー素子によっても囲まれていなくてもよい。第4領域6aは、第2領域4aのみを囲んでいる。つまり、第2ダミー素子60は、第2領域4aのみを囲むように、第2領域4aの外縁に沿って基板2Aの表面2aに複数配置されている。 Further, as shown in FIG. 30, the first region 3a may not be surrounded by any region. That is, the first region 3a may not be surrounded by any dummy element. The fourth area 6a surrounds only the second area 4a. That is, a plurality of second dummy elements 60 are arranged on the surface 2a of the substrate 2A along the outer edge of the second region 4a so as to surround only the second region 4a.
 また、図31に示されるように、第4領域6aは、第2領域4aの第1領域3a側の辺部以外の辺部のみを囲んでいてもよい。つまり、第2ダミー素子60は、第2領域4aの第1領域3a側の辺部以外の辺部のみを囲むように、第2領域4aの外縁に沿って基板2Aの表面2aに複数配置されていてもよい。この場合、第1領域3aと第2領域4aとは、互いに隣接している。第1領域3aと第2領域4aとは、互いに離間していてもよい。 Further, as shown in FIG. 31, the fourth region 6a may surround only the side portion of the second region 4a other than the side portion on the first region 3a side. That is, a plurality of second dummy elements 60 are arranged on the surface 2a of the substrate 2A along the outer edge of the second region 4a so as to surround only the side portion of the second region 4a other than the side portion on the first region 3a side. It may be. In this case, the first region 3a and the second region 4a are adjacent to each other. The first region 3a and the second region 4a may be separated from each other.
 また、図32に示されるように、第4領域6aは、第2領域4aに対して第1領域3aとは反対側のみに形成されていてもよい。つまり、第2ダミー素子60は、第2領域4aに対して第1領域3aとは反対側の領域のみに、第2領域4aの外縁に沿って配置されていてもよい。この場合、第1領域3aと第2領域4aとは、互いに隣接している。第1領域3aと第2領域4aとは、互いに離間していてもよい。 Further, as shown in FIG. 32, the fourth region 6a may be formed only on the opposite side of the second region 4a from the first region 3a. That is, the second dummy element 60 may be disposed along the outer edge of the second region 4a only in the region opposite to the first region 3a with respect to the second region 4a. In this case, the first region 3a and the second region 4a are adjacent to each other. The first region 3a and the second region 4a may be separated from each other.
 また、図33に示されるように、第4領域6aは、第2領域4aに対して第1領域3aとは反対側のみに形成され、且つ、第3領域5aは、第1領域3aに対して第2領域4aとは反対側のみに形成されていてもよい。つまり、第2ダミー素子60は、第2領域4aに対して第1領域3aとは反対側の領域のみに、第2領域4aの外縁に沿って配置され、第1ダミー素子50は、第1領域3aに対して第2領域4aとは反対側の領域のみに、第1領域3aの外縁に沿って配置されていてもよい。この場合、第1領域3aと第2領域4aとは、互いに隣接している。第1領域3aと第2領域4aとは、互いに離間していてもよい。 As shown in FIG. 33, the fourth region 6a is formed only on the opposite side of the second region 4a from the first region 3a, and the third region 5a is formed with respect to the first region 3a. Thus, it may be formed only on the side opposite to the second region 4a. That is, the second dummy element 60 is arranged along the outer edge of the second region 4a only in the region opposite to the first region 3a with respect to the second region 4a. You may arrange | position along the outer edge of 1st area | region 3a only to the area | region on the opposite side to 2nd area | region 4a with respect to area | region 3a. In this case, the first region 3a and the second region 4a are adjacent to each other. The first region 3a and the second region 4a may be separated from each other.
 また、図34に示されるように、第3領域5aは、第1領域3aの各辺部に沿った複数の矩形状の領域を含んでいてもよい。第1領域3aの辺部に沿った第3領域5aの領域の長さは、当該第1領域3aの辺部の長さと同一である。同様に、第4領域6aは、第2領域4aの各辺部に沿った複数の領域を含んでいてもよい。第2領域4aの辺部に沿った第4領域6aの領域の長さは、当該第2領域4aの辺部の長さと同一である。 Further, as shown in FIG. 34, the third region 5a may include a plurality of rectangular regions along each side of the first region 3a. The length of the third region 5a along the side of the first region 3a is the same as the length of the side of the first region 3a. Similarly, the fourth region 6a may include a plurality of regions along each side of the second region 4a. The length of the region of the fourth region 6a along the side of the second region 4a is the same as the length of the side of the second region 4a.
 また、図35に示されるように、第1領域3aがいずれの領域によっても囲まれていない場合においても、第4領域6aは、第2領域4aの各辺部に沿った複数の領域を含んでいてもよい。 As shown in FIG. 35, even when the first region 3a is not surrounded by any region, the fourth region 6a includes a plurality of regions along each side of the second region 4a. You may go out.
 また、図36に示されるように、第3領域5a及び第4領域6aが、第1領域3a及び第2領域4aの外縁の全体を囲んでいる場合においても、第3領域5aは、第1領域3aの各辺部に沿った複数の矩形状の領域を含み、第4領域6aは、第2領域4aの各辺部に沿った複数の領域を含んでいてもよい。この場合、第1領域3aと第2領域4aとは、互いに隣接している。第1領域3aと第2領域4aとは、互いに離間していてもよい。 As shown in FIG. 36, even when the third region 5a and the fourth region 6a surround the entire outer edges of the first region 3a and the second region 4a, the third region 5a The 4th area | region 6a may contain the some area | region along each side part of the 2nd area | region 4a including the some rectangular area | region along each edge part of the area | region 3a. In this case, the first region 3a and the second region 4a are adjacent to each other. The first region 3a and the second region 4a may be separated from each other.
 また、図37に示されるように、第4領域6aが第2領域4aの第1領域3a側の辺部以外の辺部のみを囲んでいる場合においても、第4領域6aは、第2領域4aの各辺部に沿った複数の領域を含んでいてもよい。この場合、第1領域3aと第2領域4aとは、互いに隣接している。第1領域3aと第2領域4aとは、互いに離間していてもよい。 In addition, as shown in FIG. 37, even when the fourth region 6a surrounds only the side other than the side of the second region 4a on the first region 3a side, the fourth region 6a is the second region. A plurality of regions along each side of 4a may be included. In this case, the first region 3a and the second region 4a are adjacent to each other. The first region 3a and the second region 4a may be separated from each other.
