JP5104493B2 - 動力出力装置および車両 - Google Patents

動力出力装置および車両 Download PDF

Info

Publication number
JP5104493B2
JP5104493B2 JP2008099532A JP2008099532A JP5104493B2 JP 5104493 B2 JP5104493 B2 JP 5104493B2 JP 2008099532 A JP2008099532 A JP 2008099532A JP 2008099532 A JP2008099532 A JP 2008099532A JP 5104493 B2 JP5104493 B2 JP 5104493B2
Authority
JP
Japan
Prior art keywords
shaft
power
motor
planetary gear
gear mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008099532A
Other languages
English (en)
Other versions
JP2009248767A (ja
Inventor
宏治 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP2008099532A priority Critical patent/JP5104493B2/ja
Publication of JP2009248767A publication Critical patent/JP2009248767A/ja
Application granted granted Critical
Publication of JP5104493B2 publication Critical patent/JP5104493B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Description

本発明は、駆動軸に動力を出力する動力出力装置および駆動軸に連結された駆動輪を有する車両に関する。
従来から、無段変速機と遊星歯車機構とを組み合わせて構成される無限変速機(IVT:Infinitely Variable Transmission)を利用した動力出力装置が知られている(例えば、特許文献1参照)。この動力出力装置は、エンジンに連結されるハイブリッド車用の駆動装置として用いられるものであり、モータと、無段変速機と、第1の入力要素としてのサンギヤと第2の入力要素としてのキャリアと出力要素としてのリングギヤとを有する遊星歯車機構と、遊星歯車機構のサンギヤを装置の出力軸に係脱連結するハイクラッチと、遊星歯車機構のリングギヤを装置の出力軸に係脱連結するロークラッチとを備える。この場合、無段変速機の入力軸は、エンジンに連結されると共に遊星歯車機構のキャリアに平行軸式のギヤ列を介して連結される。また、無段変速機の出力軸は、遊星歯車機構のサンギヤに連結されると共にモータに連結される。
この動力出力装置では、ハイクラッチを解放すると共にロークラッチを係合することにより無段変速機にトルク循環を生じさせるトルク循環モードが設定される。かかるトルク循環モードのもとでは、無段変速機の変速状態を増速状態から減速状態まで変化させることにより、サンギヤを入力速度比Aiの高速(オーバードライブ)回転状態から入力速度比Biの低速(アンダードライブ)回転状態に変化させ、それにより装置の出力軸に連結されるリングギヤの速度比を負速度比Ao(逆転状態)から、ある程度の増速速度比Boまで変化させることが可能となる。また、トルク循環モードのもとでは、モータからのトルクが無段変速機により増幅されるため、出力軸により大きなトルクを出力することが可能となると共に、装置の出力軸側の回転速度よりもモータの回転速度が高くなるので、回生効率のよい回転領域でモータによるエネルギ回生を実行することが可能となる。更に、この動力出力装置では、サンギヤとリングギヤとが回転同期した時点でロークラッチを解放すると共にハイクラッチを係合することにより直接トルク伝達モードが設定される。かかる直接トルク伝達モードのもとでは、無段変速機の変速状態を等速状態から増速状態へと変化させることにより、出力要素としてのサンギヤすなわち装置の出力軸の速度比を等速速度比Ciから高速速度比Diへと変化させることが可能となる。また、直接トルク伝達モードのもとでは、モータからのトルクを無段変速機を介すことなく出力軸へと伝達することができるため、モータトルクの伝達効率を向上させることが可能となると共に、無段変速機における損失を生じさせることなく、モータによるエネルギ回生を実行することができる。
特開2004−175320号公報
上記従来の動力出力装置では、トルク循環モードを設定することにより、低速域において大きなトルクを出力軸に効率よく出力することが可能となるが、直接トルク伝達モードのもとでは、無段変速機により変速されるエンジンからの動力とモータからの動力との少なくとも何れか一方を出力軸に出力することができるだけである。従って、変速比幅をより大きくして低速域から高速域までの広範な運転領域においてエネルギ効率やトルク特性を向上させるという観点からみれば、従来の動力出力装置には、なお改善の余地がある。
そこで、本発明は、より広範な運転領域においてエネルギ効率やトルク特性を向上させることができる動力出力装置およびそれを備えた車両の提供を主目的とする。
本発明による動力出力装置および車両は、上記主目的を達成するために以下の手段を採っている。
本発明による動力出力装置は、
駆動軸に動力を出力する動力出力装置であって、
動力を出力可能な動力発生源と、
入力軸に入力される動力を無段階に変速して出力軸に出力可能な無段変速装置と、
前記無段変速装置の前記出力軸に接続される回転要素と、
前記動力発生源に接続される第1の入力要素と、前記回転要素と連動して該回転要素と同方向に回転可能な第2の入力要素と、前記駆動軸に接続される出力要素とを含む遊星歯車機構と、
前記無段変速装置の前記入力軸と前記遊星歯車機構の前記第1の入力要素との接続および該接続の解除を実行可能な接続断接手段と、
前記無段変速装置の前記入力軸に少なくとも動力を出力可能な電動機と、
前記電動機と電力をやり取り可能な蓄電手段と、
を備えるものである。
この動力出力装置において、無段変速装置、遊星歯車機構および回転要素は、接続断接手段により無段変速装置の入力軸と遊星歯車機構の第1の入力要素とが接続されているときに、互いに協働して、いわゆる無限変速機(IVT)を構成し、動力発生源と電動機との少なくとも何れかからの動力を遊星歯車機構の第1の入力要素に付与すると共に無段変速装置および回転要素を介して遊星歯車機構の第2の入力要素に付与することでトルク循環を生じさせ、それにより遊星歯車機構の第1の入力要素と出力要素(駆動軸)との間の変速比を理論上無限大に設定可能とする。すなわち、この動力出力装置では、無段変速装置を用いて遊星歯車機構の第1の入力要素と出力要素との間の変速比を実質的に無限大に設定することにより、当該第1の入力要素に接続された動力発生源等が例えば効率を向上させることができる任意の回転速度で運転されていても出力要素および駆動軸の回転を停止させておくことができる。そして、この状態で無段変速装置の変速状態を変更すれば、出力要素と駆動軸とを正転側または逆転側に回転させることが可能となり、特に駆動軸の回転速度が低いときに動力発生源と電動機との少なくとも何れかからのトルクを増幅して駆動軸に大きなトルクを効率よく出力することができる。遊星歯車機構の第1の入力要素と出力要素との間の変速比が実質的に無限大である状態で無段変速装置の変速状態を増速側へと変化させれば、無段変速装置の出力軸に接続された回転要素と遊星歯車機構の第2の入力要素との回転速度が高まり、それに伴って遊星歯車機構の出力要素に大きなトルクを出力しつつ当該出力要素を上記回転要素や第2の入力要素の回転方向とは逆方向に回転させること、すなわち駆動軸に大きなトルクを出力しつつ駆動軸を逆転させることが可能となる。また、上記変速比が実質的に無限大に設定されている状態で無段変速装置の変速状態を減速側へと変化させれば、無段変速装置の出力軸に接続された回転要素と遊星歯車機構の第2の入力要素との回転速度を低下させ、それに伴って遊星歯車機構の出力要素に大きなトルクを出力しつつ当該出力要素を上記回転要素や第2の入力要素の回転方向と同方向に回転させると共にその回転速度を高くすること、すなわち駆動軸に大きなトルクを出力しつつ駆動軸を正転側に回転させると共にその回転速度を高くすることが可能となる。更に、接続断接手段により無段変速装置の入力軸と遊星歯車機構の第1の入力要素との接続が解除されれば、電動機により無段変速装置の入力軸を介して出力軸や回転要素を遊星歯車機構の第1の入力要素とは無関係に回転させることが可能となる。そして、この状態で、無段変速装置の入力軸に接続された電動機の回転を制御し、更には無段変速装置の変速状態を適宜変化させることにより、遊星歯車機構の第1の入力要素すなわち動力発生源や電動機と遊星歯車機構の出力要素(駆動軸)との間の変速比をより小さく(増速比をより大きく)することが可能となる。すなわち、無段変速装置の入力軸と遊星歯車機構の第1の入力要素との接続が解除された状態で電動機を減速させたり、電動機の回転速度をそれまでとは逆方向すなわち遊星歯車機構の第1の入力要素とは逆方向に高くしたりすれば、無段変速装置の出力軸に接続された回転要素や遊星歯車機構の第2の入力要素を第1の入力要素とは逆方向に回転させると共にその回転速度を高くしていくことができる。この際に、更に無段変速装置の変速状態を増速側に変化させていけば、回転要素や第2の入力要素の回転速度を第1の入力要素とは逆方向により一層高くすることができる。そして、回転要素や第2の入力要素の第1の入力要素とは逆方向における回転速度が高くなればなるほど、遊星歯車機構の第1の入力要素と出力要素(駆動軸)との間の変速比をより小さく(増速比をより大きく)して駆動軸の正転側における回転速度をより高くすることが可能となる。この結果、この動力出力装置では、動力発生源や電動機と駆動軸との間の変速比幅をより大きくして、駆動軸の回転速度が低い低速域から当該回転速度が高まる高速域までの極めて広範な運転領域においてエネルギ効率やトルク特性を向上させることができる。
また、前記遊星歯車機構は、前記動力発生源と前記無段変速装置との間に配置されてもよく、前記無段変速装置の前記入力軸、前記電動機の回転軸および前記接続断接手段は、それぞれ中空に形成されてもよく、前記駆動軸は、前記無段変速装置の前記入力軸と前記電動機の回転軸と前記接続断接手段とを貫通するものであってもよい。これにより、遊星歯車機構の第1の入力要素および駆動軸を動力発生源や無段変速装置の入力軸、電動機等と同軸に配置することが可能となる。従って、この動力出力装置は、主に後輪を駆動して走行する車両に好適なものとなる。
この場合、前記遊星歯車機構は、前記第1の入力要素としてのプラネタリキャリアと、前記プラネタリキャリアにより保持されたピニオンギヤと噛合する前記第2の入力要素としてのリングギヤと、前記ピニオンギヤまたは前記プラネタリキャリアにより保持された他のピニオンギヤと噛合する前記出力要素としてのサンギヤとを含むものであってもよい。なお、遊星歯車機構は、シングルピニオン式のものであってもよく、ダブルピニオン式のものであってもよい。
更に、前記動力出力装置は、前記遊星歯車機構の前記第1の入力要素に前記動力発生源と前記無段変速装置の前記入力軸とが接続されているときには、前記駆動軸に要求される要求駆動力に基づく動力が該駆動軸に出力されるように前記動力発生源と前記電動機と前記無段変速装置とを制御すると共に、前記遊星歯車機構の前記第1の入力要素に前記動力発生源が接続されると共に該第1の入力要素と前記無段変速装置の前記入力軸との接続が解除されているときには、前記電動機が減速するか、または前記電動機が前記遊星歯車機構の前記第1の入力要素とは逆方向に回転すると共に前記要求駆動力に基づく動力が前記駆動軸に出力されるように前記動力発生源と前記電動機と前記無段変速装置とを制御する制御手段を更に備えてもよい。
また、前記動力出力装置は、前記遊星歯車機構の前記第2の入力要素を回転不能に固定可能な要素固定手段を更に備えてもよい。すなわち、接続断接手段により無段変速装置の入力軸と遊星歯車機構の第1の入力要素との接続が解除された状態で電動機の回転速度を低下させると共に当該電動機を一旦停止させれば、無段変速装置の出力軸に接続された回転要素や遊星歯車機構の第2の入力要素の回転速度を値0にすることができる。そして、この状態で、要素固定手段により遊星歯車機構の第2の入力要素を回転不能に固定すれば、動力発生源からの動力を遊星歯車機構を介して駆動軸に伝達することが可能となる。これにより、無段変速装置での損失を無くしながら動力発生源からの動力を効率よく駆動軸に伝達することが可能となるので、動力出力装置におけるエネルギ効率をより一層向上させることができる。
この場合、前記動力出力装置は、前記遊星歯車機構の前記第1の入力要素に前記動力発生源が接続され、該第1の入力要素と前記無段変速装置の前記入力軸との接続が解除され、かつ前記遊星歯車機構の前記第2の入力要素が回転不能に固定されているときに、前記駆動軸に要求される要求駆動力に基づく動力が該駆動軸に出力されるように前記動力発生源を制御する制御手段を更に備えてもよい。
更に、前記接続断接手段は、前記無段変速装置の前記入力軸と前記電動機の回転軸との接続および該接続の解除を実行する第1の接続断接手段と、前記電動機の回転軸と前記遊星歯車機構の前記第1の入力要素との接続および該接続の解除を実行する第2の接続断接手段とを含むものであってもよい。これにより、第2の接続断接手段により電動機の回転軸と第1の入力要素との接続を解除すれば、無段変速装置の入力軸と遊星歯車機構の第1の入力要素との接続を解除することができる。また、第1の接続断接手段により無段変速装置の入力軸と電動機の回転軸とが接続されると共に第2の接続断接手段により電動機の回転軸と遊星歯車機構の第1の入力要素との接続が解除された状態で、電動機を減速させて無段変速装置の出力軸の回転を停止させれば、要素固定手段により遊星歯車機構の第2の入力要素を回転不能に固定することができる。そして、遊星歯車機構の第2の入力要素が回転不能に固定された状態で、第2の接続断接手段により電動機の回転軸と遊星歯車機構の第2の入力要素とが接続されれば、動力発生源と電動機との双方からの動力を遊星歯車機構を介して駆動軸に伝達することが可能となる。これにより、無段変速装置での損失を無くしながら動力発生源や電動機からの動力を効率よく駆動軸に伝達することができるので、動力出力装置の性能をより一層向上させることが可能となる。
この場合、動力出力装置は、前記無段変速装置の前記入力軸と前記電動機の回転軸との接続が解除され、前記電動機の回転軸と前記遊星歯車機構の第1の入力要素とが接続され、かつ前記要素固定手段により前記遊星歯車機構の前記第2の入力要素が回転不能に固定されているときに、前記駆動軸に要求される要求駆動力に基づく動力が該駆動軸に出力されるように前記動力発生源と前記電動機との少なくとも何れか一方を制御する制御手段を更に備えてもよい。