 第1ダミー素子50が第1領域3aを4列で囲み、第2ダミー素子60が第2領域4aを4列で囲む例を示したが、第1ダミー素子50は、第1領域3aを少なくとも1列で囲み、第2ダミー素子60は、第2領域4aを少なくとも1列で囲んでいればよい。また、第1ダミー素子50及び第2ダミー素子60が、第1領域3a及び第2領域4aの外縁の全体を囲んでいる場合においても、第1ダミー素子50及び第2ダミー素子60は、少なくとも1列で第1領域3a及び第2領域4aの外縁の全体を囲んでいればよい。 Although the example in which the first dummy element 50 surrounds the first region 3a in four columns and the second dummy element 60 surrounds the second region 4a in four columns has been shown, the first dummy element 50 includes at least the first region 3a. The second dummy elements 60 need only surround the second region 4a in at least one column. Even when the first dummy element 50 and the second dummy element 60 surround the entire outer edges of the first region 3a and the second region 4a, the first dummy element 50 and the second dummy element 60 are at least It is only necessary to surround the entire outer edges of the first region 3a and the second region 4a in one row.
 また、光検出素子30が例えば64列×64行~128列×128行程度となるように配置されている例を示したが、光検出素子30は、例えば32列×32行~480列×640行程度となるように配置されていればよい。また、リファレンス素子40が例えば16列×64行~16列×128行程度となるように配置されている例を示したが、リファレンス素子40は、例えば1列×32行~24列×640行程度となるように配置されていればよい。 In addition, although the example in which the light detection elements 30 are arranged to have, for example, about 64 columns × 64 rows to 128 columns × 128 rows has been shown, the light detection elements 30 have, for example, 32 columns × 32 rows to 480 columns × It only needs to be arranged so as to have about 640 rows. Further, the example in which the reference elements 40 are arranged so as to have, for example, about 16 columns × 64 rows to 16 columns × 128 rows is shown. However, the reference elements 40 are, for example, 1 column × 32 rows to 24 columns × 640 rows. It suffices if they are arranged so as to be approximately.
 また、基板2Aの表面2aのうち第1領域3aと第2領域4aとの間の領域に、第1ダミー素子50が第1領域3aの外縁に沿って配置され、第2ダミー素子60が第2領域4aの外縁に沿って配置されている例を示したが、基板2Aの表面2aのうち第1領域3aと第2領域4aとの間の領域には、第1ダミー素子50が第1領域3aの外縁に沿って配置され、又は、第2ダミー素子60が第2領域4aの外縁に沿って配置されていてもよい。つまり、基板2Aの表面2aのうち第1領域3aと第2領域4aとの間の領域には、第1ダミー素子50及び第2ダミー素子60の少なくとも一方が、第1領域3aの外縁及び第2領域4aの外縁の少なくとも一方に沿って配置されていればよい。 The first dummy element 50 is disposed along the outer edge of the first region 3a in the region between the first region 3a and the second region 4a in the surface 2a of the substrate 2A, and the second dummy element 60 is Although an example in which the two regions 4a are arranged along the outer edge is shown, the first dummy element 50 is first in the region between the first region 3a and the second region 4a on the surface 2a of the substrate 2A. The second dummy element 60 may be disposed along the outer edge of the second region 4a. Alternatively, the second dummy element 60 may be disposed along the outer edge of the second region 4a. That is, at least one of the first dummy element 50 and the second dummy element 60 in the region between the first region 3a and the second region 4a on the surface 2a of the substrate 2A includes the outer edge of the first region 3a and the second region 4a. What is necessary is just to arrange | position along at least one of the outer edges of 2 area | region 4a.
 また、第1領域3aの外縁に沿って配置されるダミー素子、及び第2領域4aの外縁に沿って配置されるダミー素子の種類は、限定されない。例えば、第2ダミー素子60が第1領域3aの外縁に沿って配置され、第1ダミー素子50が第2領域4aの外縁に沿って配置されていてもよい。また、第1ダミー素子50及び第2ダミー素子60が第1領域3aの外縁に沿って配置され、第1ダミー素子50及び第2ダミー素子60が第2領域4aの外縁に沿って配置されていてもよい。また、第1ダミー素子50又は第2ダミー素子60に代えて、第1ダミー素子50及び第2ダミー素子60以外のダミー素子が、配置されていてもよい。 Also, the types of the dummy elements arranged along the outer edge of the first region 3a and the dummy elements arranged along the outer edge of the second region 4a are not limited. For example, the second dummy element 60 may be disposed along the outer edge of the first region 3a, and the first dummy element 50 may be disposed along the outer edge of the second region 4a. The first dummy element 50 and the second dummy element 60 are arranged along the outer edge of the first region 3a, and the first dummy element 50 and the second dummy element 60 are arranged along the outer edge of the second region 4a. May be. Further, a dummy element other than the first dummy element 50 and the second dummy element 60 may be arranged instead of the first dummy element 50 or the second dummy element 60.
 また、第1領域3a及び第2領域4aが矩形状を呈している例を示したが、第1領域3a及び第2領域4aは、例えば、矩形状以外の多角形状又は円形状を呈していてもよい。つまり、画素部3及びリファレンス部4は、Z軸方向から見た場合に、例えば、矩形状以外の多角形状又は円形状を呈していてもよい。また、第3領域5a及び第4領域6aが矩形環状を呈している例を示したが、第3領域5a及び第4領域6aの外縁は、例えば、矩形状以外の多角形状又は円形状を呈していていもよい。つまり、第1ダミー部5及び第2ダミー部6の外縁は、Z軸方向から見た場合に、例えば、矩形状以外の多角形状又は円形状を呈していていもよい。 Moreover, although the example in which the 1st area | region 3a and the 2nd area | region 4a are exhibiting the rectangular shape was shown, the 1st area | region 3a and the 2nd area | region 4a are exhibiting polygonal shapes or circular shapes other than rectangular shape, for example. Also good. That is, the pixel unit 3 and the reference unit 4 may have, for example, a polygonal shape or a circular shape other than a rectangular shape when viewed from the Z-axis direction. Moreover, although the 3rd area | region 5a and the 4th area | region 6a showed the example which is exhibiting the rectangular ring shape, the outer edge of the 3rd area | region 5a and the 4th area | region 6a exhibits polygonal shapes other than rectangular shape, or circular shape, for example. It may be. That is, the outer edges of the first dummy portion 5 and the second dummy portion 6 may have, for example, a polygonal shape or a circular shape other than a rectangular shape when viewed from the Z-axis direction.
 また、第1膜体31、第2膜体41、第3膜体51、及び第4膜体61のそれぞれが、Z軸方向から見た場合に、矩形状を呈している例を示したが、第1膜体31、第2膜体41、第3膜体51、及び第4膜体61のそれぞれは、Z軸方向から見た場合に、例えば、矩形状以外の多角形状を呈していてもよい。 Moreover, although each of the 1st film body 31, the 2nd film body 41, the 3rd film body 51, and the 4th film body 61 showed from the Z-axis direction, the example which is exhibiting the rectangular shape was shown. Each of the first film body 31, the second film body 41, the third film body 51, and the fourth film body 61 has, for example, a polygonal shape other than a rectangular shape when viewed from the Z-axis direction. Also good.
 また、一部の第1ダミー素子50及び一部の第2ダミー素子60が、Z軸方向から見た場合に、信号読出し回路7と重なっている例を示したが、何れの第1ダミー素子50及び第2ダミー素子60も、Z軸方向から見た場合に、信号読出し回路7と重なっていなくてもよい。 In addition, an example in which some of the first dummy elements 50 and some of the second dummy elements 60 overlap with the signal readout circuit 7 when viewed from the Z-axis direction is shown. 50 and the second dummy element 60 may not overlap with the signal readout circuit 7 when viewed from the Z-axis direction.
 また、第1ダミー素子50及び第2ダミー素子60の少なくとも一方が、第1領域3a及び第2領域4a以外の領域に、第1領域3aの外縁及び第2領域4aの外縁の何れか一方のみに沿って配置されていてもよい。つまり、第1ダミー素子50及び第2ダミー素子60の少なくとも一方が、第1領域3a及び第2領域4a以外の領域に、第1領域3aの外縁及び第2領域4aの外縁の少なくとも一方に沿って配置されていればよい。 In addition, at least one of the first dummy element 50 and the second dummy element 60 has only one of the outer edge of the first region 3a and the outer edge of the second region 4a in a region other than the first region 3a and the second region 4a. It may be arranged along. That is, at least one of the first dummy element 50 and the second dummy element 60 extends along the at least one of the outer edge of the first region 3a and the outer edge of the second region 4a in a region other than the first region 3a and the second region 4a. As long as they are arranged.
 また、第1ダミー素子50が、第1領域3aの外縁と交差する方向に並ぶように、基板2Aの表面2aのうち第1領域3a及び第2領域4a以外の領域に複数配置され、第2ダミー素子60が、第2領域4aの外縁と交差する方向に並ぶように、基板2Aの表面2aのうち第1領域3a及び第2領域4a以外の領域に複数配置されている例を示したが、これに限定されない。第1ダミー素子50及び第2ダミー素子60の少なくとも一方が、第1領域3aの外縁及び第2領域4aの外縁の何れか一方のみに交差する方向に並ぶように、基板2Aの表面2aのうち第1領域3a及び第2領域4a以外の領域に複数配置されていてもよい。つまり、第1ダミー素子50及び第2ダミー素子60の少なくとも一方が、第1領域3aの外縁及び第2領域4aの外縁の少なくとも一方と交差する方向に並ぶように、基板2Aの表面2aのうち第1領域3a及び第2領域4a以外の領域に複数配置されていればよい。 A plurality of first dummy elements 50 are arranged in regions other than the first region 3a and the second region 4a on the surface 2a of the substrate 2A so as to be arranged in a direction intersecting with the outer edge of the first region 3a. Although the dummy element 60 has been shown in an example in which a plurality of dummy elements 60 are arranged in regions other than the first region 3a and the second region 4a on the surface 2a of the substrate 2A so as to line up in the direction intersecting the outer edge of the second region 4a. However, the present invention is not limited to this. Of the surface 2a of the substrate 2A, at least one of the first dummy element 50 and the second dummy element 60 is arranged in a direction intersecting only one of the outer edge of the first region 3a and the outer edge of the second region 4a. A plurality of areas may be arranged in areas other than the first area 3a and the second area 4a. That is, of the surface 2a of the substrate 2A, at least one of the first dummy element 50 and the second dummy element 60 is arranged in a direction intersecting at least one of the outer edge of the first region 3a and the outer edge of the second region 4a. It suffices if a plurality of areas are arranged in areas other than the first area 3a and the second area 4a.
 また、第1ダミー素子50が、光吸収層76を有していない例を示したが、第1ダミー素子50は、光吸収層76を有していてもよい。同様に、第1ダミー素子50の製造方法において、光吸収層76を形成しない例を示したが、第1ダミー素子50の製造方法においては、光吸収層76を形成してもよい。この場合、光検出素子30(光吸収層76)の製造プロセスが安定化される。 Moreover, although the example in which the first dummy element 50 does not have the light absorption layer 76 has been shown, the first dummy element 50 may have the light absorption layer 76. Similarly, in the manufacturing method of the first dummy element 50, the example in which the light absorption layer 76 is not formed is shown. However, in the manufacturing method of the first dummy element 50, the light absorption layer 76 may be formed. In this case, the manufacturing process of the light detection element 30 (light absorption layer 76) is stabilized.
[第2実施形態]
 図38に示されるように、第2実施形態の光検出器1Bは、画素部が1つの光検出素子30によって構成され、リファレンス部が1つのリファレンス素子40によって構成されている点において、第1実施形態の光検出器1Aと主に相違している。
[Second Embodiment]
As shown in FIG. 38, the photodetector 1 </ b> B according to the second embodiment is the first in that the pixel unit is configured by one photodetecting element 30 and the reference unit is configured by one reference element 40. This is mainly different from the photodetector 1A of the embodiment.
 光検出器1Bは、表面2bを有する基板2Bと、光検出素子30と、リファレンス素子40と、第1ダミー部5と、第2ダミー部6と、を備えている。基板2Bの厚さは、例えば数百μm程度である。光検出素子30、リファレンス素子40、第1ダミー部5、及び第2ダミー部6は、基板2Bの表面2b上に形成されている。 The photodetector 1B includes a substrate 2B having a surface 2b, a light detection element 30, a reference element 40, a first dummy part 5, and a second dummy part 6. The thickness of the substrate 2B is, for example, about several hundred μm. The photodetecting element 30, the reference element 40, the first dummy portion 5, and the second dummy portion 6 are formed on the surface 2b of the substrate 2B.
 Z軸方向(基板2Bの厚さ方向)から見た場合に、光検出素子30とリファレンス素子40とは、表面2bに平行なX軸方向(Z軸に直交する方向)において並ぶように配置されている。光検出素子30とリファレンス素子40とは、互いに隣接している。光検出器1Bでは、1つのリファレンス素子40が1つの光検出素子30に対する補償に用いられている。第1ダミー部5は第2ダミー部6と共に、光検出素子30及びリファレンス素子40を囲んでいる。第1ダミー部5と第2ダミー部6とは、互いに隣接している。 When viewed from the Z-axis direction (thickness direction of the substrate 2B), the light detection element 30 and the reference element 40 are arranged so as to be aligned in the X-axis direction (direction perpendicular to the Z-axis) parallel to the surface 2b. ing. The photodetecting element 30 and the reference element 40 are adjacent to each other. In the photodetector 1B, one reference element 40 is used for compensation for one photodetector 30. The first dummy part 5 surrounds the light detection element 30 and the reference element 40 together with the second dummy part 6. The first dummy part 5 and the second dummy part 6 are adjacent to each other.