また、前記動力出力装置は、前記遊星歯車機構の前記第1の入力要素と前記動力発生源との接続および該接続の解除を実行する他の接続断接手段を更に備えてもよい。これにより、接続断接手段により無段変速装置の入力軸と遊星歯車機構の第1の入力要素とが接続されると共に他の接続断接手段により第1の入力要素と動力発生源との接続が解除された状態では、電動機のみからの動力を第1の入力要素に付与すると共に無段変速装置および回転要素を介して第2の入力要素に付与して駆動軸に伝達することが可能となる。
この場合、前記動力出力装置は、前記無段変速装置の前記入力軸と前記電動機とが前記遊星歯車機構の前記第1の入力要素に接続されると共に前記第1の入力要素と前記動力発生源との接続が解除されているときに、前記駆動軸に要求される要求駆動力に基づく動力が該駆動軸に出力されるように前記電動機と前記無段変速装置とを制御する制御手段を更に備えてもよい。
更に、前記動力発生源は、前記電動機とは異なる第2の電動機であってもよい。すなわち、本発明による動力出力装置は、いわゆる2モータ式の動力出力装置として構成されてもよい。
また、前記動力発生源は、内燃機関であってもよい。すなわち、本発明による動力出力装置は、内燃機関と1体の電動機とを組み合わせた、いわゆる1モータ−1エンジン式の動力出力装置として構成されてもよい。
更に、前記動力発生源は、前記電動機とは異なる第2の電動機と内燃機関とからなるものであってもよい。すなわち、本発明による動力出力装置は、いわゆる2モータ−1エンジン式の動力出力装置として構成されてもよい。
このように動力発生源として内燃機関と第2の電動機とを含む動力出力装置は、前記第2の電動機と前記内燃機関との接続および該接続の解除を実行する機関用接続断接手段を更に備えてもよい。これにより、機関用接続断接手段により第2電動機と内燃機関との接続を解除することで、内燃機関の運転を停止したときに当該内燃機関の連れ回しを回避可能となる。
本発明による車両は、
駆動軸に連結された駆動輪を有する車両であって、
動力を出力可能な動力発生源と、
入力軸に入力される動力を無段階に変速して出力軸に出力可能な無段変速装置と、
前記無段変速装置の前記出力軸に接続される回転要素と、
前記動力発生源に接続される第1の入力要素と、前記回転要素と連動して該回転要素と同方向に回転可能な第2の入力要素と、前記駆動軸に接続される出力要素とを含む遊星歯車機構と、
前記無段変速装置の前記入力軸と前記遊星歯車機構の前記第1の入力要素との接続および該接続の解除を実行可能な接続断接手段と、
前記無段変速装置の前記入力軸に少なくとも動力を出力可能な電動機と、
前記電動機と電力をやり取り可能な蓄電手段と、
を備える車両。
この車両では、動力発生源や電動機と駆動軸との間の変速比幅をより大きくして、駆動軸の回転速度が低い低車速域から当該回転速度が高まる高車速域までの極めて広範な運転領域においてエネルギ効率やトルク特性を向上させることが可能となる。
次に、本発明を実施するための最良の形態を実施例を用いて説明する。
図1は、本発明の一実施例に係る車両であるハイブリッド自動車20の概略構成図である。同図に示すハイブリッド自動車20は後輪駆動車両として構成されており、車両前部に配置されるエンジン22と、2体のモータMG1およびMG2、モータMG1およびMG2と電力をやり取り可能なバッテリ35、いわゆる無限変速機を構成するベルト式の無段変速ユニット(以下「CVT」という)40と3要素式の遊星歯車機構50とドライブギヤ(回転要素)55、ハイブリッド自動車20の全体をコントロールするハイブリッド用電子制御ユニット(以下、「ハイブリッドECU」という)70等を含むものである。
エンジン22は、ガソリンや軽油といった炭化水素系燃料の供給を受けて基本的に一方向に回転することにより動力を出力する内燃機関であり、エンジン用電子制御ユニット(以下、「エンジンECU」という)24による燃料噴射量や点火時期、吸入空気量等の制御を受けている。エンジンECU24には、例えば機関軸としてのクランクシャフト23に取り付けられた図示しないクランクポジションセンサといったエンジン22に対して設けられて当該エンジン22の運転状態を検出する各種センサからの信号が入力される。そして、エンジンECU24は、ハイブリッドECU70と通信しており、ハイブリッドECU70からの制御信号や上記センサからの信号等に基づいてエンジン22を運転制御すると共に必要に応じてエンジン22の運転状態に関するデータをハイブリッドECU70に出力する。
モータMG1およびモータMG2は、何れも発電機として作動すると共に電動機として作動可能な実施例では同一諸元の同期発電電動機であり、インバータ31,32を介して二次電池であるバッテリ35と電力のやり取りを行なう。インバータ31,32とバッテリ35とを接続する電力ライン39は、各インバータ31,32が共用する正極母線および負極母線として構成されており、モータMG1,MG2の何れか一方により発電される電力を他方のモータで消費できるようになっている。従って、バッテリ35は、モータMG1,MG2の少なくとも何れか一方により消費または発電される電力に応じて充放電されることになり、モータMG1,MG2により電力収支のバランスをとるものとすれば充放電されないことになる。モータMG1,MG2は、何れもモータ用電子制御ユニット(以下、「モータECU」という)30により駆動制御される。モータECU30には、モータMG1,MG2を駆動制御するために必要な信号、例えばモータMG1,MG2の回転子の回転位置を検出する回転位置検出センサ33,34からの信号や、図示しない電流センサにより検出されるモータMG1,MG2に印加される相電流等が入力されており、モータECU30からは、インバータ31,32へのスイッチング制御信号等が出力される。また、モータECU30は、回転位置検出センサ33,34から入力した信号に基づいて図示しない回転速度算出ルーチンを実行し、モータMG1,MG2の回転子の回転速度Nm1,Nm2を計算している。更に、モータECU30は、ハイブリッドECU70と通信しており、ハイブリッドECU70からの制御信号等に基づいてモータMG1,MG2を駆動制御すると共に必要に応じてモータMG1,MG2の運転状態に関するデータをハイブリッドECU70に出力する。
バッテリ35は、実施例ではニッケル水素二次電池あるいはリチウムイオン二次電池として構成されており、バッテリ用電子制御ユニット(以下、「バッテリECU」という)36によって管理されている。バッテリECU36には、バッテリ35を管理するのに必要な信号、例えば、バッテリ35の端子間に設置された図示しない電圧センサからの端子間電圧、バッテリ35の出力端子に接続された電力ライン39に取り付けられた図示しない電流センサからの充放電電流、バッテリ35に取り付けられた図示しない温度センサからのバッテリ温度Tb等が入力されている。また、バッテリECU36は、必要に応じてバッテリ35の状態に関するデータを通信によりハイブリッドECU70やエンジンECU24に出力する。そして、実施例のバッテリECU36は、バッテリ35を管理するために、電流センサにより検出された充放電電流の積算値に基づいて残容量SOCを算出したり、当該残容量SOCに基づいてバッテリ35の充放電要求パワーPb*を算出したり、残容量SOCと電池温度Tbとに基づいてバッテリ35の充電に許容される電力である充電許容電力としての入力制限Winとバッテリ35の放電に許容される電力である放電許容電力としての出力制限Woutとを算出したりする。なお、バッテリ35の入出力制限Win,Woutは、バッテリ温度Tbに基づいて入出力制限Win,Woutの基本値を設定すると共に、バッテリ35の残容量(SOC)に基づいて出力制限用補正係数と入力制限用補正係数とを設定し、設定した入出力制限Win,Woutの基本値に補正係数を乗じることにより設定可能である。
CVT40は、駆動側回転軸(入力軸)としての中空のプライマリシャフト41と、プライマリシャフト41と平行に延在すると共に遊星歯車機構50に接続される従動側回転軸(出力軸)としてのセカンダリシャフト42と、プライマリシャフト41に対して設けられたプライマリプーリ43と、セカンダリシャフト42に対して設けられたセカンダリプーリ44と、プライマリプーリ43とセカンダリプーリ44に対して巻き掛けられたベルト47とを含む。プライマリプーリ43は、プライマリシャフト41と一体に形成された固定シーブと、プライマリシャフト41にボールスプライン等を介して軸方向に摺動自在に支持される可動シーブとにより構成される。プライマリプーリ43の可動シーブの背後には、プライマリプーリ43の溝幅を変更するための油圧シリンダ(油圧アクチュエータ)45が形成される。実施例において、油圧シリンダ45は、中空に形成されており、プライマリシャフト41の中心の孔部と連通すると共に後方に開口する孔部を有する。また、セカンダリプーリ44は、セカンダリシャフト42と一体に形成された固定シーブと、セカンダリシャフト42にボールスプラインやリターンスプリング等を介して軸方向に摺動自在に支持される可動シーブとにより構成される。セカンダリプーリ44の可動シーブの背後には、セカンダリプーリ44の溝幅を変更するための油圧シリンダ(油圧アクチュエータ)46が形成される。更に、実施例のCVT40では、セカンダリプーリ44に対して、油圧シリンダ46の背後にキャンセル室を画成する図示しないキャンセルプレートが設けられている。このキャンセルプレート等により画成されるキャンセル室に作動流体を導入することで、油圧シリンダ46に作用する遠心油圧をキャンセル室内の作動流体に作用する遠心油圧によりキャンセルすることが可能となる。そして、プライマリプーリ43側の油圧シリンダ45やセカンダリプーリ44側の油圧シリンダ46、キャンセル室に対しては、図示しない電動オイルポンプにより昇圧された作動流体が複数の制御弁を含む油圧回路48により調圧された上で供給され、それにより、プライマリプーリ43およびセカンダリプーリ44の溝幅を変更して、プライマリシャフト41に入力される動力を無段階に変速しながらセカンダリシャフト42に出力することが可能となる。油圧回路48は、CVT用電子制御ユニット(以下「CVTECU」という)49により制御される。CVTECU49は、ハイブリッドECU70と通信すると共に、図示しない回転位置検出センサにより検出されるプライマリシャフト41の回転速度Niやセカンダリシャフト42の回転速度No等を受け取り、ハイブリッドECU70からの制御信号や回転速度Ni,No等に基づいてCVT40による変速比γが目標値に設定されるように油圧回路48への駆動信号を生成・出力する。また、CVTECU49は、必要に応じてCVT40に関連するデータをハイブリッドECU70に出力する。なお、CVT40は、油圧回路48を駆動源とするものに限られず、例えば電動アクチュエータといった油圧回路48以外の他のアクチュエータにより駆動されるものであってもよい。
遊星歯車機構50は、外歯歯車のサンギヤ(出力要素)51と、このサンギヤ51と同心円上に配置された内歯歯車のリングギヤ(第2の入力要素)52と、サンギヤ51と噛合すると共にリングギヤ52と噛合する複数のピニオンギヤ53と、複数のピニオンギヤ53を自転かつ公転自在に保持するプラネタリキャリア(第1の入力要素、以下、単に「キャリア」という)54とを有し、サンギヤ51とリングギヤ52とキャリア54とを回転要素として差動作用を行うものである。実施例において、遊星歯車機構50の第1の入力要素であるキャリア54には、車両後方(図中左側)に向けて延びる中空の第1キャリア軸54aと、車両前方(図中右側)に向けて延びる第2キャリア軸54bとが固定されている。また、遊星歯車機構50の第2の入力要素であるリングギヤ52の外周には外歯が形成されている。リングギヤ52の外歯は、カウンタギヤ56と噛合し、このカウンタギヤ56は、外歯歯車である回転要素としてのドライブギヤ55と噛合する。ドライブギヤ55は、実施例では、リングギヤ52と同数(同一モジュール)の外歯を有し、ドライブギヤ軸55aに固定されると共に当該ドライブギヤ軸55aを介してCVT40の出力軸であるセカンダリシャフト42に接続されている。これにより、遊星歯車機構50のリングギヤ52は、ドライブギヤ55と連動して当該ドライブギヤ55やCVT40のセカンダリシャフト42と同方向かつ同一の回転速度で回転可能となる。なお、リングギヤ52は、ベルトやチェーン等の無端要素を介してドライブギヤ55と連結されてもよく、これによりカウンタギヤ56を省略することができる。そして、遊星歯車機構50の出力要素であるサンギヤ51には、車両後方(図中左側)に向けて延びる駆動軸としてのサンギヤ軸51aが固定される。
図1に示すように、CVT40の中空のプライマリシャフト41は、クラッチC1を介してモータMG1のロータに固定された中空の回転軸MS1の一端(図中左端)と接続される。また、モータMG1の中空の回転軸MS1の他端(図中右端)は、クラッチC2を介して遊星歯車機構50の第2の入力要素であるキャリア54に固定された中空の第1キャリア軸54aと接続される。そして、遊星歯車機構50の第1の入力要素であるサンギヤ51に固定された駆動軸としてのサンギヤ軸51aは、第1キャリア軸54a、クラッチC2、モータMG1の回転軸MS1、クラッチC1、CVT40のプライマリシャフト41および油圧シリンダ45をこれらと同軸に貫通し、その先端はデファレンシャルギヤ57の入力要素に接続される。これにより、サンギヤ軸51aに出力された動力は、デファレンシャルギヤ57を介して最終的に駆動輪である左右の車輪(後輪)DWに出力されることになる。更に、遊星歯車機構50の第2の入力要素であるキャリア54に固定された第2キャリア軸54bは、クラッチC3を介してモータMG2のロータに固定された回転軸MS2の一端(図中左端)と接続され、モータMG2の回転軸MS2の他端(図中右端)は、クラッチC4およびダンパ28を介してエンジン22のクランクシャフト23と接続される。このように、実施例のハイブリッド自動車20では、車両前方から順番に、エンジン22、モータMG2、遊星歯車機構50(サンギヤ51)、モータMG1およびCVT40(プライマリシャフト41)が同軸に配置されることになる。