 基板2Bには、回路部22B、及び複数のI/Oパッド12が設けられている。回路部22Bは、基板2Bの表面2b側に層状に設けられている。I/Oパッド12は、基板2Bの表面2bに形成された金属膜によって構成されている。回路部22Bは、アナログ読出し回路(信号読出し回路)13と、ADコンバータ14と、DSP(デジタルシグナルプロセッサ)15と、デジタルインターフェース16と、タイミングジェネレータ17と、各構成を互いに電気的に接続する複数の配線(図示省略)と、を有している。 The circuit board 22B and a plurality of I / O pads 12 are provided on the substrate 2B. The circuit portion 22B is provided in a layered manner on the surface 2b side of the substrate 2B. The I / O pad 12 is composed of a metal film formed on the surface 2b of the substrate 2B. The circuit unit 22B includes an analog read circuit (signal read circuit) 13, an AD converter 14, a DSP (digital signal processor) 15, a digital interface 16, a timing generator 17, and a plurality of components that electrically connect each other. Wiring (not shown).
 アナログ読出し回路13は、Z軸方向から見た場合に、矩形環状の領域に設けられている。アナログ読出し回路13は、Z軸方向から見た場合に、光検出素子30及びリファレンス素子40を囲んでいる。DSP15及びタイミングジェネレータ17は、アナログ読出し回路13に対して表面2bに平行なX軸方向(Z軸に直交する方向)における両側に配置されている。デジタルインターフェース16は、表面2bに平行なY軸方向(Z軸及びX軸に直交する方向)においてDSP15と並ぶように配置されている。ADコンバータ14は、Y軸方向において、タイミングジェネレータ17、アナログ読出し回路13、DSP15、及びデジタルインターフェース16と並ぶように配置されている。複数のI/Oパッド12は、表面2bの外縁に沿って配置されている。 The analog readout circuit 13 is provided in a rectangular annular region when viewed from the Z-axis direction. The analog readout circuit 13 surrounds the light detection element 30 and the reference element 40 when viewed from the Z-axis direction. The DSP 15 and the timing generator 17 are arranged on both sides in the X-axis direction (direction orthogonal to the Z-axis) parallel to the surface 2 b with respect to the analog readout circuit 13. The digital interface 16 is arranged to line up with the DSP 15 in the Y-axis direction (direction orthogonal to the Z-axis and the X-axis) parallel to the surface 2b. The AD converter 14 is arranged so as to be aligned with the timing generator 17, the analog readout circuit 13, the DSP 15, and the digital interface 16 in the Y-axis direction. The plurality of I / O pads 12 are arranged along the outer edge of the surface 2b.
 図39に示されるように、第1領域3aと第2領域4aとは、互いに隣接している。第3領域5a及び第4領域6aは、第1領域3a及び第2領域4aの外縁の全体を囲んでいる。具体的には、第3領域5aは、1つの辺部が第1領域3aの大きさ分凹むような形状を呈しており、第4領域6aは、1つの辺部が第2領域4aの大きさ分凹むような形状を呈している。第3領域5a及び第4領域6aは、矩形環状を呈するように互いに隣接している。そして、第1領域3a及び第2領域4aは、当該矩形環状の内側に位置している。 As shown in FIG. 39, the first region 3a and the second region 4a are adjacent to each other. The third region 5a and the fourth region 6a surround the entire outer edges of the first region 3a and the second region 4a. Specifically, the third region 5a has a shape in which one side is recessed by the size of the first region 3a, and the fourth region 6a has one side that is the size of the second region 4a. It has a concave shape. The third region 5a and the fourth region 6a are adjacent to each other so as to form a rectangular ring shape. The first region 3a and the second region 4a are located inside the rectangular ring.
 光検出素子30の外縁は、Z軸方向から見た場合に、第1領域3aの外縁と重なっている。リファレンス素子40の外縁は、Z軸方向から見た場合に、第2領域4aの外縁と重なっている。第1ダミー部5の外縁は、Z軸方向から見た場合に、第3領域5aの外縁と重なっている。第2ダミー部6の外縁は、Z軸方向から見た場合に、第4領域6aの外縁と重なっている。 The outer edge of the light detection element 30 overlaps with the outer edge of the first region 3a when viewed from the Z-axis direction. The outer edge of the reference element 40 overlaps with the outer edge of the second region 4a when viewed from the Z-axis direction. The outer edge of the first dummy portion 5 overlaps with the outer edge of the third region 5a when viewed from the Z-axis direction. The outer edge of the second dummy portion 6 overlaps with the outer edge of the fourth region 6a when viewed from the Z-axis direction.
 第1ダミー部5は、複数の第1ダミー素子50によって構成されている。第2ダミー部6は、複数の第2ダミー素子60によって構成されている。複数の第1ダミー素子50及び複数の第2ダミー素子60は、光検出素子30及びリファレンス素子40を複数列(ここでは、4列)で囲むように、第3領域5a及び第4領域6aに配置されている。このように、第1ダミー素子50及び第2ダミー素子60は、第1領域3a及び第2領域4aの外縁の全体を囲むように、第1領域3a及び第2領域4aの外縁に沿って表面2aに複数配置されている。つまり、第1ダミー素子50及び第2ダミー素子60は、光検出素子30及びリファレンス素子40を囲むように、光検出素子30及びリファレンス素子40の外縁に沿って表面2aに複数配置されている。 The first dummy section 5 is composed of a plurality of first dummy elements 50. The second dummy part 6 is constituted by a plurality of second dummy elements 60. The plurality of first dummy elements 50 and the plurality of second dummy elements 60 are arranged in the third region 5a and the fourth region 6a so as to surround the light detection elements 30 and the reference elements 40 in a plurality of columns (here, four columns). Has been placed. As described above, the first dummy element 50 and the second dummy element 60 have surfaces along the outer edges of the first region 3a and the second region 4a so as to surround the entire outer edges of the first region 3a and the second region 4a. A plurality are arranged in 2a. That is, a plurality of the first dummy elements 50 and the second dummy elements 60 are arranged on the surface 2 a along the outer edges of the light detection elements 30 and the reference elements 40 so as to surround the light detection elements 30 and the reference elements 40.
 第1ダミー素子50及び第2ダミー素子60は、Z軸方向から見た場合に、回路部22Bと重なっている(図38参照)。具体的には、第1ダミー素子50及び第2ダミー素子60は、Z軸方向から見た場合に、アナログ読出し回路13と重なっている。 The first dummy element 50 and the second dummy element 60 overlap the circuit portion 22B when viewed from the Z-axis direction (see FIG. 38). Specifically, the first dummy element 50 and the second dummy element 60 overlap the analog readout circuit 13 when viewed from the Z-axis direction.
 以上のように構成された光検出器1Bでは、以下のように、光が検出される。まず、光検出器1Aと同様に、光吸収層76において生じた熱は、分離層77を介して第1抵抗層75に伝わる。そして、この熱によって第1抵抗層75は、温度が上昇すると共に電気抵抗が低下する。この電気抵抗の変化による信号は、第1配線層71,72、第1電極ポスト32,33、及び第1電極パッド25,26を介して、アナログ読出し回路13に送られる。このとき、リファレンス素子40からも、電気抵抗の変化による信号がアナログ読出し回路13に送られる。アナログ読出し回路13は、光検出素子30の電気抵抗の変化による信号、及びリファレンス素子40の電気抵抗の変化による信号を増幅及び補正して出力する。ADコンバータ14は、アナログ読出し回路13によって増幅及び補正された信号をデジタル信号に変換する。DSP15は、ADコンバータ14によって変換されたデジタル信号に対して、所定の信号処理を施した後、デジタルインターフェース16に出力する。タイミングジェネレータ17は、I/Oパッド12を介して駆動信号が入力されると、DSP15に対して駆動タイミングの信号を出力する。デジタルインターフェース16は、DSP15によって出力された信号をI/Oパッド12を介して外部に出力する。I/Oパッド12は、デジタルインターフェース16によって生成された信号を、順次出力する。そして、光検出器1Bでは、光検出素子30からの信号とリファレンス素子40からの信号との差分に基づいて光が検出される。 In the photodetector 1B configured as described above, light is detected as follows. First, similarly to the photodetector 1 </ b> A, heat generated in the light absorption layer 76 is transmitted to the first resistance layer 75 through the separation layer 77. As a result of this heat, the temperature of the first resistance layer 75 increases and the electrical resistance decreases. A signal resulting from the change in electrical resistance is sent to the analog readout circuit 13 via the first wiring layers 71 and 72, the first electrode posts 32 and 33, and the first electrode pads 25 and 26. At this time, a signal due to a change in electrical resistance is also sent from the reference element 40 to the analog readout circuit 13. The analog readout circuit 13 amplifies and corrects a signal resulting from a change in the electrical resistance of the light detection element 30 and a signal resulting from a change in the electrical resistance of the reference element 40 and outputs the amplified signal. The AD converter 14 converts the signal amplified and corrected by the analog readout circuit 13 into a digital signal. The DSP 15 performs predetermined signal processing on the digital signal converted by the AD converter 14 and then outputs it to the digital interface 16. When a drive signal is input via the I / O pad 12, the timing generator 17 outputs a drive timing signal to the DSP 15. The digital interface 16 outputs a signal output from the DSP 15 to the outside via the I / O pad 12. The I / O pad 12 sequentially outputs signals generated by the digital interface 16. In the photodetector 1B, light is detected based on the difference between the signal from the light detection element 30 and the signal from the reference element 40.
 以上説明したように、第2実施形態の光検出器1Bによれば、上述した第1実施形態の光検出器1Aと同様に、構造の複雑化を抑制しつつ検出精度を確保することができる。 As described above, according to the photodetector 1B of the second embodiment, the detection accuracy can be ensured while suppressing the complexity of the structure, similarly to the photodetector 1A of the first embodiment described above. .
 また、画素部が1つの光検出素子30によって構成され、リファレンス部が1つのリファレンス素子40によって構成されている場合には、光検出器1Bの製造工程において、複数の素子が二次元マトリックス状に配置されている場合とは別に、ドライエッチングの条件を最適化する必要が生じてしまう。光検出器1Bでは、第1ダミー素子50及び第2ダミー素子60が、第1領域3a及び第2領域4aの外縁の全体を囲むように、第1領域3a及び第2領域4aの外縁に沿って基板2Bの表面2bに複数配置されているため、複数の素子が二次元マトリックス状に配置されている場合と同じ条件でドライエッチングを施すことができる。従って、製造工程が簡易化される。 In addition, when the pixel unit is configured by one photodetecting element 30 and the reference unit is configured by one reference element 40, a plurality of elements are arranged in a two-dimensional matrix in the manufacturing process of the photodetector 1B. Apart from the arrangement, it is necessary to optimize the dry etching conditions. In the photodetector 1B, the first dummy element 50 and the second dummy element 60 are arranged along the outer edges of the first area 3a and the second area 4a so as to surround the entire outer edges of the first area 3a and the second area 4a. Since a plurality of elements are arranged on the surface 2b of the substrate 2B, dry etching can be performed under the same conditions as in the case where a plurality of elements are arranged in a two-dimensional matrix. Therefore, the manufacturing process is simplified.
[第2実施形態の変形例]
 図40に示されるように、第3領域5aのみが、第1領域3a及び第2領域4aの外縁の全体を囲んでいてもよい。つまり、第1ダミー素子50のみが、第1領域3a及び第2領域4aの外縁の全体を囲むように、第1領域3a及び第2領域4aの外縁に沿って基板2Aの表面2aに複数配置されていてもよい。また、第3領域5aに代えて、第4領域6aのみが、第1領域3a及び第2領域4aの外縁の全体を囲んでいてもよい。つまり、第1ダミー素子50に代えて、第2ダミー素子60のみが、第1領域3a及び第2領域4aの外縁の全体を囲むように、第1領域3a及び第2領域4aの外縁に沿って基板2Aの表面2aに複数配置されていてもよい。
[Modification of Second Embodiment]
As shown in FIG. 40, only the third region 5a may surround the entire outer edges of the first region 3a and the second region 4a. That is, only the first dummy element 50 is disposed on the surface 2a of the substrate 2A along the outer edges of the first region 3a and the second region 4a so as to surround the entire outer edges of the first region 3a and the second region 4a. May be. Further, instead of the third region 5a, only the fourth region 6a may surround the entire outer edges of the first region 3a and the second region 4a. That is, instead of the first dummy element 50, only the second dummy element 60 is provided along the outer edges of the first area 3a and the second area 4a so as to surround the entire outer edges of the first area 3a and the second area 4a. A plurality of substrates may be arranged on the surface 2a of the substrate 2A.
 また、図41に示されるように、第3領域5aは、第1領域3aに対してY軸方向における両側、及び、第1領域3aに対して第2領域4aとは反対側において、それぞれ、Y軸方向及びX軸方向に沿って延在していてもよい。つまり、第1ダミー素子50は、第1領域3aに対してY軸方向における両側、及び、第1領域3aに対して第2領域4aとは反対側において、それぞれ、Y軸方向及びX軸方向に沿って複数配置されていてもよい。同様に、第4領域6aは、第2領域4aに対してY軸方向における両側、及び、第2領域4aに対して第1領域3aとは反対側において、それぞれ、Y軸方向及びX軸方向に沿って延在していてもよい。つまり、第2ダミー素子60は、第2領域4aに対してY軸方向における両側、及び、第2領域4aに対して第1領域3aとは反対側において、それぞれ、Y軸方向及びX軸方向に沿って複数配置されていてもよい。 In addition, as shown in FIG. 41, the third region 5a is on both sides in the Y-axis direction with respect to the first region 3a, and on the opposite side of the second region 4a with respect to the first region 3a. You may extend along the Y-axis direction and the X-axis direction. That is, the first dummy element 50 has the Y-axis direction and the X-axis direction on both sides in the Y-axis direction with respect to the first region 3a and on the opposite side of the first region 3a from the second region 4a, respectively. A plurality of them may be arranged along. Similarly, the fourth region 6a has a Y-axis direction and an X-axis direction on both sides in the Y-axis direction with respect to the second region 4a and on the opposite side of the second region 4a from the first region 3a, respectively. It may extend along. That is, the second dummy element 60 has a Y-axis direction and an X-axis direction on both sides in the Y-axis direction with respect to the second region 4a and on the opposite side of the second region 4a from the first region 3a, respectively. A plurality of them may be arranged along.