実施例のクラッチC1は、中空のプライマリシャフト41の端部(図中右端)に設けられた係合部とモータMG1の中空の回転軸MS1の一端(図中左端)に設けられた係合部との双方と係合可能であると共に図示しない電磁式、電気式あるいは油圧式のアクチュエータによりプライマリシャフト41やサンギヤ軸51aの軸方向に進退移動させられる環状の可動係合部材を含むドグクラッチとして構成されている。これにより、クラッチC1をオンすればCVT40のプライマリシャフト41とモータMG1の回転軸MS1とを接続することが可能となり、クラッチC1をオフすればプライマリシャフト41とモータMG1の回転軸MS1との接続を解除することができる。また、実施例のクラッチC2は、モータMG1の中空の回転軸MS1の他端(図中右端)に設けられた係合部と遊星歯車機構50のキャリア54から延びる中空の第1キャリア軸54aの一端(図中左端)に設けられた係合部との双方と係合可能であると共に図示しない電磁式、電気式あるいは油圧式のアクチュエータによりプライマリシャフト41や第1キャリア軸54aの軸方向に進退移動させられる環状の可動係合部材を含むドグクラッチとして構成されている。これにより、クラッチC2をオンすればモータMG1の回転軸MS1と第1キャリア軸54a(キャリア54)とを接続することが可能となり、クラッチC2をオフすればモータMG1の回転軸MS1と第1キャリア軸54aとの接続を解除することができる。更に、実施例のクラッチC3は、遊星歯車機構50のキャリア54から延びる第2キャリア軸54bの一端(図中右端)に設けられた係合部とモータMG2の回転軸MS2の一端(図中左端)に設けられた係合部との双方と係合可能であると共に図示しない電磁式、電気式あるいは油圧式のアクチュエータにより第2キャリア軸54bや回転軸MS2の軸方向に進退移動させられる環状の可動係合部材を含むドグクラッチとして構成されている。これにより、クラッチC3をオンすれば第2キャリア軸54b(キャリア54)とモータMG2の回転軸MS2とを接続することが可能となり、クラッチC3をオフすれば第2キャリア軸54bとモータMG2の回転軸MS2との接続を解除することができる。そして、実施例のクラッチC4は、モータMG2の回転軸MS2の他端(図中右端)に設けられた係合部とダンパ28に固定された軸の一端(図中左端)に設けられた係合部との双方と係合可能であると共に図示しない電磁式、電気式あるいは油圧式のアクチュエータにより回転軸MS2やクランクシャフト23の軸方向に進退移動させられる環状の可動係合部材を含むドグクラッチとして構成されている。これにより、クラッチC4をオンすれば、モータMG2の回転軸MS2とエンジン22のクランクシャフト23とを接続することが可能となり、クラッチC2をオフすれば、モータMG2の回転軸MS2とクランクシャフト23との接続を解除することができる。
これらのクラッチC1〜C4に加えて、実施例のハイブリッド自動車20には、CVT40のセカンダリシャフト42等を介して遊星歯車機構50の第2の入力要素であるリングギヤ52を回転不能に固定するためのブレーキB1が設けられている。実施例において、ブレーキB1は、ドライブギヤ軸55aの端部(図中右端)に設けられた係合部と図示しないトランスミッションケースに固定された係合部との双方と係合可能であると共に図示しない電磁式、電気式あるいは油圧式のアクチュエータによりセカンダリシャフト42の軸方向に進退移動させられる可動係合部材を含むドグクラッチとして構成されている。これにより、ブレーキB1をオンして可動係合部材をドライブギヤ軸55aの係合部とトランスミッションケース側の係合部との双方と係合させることにより、セカンダリシャフト42およびリングギヤ52を回転不能に固定すると共にCVT40をロックすることができる。なお、上述のように、クラッチC1〜C4およびブレーキB1をドグクラッチとして構成すれば、対象となる部材同士をより少ない損失で接続または切離することが可能となる。ただし、クラッチC1〜C4およびブレーキB1を油圧駆動される多板クラッチといった一般的な圧着式のクラッチまたはブレーキとして構成してもよいことはいうまでもない。
そして、ハイブリッドECU70は、CPU72を中心とするマイクロプロセッサとして構成されており、CPU72の他に処理プログラムを記憶するROM74、データを一時的に記憶するRAM76、図示しない入出力ポートおよび通信ポート等を備える。ハイブリッドECU70には、イグニッションスイッチ(スタートスイッチ)80からのイグニッション信号、シフトレバー81の操作位置であるシフトポジションSPを検出するシフトポジションセンサ82からのシフトポジションSP、アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc、ブレーキペダル85の踏み込み量(ストローク)を検出するブレーキペダルストロークセンサ86からのブレーキペダルストロークBS、車速センサ87からの車速Vが入力ポートを介して入力される。そして、ハイブリッドECU70は、上述したように、エンジンECU24やモータECU30、バッテリECU36、CVTECU49と通信ポートを介して接続されており、エンジンECU24やモータECU30、バッテリECU36、CVTECU49と各種制御信号やデータのやり取りを行なう。また、クラッチC1〜C4やブレーキB1の図示しないアクチュエータもハイブリッドECU70により制御される。
ここで、図2を参照しながら、無限変速機としてのCVT40、遊星歯車機構50およびドライブギヤ55により無限大変速比を設定する手順について説明する。なお、図2において、42,55軸は、CVT40のセカンダリシャフト42の回転速度Noおよびドライブギヤ55の回転速度Ndを、56軸は、カウンタギヤ56の回転速度を、R軸は、遊星歯車機構50のリングギヤ52の回転速度Nrを、C軸は、遊星歯車機構50のキャリア54の回転速度Ncを、S,51a軸は、遊星歯車機構50のサンギヤ51および駆動軸としてのサンギヤ軸51aの回転速度Nsをそれぞれ示す。また、これらの図面におけるρは、遊星歯車機構50のギヤ比(サンギヤ51の歯数/リングギヤ52の歯数)を示し、CVT40による変速比をγ(=Ni/Ns=Nc/Nd)とする。図2からわかるように、クラッチC1およびC2がオンされてCVT40のプライマリシャフト41とモータMG1の回転軸MS1と第1キャリア軸54a(キャリア54)とが接続されると共に、クラッチC3およびC4がオンされて第2キャリア軸54b(キャリア54)とモータMG2の回転軸MS2とエンジン22のクランクシャフト23とが接続されているときには、次式(1)〜(3)の回転速度に関する関係式が成立し、これらの式(1)〜(3)を整理すれば、次式(4)の関係式が得られる。式(4)は、遊星歯車機構50の第1の入力要素であるキャリア54と出力要素であるサンギヤ51(サンギヤ軸51a)との間の変速比αを示すものであり、かかる変速比αは、CVT40による変速比γが値1/(1+ρ)となるときに無限大となり、このときには、キャリア54が如何なる回転速度で回転していてもサンギヤ51は回転することなく停止し、遊星歯車機構50の各要素に作用するトルクは理論上無限大となる。従って、クラッチC1〜C4により遊星歯車機構50のキャリア54がCVT40のプライマリシャフト41とモータMG1とモータMG2とエンジン22(クランクシャフト23)とに接続されている状態では、エンジン22等からの動力によりキャリア54が回転していても、CVT40による変速比γが値1/(1+ρ)となるようにCVT40を制御すれば、駆動軸としてのサンギヤ軸51aの回転を停止させてハイブリッド自動車20を停止状態に維持することができる。
Nr = (1+ρ)・Nc-ρ・Ns …(1)
Nd = 1/γ・Nc …(2)
Nd = Nr …(3)
Nc / Ns =ρ・γ/[γ・(1+ρ)-1] = α …(4)
さて、上述のように構成されるハイブリッド自動車20の走行時には、ハイブリッドECU70によって運転者によるアクセルペダル83の踏み込み量に対応したアクセル開度Accと車速Vとに基づいて駆動軸としてのサンギヤ軸51aに出力すべき要求トルクが設定されると共に、要求トルクに基づくトルク(例えば、要求トルクをバッテリ35の入出力制限により制限した値であって基本的には要求トルクと一致する値)が駆動軸としてのサンギヤ軸51aに出力されるようにエンジン22の運転ポイントやモータMG1およびモータMG2に対するトルク指令、CVT40の目標変速比が設定される。こうして設定されるエンジン22の運転ポイントやモータMG1およびモータMG2に対するトルク指令、目標変速比を示す制御信号は、ハイブリッドECU70からエンジンECU24やモータECU30、CVTECU49へと送信される。各ECUは、それぞれハイブリッドECU70からの制御信号に従ってエンジン22やモータMG1およびMG2、CVT40を個別に制御する。また、ハイブリッドECU70は、必要に応じてクラッチC1〜C4およびブレーキB1をオンオフ制御する。そして、ハイブリッド自動車20における運転制御モードには、図3に示すように、後進走行モード、低速前進走行モード、中速移行モード、巡航走行モードおよび高速走行モード等が含まれ、その他に、高出力走行モードや、エンジン22を停止させると共にモータMG1およびMG2を用いて駆動軸としてのサンギヤ軸51aに動力を出力するモータ走行モードが含まれる。
次に、上記ハイブリッド自動車20の動作について具体的に説明する。ここでは、図4から図11を参照しながら、まず、エンジン22の運転を伴ってハイブリッド自動車20が走行するときの動作の一例について説明する。
ハイブリッド自動車20が停車している状態で運転者によりイグニッションスイッチ80がオンされると、モータ走行モードのもとでハイブリッド自動車20を発進させる場合を除き、ハイブリッドECU70の統括的な制御のもとエンジン22の始動処理が実行される。ここで、ハイブリッド自動車20の停車時には、図4に示すように、少なくともクラッチC3をオフすると共にクラッチC4をオンして互いに接続されたモータMG2およびエンジン22を第1キャリア軸54aから切り離すことにより、モータMG2によりエンジン22をクランキングして当該エンジン22を始動させることができる。こうしてエンジン22が始動されると、モータMG2の回転速度Nm2(およびエンジン22の回転速度Ne)が予め定められた発進時の回転速度になるようにモータMG2およびエンジン22が制御されると共に、クラッチC1およびC2がオンされた状態でキャリア54(第1および第2キャリア軸54a,54b)の回転速度Nc(プライマリシャフト41の回転速度NiおよびモータMG1の回転速度Nm1)が当該発進時の回転速度に一致すると共に駆動軸としてのサンギヤ軸51aが停止状態に維持されるようにモータMG1とCVT40とが制御される。そして、キャリア54とモータMG2とが回転同期した時点でクラッチC3がオンされて両者が接続される。なお、モータMG2やエンジン22の発進時における回転速度は、エンジン22を効率(燃費)よく運転して比較的大きなトルクを得ることができる回転速度とされると好ましい。以下、図5に示すように、クラッチC1〜C4のすべてがオンされて遊星歯車機構50の第1の入力要素としてのキャリア54と出力要素としてのサンギヤ51との間の変速比αが実質的に無限大に設定されると共に、キャリア54の回転速度Nc(回転速度Ne,Nm2)が発進時における回転速度に設定される状態をエンジン22の運転時における「ニュートラル状態」という。また、図6に、上記ニュートラル状態におけるCVT40、遊星歯車機構50およびドライブギヤ55の各回転要素の主に回転速度の力学的な関係を表す共線図の一例を太い実線で示す。同図からわかるように、エンジン22の運転時におけるニュートラル状態では、遊星歯車機構50の第2の入力要素であるリングギヤ52がドライブギヤ55と同方向に回転すると共に出力要素であるサンギヤ51(サンギヤ軸51a)の回転速度Nsが値0となることから、遊星歯車機構50の第1の入力要素であるキャリア54もドライブギヤ55やリングギヤ52と同方向に回転することになる。なお、ニュートラル状態では、必ずしもモータMG1およびMG2の双方にトルクを出力させる必要がないことから、モータMG1およびMG2の少なくとも何れか一方に対するトルク指令を値0に設定してモータMG1およびMG2の少なくとも何れか一方がエンジン22に連れ回されるようにしてもよい。
上述のようにしてエンジン22が始動されると共にニュートラル状態が設定されると、運転者は、シフトポジションを通常走行用のDポジションに設定すると共にアクセルペダル83を踏み込むことによりハイブリッド自動車20を「低速前進走行モード」のもとで前進方向に発進させることができる。また、運転者は、上記ニュートラル状態のもとでシフトポジションを後進走行用のRポジションに設定すると共にアクセルペダル83を踏み込むことによりハイブリッド自動車20を「後進走行モード」のもとで後進方向に発進させることができる。そこで、以下、「後進走行モード」について説明した後、「低速前進走行モード」、「中速移行モード」、「巡航走行モード」、「高速走行モード」および「高出力走行モード」について順番に説明する。
〔後進走行モード〕
ニュートラル状態のもとで運転者によりRポジションが設定されてアクセルペダル83が踏み込まれた場合、ハイブリッドECU70は、CVT40による変速比γが値1/(1+ρ)よりも小さくなるように、すなわちCVT40によってセカンダリシャフト42に接続されたドライブギヤ55と遊星歯車機構50のリングギヤ52とがより増速されるようにCVTECU49に制御信号を与える。CVTECU49は、ハイブリッドECU70からの制御信号に従ってCVT40のセカンダリプーリ44の溝幅が大きく(径が小さく)なったり、プライマリプーリ43の溝幅が小さく(径が大きく)なったりするように油圧回路48を制御する。これにより、図6において破線で示すように、ドライブギヤ55やリングギヤ52の回転速度Nd,Nrが高まり、遊星歯車機構50の出力要素であるサンギヤ51(サンギヤ軸51a)は、ドライブギヤ55やリングギヤ52の回転方向と逆方向に回転することになるので、駆動軸としてのサンギヤ軸51aを逆転させてハイブリッド自動車20を後進方向に走行させることが可能となる。そして、この際には、エンジン22等からキャリア54に出力されるトルクが増幅されて駆動軸としてのサンギヤ軸51aに出力されることになる。このように、実施例のハイブリッド自動車20では、その後進走行に際して、効率よくエンジン22を運転しながら駆動軸としてのサンギヤ軸51aに大きなトルクを出力することが可能となる。従って、実施例のハイブリッド自動車20では、後進走行時のエネルギ効率やトルク特性をより向上させることができる。もちろん、後進走行モードのもとでも、例えば運転者によりアクセルペダル83が大きく踏み込まれて大きなトルクが要求されたような場合等には、エンジン22をアシストするようにモータMG1およびMG2の少なくとも何れかに駆動トルクを出力させてもよい。
〔低速前進走行モード〕
ニュートラル状態のもとで運転者によりDポジションが設定されてアクセルペダル83が踏み込まれた場合、ハイブリッドECU70は、CVT40による変速比γが値1/(1+ρ)よりも大きくなるように、すなわちCVT40によってセカンダリシャフト42に接続されたドライブギヤ55と遊星歯車機構50のリングギヤ52とがより減速されるようにCVTECU49に制御信号を与える。CVTECU49は、ハイブリッドECU70からの制御信号に従ってCVT40のセカンダリプーリ44の溝幅が小さく(径が大きく)なったり、プライマリプーリ43の溝幅が大きく(径が小さく)なったりするように(図5における白抜矢印参照)油圧回路48を制御する。これにより、図6において細い実線で示すように、ドライブギヤ55やリングギヤ52の回転速度Nd,Nrが低下する一方、遊星歯車機構50の出力要素であるサンギヤ51(サンギヤ軸51a)のドライブギヤ55やリングギヤ52と同方向における回転速度Nsが高まることになるので、駆動軸としてのサンギヤ軸51aを正転させてハイブリッド自動車20を前進方向に発進させることが可能となる。そして、この際には、エンジン22等からキャリア54に出力されるトルクが増幅されて駆動軸としてのサンギヤ軸51aに出力されることになる。このように、実施例のハイブリッド自動車20では、前進方向への発進に際して、効率よくエンジン22を運転しながら駆動軸としてのサンギヤ軸51aに大きなトルクを出力することが可能となる。従って、実施例のハイブリッド自動車20では、発進時のエネルギ効率やトルク特性をより向上させることができる。また、発進後には、変速比γがより大きくなるようにCVT40を制御することにより、駆動軸としてのサンギヤ軸51aに大きなトルクを出力しながらハイブリッド自動車20を前進方向に加速させていくことができる。更に、低速前進走行モードのもと、CVT40の変速比γを調整しつつエンジン22の運転ポイントを変更してエンジン22からのトルクを増加させたり、モータMG1およびMG2の少なくとも何れかにエンジン22をアシストするように駆動トルクを出力させたりすれば、低速前進走行モードにおけるトルク特性をより一層向上させることができる。このような低速前進走行モードは、例えばCVT40による変速比γが所定値まで低下したことを含む第1の移行条件が成立するまで継続され、当該移行条件が成立すると、ハイブリッド自動車20の運転モードは、低速前進走行モードから中速移行モードへと移行する。
〔中速移行モード〕
運転者によるアクセルペダル83の操作等に応じて上記第1の移行条件が成立すると、ハイブリッドECU70は、モータMG1とキャリア54(第1キャリア軸54a)との接続が解除されるようにクラッチC2のアクチュエータに制御信号を与える。こうしてクラッチC2がオフされてモータMG1とキャリア54との接続が解除されれば、モータMG1によりプライマリシャフト41をキャリア54とは独立に回転させることが可能となり、ハイブリッドECU70は、CVT40による変速比γが上記所定値に保たれると共にモータMG1の回転速度Nm1(回転速度Ni)が低下し、かつ要求トルクに基づくトルクが駆動軸としてのサンギヤ軸51aに出力されるようにエンジン22の運転ポイントやモータMG1およびモータMG2のトルク指令、CVT40の目標変速比を設定する。また、エンジンECU24やモータECU30、CVTECU49は、それぞれハイブリッドECU70からの制御信号に従ってエンジン22やモータMG1およびMG2、CVT40を制御する。これにより、図7において破線で示すようにモータMG1の減速に伴って、CVT40を介してモータMG1に接続されたドライブギヤ55や遊星歯車機構50のリングギヤ52の回転速度Nd,Nrが低下していくことから、サンギヤ51(サンギヤ軸51a)の回転速度Ns(車速V)を正転側(前進側)に増加させながら、同図において実線で示すようにモータMG1を一旦停止させることによりCVT40のセカンダリシャフト42に接続されたドライブギヤ55や遊星歯車機構50のリングギヤ52の回転速度Nd,Nrを値0にすることができる。なお、かかる中速移行モードのもとでは、モータMG1は、図7において下向きのトルクを出力することから発電を実行し、モータMG1により発電された電力は、主にバッテリ35の充電に供され、必要に応じてモータMG2の駆動用に供される。また、中速移行モードのもとでハイブリッド自動車20を減速させる場合、ハイブリッドECU70は、CVT40による変速比γが上記所定値に保たれると共にモータMG1の回転速度Nm1(回転速度Ni)が高まり(加速され)、かつ要求トルクに基づくトルクが駆動軸としてのサンギヤ軸51aに出力されるようにエンジン22の運転ポイントやモータMG1およびモータMG2のトルク指令、CVT40の目標変速比を設定する。
〔巡航走行モード〕
上述の中速移行モードのもとで、CVT40のプライマリシャフト41に接続されたモータMG1が停止されると共にCVT40のセカンダリシャフト42に接続されたドライブギヤ55と遊星歯車機構50のリングギヤ52との回転が停止されると、図8に示すように、ブレーキB1をオンしてセカンダリシャフト42およびリングギヤ52を回転不能に固定すると共にCVT40をロックすることができる。そして、このように遊星歯車機構50のリングギヤ52を回転不能に固定すれば、図7において実線で示すように、CVT40を用いることなくエンジン22等によりキャリア54に出力されるトルクを遊星歯車機構50のサンギヤ51すなわち駆動軸としてのサンギヤ軸51aに伝達することが可能となる。このため、実施例のハイブリッド自動車20では、中速移行モードのもとでモータMG1の回転が停止される前の走行状態や運転者の要求(例えばアクセル開度Accやその変動度合等)が第2の移行条件を満たしている場合、モータMG1が停止されたままハイブリッドECU70によりブレーキB1がオンされてCVT40がロックされ、運転モードが中速移行モードから巡航移行モードへと移行する。かかる巡航移行モードのもとで、ハイブリッドECU70は、要求トルクに基づくトルクが駆動軸としてのサンギヤ軸51aに出力されるようにエンジン22の運転ポイントやモータMG2に対するトルク指令を設定し、エンジンECU24やモータECU30は、それぞれハイブリッドECU70からの制御信号に従ってエンジン22やモータMG2を制御する。これにより、巡航走行モードのもとでは、CVT40での損失を無くしながらエンジン22等によりキャリア54に出力される動力を比較的効率よく駆動軸としてのサンギヤ軸51aに伝達することができるので、エネルギ効率をより向上させることが可能となる。なお、かかる巡航走行モードでは、バッテリ35の残容量を確保する観点から、基本的にはエンジン22を効率よく運転可能な運転ポイントで運転して当該エンジン22のみに動力を出力させてもよく、必要に応じてエンジン22をアシストするようにモータMG2に駆動トルクを出力させてもよい。また、モータMG2にエンジン22からの動力の一部(あるいはすべて)を用いた発電を実行させてモータMG2により発電された電力でバッテリ35を充電してもよい。
〔高速走行モード〕
上述の中速移行モードのもとでモータMG1が停止されると共に遊星歯車機構50のリングギヤ52の回転が停止された際に上記第2の移行条件とは異なる第3の移行条件が成立している場合や、巡航走行モードのもとで運転者により緩やかな加速要求がなされたような場合、ハイブリッド自動車20の運転モードは、中速移行モードまたは巡航走行モードから高速走行モードへと移行する。ハイブリッド自動車20の運転モードを高速走行モードへと移行させる場合、ハイブリッドECU70は、ブレーキB1がオンされていれば遊星歯車機構50のリングギヤ52やCVT40のロックが解除されるようにブレーキB1のアクチュエータに制御信号を与える。こうしてブレーキB1(およびクラッチC2)がオフされた状態で(図9参照)、ハイブリッドECU70は、モータMG1が上述の低速前進走行モード等の実行時とは逆方向すなわち遊星歯車機構50のキャリア54とは逆方向に回転すると共に要求トルクに基づくトルクが駆動軸としてのサンギヤ軸51aに出力されるようにエンジン22の運転ポイントやモータMG1およびMG2に対するトルク指令、CVT40の目標変速比を設定する。また、エンジンECU24やモータECU30、CVTECU49は、それぞれハイブリッドECU70からの制御信号に従ってエンジン22やモータMG1およびMG2、CVT40を制御する。すなわち、クラッチC2によりモータMG1とキャリア54との接続が解除されている状態では、モータMG1によりプライマリシャフト41をキャリア54とは逆方向に回転させることが可能であり、図10において実線で示すように、モータMG1の回転速度Nm1(回転速度Ni)をキャリア54とは逆方向(負側)に高くしていけば、CVT40のセカンダリシャフト42に接続されたドライブギヤ55および遊星歯車機構50のリングギヤ52をキャリア54とは逆方向に回転させると共にその回転速度NNd,Nr等を負側に高くしていくことができる。加えて、図9において白抜矢印で示すように、CVT40のプライマリプーリ43の溝幅を小さくしたり、セカンダリプーリ44の溝幅を大きくしたりしてCVT40による変速比γをより小さくしていけば、図10において二点鎖線で示すように、ドライブギヤ55や遊星歯車機構50のリングギヤ52の回転速度Nd,Nrをより一層負側に高くすることができる。そして、ドライブギヤ55や遊星歯車機構50のリングギヤ52のキャリア54とは逆方向における回転速度Nd,Nrが高くなればなるほど、遊星歯車機構50の第1の入力要素であるキャリア54と出力要素であるサンギヤ51すなわち駆動軸としてのサンギヤ軸51aとの間の変速比αをより小さく(増速比をより大きく)してサンギヤ軸51aの正転側における回転速度すなわち車速Vをより高くすることが可能となる。かかる高速走行モードのもとでは、特に非常に高い速度で巡航する場合のように駆動軸としてのサンギヤ軸51aに大きなトルクを出力する必要が少ないとき等に、バッテリ35の残容量を確保する観点から、モータMG2にエンジン22からの動力の一部(あるいはすべて)を用いた発電を実行させてモータMG2により発電された電力でモータMG1を駆動したり、バッテリ35を充電したりしてもよい。もちろん、高速走行モードのもとでも、バッテリ35の残容量に余裕があるような場合には、バッテリ35からの電力によりモータMG1を駆動すると共に、エンジン22を効率よく運転可能な運転ポイントで運転し、常時あるいは必要に応じてエンジン22をアシストするようにモータMG2に駆動トルクを出力させてもよい。
〔高出力走行モード〕
上述の中速移行モードのもとでモータMG1が停止されると共に遊星歯車機構50のリングギヤ52の回転が停止された際に上記第2および第3の移行条件とは異なる第4の移行条件が成立した場合や、巡航走行モードのもとで運転者により急峻な加速要求がなされたような場合、ハイブリッド自動車20の運転モードは、中速移行モードまたは巡航走行モードから高出力走行モードへと移行する。ハイブリッド自動車20の運転モードを高出力走行モードへと移行させる場合、ハイブリッドECU70は、要求トルクに基づくトルクが駆動軸としてのサンギヤ軸51aに出力されるようにエンジン22の運転ポイントやモータMG1およびMG2に対するトルク指令を設定しつつ、ブレーキB1がオンされていなければ遊星歯車機構50のリングギヤ52やCVT40がロックされるようにブレーキB1のアクチュエータに制御信号を与え、ブレーキB1がオンされた状態で更にモータMG1がCVT40から切り離されるようにクラッチC1に制御信号を与える。こうしてブレーキB1がオンされると共にクラッチC1がオフされると、ハイブリッドECU70は、モータMG1がキャリア54と回転同期すると共に要求トルクに基づくトルクが駆動軸としてのサンギヤ軸51aに出力されるようにエンジン22の運転ポイントやモータMG1およびMG2に対するトルク指令を設定する。そして、ハイブリッドECU70は、モータMG1がキャリア54と回転同期した段階でモータMG1の回転軸MS1と第1キャリア軸54aとが接続されるようにクラッチC2に制御信号を与え、図11に示すようにクラッチC2がオンされた後には、要求トルクに基づくトルクが駆動軸としてのサンギヤ軸51aに出力されるようにエンジン22の運転ポイントやモータMG1およびMG2に対するトルク指令を設定する。この間、エンジンECU24やモータECU30は、それぞれハイブリッドECU70からの制御信号に従ってエンジン22やモータMG1およびMG2を制御する。これにより、高出力走行モードのもとでは、CVT40での損失を無くしながらエンジン22とモータMG1およびMG2とのすべてからキャリア54に出力される動力を遊星歯車機構50を介して駆動軸としてのサンギヤ軸51aに伝達することができるので、ハイブリッド自動車20の高速走行時における加速性能をより向上させることが可能となる。なお、図11に示すようにクラッチC1がオフされると共にクラッチC2〜C4がオンされた状態では、上述のようにモータMG1およびMG2の双方にエンジン22をアシストするように駆動トルクを出力させる代わり、モータMG2にエンジン22からの動力の一部を用いた発電を実行させてモータMG2により発電された電力でモータMG1を駆動してもよい。
上述のように、実施例のハイブリッド自動車20では、CVT40のセカンダリシャフト42に接続されたドライブギヤ55や遊星歯車機構50のリングギヤ52の回転速度Nd,Nrを値0を含む範囲内で連続的に変化させることで、駆動軸としてのサンギヤ軸51aの正転および逆転すなわちハイブリッド自動車20の前進方向および後進方向への走行を可能とすると共に、前進走行時におけるキャリア54すなわちエンジン22やモータMG1およびMG2と駆動軸としてのサンギヤ軸51aとの間の変速比幅をより大きくとることができる。なお、ここまで、図4〜図11を参照しながらハイブリッド自動車20を前進方向に増速させていく時の動作を説明したが、高速走行しているハイブリッド自動車20を減速させていくときには、基本的に上記手順とは逆の手順に従ってエンジン22やモータMG1,MG2、CVT40、クラッチC1〜C4およびブレーキB1を制御すればよい。
〔モータ走行モード〕
続いて、エンジン22を停止した状態で駆動軸としてのサンギヤ軸51aにモータMG1およびMG2の少なくとも何れか一方から動力を出力しながらハイブリッド自動車20を走行させるモータ走行モードについて説明する。
実施例のハイブリッド自動車20では、図12に示すようにクラッチC1〜C3がオンされると共にクラッチC4がオフされてモータMG2とエンジン22のクランクシャフト23との接続が解除された状態で、モータMG1およびMG2の少なくとも何れか一方がキャリア54に動力を出力するようにしてキャリア54の回転速度Ncを所定値に設定すると共に、CVT40を用いてキャリア54と遊星歯車機構50のサンギヤ51(サンギヤ軸51a)との間の変速比αを実質的に無限大に設定することにより、モータ運転モードにおける「ニュートラル状態」を設定することができる。そして、かかるニュートラル状態のもとで変速比γが値1/(1+ρ)よりも小さくなるようにCVT40を制御すれば、駆動軸としてのサンギヤ軸51aを逆転させてハイブリッド自動車20を後進方向に走行させることが可能となる(後進モータ走行モード)。そして、この際には、モータMG1およびMG2の少なくとも何れかからキャリア54に出力されるトルクが増幅されて駆動軸としてのサンギヤ軸51aに出力されることになり、モータMG1およびMG2の双方がキャリア54に動力を出力するようにすれば、モータ走行モードのもとでの後進方向への走行に際して、駆動軸としてのサンギヤ軸51aにより大きなトルクを出力することが可能となる。また、当該ニュートラル状態のもとで変速比γが値1/(1+ρ)よりも大きくなるようにCVT40を制御すれば、駆動軸としてのサンギヤ軸51aを正転させてハイブリッド自動車20を前進方向に走行させることが可能となる(低速前進モータ走行モード)。そして、この際には、モータMG1およびMG2の少なくとも何れかからキャリア54に出力されるトルクが増幅されて駆動軸としてのサンギヤ軸51aに出力されることになり、モータMG1およびMG2の双方がキャリア54に動力を出力するようにすれば、モータ走行モードのもとでの前進方向への走行(発進)に際して、駆動軸としてのサンギヤ軸51aにより大きなトルクを出力することが可能となる。