 また、第4領域6aに代えて、第3領域5aが、第2領域4aに対してY軸方向における両側、及び、第2領域4aに対して第1領域3aとは反対側において、それぞれ、Y軸方向及びX軸方向に沿って延在していてもよい。つまり、第2ダミー素子60に代えて、第1ダミー素子50が、第2領域4aに対してY軸方向における両側、及び、第2領域4aに対して第1領域3aとは反対側において、それぞれ、Y軸方向及びX軸方向に沿って複数配置されていてもよい。同様に、第3領域5aに代えて、第4領域6aが、第1領域3aに対してY軸方向における両側、及び、第1領域3aに対して第2領域4aとは反対側において、それぞれ、Y軸方向及びX軸方向に沿って延在していてもよい。つまり、第1ダミー素子50に代えて、第2ダミー素子60が、第1領域3aに対してY軸方向における両側、及び、第1領域3aに対して第2領域4aとは反対側において、それぞれ、Y軸方向及びX軸方向に沿って複数配置されていてもよい。 Further, instead of the fourth region 6a, the third region 5a is on both sides in the Y-axis direction with respect to the second region 4a, and on the opposite side of the first region 3a with respect to the second region 4a, respectively. You may extend along the Y-axis direction and the X-axis direction. That is, instead of the second dummy element 60, the first dummy element 50 is on both sides in the Y-axis direction with respect to the second region 4a and on the opposite side of the second region 4a from the first region 3a. A plurality of them may be arranged along the Y-axis direction and the X-axis direction, respectively. Similarly, instead of the third region 5a, the fourth region 6a is on both sides in the Y-axis direction with respect to the first region 3a, and on the opposite side of the second region 4a with respect to the first region 3a, respectively. , And may extend along the Y-axis direction and the X-axis direction. That is, instead of the first dummy element 50, the second dummy element 60 is located on both sides in the Y-axis direction with respect to the first region 3a and on the opposite side of the first region 3a from the second region 4a. A plurality of them may be arranged along the Y-axis direction and the X-axis direction, respectively.
 また、図42に示されるように、第1領域3aと第2領域4aとは、互いに離間していてもよい。この場合、第3領域5a及び第4領域6aのそれぞれが、第1領域3a及び第2領域4aのそれぞれを囲んでいる。つまり、第1ダミー素子50及び第2ダミー素子60のそれぞれが、第1領域3a及び第2領域4aのそれぞれを囲むように、第1領域3aの外縁及び第2領域4aの外縁のそれぞれに沿って表面2aに複数配置されている。 42, the first region 3a and the second region 4a may be separated from each other. In this case, each of the third region 5a and the fourth region 6a surrounds each of the first region 3a and the second region 4a. That is, each of the first dummy element 50 and the second dummy element 60 surrounds each of the first region 3a and the second region 4a along the outer edge of the first region 3a and the outer edge of the second region 4a. A plurality of surfaces are arranged on the surface 2a.
 また、図43に示されるように、第3領域5aのみが、第1領域3a及び第2領域4aのそれぞれを囲んでいてもよい。つまり、第1ダミー素子50のみが、第1領域3a及び第2領域4aのそれぞれを囲むように、第1領域3aの外縁及び第2領域4aの外縁のそれぞれに沿って表面2aに複数配置されていてもよい。また、第3領域5aに代えて、第4領域6aのみが、第1領域3a及び第2領域4aのそれぞれを囲んでいてもよい。つまり、第1ダミー素子50に代えて、第2ダミー素子60のみが、第1領域3a及び第2領域4aのそれぞれを囲むように、第1領域3aの外縁及び第2領域4aの外縁のそれぞれに沿って表面2aに複数配置されていてもよい。 Also, as shown in FIG. 43, only the third region 5a may surround each of the first region 3a and the second region 4a. That is, only the first dummy element 50 is disposed on the surface 2a along the outer edge of the first region 3a and the outer edge of the second region 4a so as to surround each of the first region 3a and the second region 4a. It may be. Further, instead of the third region 5a, only the fourth region 6a may surround each of the first region 3a and the second region 4a. That is, instead of the first dummy element 50, only the second dummy element 60 surrounds each of the first region 3a and the second region 4a, and the outer edge of the first region 3a and the outer edge of the second region 4a, respectively. A plurality of surfaces may be arranged on the surface 2a.
 また、図44に示されるように、第3領域5aは、第1領域3aに対してY軸方向における両側、及び、第1領域3aに対してX軸方向における両側において、それぞれ、Y軸方向及びX軸方向に沿って延在していてもよい。つまり、第1ダミー素子50は、第1領域3aに対してY軸方向における両側、及び、第1領域3aに対してX軸方向における両側において、それぞれ、Y軸方向及びX軸方向に沿って複数配置されていてもよい。同様に、第4領域6aは、第2領域4aに対してY軸方向における両側、及び、第2領域4aに対してX軸方向における両側において、それぞれ、Y軸方向及びX軸方向に沿って延在していてもよい。つまり、第2ダミー素子60は、第2領域4aに対してY軸方向における両側、及び、第2領域4aに対してX軸方向における両側において、それぞれ、Y軸方向及びX軸方向に沿って複数配置されていてもよい。 As shown in FIG. 44, the third region 5a has a Y-axis direction on both sides in the Y-axis direction with respect to the first region 3a and on both sides in the X-axis direction with respect to the first region 3a. And may extend along the X-axis direction. That is, the first dummy element 50 is along the Y-axis direction and the X-axis direction on both sides in the Y-axis direction with respect to the first region 3a and on both sides in the X-axis direction with respect to the first region 3a. A plurality of them may be arranged. Similarly, the fourth region 6a extends along the Y-axis direction and the X-axis direction on both sides in the Y-axis direction with respect to the second region 4a and on both sides in the X-axis direction with respect to the second region 4a, respectively. It may be extended. That is, the second dummy element 60 is along the Y-axis direction and the X-axis direction on both sides in the Y-axis direction with respect to the second region 4a and on both sides in the X-axis direction with respect to the second region 4a, respectively. A plurality of them may be arranged.