また、図12に示す状態で(低速前進モータ走行モードのもとで)走行している最中に、モータMG2が要求トルクに基づくトルクを駆動軸としてのサンギヤ軸51aに出力するようにすれば、クラッチC2をオフしてモータMG1と第1キャリア軸54a(キャリア54)との接続を解除すると共にモータMG1の回転速度Nm1(回転速度Ni)を低下させてCVT40のセカンダリシャフト42に接続されたドライブギヤ55と遊星歯車機構50のリングギヤ52との回転を停止させることができる。そして、モータMG1が停止すると共にドライブギヤ55や遊星歯車機構50のリングギヤ52の回転が停止した時点で、図13に示すようにブレーキB1をオンしてセカンダリシャフト42およびリングギヤ52を回転不能に固定すると共にCVT40をロックすれば、CVT40での損失を無くしながらモータMG2によりキャリア54に出力される動力を比較的効率よく駆動軸としてのサンギヤ軸51aに伝達することが可能となる(巡航モータ走行モード)。また、図13に示す状態で(巡航モータ走行モードのもとで)走行している最中に、モータMG2が要求トルクに基づくトルクを駆動軸としてのサンギヤ軸51aに出力するようにしながら、クラッチC1をオフしてモータMG1をCVT40から切り離すと共にモータMG1をキャリア54と回転同期させれば、図14に示すように、クラッチC2をオンしてモータMG1とキャリア54(第1キャリア軸54a)とを接続することが可能となる。これにより、クラッチC2がオンされた後には、CVT40での損失を無くしながらモータMG1およびMG2の双方からキャリア54に出力される動力を駆動軸としてのサンギヤ軸51aに伝達することが可能となり、モータ走行モードにおけるハイブリッド自動車20の加速性能や高速走行性能を向上させることができる(高出力モータ走行モード)。更に、クラッチC1およびC3がオンされると共にクラッチC2,C4およびブレーキB1がオフされた状態(図示省略)では、エンジン22の運転時における高速走行モードと同様に、モータMG1の回転速度Nm1(回転速度Ni)をキャリア54の回転方向とは逆方向に高くすると共にCVT40の変速比γを適宜変化させていくことにより、遊星歯車機構50のキャリア54と出力要素であるサンギヤ51すなわち駆動軸としてのサンギヤ軸51aとの間の変速比αをより小さく(増速比をより大きく)してサンギヤ軸51aの正転側における回転速度すなわち車速Vをより高くすることも可能である(高速モータ走行モード)。そして、このようなモータ走行モードが実行される間、常にクラッチC4がオフされてモータMG2とエンジン22のクランクシャフト23との接続が解除されることから、エンジン22を連れ回すことなく、モータMG1およびMG2の少なくとも何れかからの動力を駆動軸としてのサンギヤ軸51aに出力することが可能となる。
加えて、実施例のハイブリッド自動車20では、図15および図16に示すようにクラッチC3をオフしてキャリア54(第2キャリア軸54b)とモータMG2との接続を解除すれば、エンジン22およびモータMG2を同時にモータMG1やCVT40等から切り離すことができる。これにより、クラッチC3がオフされてキャリア54とモータMG2との接続が解除されるときに、図15に示すように、クラッチC1およびC2がオンされると共にブレーキB1がオフされていれば、モータMG1のみからの動力を遊星歯車機構50のキャリア54に付与すると共にCVT40およびドライブギヤ55を介して遊星歯車機構50のリングギヤ52に付与してサンギヤ51すなわち駆動軸としてのサンギヤ軸51aに伝達することが可能となる。また、クラッチC3がオフされてキャリア54とモータMG2との接続が解除されるときに、図16に示すように、クラッチC1がオフされると共にクラッチC2およびブレーキB1がオンされていれば、モータMG1のみからキャリア54に出力される動力を遊星歯車機構50を介して駆動軸としてのサンギヤ軸51aに伝達することが可能となる。そして、クラッチC3がオフされると共にクラッチC4がオンされた状態でモータMG2にエンジン22からの動力のすべてを用いて発電させ、得られた電力を用いてモータMG1を駆動したり、得られた電力を用いてバッテリ35を充電して当該バッテリ35からの電力によりモータMG1を駆動したりすることにより、ハイブリッド自動車20をいわゆるシリーズ式のハイブリッド自動車として機能させることが可能となる。
なお、モータ走行モードのもとで停止されているエンジン22を始動させる際には、クラッチC3がオンされていれば、当該クラッチC3がオフされてキャリア54(第1キャリア軸54a)とモータMG2との接続が解除される。更に、モータMG2が運転されていれば、回転速度Nm2が低下するようにモータMG2が制御され、一旦モータMG2が停止させられる。次いで、モータMG2が停止した段階でクラッチC4がオンされてモータMG2とエンジン22のクランクシャフト23とが接続され、駆動軸としてのサンギヤ軸51aに要求トルクに基づくトルクが出力されるようにモータMG1(およびCVT40)が制御されると共にバッテリ35からの電力を利用してエンジン22をクランキングするようにモータMG2が制御される。そして、モータMG2によるクランキングの開始後の所定のタイミングで燃料噴射制御や点火制御が開始され、エンジン22の完爆が確認されると、駆動軸としてのサンギヤ軸51aに要求トルクに基づくトルクが出力されると共にキャリア54とモータMG2(クランクシャフト23)とが回転同期するようにエンジン22とモータMG1およびMG2と(CVT40と)が制御される。その後、キャリア54とモータMG2とが回転同期した時点でクラッチC3がオンされ、こうしてクラッチC3がオンされると、エンジン22の運転を伴ってハイブリッド自動車20を走行させるための制御が開始されることになる。
〔その他の動作〕
実施例のハイブリッド自動車20は、2体のモータMG1およびMG2を有するものであるから、走行中に運転者によりブレーキペダル85が踏み込まれたときには、モータMG1およびMG2の少なくとも何れかの回生により運動エネルギを電気エネルギに変換することで駆動軸としてのサンギヤ軸51aに制動力(制動トルク)を出力することができる。そして、少なくともクラッチC1〜C3がオンされた状態で運転者によりブレーキペダル85が踏み込まれたときにクラッチC2をオフしてモータMG1とキャリア54(第1キャリア軸54a)との接続を解除すれば、モータMG1とモータMG2とを独立に制御して両モータMG1およびMG2により効率よくエネルギを回収することが可能となる。すなわち、運転者によりブレーキペダル85が踏み込まれたときにクラッチC2をオフすると共にCVT40を用いてモータMG1の回転速度Nm1を高く保つことで、通常であれば回生制動が実行し得なくなる程度にまでサンギヤ軸51aの回転速度Nsすなわち車速Vが低下した時点においてもモータMG1によるエネルギ回収を続行し、それによりハイブリッド自動車20のエネルギ効率を向上させることが可能となる。なお、クラッチC4によりモータMG2とエンジン22のクランクシャフト23とが接続された状態で運転者によりブレーキペダル85が踏み込まれたときには、クラッチC4をオフしてモータMG2とエンジン22のクランクシャフト23との接続を解除してもよく、クラッチC4をオンしたままでエンジン22のフリクションによる制動トルク(エンジンブレーキ)を利用してもよい。
以上説明したように、実施例のハイブリッド自動車20において、CVT40、遊星歯車機構50およびドライブギヤ55は、クラッチC1およびC2によりCVT40のプライマリシャフト41と遊星歯車機構50の第1の入力要素であるキャリア54とが接続されているときに、互いに協働して、いわゆる無限変速機(IVT)を構成し、エンジン22とモータMG1およびMG2との少なくとも何れかからの動力をキャリア54に付与すると共にCVT40およびドライブギヤ55を介して遊星歯車機構50の第2の入力要素であるリングギヤ52に付与することでトルク循環を生じさせ、それにより遊星歯車機構50のキャリア54と出力要素であるサンギヤ51すなわち駆動軸としてのサンギヤ軸51aとの間の変速比αを理論上無限大に設定可能とする。このように、CVT40を用いて遊星歯車機構50のキャリア54とサンギヤ51との間の変速比αを実質的に無限大に設定することにより、当該キャリア54に接続されたエンジン22等が例えば効率を向上させることができる任意の回転速度で運転されていてもサンギヤ51およびサンギヤ軸51aの回転を停止させておくことができる。そして、この状態でCVT40の変速状態を変更すれば、サンギヤ51およびサンギヤ軸51aを正転側または逆転側に回転させることが可能となり、特に駆動軸としてのサンギヤ軸51aの回転速度Nsすなわち車速Vが低いときにエンジン22とモータMG1およびMG2との少なくとも何れかからのトルクを増幅してサンギヤ軸51aに大きなトルクを効率よく出力することができる。すなわち、遊星歯車機構50のキャリア54とサンギヤ51との間の変速比αが実質的に無限大である状態でCVT40の変速状態を増速側へと変化させれば、CVT40のセカンダリシャフト42に接続されたドライブギヤ55と遊星歯車機構50のリングギヤ52との回転速度Nd,Nrが高まり、それに伴って遊星歯車機構50のサンギヤ51に大きなトルクを出力しつつ当該サンギヤ51をドライブギヤ55やリングギヤ52の回転方向とは逆方向に回転させること、すなわち駆動軸としてのサンギヤ軸51aに大きなトルクを出力しつつサンギヤ軸51aを逆転させてハイブリッド自動車20を後進方向に走行させることが可能となる(後進走行モード、後進モータ走行モード)。また、上記変速比αが実質的に無限大に設定されている状態でCVT40の変速状態を減速側へと変化させれば、CVT40のセカンダリシャフト42に接続されたドライブギヤ55と遊星歯車機構50のリングギヤ52との回転速度Nd,Nrを低下させ、それに伴って遊星歯車機構50のサンギヤ51に大きなトルクを出力しつつ当該サンギヤ51を上記ドライブギヤ55やリングギヤ52の回転方向と同方向に回転させると共にその回転速度Nsを高くすること、すなわち駆動軸としてのサンギヤ軸51aに大きなトルクを出力しつつサンギヤ軸51aを正転側に回転させると共にその車速Vを高くしながらハイブリッド自動車20を前進方向に走行させることが可能となる(低速前進走行モード、低速前進モータ走行モード)。更に、クラッチC2がオフされてCVT40のプライマリシャフト41とキャリア54との接続が解除されれば、モータMG1によりCVT40のプライマリシャフト41を介してセカンダリシャフト42やドライブギヤ55を遊星歯車機構50のキャリア54とは無関係に回転させることが可能となる。そして、この状態で、CVT40のプライマリシャフト41に接続されたモータMG1の回転を制御し、更にはCVT40の変速状態を適宜変化させることにより、遊星歯車機構50のキャリア54すなわちエンジン22やモータMG1等と遊星歯車機構50のサンギヤ51およびサンギヤ軸51aとの間の変速比をより小さく(増速比をより大きく)することが可能となる。すなわち、CVT40のプライマリシャフト41と遊星歯車機構50のキャリア54との接続が解除された状態でモータMG1を減速させたり、モータMG1の回転速度Nm1をそれまでとは逆方向すなわち遊星歯車機構50のキャリア54とは逆方向に高くしたりすれば、CVT40のセカンダリシャフト42に接続されたドライブギヤ55や遊星歯車機構50のリングギヤ52をキャリア54とは逆方向に回転させると共にそれぞれの回転速度Nd,Nrを高くしていくことができる(中速移行モード、高速走行モード、高速モータ走行モード)。この際に、更にCVT40の変速状態を増速側に変化させていけば、ドライブギヤ55やリングギヤ52の回転速度Nd,Nrをキャリア54とは逆方向より一層高くすることができる。そして、ドライブギヤ55やリングギヤ52のキャリア54とは逆方向における回転速度Nd,Nrが高くなればなるほど、遊星歯車機構50のキャリア54とサンギヤ51(サンギヤ軸51a)との間の変速比αをより小さく(増速比をより大きく)して駆動軸としてのサンギヤ軸51aの正転側における回転速度Nsすなわち車速Vをより高くすることが可能となる。このように、実施例のハイブリッド自動車20では、遊星歯車機構50のキャリア54にエンジン22とモータMG1およびMG2とCVT40のプライマリシャフト41とが接続されているときには、駆動軸としてのサンギヤ軸51aに要求トルクに基づくトルクが出力されるようにエンジン22とモータMG1およびMG2とCVT40とが制御される。また、遊星歯車機構50のキャリア54にエンジン22およびモータMG2が接続されると共にキャリア54とCVT40のプライマリシャフト41との接続が解除されているときには、モータMG1が減速するか、またはモータMG1が遊星歯車機構50のキャリア54とは逆方向に回転すると共に駆動軸としてのサンギヤ軸51aに要求トルクに基づくトルクが出力されるようにエンジン22とモータMG1およびMG2とCVT40とが制御される。この結果、ハイブリッド自動車20では、エンジン22やモータMG1,MG2と駆動軸としてのサンギヤ軸51aとの間の変速比幅をより大きくして、サンギヤ軸51aの回転速度Nsが低い低速域から当該回転速度が高まる高速域までの極めて広範な運転領域においてエネルギ効率やトルク特性を向上させることができる。
また、実施例のハイブリッド自動車20では、遊星歯車機構50がエンジン22とCVT40との間に配置されると共に、CVT40のプライマリシャフト41、モータMG1回転軸MS1、クラッチC1およびC2がそれぞれ中空に形成され、駆動軸としてのサンギヤ軸51aは、プライマリシャフト41とモータMG1の回転軸MS1とクラッチC1およびC2とを貫通するように配置される。これにより、遊星歯車機構50のキャリア54および駆動軸としてのサンギヤ軸51aをエンジン22やCVT40のプライマリシャフト41、モータMG1,MG2等と同軸に配置することが可能となるので、エンジン22、モータMG1およびMG2、CVT40、遊星歯車機構50、ドライブギヤ55等からなる動力出力装置をコンパクトで搭載性に優れて主に後輪を駆動して走行するハイブリッド自動車20に好適なものとすることができる。そして、遊星歯車機構50は、第1の入力要素としてのキャリア54と、当該キャリア54により保持されたピニオンギヤ53と噛合する第2の入力要素としてのリングギヤ52と、キャリア54により保持されたピニオンギヤ53と噛合する出力要素としてのサンギヤ51とを含むシングルピニオン式遊星歯車機構を用いれば、部品点数の増加を抑制しつつハイブリッド自動車20をコンパクトに構成することが可能となる。ただし、遊星歯車機構50は、ダブルピニオン式のものであってもよい。
更に、実施例のハイブリッド自動車20は、遊星歯車機構50のリングギヤ52を回転不能に固定可能なブレーキB1を有しており、クラッチC3およびC4により遊星歯車機構50のキャリア54にエンジン22およびモータMG2等が接続され、クラッチC2によりキャリア54とCVT40のプライマリシャフト41との接続が解除され、かつブレーキB1により遊星歯車機構50のリングギヤ52が回転不能に固定されているときに、駆動軸としてのサンギヤ軸51aに要求トルクに基づくトルクが出力されるようにエンジン22とモータMG2との少なくとも何れか一方が制御される(巡航走行モード、巡航モータ走行モード)。このように、CVT40のセカンダリシャフト42に接続されたドライブギヤ55と遊星歯車機構50のリングギヤ52の回転速度Nsを値0にすると共に、ブレーキB1により遊星歯車機構50のリングギヤ52(CVT40のセカンダリシャフト42)を回転不能に固定すれば、CVT40を用いることなく、エンジン22とモータMG2との少なくと何れかからのトルクをドライブギヤ55および遊星歯車機構50を介して駆動軸としてのサンギヤ軸51aに伝達することが可能となる(巡航走行モード、巡航モータ走行モード)。これにより、CVT40での損失を無くしながらエンジン22やモータMG2からの動力を効率よく駆動軸としてのサンギヤ軸51aに伝達することができるので、ハイブリッド自動車20におけるエネルギ効率をより向上させることが可能となる。
また、実施例のハイブリッド自動車20は、CVT40のプライマリシャフト41とモータMG1の回転軸MS1との接続および当該接続の解除を実行するクラッチC1と、モータMG1の回転軸MS1と遊星歯車機構50のキャリア54との接続および当該接続の解除を実行するクラッチC2とを含む。これにより、クラッチC2によりモータMG1の回転軸MS1とキャリア54との接続を解除すれば、CVT40のプライマリシャフト41と遊星歯車機構50のキャリア54との接続を解除することができる。更に、クラッチC1によりCVT40のプライマリシャフト41とモータMG1の回転軸MS1とが接続されると共にクラッチC2によりモータMG1の回転軸MS1と遊星歯車機構50のキャリア54との接続が解除された状態で、モータMG1を減速させてCVT40のセカンダリシャフト42の回転を停止させれば、ブレーキB1により遊星歯車機構50のリングギヤ52を回転不能に固定することができる。そして、クラッチC1によりCVT40のプライマリシャフト41とモータMG1の回転軸MS1との接続が解除され、クラッチC2によりモータMG1の回転軸MS1と遊星歯車機構50のキャリア54とが接続され、かつブレーキB1により遊星歯車機構50のリングギヤ52が回転不能に固定された状態で、要求トルクに基づくトルクが駆動軸としてのサンギヤ軸51aに出力されるようにエンジン22とモータMG1およびMG2とを、あるいはモータMG1およびMG2を制御すれば、エンジン22とモータMG1およびMG2とのすべて、あるいはモータMG1およびMG2の双方からの動力を遊星歯車機構50を介して駆動軸に伝達することが可能となる。これにより、CVT40での損失を無くしながらエンジン22やモータMG1,MG2からの動力を効率よくサンギヤ軸51aに伝達すると共に、ハイブリッド自動車20における性能、特に高速走行時の加速性能等をより一層向上させることが可能となる。
更に、実施例のハイブリッド自動車20は、遊星歯車機構50のキャリア54とモータMG2の回転軸MS2との接続および当該接続の解除を実行するクラッチC3を有している。これにより、クラッチC1およびC2によりCVT40のプライマリシャフト41と遊星歯車機構50のキャリア54とが接続されると共にクラッチC2により遊星歯車機構50のキャリア54とモータMG2およびエンジン22との接続が解除された状態では、モータMG1のみからの動力をキャリア54に付与すると共にCVT40およびドライブギヤ55を介して遊星歯車機構50のリングギヤ52に付与して、要求トルクに基づくトルクを駆動軸としてのサンギヤ軸51aに伝達することが可能となる。また、いわゆる2モータ−1エンジン式の動力出力装置を含む実施例のハイブリッド自動車20は、モータMG2とエンジン22との接続および当該接続の解除を実行するクラッチC4を有している。これにより、クラッチC4によりモータMG2とエンジン22との接続を解除することで、エンジン22の運転を停止したときに当該エンジン22の連れ回しを回避することが可能となる。また、上記実施例のハイブリッド自動車20では、モータMG1およびMG2の一方の負荷が他方に比べて過大になることがないことからモータMG1およびMG2として同一諸元(同一サイズ)のものを採用可能であり、それによりハイブリッド自動車20の生産性を向上させることができる。
図17は、本発明の変形例に係る車両であるハイブリッド自動車20Bの概略構成図である。同図に示すハイブリッド自動車20Bは、動力発生源としてのエンジン22や、1体のモータMG、モータMGと電力をやり取り可能なバッテリ35、いわゆるベルト式の無段変速ユニット(以下「CVT」という)40と3要素式の遊星歯車機構50と無限変速機を構成するドライブギヤ(回転要素)55、ハイブリッド自動車20の全体をコントロールするハイブリッド用電子制御ユニット(以下、「ハイブリッドECU」という)70等を含むものである。すなわち、ハイブリッド自動車20Bは、図1に示すハイブリッド20のモータMG1をモータMGとすると共にハイブリッド自動車20からモータMG2とクラッチC4とを省略したものに相当する。また、ハイブリッド自動車20Bでは、クラッチC3が第2キャリア軸54b(キャリア54)とエンジン22のクランクシャフト23との接続および当該接続の解除を実行する。更に、ハイブリッド自動車20Bでは、エンジン22のクランクシャフト23にギヤ列を介してエンジンECU24により制御されるスタータモータ29が接続されている。このように構成される1モータ−1エンジン式のハイブリッド自動車20Bにおいても、上述のハイブリッド自動車20における後進走行モード(後進モータ走行モード)、低速前進走行モード(低速前進モータ走行モード)、中速移行モード、巡航走行モード(巡航モータ走行モード)、高速走行モード、高出力走行モードと同様の走行モードのもとでの走行を実現することができる。
図18は、本発明の変形例に係る車両である電気自動車200の概略構成図である。同図に示す電気自動車200は、上述のハイブリッド自動車20からエンジン22とクラッチC3およびC4を省略し、モータMG2の回転軸MS2を遊星歯車機構50のキャリア54に直結させたものに相当する。このように構成される2モータ式の電気自動車200においても、上述のハイブリッド自動車20における後進モータ走行モード、低速前進モータ走行モード、中速移行モード、巡航モータ走行モード、高速モータ走行モードおよび高出力モータ走行モードと同様の走行モードのもとでの走行を実現することができる。また、電気自動車200に対して、キャリア54とモータMG2との接続および当該接続の解除を実行するクラッチを設けてもよい。
なお、上記ハイブリッド自動車20および20Bや電気自動車200において、ブレーキB1は省略されてもよい。更に、上記実施例のハイブリッド自動車20は、モータMG2によりエンジン22をクランキングして始動させるものとして説明されたが、ハイブリッド自動車20に対してエンジン22を始動させるためのスタータ(スタータモータ)を備えてもよいことはいうまでもない。また、上記ハイブリッド自動車20および20Bや電気自動車200は、運転席を含むキャビン全体を回転させる形式の車両として構成されてもよい。そして、上記実施例や変形例においては、動力出力装置をハイブリッド自動車20等に搭載されるものとして説明したが、本発明による動力出力装置は、自動車以外の車両や船舶、航空機などの移動体に搭載されるものであってもよく、建設設備などの固定設備に組み込まれるものであってもよい。
ここで、上記実施例および変形例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明しておく。すなわち、上記実施例および変形例では、「内燃機関」としてのエンジン22や「第2の電動機」としてのモータMG2が「動力発生源」に相当し、プライマリシャフト41に入力される動力を無段階に変速してセカンダリシャフト42に出力可能なCVT40が「無段変速装置」に相当し、CVT40のセカンダリシャフト42に接続されるドライブギヤ55が「回転要素」に相当し、モータMG2やエンジン22、CVT40のセカンダリシャフト42に接続され得るキャリア54と、ドライブギヤ55と連動して当該ドライブギヤ55と同方向に回転可能なリングギヤ52と、駆動軸としてのサンギヤ軸51aに接続されるサンギヤ51とを含む遊星歯車機構50が「遊星歯車機構」に相当し、クラッチC1およびC2が「接続断接手段」に相当し、モータMGおよびMG1が「電動機」に相当し、バッテリ35が「蓄電手段」に相当する。また、ハイブリッドECU70とエンジン22、モータECU30、CVTECU49との組み合わせが「制御手段」に相当し、遊星歯車機構50のリングギヤ52を回転不能に固定可能なブレーキB1が「要素固定手段」に相当し、CVT40のプライマリシャフト41とモータMG1の回転軸MS1との接続および当該接続の解除を実行するクラッチC1が「第1の接続断接手段」に相当し、モータMG1の回転軸MS1と第1キャリア軸54aとの接続および当該接続の解除を実行するクラッチC2が「第2の接続断接手段」に相当し、第2キャリア軸54bとモータMG2の回転軸MS2との接続および当該接続の解除を実行するクラッチC3が「他の接続断接手段」に相当し、モータMG2が「第2の電動機」に相当し、モータMG2とエンジン22のクランクシャフト23との接続および当該接続の解除を実行するクラッチC4が「機関用接続断接手段」に相当する。ただし、「内燃機関」は、ガソリンや軽油といった炭化水素系の燃料の供給を受けて動力を出力するエンジン22に限られず、水素エンジンといったような他の如何なる形式のものであっても構わない。「無段変速装置」は、ベルト式のCVT40に限られず、入力軸に入力される動力を無段階に変速して出力軸に出力可能なものであればトロイダル式無段変速機や対回転子電動機からなる電気式無段変速装置といったような他の如何なる形式のものであっても構わない。「遊星歯車機構」は、少なくとも動力発生源に接続される第1の入力要素と、回転要素と連動して当該回転要素と同方向に回転可能な第2の入力要素と、駆動軸に接続される出力要素とを含むものであればシングルピニオン式の遊星歯車機構50以外の他の如何なる形式のものであっても構わない。「第1、第2、第3および機関用接続断接手段」や「要素固定手段」は、それぞれに対応した要素同士の接続および当該接続の解除を実行するものであればドグクラッチであるクラッチC1〜C4やブレーキB1以外の圧着式クラッチといった他の如何なる形式のものであっても構わない。「電動機」および「第2の電動機」は、モータMG,MG1,MG2のような同期発電電動機に限られず、誘導電動機といったような他の如何なる形式のものであっても構わない。「蓄電手段」は、バッテリ35のような二次電池に限られず、電動機と電力をやり取り可能なものであればキャパシタといったような他の如何なる形式のものであっても構わない。「制御手段」は、ハイブリッドECU70とエンジンECU24、モータECU30、CVTECU49との組み合わせ以外の他の如何なる形式のものであっても構わない。何れにしても、これら実施例および変形例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための最良の形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。すなわち、実施例はあくまで課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎず、課題を解決するための手段の欄に記載した発明の解釈は、その欄の記載に基づいて行なわれるべきものである。
以上、実施例を用いて本発明の実施の形態について説明したが、本発明は上記実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、様々な変更をなし得ることはいうまでもない。
本発明は、動力出力装置や車両の製造産業等において利用可能である。
本発明の一実施例に係る車両であるハイブリッド自動車20の概略構成図である。 CVT40、遊星歯車機構50およびドライブギヤ55の各要素における回転速度等の関係を表す共線図を例示する説明図である。 実施例のハイブリッド自動車20の動作モードを例示する説明図である。 実施例のハイブリッド自動車20のエンジン始動時の状態を例示する説明図である。 実施例のハイブリッド自動車20の後進走行モードや低速前進走行モードを説明するための説明図である。 後進走行モードや低速前進走行モードにおけるCVT40、遊星歯車機構50およびドライブギヤ55の各要素における回転速度等の関係を表す共線図を例示する説明図である。 中速移行モードや巡航走行モードにおけるCVT40、遊星歯車機構50およびドライブギヤ55の各要素における回転速度等の関係を表す共線図を例示する説明図である。 実施例のハイブリッド自動車20の巡航走行モードを説明するための説明図である。 実施例のハイブリッド自動車20の高速走行モードを説明するための説明図である。 高速走行モードにおけるCVT40、遊星歯車機構50およびドライブギヤ55の各要素における回転速度等の関係を表す共線図を例示する説明図である。 実施例のハイブリッド自動車20の高出力走行モードを説明するための説明図である。 実施例のハイブリッド自動車20のモータ走行モードを説明するための説明図である。 実施例のハイブリッド自動車20のモータ走行モードを説明するための説明図である。 実施例のハイブリッド自動車20のモータ走行モードを説明するための説明図である。 実施例のハイブリッド自動車20のモータ走行モードを説明するための説明図である。 実施例のハイブリッド自動車20のモータ走行モードを説明するための説明図である。 変形例に係るハイブリッド自動車20Bの概略構成図である。 他の変形例に係る電気自動車200の概略構成図である。
符号の説明
20,20B ハイブリッド自動車、22 エンジン、23 クランクシャフト、24 エンジン用電子制御ユニット(エンジンECU)、28 ダンパ、29 スタータモータ、30 モータ用電子制御ユニット(モータECU)、31,32 インバータ、33,34 回転位置検出センサ、35 バッテリ、36 バッテリ用電子制御ユニット(バッテリECU)、39 電力ライン、40 無段変速ユニット(CVT)、41 プライマリシャフト、42 セカンダリシャフト、43 プライマリプーリ、44 セカンダリプーリ、45,46 油圧シリンダ、47 ベルト、48 油圧回路、49 CVT用電子制御ユニット(CVTECU)、50 遊星歯車機構、51 サンギヤ、51a サンギヤ軸(駆動軸)、52 リングギヤ、53 ピニオンギヤ、54 キャリア、54a 第1キャリア軸、54b 第2キャリア軸、55 ドライブギヤ、55a ドライブギヤ軸、56 カウンタギヤ、57 デファレンシャルギヤ、70 ハイブリッド用電子制御ユニット(ハイブリッドECU)、72 CPU、74 ROM、76 RAM、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルストロークセンサ、87 車速センサ、200 電気自動車、B1 ブレーキ、C1〜C4 クラッチ、DW 車輪、MG,MG1,MG2 モータ。