 また、第4領域6aに代えて、第3領域5aが、第2領域4aに対してY軸方向における両側、及び、第2領域4aに対してX軸方向における両側において、それぞれ、Y軸方向及びX軸方向に沿って延在していてもよい。つまり、第2ダミー素子60に代えて、第1ダミー素子50が、第2領域4aに対してY軸方向における両側、及び、第2領域4aに対してX軸方向における両側において、それぞれ、Y軸方向及びX軸方向に沿って複数配置されていてもよい。同様に、第3領域5aに代えて、第4領域6aが、第1領域3aに対してY軸方向における両側、及び、第1領域3aに対してX軸方向における両側において、それぞれ、Y軸方向及びX軸方向に沿って延在していてもよい。つまり、第1ダミー素子50に代えて、第2ダミー素子60が、第1領域3aに対してY軸方向における両側、及び、第1領域3aに対してX軸方向における両側において、それぞれ、Y軸方向及びX軸方向に沿って複数配置されていてもよい。 Further, in place of the fourth region 6a, the third region 5a is in the Y-axis direction on both sides in the Y-axis direction with respect to the second region 4a and on both sides in the X-axis direction with respect to the second region 4a. And may extend along the X-axis direction. In other words, instead of the second dummy element 60, the first dummy element 50 is provided on both sides in the Y-axis direction with respect to the second region 4a and on both sides in the X-axis direction with respect to the second region 4a. A plurality may be arranged along the axial direction and the X-axis direction. Similarly, instead of the third region 5a, the fourth region 6a has a Y-axis on both sides in the Y-axis direction with respect to the first region 3a and on both sides in the X-axis direction with respect to the first region 3a. May extend along the direction and the X-axis direction. In other words, instead of the first dummy element 50, the second dummy element 60 is Y on both sides in the Y-axis direction with respect to the first region 3a and on both sides in the X-axis direction with respect to the first region 3a. A plurality may be arranged along the axial direction and the X-axis direction.
 また、第1ダミー素子50及び第2ダミー素子60が、Z軸方向から見た場合に、アナログ読出し回路13と重なっている例を示したが、第1ダミー素子50及び第2ダミー素子60は、Z軸方向から見た場合に、アナログ読出し回路13と重なっていなくてもよい。 In addition, although the example in which the first dummy element 50 and the second dummy element 60 overlap with the analog readout circuit 13 when viewed from the Z-axis direction is shown, the first dummy element 50 and the second dummy element 60 are When viewed from the Z-axis direction, the analog readout circuit 13 may not overlap.
 1A,1B…光検出器、2A,2B…基板、2a,2b…表面、3a…第1領域、4a…第2領域、5a…第3領域、6a…第4領域、7…信号読出し回路、13…アナログ読出し回路(信号読出し回路)、22A,22B…回路部、30…光検出素子、31…第1膜体、40…リファレンス素子、41…第2膜体、50…第1ダミー素子、51…第3膜体、60…第2ダミー素子、61…第4膜体、S1,S2,S3,S4…空隙。 1A, 1B ... photodetector, 2A, 2B ... substrate, 2a, 2b ... surface, 3a ... first region, 4a ... second region, 5a ... third region, 6a ... fourth region, 7 ... signal readout circuit, DESCRIPTION OF SYMBOLS 13 ... Analog readout circuit (signal readout circuit), 22A, 22B ... Circuit part, 30 ... Photodetection element, 31 ... 1st film body, 40 ... Reference element, 41 ... 2nd film body, 50 ... 1st dummy element, 51 ... 3rd film body, 60 ... 2nd dummy element, 61 ... 4th film body, S1, S2, S3, S4 ... Air gap.

Claims (10)

  1.  表面を有する基板と、
     空隙を介して前記表面上に配置された第1膜体を有する光検出素子と、
     空隙を介して前記表面上に配置された第2膜体を有するリファレンス素子と、
     空隙を介して前記表面上に配置された膜体を有するダミー素子と、
     前記基板に設けられ、前記光検出素子及び前記リファレンス素子と電気的に接続された回路部と、を備え、
     前記光検出素子は、受光による温度変化に基づいて光を検出するための素子であって、前記表面のうち第1領域に配置されており、
     前記リファレンス素子は、前記光検出素子における前記受光以外の要因による温度変化を補償するための素子であって、前記表面のうち第2領域に配置されており、
     前記ダミー素子は、前記表面のうち前記第1領域及び前記第2領域以外の領域に、前記第1領域の外縁及び前記第2領域の外縁の少なくとも一方に沿って配置されており、
     前記ダミー素子は、前記回路部と電気的に絶縁されている、光検出器。
    A substrate having a surface;
    A photodetecting element having a first film body disposed on the surface via a gap;
    A reference element having a second film body disposed on the surface via a gap;
    A dummy element having a film body disposed on the surface through a gap;
    A circuit unit provided on the substrate and electrically connected to the photodetecting element and the reference element;
    The light detection element is an element for detecting light based on a temperature change due to light reception, and is disposed in the first region of the surface.
    The reference element is an element for compensating for a temperature change due to a factor other than the light reception in the light detection element, and is disposed in the second region of the surface.
    The dummy element is disposed in an area other than the first area and the second area on the surface along at least one of an outer edge of the first area and an outer edge of the second area,
    The photo detector, wherein the dummy element is electrically insulated from the circuit unit.
  2.  前記ダミー素子は、前記第1領域の外縁及び前記第2領域の外縁の少なくとも一方と交差する方向に並ぶように、前記表面のうち前記第1領域及び前記第2領域以外の前記領域に複数配置されている、請求項1に記載の光検出器。 A plurality of the dummy elements are arranged in the region other than the first region and the second region on the surface so as to be arranged in a direction intersecting at least one of the outer edge of the first region and the outer edge of the second region. The photodetector of claim 1.
  3.  前記ダミー素子は、前記表面のうち前記第1領域と前記第2領域との間の領域に、前記第1領域の外縁及び前記第2領域の外縁の少なくとも一方に沿って更に配置されている、請求項1又は2に記載の光検出器。 The dummy element is further disposed in a region between the first region and the second region on the surface along at least one of an outer edge of the first region and an outer edge of the second region. The photodetector according to claim 1.
  4.  前記ダミー素子は、前記第2領域の外縁に沿って配置されており、
     前記第2領域の外縁に沿って配置された前記ダミー素子の前記膜体は、前記基板の厚さ方向から見た場合に、前記リファレンス素子の前記第2膜体と同一の形状を呈している、請求項1~3のいずれか一項に記載の光検出器。
    The dummy element is disposed along an outer edge of the second region;
    The film body of the dummy element disposed along the outer edge of the second region has the same shape as the second film body of the reference element when viewed from the thickness direction of the substrate. The photodetector according to any one of claims 1 to 3.
  5.  前記ダミー素子は、前記第1領域の外縁に沿って配置されており、
     前記第1領域の外縁に沿って配置された前記ダミー素子の前記膜体は、前記基板の厚さ方向から見た場合に、前記光検出素子の前記第1膜体と同一の形状を呈している、請求項1~4のいずれか一項に記載の光検出器。
    The dummy element is disposed along an outer edge of the first region;
    The film body of the dummy element disposed along the outer edge of the first region has the same shape as the first film body of the photodetecting element when viewed from the thickness direction of the substrate. The photodetector according to any one of claims 1 to 4.
  6.  前記ダミー素子は、前記第2領域を少なくとも1列で囲むように、前記第2領域の外縁に沿って前記表面に複数配置されている、請求項1~5のいずれか一項に記載の光検出器。 The light according to any one of claims 1 to 5, wherein a plurality of the dummy elements are arranged on the surface along an outer edge of the second region so as to surround the second region in at least one row. Detector.