Claims (15)

  1. 駆動軸に動力を出力する動力出力装置であって、
    動力を出力可能な動力発生源と、
    入力軸に入力される動力を無段階に変速して出力軸に出力可能な無段変速装置と、
    前記無段変速装置の前記出力軸に接続される回転要素と、
    前記動力発生源に接続される第1の入力要素と、前記回転要素と連動して該回転要素と同方向に回転可能な第2の入力要素と、前記駆動軸に接続される出力要素とを含む遊星歯車機構と、
    前記無段変速装置の前記入力軸と前記遊星歯車機構の前記第1の入力要素との接続および該接続の解除を実行可能な接続断接手段と、
    前記接続断接手段により前記無段変速装置の前記入力軸と前記遊星歯車機構の前記第1の入力要素との接続が解除された状態で該無段変速装置の前記入力軸に少なくとも動力を出力可能な電動機と、
    前記電動機と電力をやり取り可能な蓄電手段と、
    を備える動力出力装置。
  2. 請求項1に記載の動力出力装置において、
    前記遊星歯車機構は、前記動力発生源と前記無段変速装置との間に配置されており、
    前記無段変速装置の前記入力軸、前記電動機の回転軸および前記接続断接手段は、それぞれ中空に形成されており、
    前記駆動軸は、前記無段変速装置の前記入力軸と前記電動機の回転軸と前記接続断接手段とを貫通する動力出力装置。
  3. 請求項2に記載の動力出力装置において、
    前記遊星歯車機構は、前記第1の入力要素としてのプラネタリキャリアと、前記プラネタリキャリアにより保持されたピニオンギヤと噛合する前記第2の入力要素としてのリングギヤと、前記ピニオンギヤまたは前記プラネタリキャリアにより保持された他のピニオンギヤと噛合する前記出力要素としてのサンギヤとを含む動力出力装置。
  4. 請求項1から3の何れか一項に記載の動力出力装置において、
    前記遊星歯車機構の前記第1の入力要素に前記動力発生源と前記無段変速装置の前記入力軸とが接続されているときには、前記駆動軸に要求される要求駆動力に基づく動力が該駆動軸に出力されるように前記動力発生源と前記電動機と前記無段変速装置とを制御すると共に、前記遊星歯車機構の前記第1の入力要素に前記動力発生源が接続されると共に該第1の入力要素と前記無段変速装置の前記入力軸との接続が解除されているときには、前記電動機が減速するか、または前記電動機が前記遊星歯車機構の前記第1の入力要素とは逆方向に回転すると共に前記要求駆動力に基づく動力が前記駆動軸に出力されるように前記動力発生源と前記電動機と前記無段変速装置とを制御する制御手段を更に備える動力出力装置。
  5. 請求項1から4の何れか一項に記載の動力出力装置において、
    前記遊星歯車機構の前記第2の入力要素を回転不能に固定可能な要素固定手段を更に備える動力出力装置。
  6. 請求項5に記載の動力出力装置において、
    前記遊星歯車機構の前記第1の入力要素に前記動力発生源が接続され、該第1の入力要素と前記無段変速装置の前記入力軸との接続が解除され、かつ前記遊星歯車機構の前記第2の入力要素が回転不能に固定されているときに、前記駆動軸に要求される要求駆動力に基づく動力が該駆動軸に出力されるように前記動力発生源を制御する制御手段を更に備える動力出力装置。
  7. 請求項5または6に記載の動力出力装置において、
    前記接続断接手段は、
    前記無段変速装置の前記入力軸と前記電動機の回転軸との接続および該接続の解除を実行する第1の接続断接手段と、
    前記電動機の回転軸と前記遊星歯車機構の前記第1の入力要素との接続および該接続の解除を実行する第2の接続断接手段とを含む動力出力装置。
  8. 請求項7に記載の動力出力装置において、
    前記無段変速装置の前記入力軸と前記電動機の回転軸との接続が解除され、前記電動機の回転軸と前記遊星歯車機構の第1の入力要素とが接続され、かつ前記要素固定手段により前記遊星歯車機構の前記第2の入力要素が回転不能に固定されているときに、前記駆動軸に要求される要求駆動力に基づく動力が該駆動軸に出力されるように前記動力発生源と前記電動機との少なくとも何れか一方を制御する制御手段を更に備える動力出力装置。
  9. 請求項1から8の何れか一項に記載の動力出力装置において、
    前記遊星歯車機構の前記第1の入力要素と前記動力発生源との接続および該接続の解除を実行する他の接続断接手段を更に備える動力出力装置。
  10. 請求項9に記載の動力出力装置において、
    前記無段変速装置の前記入力軸と前記電動機とが前記遊星歯車機構の前記第1の入力要素に接続されると共に前記第1の入力要素と前記動力発生源との接続が解除されているときに、前記駆動軸に要求される要求駆動力に基づく動力が該駆動軸に出力されるように前記電動機と前記無段変速装置とを制御する制御手段を更に備える動力出力装置。
  11. 請求項1から10の何れか一項に記載の動力出力装置において、前記動力発生源は、前記電動機とは異なる第2の電動機である動力出力装置。
  12. 請求項1から10の何れか一項に記載の動力出力装置において、前記動力発生源は、内燃機関である動力出力装置。
  13. 請求項1から10の何れか一項に記載の動力出力装置において、前記動力発生源は、前記電動機とは異なる第2の電動機と内燃機関とからなる動力出力装置。
  14. 請求項13に記載の動力出力装置において、
    前記第2の電動機と前記内燃機関との接続および該接続の解除を実行する機関用接続断接手段を更に備える動力出力装置。
  15. 駆動軸に連結された駆動輪を有する車両であって、
    動力を出力可能な動力発生源と、
    入力軸に入力される動力を無段階に変速して出力軸に出力可能な無段変速装置と、
    前記無段変速装置の前記出力軸に接続される回転要素と、
    前記動力発生源に接続される第1の入力要素と、前記回転要素と連動して該回転要素と同方向に回転可能な第2の入力要素と、前記駆動軸に接続される出力要素とを含む遊星歯車機構と、
    前記無段変速装置の前記入力軸と前記遊星歯車機構の前記第1の入力要素との接続および該接続の解除を実行可能な接続断接手段と、
    前記接続断接手段により前記無段変速装置の前記入力軸と前記遊星歯車機構の前記第1の入力要素との接続が解除された状態で該無段変速装置の前記入力軸に少なくとも動力を出力可能な電動機と、
    前記電動機と電力をやり取り可能な蓄電手段と、
    を備える車両。