  7.  前記ダミー素子は、前記第1領域及び前記第2領域を少なくとも1列で囲むように、前記第1領域及び前記第2領域の外縁に沿って前記表面に複数配置されている、請求項1~6のいずれか一項に記載の光検出器。 A plurality of the dummy elements are arranged on the surface along the outer edges of the first region and the second region so as to surround the first region and the second region in at least one row. The photodetector according to any one of 6.
  8.  前記ダミー素子は、前記第1領域及び前記第2領域のそれぞれを少なくとも1列で囲むように、前記第1領域の外縁及び前記第2領域の外縁のそれぞれに沿って前記表面に複数配置されている、請求項1~6のいずれか一項に記載の光検出器。 A plurality of the dummy elements are arranged on the surface along the outer edge of the first region and the outer edge of the second region so as to surround each of the first region and the second region in at least one row. The photodetector according to any one of claims 1 to 6.
  9.  前記第2領域の外縁に沿って配置された前記ダミー素子の前記膜体は、前記基板の厚さ方向から見た場合に、前記リファレンス素子の前記第2膜体と同一の形状を呈しており、
     前記第1領域の外縁に沿って配置された前記ダミー素子の前記膜体は、前記基板の厚さ方向から見た場合に、前記光検出素子の前記第1膜体と同一の形状を呈している、請求項6~8のいずれか一項に記載の光検出器。
    The film body of the dummy element arranged along the outer edge of the second region has the same shape as the second film body of the reference element when viewed from the thickness direction of the substrate. ,
    The film body of the dummy element disposed along the outer edge of the first region has the same shape as the first film body of the photodetecting element when viewed from the thickness direction of the substrate. The photodetector according to any one of claims 6 to 8.
  10.  前記回路部は、信号読出し回路を含み、
     前記ダミー素子は、前記基板の厚さ方向から見た場合に、前記信号読出し回路と重なっている、請求項1~9のいずれか一項に記載の光検出器。
    The circuit unit includes a signal readout circuit,
    The photodetector according to any one of claims 1 to 9, wherein the dummy element overlaps the signal readout circuit when viewed in the thickness direction of the substrate.
PCT/JP2019/015642 2018-06-07 2019-04-10 Photodetector WO2019235060A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-109551 2018-06-07
JP2018109551A JP7142471B2 (en) 2018-06-07 2018-06-07 photodetector

Publications (1)

Publication Number Publication Date
WO2019235060A1 true WO2019235060A1 (en) 2019-12-12

Family

ID=68769974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015642 WO2019235060A1 (en) 2018-06-07 2019-04-10 Photodetector

Country Status (2)

Country Link
JP (1) JP7142471B2 (en)
WO (1) WO2019235060A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163539A (en) * 1996-11-27 1998-06-19 Nec Corp Thermal infrared detector and manufacture thereof
JP2001264158A (en) * 2000-03-16 2001-09-26 Toshiba Corp Thermal infrared imaging element
JP2003152170A (en) * 2001-11-15 2003-05-23 Toshiba Corp Infrared sensor
US20050092924A1 (en) * 2003-11-03 2005-05-05 Namal Technologies Ltd. Thermal imaging system and method
JP2007288479A (en) * 2006-04-17 2007-11-01 Konica Minolta Holdings Inc Imaging apparatus
JP2008541102A (en) * 2005-05-17 2008-11-20 ハイマン・ゼンゾル・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Thermopile infrared sensor array
JP2009079946A (en) * 2007-09-26 2009-04-16 Seiko Npc Corp Thermopile type infrared sensor
US20090108312A1 (en) * 2007-08-24 2009-04-30 Kim Yi-Tae Image sensor and method of stabilizing a black level in an image sensor
JP2010161113A (en) * 2009-01-06 2010-07-22 Hamamatsu Photonics Kk Optical detector
JP2013069958A (en) * 2011-09-26 2013-04-18 Sony Corp Imaging element, image pickup apparatus, manufacturing apparatus and manufacturing method
JP2013168623A (en) * 2012-01-17 2013-08-29 Olympus Corp Solid-state imaging device, imaging device, and method of manufacturing solid-state imaging device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163539A (en) * 1996-11-27 1998-06-19 Nec Corp Thermal infrared detector and manufacture thereof
JP2001264158A (en) * 2000-03-16 2001-09-26 Toshiba Corp Thermal infrared imaging element
JP2003152170A (en) * 2001-11-15 2003-05-23 Toshiba Corp Infrared sensor
US20050092924A1 (en) * 2003-11-03 2005-05-05 Namal Technologies Ltd. Thermal imaging system and method
JP2008541102A (en) * 2005-05-17 2008-11-20 ハイマン・ゼンゾル・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Thermopile infrared sensor array
JP2007288479A (en) * 2006-04-17 2007-11-01 Konica Minolta Holdings Inc Imaging apparatus
US20090108312A1 (en) * 2007-08-24 2009-04-30 Kim Yi-Tae Image sensor and method of stabilizing a black level in an image sensor
JP2009079946A (en) * 2007-09-26 2009-04-16 Seiko Npc Corp Thermopile type infrared sensor
JP2010161113A (en) * 2009-01-06 2010-07-22 Hamamatsu Photonics Kk Optical detector
JP2013069958A (en) * 2011-09-26 2013-04-18 Sony Corp Imaging element, image pickup apparatus, manufacturing apparatus and manufacturing method
JP2013168623A (en) * 2012-01-17 2013-08-29 Olympus Corp Solid-state imaging device, imaging device, and method of manufacturing solid-state imaging device

Also Published As

Publication number Publication date
JP2019211390A (en) 2019-12-12
JP7142471B2 (en) 2022-09-27

Similar Documents

Publication Publication Date Title
US6667479B2 (en) Advanced high speed, multi-level uncooled bolometer and method for fabricating same
JP3597069B2 (en) Thermal infrared array sensor for detecting multiple infrared wavelength bands
US8350350B2 (en) Optical sensor
JP2006226891A (en) Thermal infrared detection element
JP2006514787A (en) Pixel structure and method for manufacturing the pixel structure
JP2010237117A (en) Infrared array sensor
US20140091217A1 (en) Microbolometer detector with centrally-located support structure
JP2009265094A (en) Infrared detection element and infrared solid-state imaging device
JP5255873B2 (en) Photodetector
WO2019235060A1 (en) Photodetector
WO2019235058A1 (en) Photodetector
JP5498719B2 (en) Highly isolated thermal detector
JPWO2019031235A1 (en) Photo detector
WO2018110309A1 (en) Light detector
CN110998254B (en) Light detector
JP2021139728A (en) Light detector
EP3633332B1 (en) Infrared imaging element, infrared imaging array, and method for manufacturing infrared imaging element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19814301

Country of ref document: EP

Kind code of ref document: A1