JP2008099532A 2008-04-07 2008-04-07 動力出力装置および車両 Expired - Fee Related JP5104493B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008099532A JP5104493B2 (ja) 2008-04-07 2008-04-07 動力出力装置および車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008099532A JP5104493B2 (ja) 2008-04-07 2008-04-07 動力出力装置および車両

Publications (2)

Publication Number Publication Date
JP2009248767A JP2009248767A (ja) 2009-10-29
JP5104493B2 true JP5104493B2 (ja) 2012-12-19

Family

ID=41309863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008099532A Expired - Fee Related JP5104493B2 (ja) 2008-04-07 2008-04-07 動力出力装置および車両

Country Status (1)

Country Link
JP (1) JP5104493B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060371B2 (ja) * 2008-04-07 2012-10-31 トヨタ自動車株式会社 動力出力装置および車両
WO2011158872A1 (ja) * 2010-06-15 2011-12-22 本田技研工業株式会社 自動車用駆動システムおよび自動車用駆動システムの制御方法
DE112011102036B4 (de) * 2010-06-15 2019-05-29 Honda Motor Co., Ltd. Fahrzeugantriebssystem und Steuerverfahren für Fahrzeugantriebssystem
JP6025388B2 (ja) * 2012-05-09 2016-11-16 本田技研工業株式会社 車両用駆動装置
JP6589757B2 (ja) * 2016-06-29 2019-10-16 トヨタ自動車株式会社 ハイブリッド車両の走行モード切換制御装置
JP6620134B2 (ja) 2017-10-06 2019-12-11 本田技研工業株式会社 ハイブリッド車両
CN114261911B (zh) * 2021-12-20 2023-11-17 三一重机有限公司 混合动力系统、工程机械及混合动力系统的控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3876503B2 (ja) * 1997-12-05 2007-01-31 アイシン・エィ・ダブリュ株式会社 ハイブリット駆動装置における発進制御装置
JPH11180173A (ja) * 1997-12-19 1999-07-06 Mitsubishi Motors Corp ハイブリッド電気自動車用駆動装置
JP3633473B2 (ja) * 2000-11-02 2005-03-30 トヨタ自動車株式会社 無段変速機構付きハイブリッド駆動機構の制御装置
JP3815417B2 (ja) * 2002-10-01 2006-08-30 マツダ株式会社 車両用パワートレイン構造
JP3951904B2 (ja) * 2002-11-29 2007-08-01 株式会社エクォス・リサーチ ハイブリッド車用駆動装置
JP2008105622A (ja) * 2006-10-27 2008-05-08 Toyota Central R&D Labs Inc ハイブリッド車両の駆動装置
JP4447039B2 (ja) * 2008-02-12 2010-04-07 トヨタ自動車株式会社 動力出力装置および車両
JP5056450B2 (ja) * 2008-02-12 2012-10-24 株式会社日本自動車部品総合研究所 動力出力装置および車両
JP5227043B2 (ja) * 2008-02-12 2013-07-03 トヨタ自動車株式会社 動力出力装置および車両
JP5104368B2 (ja) * 2008-02-12 2012-12-19 株式会社日本自動車部品総合研究所 動力出力装置および車両
JP5050971B2 (ja) * 2008-04-07 2012-10-17 株式会社日本自動車部品総合研究所 動力出力装置および車両
JP5060371B2 (ja) * 2008-04-07 2012-10-31 トヨタ自動車株式会社 動力出力装置および車両

Also Published As

Publication number Publication date
JP2009248767A (ja) 2009-10-29

Similar Documents

Publication Publication Date Title
JP5060371B2 (ja) 動力出力装置および車両
JP4447039B2 (ja) 動力出力装置および車両
JP5227043B2 (ja) 動力出力装置および車両
RU2585501C2 (ru) Устройство приведения в движение для гибридного транспортного средства
KR100969983B1 (ko) 하이브리드구동장치 및 그 제어방법
JP4222407B2 (ja) 動力出力装置およびハイブリッド自動車
JP4293268B2 (ja) 動力出力装置およびそれを備えたハイブリッド自動車
JP4222406B2 (ja) 動力出力装置およびハイブリッド自動車
JP4007403B1 (ja) 動力出力装置およびハイブリッド自動車
US9446760B2 (en) Vehicle drive device
JP4238927B1 (ja) 車両用自動変速機の制御装置
JP4240091B2 (ja) 動力出力装置およびハイブリッド自動車
WO2008050684A1 (en) Power output device, and hybrid automobile
JP5884897B2 (ja) ハイブリッド車両の駆動制御装置
JP5104493B2 (ja) 動力出力装置および車両
JP5056450B2 (ja) 動力出力装置および車両
JP5050971B2 (ja) 動力出力装置および車両
JP6863312B2 (ja) ハイブリッド車両の制御装置
JP2007030579A (ja) 車両用駆動装置
JP4384152B2 (ja) 動力出力装置およびハイブリッド自動車
JP5104368B2 (ja) 動力出力装置および車両
JP4285579B2 (ja) 動力出力装置およびハイブリッド自動車
JP7183998B2 (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees