JP5093129B2 - Vacuum heat insulating material, manufacturing apparatus and manufacturing method thereof - Google Patents

Vacuum heat insulating material, manufacturing apparatus and manufacturing method thereof Download PDF

Info

Publication number
JP5093129B2
JP5093129B2 JP2009010860A JP2009010860A JP5093129B2 JP 5093129 B2 JP5093129 B2 JP 5093129B2 JP 2009010860 A JP2009010860 A JP 2009010860A JP 2009010860 A JP2009010860 A JP 2009010860A JP 5093129 B2 JP5093129 B2 JP 5093129B2
Authority
JP
Japan
Prior art keywords
section
fiber
cross
heat insulating
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009010860A
Other languages
Japanese (ja)
Other versions
JP2010169147A (en
Inventor
俊雄 篠木
秀一 松本
哲也 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009010860A priority Critical patent/JP5093129B2/en
Publication of JP2010169147A publication Critical patent/JP2010169147A/en
Application granted granted Critical
Publication of JP5093129B2 publication Critical patent/JP5093129B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

この発明は、真空断熱材、その製造装置および製造方法に関するものである。   The present invention relates to a vacuum heat insulating material, a manufacturing apparatus and a manufacturing method thereof.

従来の真空断熱材においては、既に内部空間を保持していることから、減圧空間を細分化しやすく、また同一太さの普通糸と比較すると、曲げおよびねじり剛性率が高いことから、その減圧空間を維持、保持することができるとの理由から中空繊維を使用するか、または、糸同士の密着、接触が少なくなり、空間を細分化しやすく、剛直性も向上するので、安定に空間を維持、保持することができるとの理由から、例えば糸断面がT型、Y型、三つ葉型、四葉型または五葉型の断面を有する異形断面糸を使用し、繊維構造体の素材としている(例えば、特許文献1参照)。   In the conventional vacuum heat insulating material, since the internal space is already held, the decompression space is easily subdivided, and the bending and torsional rigidity is higher than that of ordinary yarn of the same thickness. Use hollow fiber for the reason that it can be maintained and retained, or the adhesion and contact between yarns is reduced, the space is easily subdivided and the rigidity is improved, so the space is stably maintained. For the reason that it can be held, for example, a modified cross-section yarn having a cross section of T-type, Y-type, three-leaf type, four-leaf type or five-leaf type is used as the material of the fiber structure (for example, patent Reference 1).

特開2002−58604号公報(第4貢)JP 2002-58604 A (4th tribute)

従来の異形断面糸を使用した繊維構造体では、糸同士が交差しながら積層し合って繊維構造体を形成すれば糸同士の密着および接触が低減されるが、糸同士が同じ方向を向いた状態で積層し合って繊維構造体を形成すれば、異形断面糸の凹凸部が噛みあってむしろ接触面積が大きくなり、十分な断熱性能が得られないという欠点があった。また、交差する割合と同じ方向を向く割合が一定ではなく、これらの割合に応じて断熱性能が大きく左右されるという欠点があった。   In a conventional fiber structure using irregular cross-section yarns, if the yarns are stacked while crossing each other to form a fiber structure, the adhesion and contact between the yarns is reduced, but the yarns face the same direction. If the fiber structure is formed by laminating each other in a state, the uneven portions of the irregularly shaped cross section yarns are bitten and the contact area becomes rather large, and there is a drawback that sufficient heat insulating performance cannot be obtained. In addition, the ratio of facing the same direction as the ratio of crossing is not constant, and there is a drawback that the heat insulation performance is greatly influenced by these ratios.

また、中空繊維を使用した繊維構造体では、繊維自体の強度が弱くなるため真空圧力下における繊維同士が接触する部分での接触歪が大きく、逆に接触表面積が大きくなってしまう。この結果、繊維間接触部からの固体熱伝導が大きくなり、十分な断熱性能が得られないという欠点があった。   Further, in a fiber structure using hollow fibers, the strength of the fibers themselves is weakened, so that the contact strain at the portion where the fibers are in contact with each other under vacuum pressure is large, and conversely, the contact surface area is large. As a result, solid heat conduction from the inter-fiber contact portion is increased, and there is a drawback that sufficient heat insulation performance cannot be obtained.

この発明は、上記のような問題点を解決するためになされたものであり、糸同士がどのような方向を向いて積層し合って繊維構造体を形成している場合であっても、糸同士の密着および接触部分を低減することができ、より高性能な真空断熱材を得ることができるとともに、断熱性能がほぼ一定した真空断熱材を得ることを目的とする。   The present invention has been made to solve the above-described problems, and even when yarns are laminated in any direction to form a fiber structure, An object of the present invention is to obtain a vacuum heat insulating material having a substantially constant heat insulating performance as well as being able to reduce the adhesion and contact portion between them and obtain a higher performance vacuum heat insulating material.

この発明に係る真空断熱材は、繊維シートと、該繊維シートが複数枚積層されてなる芯材と、該芯材を真空密閉して覆う外被材とを備えた真空断熱材において、前記繊維シートは、少なくとも一種類の複数の突起形状を有する異形断面繊維と、略円形の断面を有する円形断面繊維とを混合して形成するようにしたものである。   The vacuum heat insulating material according to the present invention is a vacuum heat insulating material comprising a fiber sheet, a core material in which a plurality of the fiber sheets are laminated, and a jacket material that covers the core material in a vacuum-sealing manner. The sheet is formed by mixing at least one kind of irregularly-shaped cross-section fibers having a plurality of protruding shapes and circular cross-section fibers having a substantially circular cross section.

この発明に係る真空断熱材においては、繊維シートを異形断面繊維と円形断面繊維とで構成しているので、糸同士がどのような方向を向いて、積層し合って繊維シートを形成している場合であっても、繊維同士が互いに面で接触することがほとんどなく、点もしくは線接触となる。このため、繊維同士の接触熱伝導を抑制することでき、真空断熱材の断熱性能の向上を図ることができるとともに、断熱性能がほぼ一定した真空断熱材を得ることができる。   In the vacuum heat insulating material according to the present invention, since the fiber sheet is composed of the irregular cross-section fiber and the circular cross-section fiber, the fiber sheets are formed by stacking the yarns in any direction. Even in this case, the fibers hardly come into contact with each other on the surface, resulting in point or line contact. For this reason, contact heat conduction between fibers can be suppressed, the heat insulating performance of the vacuum heat insulating material can be improved, and a vacuum heat insulating material with a substantially constant heat insulating performance can be obtained.

この発明の実施の形態1における真空断熱材の構造を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the vacuum heat insulating material in Embodiment 1 of this invention. この発明の実施の形態1における真空断熱材の繊維シートを構成する一組の繊維を模式的に示した断面図である。It is sectional drawing which showed typically a set of fiber which comprises the fiber sheet of the vacuum heat insulating material in Embodiment 1 of this invention. この発明の実施の形態1における真空断熱材の繊維シートを構成する複数の突起形状を有する異形断面繊維を模式的に示した断面図である。It is sectional drawing which showed typically the irregular cross-section fiber which has the some protrusion shape which comprises the fiber sheet of the vacuum heat insulating material in Embodiment 1 of this invention. 円形断面繊維の繊維径と熱伝導率との関係、及び異形断面繊維の突起径と熱伝導率との関係をシミュレートした結果を示した特性図である。It is the characteristic figure which showed the result of having simulated the relationship between the fiber diameter of a circular cross-section fiber, and thermal conductivity, and the relationship between the protrusion diameter of a modified cross-section fiber, and thermal conductivity. 従来の発明における3突起異形断面繊維だけで繊維シートを構成した場合の繊維を模式的に示した断面図である。It is sectional drawing which showed typically the fiber at the time of comprising a fiber sheet only with the 3 processus | protrusion deformed cross-section fiber in the conventional invention. この実施の形態1に係る繊維シートの製造に用いられる溶融紡糸用ダイのノズル配置を示した図である。It is the figure which showed nozzle arrangement | positioning of the die for melt spinning used for manufacture of the fiber sheet which concerns on this Embodiment 1. FIG. この発明の実施の形態2による真空断熱材の繊維シートを構成する一組の繊維を模式的に示した断面図である。It is sectional drawing which showed typically a set of fiber which comprises the fiber sheet of the vacuum heat insulating material by Embodiment 2 of this invention. この発明の実施の形態3による真空断熱材の繊維シートを構成する一組の繊維を模式的に示した断面図である。It is sectional drawing which showed typically a set of fiber which comprises the fiber sheet of the vacuum heat insulating material by Embodiment 3 of this invention.

実施の形態1.
図1はこの発明の実施の形態1における真空断熱材の構造を模式的に示した断面図である。図1において、この実施の形態1における真空断熱材は、複数の突起形状を有する異形断面繊維と略円形の断面を有する円形断面繊維とからなる繊維シート3と、該繊維シート3を積層して構成された芯材4と、該芯材4を覆って密閉する外被材5とを有している。
Embodiment 1 FIG.
1 is a cross-sectional view schematically showing the structure of a vacuum heat insulating material according to Embodiment 1 of the present invention. In FIG. 1, the vacuum heat insulating material in the first embodiment is formed by laminating a fiber sheet 3 composed of a modified cross-section fiber having a plurality of protrusion shapes and a circular cross-section fiber having a substantially circular cross section, and the fiber sheet 3. It has a core material 4 configured and a jacket material 5 that covers and seals the core material 4.

図2はこの発明の実施の形態1における真空断熱材の繊維シートを構成する一組の繊維を模式的に示した断面図である。図2において、円形部10の外周上に複数の突起形状からなる突起部11を有する異形断面繊維1(例えば、ここで示されている異形断面繊維1は6個の突起部11を有する6突起異形断面繊維6である)と略円形の断面を有する円形断面繊維2とは繊維同士が互いに面で接触することがほとんどなく、点もしくは線で接触した状態で混在している。   FIG. 2 is a cross-sectional view schematically showing a set of fibers constituting the fiber sheet of the vacuum heat insulating material according to Embodiment 1 of the present invention. In FIG. 2, a modified cross-section fiber 1 having a plurality of projections 11 on the outer periphery of a circular portion 10 (for example, the modified cross-section fiber 1 shown here has six projections 11 having six projections 11. The irregular cross-section fibers 6) and the circular cross-section fibers 2 having a substantially circular cross section are rarely in contact with each other on the surface, and are mixed in a state where they are in contact with each other by dots or lines.

図3はこの発明の実施の形態1における真空断熱材の繊維シートを構成する複数の突起形状を有する異形断面繊維を模式的に示した断面図である。図3において、この実施の形態1の異形断面繊維1(例えば、ここで示されている異形断面繊維1は5個の突起部11を有する5突起異形断面繊維12である)は、突起高さhk7と、突起先端幅dk8とからなる突起部11と、基準円直径ds9である円形部10とから構成されている。   FIG. 3 is a cross-sectional view schematically showing a modified cross-section fiber having a plurality of protrusion shapes constituting the fiber sheet of the vacuum heat insulating material according to Embodiment 1 of the present invention. In FIG. 3, the modified cross-section fiber 1 of the first embodiment (for example, the modified cross-section fiber 1 shown here is a five-protrusion modified cross-section fiber 12 having five protrusions 11) has a protrusion height. The projection 11 is composed of hk7, a projection tip width dk8, and a circular portion 10 having a reference circle diameter ds9.

次に、この実施の形態1における真空断熱材の製造方法について説明する。まず、繊維シート3の作製方法について説明する。例えばポリエチレンテレフタレート樹脂(以下、PET樹脂と記載)のペレットを融点まで加熱しながら溶解し、得られた液状(またはゲル状)PET樹脂をギアポンプで送出する。液状PET樹脂は、複数のノズルから吐出され、冷却されることにより紡糸を形成する。このように形成された紡糸をさらにスパンボンド方式やメルトブロー方式により、10μm程度の径まで延伸させ繊維を得る。この延伸され得られた繊維をコンベア上に吐出してシートを形成する。このコンベアの後段では、必要に応じてフラットもしくはエンボス加工したロールを用いて、繊維を一部熱融着させて繊維の引張強度を増加させるとともにシート表面部の繊維の毛羽立ちを抑制する。これによりシートのロール巻きおよびロール巻き戻しを容易にすることができる。   Next, the manufacturing method of the vacuum heat insulating material in this Embodiment 1 is demonstrated. First, a method for producing the fiber sheet 3 will be described. For example, pellets of polyethylene terephthalate resin (hereinafter referred to as PET resin) are dissolved while being heated to the melting point, and the obtained liquid (or gel) PET resin is sent out by a gear pump. The liquid PET resin is discharged from a plurality of nozzles and cooled to form a spinning. The spun yarn thus formed is further drawn to a diameter of about 10 μm by a spunbond method or a melt blow method to obtain a fiber. The drawn fibers are discharged onto a conveyor to form a sheet. In the subsequent stage of this conveyor, using a roll that is flat or embossed as necessary, the fibers are partially heat-sealed to increase the tensile strength of the fibers and to suppress the fluffing of the fibers on the surface of the sheet. Thereby, roll winding and roll rewinding of the sheet can be facilitated.

次に、このロール化されたシート(以下、シートロールと記載)から必要なサイズのシートを引き出して裁断することで繊維シート3を得る。この繊維シート3を複数枚重ね芯材4が得られる。この後、芯材4を2枚または1枚を折り返した外被材5で覆い、真空チャンバ内に配置し減圧することで外被材5に覆われた空間を真空状態にする。外被材5で覆われた空間が所定の圧力、例えば0.1〜3Pa程度の真空圧になっている状態で外被材5の外周部を密閉し、真空チャンバ内の圧力を大気圧状態にまで戻す。以上、この発明の実施の形態1における真空断熱材が完成する。この真空断熱材の内部空間は真空状態に保持され、外被材5および芯材4は外部との圧力差による圧縮力を受けている。   Next, a fiber sheet 3 is obtained by drawing out a sheet of a necessary size from the rolled sheet (hereinafter referred to as a sheet roll) and cutting the sheet. A plurality of fiber sheets 3 are stacked to obtain a core material 4. After that, the core material 4 is covered with two or one outer cover materials 5 and placed in a vacuum chamber to reduce the pressure so that the space covered with the outer cover material 5 is in a vacuum state. The outer periphery of the jacket material 5 is sealed in a state where the space covered with the jacket material 5 is at a predetermined pressure, for example, a vacuum pressure of about 0.1 to 3 Pa, and the pressure in the vacuum chamber is at atmospheric pressure. Return to. As described above, the vacuum heat insulating material in Embodiment 1 of the present invention is completed. The internal space of the vacuum heat insulating material is maintained in a vacuum state, and the jacket material 5 and the core material 4 receive a compressive force due to a pressure difference with the outside.

なお、長期真空下に置くことにより、芯材4または外被材5等からガスが発生する場合とか、外部から気体が混入する場合とか、水分が混入する場合などが想定される場合には、必要に応じて外被材5で覆われた空間に適切なガス吸着剤を挿入する場合もある。   In addition, when it is assumed that gas is generated from the core material 4 or the jacket material 5 or the like by being placed under a long-term vacuum, when gas is mixed from the outside, or when moisture is mixed, An appropriate gas adsorbent may be inserted into the space covered with the jacket material 5 as necessary.

なお、繊維シート3に含有される水分については、裁断前後などに繊維シート3を加熱しながら減圧するような工程を設けてこの水分を除去してもよい。また、外被材5で覆われた芯材4が真空チャンバ内において減圧された状態で、真空チャンバ内を加熱するような機構を設けて、繊維シート3に熱収縮や熱分解などの熱負荷がかからない温度で、かつ真空放電などを誘発しない圧力に設定するなど、適切な条件にて繊維シート3の水分を除去してもよい。   In addition, about the water | moisture content contained in the fiber sheet 3, you may provide the process of decompressing, heating the fiber sheet 3 before and behind cutting, etc., and you may remove this water | moisture content. In addition, a mechanism for heating the inside of the vacuum chamber is provided in a state where the core material 4 covered with the jacket material 5 is decompressed in the vacuum chamber, and the fiber sheet 3 is subjected to a thermal load such as thermal contraction or thermal decomposition. The moisture of the fiber sheet 3 may be removed under appropriate conditions, such as by setting the pressure at a temperature that does not apply and a pressure that does not induce vacuum discharge.

ここで、この実施の形態1の真空断熱材において、複数の突起形状を有する異形断面繊維1と略円形の断面を有する円形断面繊維2とからなる繊維シート3を芯材4とする真空断熱材は、異形断面繊維1と円形断面繊維2のそれぞれの繊維径が小さいほど繊維と繊維の接触面積を小さくすることができ、接触熱抵抗を大きくすることができる。その結果、固体熱伝導が低下し性能が向上する。しかし、溶融紡糸法にて樹脂素材で繊維シート3を製造する場合、円形断面繊維2を糸切れせずに連続的に製造するには繊維径をある程度大きくする必要がある。例えばPET樹脂のペレット素材を用い、スパンボンド方式の溶融紡糸法で円形断面繊維2を用いた繊維シート3を試作したところ、繊維径が約10μmまでは連続的な製造が可能であったが、それ未満になると糸切れが発生し安定的に製造することができなかった。   Here, in the vacuum heat insulating material of the first embodiment, a vacuum heat insulating material having a fiber sheet 3 composed of a modified cross-section fiber 1 having a plurality of protrusions and a circular cross-section fiber 2 having a substantially circular cross section as a core material 4. The smaller the respective fiber diameters of the irregular cross-section fiber 1 and the circular cross-section fiber 2, the smaller the contact area between the fibers and the fibers, and the greater the contact thermal resistance. As a result, solid heat conduction is reduced and performance is improved. However, when the fiber sheet 3 is manufactured from a resin material by the melt spinning method, it is necessary to increase the fiber diameter to some extent in order to continuously manufacture the circular cross-section fiber 2 without breaking the yarn. For example, when a fiber sheet 3 using a circular cross-section fiber 2 was manufactured by a spunbond melt spinning method using a pellet material of PET resin, continuous production was possible up to a fiber diameter of about 10 μm. If it was less than that, thread breakage occurred and stable production could not be achieved.

上記のようなことを踏まえ、円形断面繊維2の繊維径と熱伝導率との関係、及び異形断面繊維1の突起径と熱伝導率との関係をシミュレートした。ここで、異形断面繊維1としてY形となる3個の突起を有する異形断面繊維1を想定し、これが円形断面繊維2と理想的に接触する状態、つまり繊維同士が交差するように積層された状態であるものとする。図4は、このシミュレート結果を示した特性図である。図4において、熱伝導率は真空断熱材の厚さ方向の熱伝導率を計算したものであり、縦軸には円形断面繊維2の繊維径がφ10μmのときの真空断熱材の熱伝導率を基準値として、その基準値との熱伝導率の差を取った。また、異形断面繊維1は、繊維径を基準円直径ds9とし、基準円直径ds9からなる円形部10と、突起高さhk7で突起先端幅dk8からなる突起部11が組み合わさった形状と仮定した。   Based on the above, the relationship between the fiber diameter of the circular cross-section fiber 2 and the thermal conductivity and the relationship between the projection diameter of the irregular cross-section fiber 1 and the thermal conductivity were simulated. Here, assuming that a modified cross-section fiber 1 having three protrusions that are Y-shaped as a modified cross-section fiber 1, this is ideally in contact with the circular cross-section fiber 2, that is, laminated so that the fibers cross each other. It is assumed that it is in a state. FIG. 4 is a characteristic diagram showing the simulation result. In FIG. 4, the thermal conductivity is calculated by calculating the thermal conductivity in the thickness direction of the vacuum heat insulating material, and the vertical axis indicates the thermal conductivity of the vacuum heat insulating material when the fiber diameter of the circular cross-section fiber 2 is φ10 μm. As a reference value, the difference in thermal conductivity from the reference value was taken. Further, the irregular cross-section fiber 1 is assumed to have a shape in which a fiber diameter is a reference circle diameter ds9, a circular portion 10 having a reference circle diameter ds9, and a protrusion portion 11 having a protrusion height hk7 and a protrusion tip width dk8 are combined. .

この結果からも明らかなように、円形断面繊維2の繊維径を小さくすることで熱伝導率を下げることが期待できるが、製造上円形断面繊維2の繊維径を小さくできなくても、突起先端幅dk8を小さくした異形断面繊維1と組み合わせて芯材4を形成することで、異形断面繊維の凹部に円形断面繊維が入り込まないような幾何学形状で構成され、熱伝導率を下げることが期待できることがわかる。一方で、突起先端幅dk8を小さくしすぎると突起部11への応力集中により歪が大きくなり、その結果接触面積が増し、かえって効果が滅殺されることが分かった。したがって、突起先端幅dk8は約3μm〜約8μmの大きさの範囲にすることが望ましい。   As is clear from this result, it can be expected that the thermal conductivity is lowered by reducing the fiber diameter of the circular cross-section fiber 2, but even if the fiber diameter of the circular cross-section fiber 2 cannot be reduced in production, the tip of the protrusion By forming the core material 4 in combination with the modified cross-section fiber 1 having a reduced width dk8, it is configured with a geometric shape so that the circular cross-section fiber does not enter the recess of the modified cross-section fiber, and is expected to lower the thermal conductivity. I understand that I can do it. On the other hand, it has been found that if the protrusion tip width dk8 is made too small, the strain increases due to the stress concentration on the protrusion 11 and as a result, the contact area increases, and the effect is annihilated. Therefore, it is desirable that the protrusion tip width dk8 be in the range of about 3 μm to about 8 μm.

なお、従来例との効果の差異を明確にするために、従来の発明における3突起異形断面繊維13だけで繊維シート3を作製し、断熱性能の評価を試みた。図5は、従来の発明における3突起異形断面繊維13だけで繊維シート3を構成した場合の繊維を模式的に示した断面図である。図5における3突起異形断面繊維13はPET樹脂のペレットを素材とし、スパンボンド方式の溶融紡糸法で3突起異形断面繊維13のみを用いた繊維シート3を試作し、これを25枚積層して芯材4を作製した。芯材4を外被材5であるアルミラミネートシート(ナイロン15μm+ポリエチレンテレフタレート12μm+アルミシート6μm+ポリエチレン50μm)に吸着剤とともに挿入して、真空チャンバ内で約1Paまで減圧させて、外被材5の間口部を熱融着によって密閉し、真空断熱材を製造した。   In addition, in order to clarify the difference in effect from the conventional example, the fiber sheet 3 was produced using only the three-protrusion deformed cross-section fibers 13 in the conventional invention, and the heat insulation performance was evaluated. FIG. 5 is a cross-sectional view schematically showing a fiber in the case where the fiber sheet 3 is configured by only the three-protrusion deformed cross-section fiber 13 in the conventional invention. The three-protrusion irregular cross-section fiber 13 in FIG. 5 is made of PET resin pellets, and a fiber sheet 3 using only the three-protrusion irregular cross-section fiber 13 is manufactured by a spunbond melt spinning method, and 25 sheets of these are laminated. A core material 4 was produced. The core material 4 is inserted into an aluminum laminate sheet (nylon 15 μm + polyethylene terephthalate 12 μm + aluminum sheet 6 μm + polyethylene 50 μm) with an adsorbent, and the pressure is reduced to about 1 Pa in a vacuum chamber. The part was sealed by heat sealing to produce a vacuum heat insulating material.

ここで、吸着剤は、外被材5のシール部やアルミラミネートシート自体の欠陥などを通じて内部に侵入してくる水分や外部気体もしくは芯材4から発生するアウトガスなどを吸着して真空度を保持するためのもので、CaO系、活性炭系、ゼオライト系や、さらにこれらにLiやBaを混合させたものなどである。   Here, the adsorbent retains the degree of vacuum by adsorbing moisture, external gas, or outgas generated from the core material 4 entering the interior through defects such as the seal part of the outer cover material 5 or the aluminum laminate sheet itself. For example, a CaO system, an activated carbon system, a zeolite system, and a mixture of Li and Ba may be used.

この従来例により製造した真空断熱材の熱伝導率を測定した結果、繊維径がφ10μm程度の円形断面繊維2のみで繊維シート3を構成した場合と同等もしくは数ポイントだけ高い値となった。この原因を調べるために、真空状態を模擬した芯材4の断面を観察したところ、基準円直径ds9は約10μm、突起先端幅dk8は約4μmと概ね仕様に合致した断面形状(ここでは詳細な説明は省略するが、設計目標を定めて製造する場合であってもスパンボンド方式による延伸工程や芯材の乾燥工程などを経ることで素材の膨張、伸縮が発生するため、設計値から多少のずれが生じることがある。)であったが、繊維同士の配置については、図5で示す状態、すなわち3突起異形断面繊維13の突起部11間の凹部14と隣接する3突起異形断面繊維13の突起部11が噛み合わさり、繊維同士の接触部15が広く面接触している箇所が多数見られた。つまり、3突起異形断面繊維13のみの構成で繊維シート3を作製した場合には、期待した性能が得られない場合がありうるのみならず、性能の大きなバラツキを発生させる可能性があることが容易に想起される。   As a result of measuring the thermal conductivity of the vacuum heat insulating material manufactured according to this conventional example, the value was equal to or higher by several points than when the fiber sheet 3 was composed of only the circular cross-section fibers 2 having a fiber diameter of about φ10 μm. In order to investigate this cause, the cross section of the core material 4 simulating a vacuum state was observed. As a result, the reference circle diameter ds9 was about 10 μm, and the protrusion tip width dk8 was about 4 μm. Although explanation is omitted, even when manufacturing with a design target set, the material expands and contracts due to the stretching process using the spunbond method and the core drying process. However, with regard to the arrangement of the fibers, the three-protrusion modified cross-section fibers 13 adjacent to the recesses 14 between the protrusions 11 of the three-protrusion modified cross-section fibers 13 are shown in FIG. Many protrusions 11 were engaged with each other, and a large number of locations where the contact portions 15 of the fibers were in wide contact with each other were observed. That is, when the fiber sheet 3 is produced with the configuration of only the three-protrusion deformed cross-section fibers 13, not only the expected performance may not be obtained, but also there may be a large variation in performance. Easily recalled.

なお、真空状態を模擬して芯材4の断面観察する方法とは、真空チャンバ内に入れる前の真空断熱材を両面から1気圧相当の圧力で圧縮し、これを樹脂で固めたのちに断面を電子顕微鏡等で観察する方法である。   The method of observing the cross section of the core material 4 by simulating the vacuum state is to compress the vacuum heat insulating material before being put in the vacuum chamber from both sides with a pressure equivalent to 1 atm, and solidify this with a resin and then cross section. Is observed with an electron microscope or the like.

図4の結果からも明らかなように、繊維径が細い、つまり繊維断面積が小さいほど、断熱性能が向上する。したがって、基準円直径ds9が同じ径であれば、突起高さhk7が小さい方がより断熱性能が向上することは容易に予想できる。そこで、突起先端幅dk8の影響も考慮して、異形断面繊維1の突起部11間の凹部14に円形断面繊維2が入り込まない幾何学形状となるような条件の検討を行った。その結果、繊維径が10μmの円形断面繊維2と組み合わせる6突起異形断面繊維6は、例えば基準円直径ds9が10μm、突起高さhk7が2.5μmとした場合に、異形断面繊維の凹部に円形断面繊維が入り込まないような幾何学形状で構成され、比較的良好な特性が得られることが判明した。   As is clear from the results of FIG. 4, the heat insulation performance improves as the fiber diameter is smaller, that is, the fiber cross-sectional area is smaller. Therefore, if the reference circle diameter ds9 is the same diameter, it can be easily predicted that the heat insulation performance is further improved when the projection height hk7 is smaller. Therefore, in consideration of the influence of the protrusion tip width dk8, conditions were examined so as to obtain a geometric shape in which the circular cross-section fiber 2 does not enter the recesses 14 between the protrusions 11 of the irregular cross-section fiber 1. As a result, the 6-protrusion modified cross-section fiber 6 combined with the circular cross-section fiber 2 having a fiber diameter of 10 μm is circular in the recess of the irregular cross-section fiber when the reference circle diameter ds9 is 10 μm and the protrusion height hk7 is 2.5 μm, for example. It has been found that a relatively good characteristic can be obtained with a geometrical shape that does not allow cross-sectional fibers to enter.

一方、円形断面繊維2を中空繊維にした場合も別途検討したが、真空環境における大気からの圧力により中空繊維が圧縮変形し接触面積が増加した結果、熱伝導率の低減効果がほとんど得られないことが判明した。   On the other hand, the case where the circular cross-section fiber 2 is a hollow fiber was also examined separately, but as a result of the hollow fiber being compressed and deformed by the pressure from the atmosphere in a vacuum environment and the contact area increased, the effect of reducing the thermal conductivity is hardly obtained. It has been found.

ここで、この実施の形態1に係る繊維シート3の試作を行うために、溶融紡糸用ダイ15を作製した。図6はこの実施の形態1に係る繊維シートの製造に用いられる溶融紡糸用ダイ15のノズル配置を示した図である。図6において、隣接する繊維が異形断面繊維1と円形断面繊維2となるように、異形断面繊維1に対応するノズルである異形断面ノズル16と円形断面繊維2に対応するノズルである円形断面ノズル17のそれぞれノズル配置を互いに1つおきに同じ形状のノズルとなるよう相互配置としたものである。   Here, in order to make a prototype of the fiber sheet 3 according to Embodiment 1, a melt spinning die 15 was produced. FIG. 6 is a view showing the nozzle arrangement of the melt spinning die 15 used for manufacturing the fiber sheet according to the first embodiment. In FIG. 6, a circular cross-section nozzle that is a nozzle corresponding to the cross-section fiber 1 and a cross-section nozzle 16 that is a nozzle corresponding to the cross-section fiber 1, so that adjacent fibers are the cross-section fiber 1 and the circular cross-section fiber 2. The 17 nozzles are arranged alternately so that every other nozzle has the same shape.

図6に示す溶融紡糸用ダイ15を用いて前記3突起異形断面繊維13の試作手順と同様の手順で繊維シート3を作製した。その結果、繊維径が10μmの円形断面繊維2と、基準円直径ds9が約8μm、突起先端幅dk8が約4μm、突起高さhk7が約2.5μmの6個の突起部11を有する6突起異形断面繊維6とで厚さ約0.5mmの繊維シート3を作製した。これを25枚積層して芯材4を作製した。芯材4を外被材5であるアルミラミネートシート(ナイロン15μm+ポリエチレンテレフタレート12μm+アルミシート6μm+ポリエチレン50μm)に吸着剤とともに挿入して、真空チャンバ内で約1Paまで減圧させて、外被材5の間口部を熱融着によって密閉し、真空断熱材を製造した。   Using the melt spinning die 15 shown in FIG. 6, a fiber sheet 3 was produced in the same procedure as the trial production procedure of the three-protrusion modified cross-section fiber 13. As a result, a circular cross-section fiber 2 having a fiber diameter of 10 μm, six protrusions having six protrusions 11 having a reference circle diameter ds9 of approximately 8 μm, a protrusion tip width dk8 of approximately 4 μm, and a protrusion height hk7 of approximately 2.5 μm. A fiber sheet 3 having a thickness of about 0.5 mm was produced with the modified cross-section fibers 6. The core material 4 was produced by laminating 25 sheets. The core material 4 is inserted into an aluminum laminate sheet (nylon 15 μm + polyethylene terephthalate 12 μm + aluminum sheet 6 μm + polyethylene 50 μm) with an adsorbent, and the pressure is reduced to about 1 Pa in a vacuum chamber. The part was sealed by heat sealing to produce a vacuum heat insulating material.

このように製造した真空断熱材の熱伝導率を測定した結果、従来の繊維シートを芯材とした真空断熱材は、熱伝導率が0.0018W/(m・K)程度であったのに対し、図6に示す溶融紡糸用ダイ15を用いたこの実施の形態1に係る真空断熱材は、熱伝導率が0.0015W/(m・K)程度となり断熱効果が約20%改善された。また、繊維シート3の断面を観察したところ、それぞれの繊維接触部での突起同士の面接触及び噛み合わせはほとんど見られなかった。したがってこの発明における真空断熱材は、繊維同士が重なり合う接触面積を低減させ、熱伝導率を下げることでより高い断熱効果が得られる。   As a result of measuring the thermal conductivity of the vacuum heat insulating material thus manufactured, the vacuum heat insulating material using a conventional fiber sheet as a core material has a thermal conductivity of about 0.0018 W / (m · K). On the other hand, the vacuum heat insulating material according to Embodiment 1 using the melt spinning die 15 shown in FIG. 6 has a thermal conductivity of about 0.0015 W / (m · K), and the heat insulating effect is improved by about 20%. . Moreover, when the cross section of the fiber sheet 3 was observed, the surface contact and meshing | engagement of protrusions in each fiber contact part were hardly seen. Therefore, the vacuum heat insulating material in this invention can obtain a higher heat insulation effect by reducing the contact area where fibers overlap and lowering the thermal conductivity.

また同様にして、異形断面繊維1として6個の突起部11を有する6突起異形断面繊維6とし、基準円直径ds9が約8μm、突起先端幅dk8が約3μm、突起高さhk7が約2μmになるようにして繊維シート3を試作したところ、熱伝導率は約30%上昇、すなわち断熱効果が約30%悪化した。この原因は突起高さhk7が低いために突起部11間の凹部14に円断面が接しているためであることが断面観察の結果認められた。このことから6突起異形断面繊維6では突起高さが2μm以上であることが望ましい。   Similarly, a six-protrusion modified cross-section fiber 6 having six protrusions 11 as the irregular cross-section fiber 1 has a reference circle diameter ds9 of about 8 μm, a protrusion tip width dk8 of about 3 μm, and a protrusion height hk7 of about 2 μm. When the fiber sheet 3 was prototyped as described above, the thermal conductivity increased by about 30%, that is, the heat insulating effect was deteriorated by about 30%. As a result of cross-sectional observation, it was confirmed that this was because the circular height was in contact with the recess 14 between the protrusions 11 because the protrusion height hk7 was low. Therefore, it is desirable that the 6-protrusion modified cross-section fiber 6 has a protrusion height of 2 μm or more.

なお、図6は異形断面ノズル16と円形断面ノズル17のそれぞれノズル配置を互いに1つおきに同じ形状のノズルとなるよう相互配置しているが、特にこの配置にする必要はない。このような相互配置を取った場合、製造された繊維シート3において隣接する繊維が異形断面繊維1と円形断面繊維2となる確率が高く、良好な特性を持つ繊維シート3を製造できることは容易に想像できる。しかし、このような相互配置としない場合、例えば、異形断面ノズル16と円形断面ノズル17がランダムに配置された場合においても、繊維シート3の断熱特性を向上させるという効果を達成できることは自明である。   In FIG. 6, the nozzles of the modified cross-section nozzle 16 and the circular cross-section nozzle 17 are arranged so that the nozzles are arranged in the same shape every other nozzle, but this arrangement is not particularly required. When such mutual arrangement is taken, there is a high probability that adjacent fibers in the manufactured fiber sheet 3 will be the irregular cross-section fiber 1 and the circular cross-section fiber 2, and it is easy to manufacture the fiber sheet 3 having good characteristics. I can imagine. However, when such mutual arrangement is not used, for example, even when the irregular cross-section nozzle 16 and the circular cross-section nozzle 17 are randomly arranged, it is obvious that the effect of improving the heat insulating characteristics of the fiber sheet 3 can be achieved. .

また、図6は異形断面ノズル16と円形断面ノズル17のそれぞれの数が略同数の場合について示しているが、製造条件によっては異形断面ノズル16と円形断面ノズル17のそれぞれの数が異なるような配置をとった方がよい場合がある。このような配置としては、例えば周辺部に加工しやすい円形断面ノズル17を配置し、中心部に相互配置となるように配置する場合等が考えられる。   FIG. 6 shows the case where the numbers of the modified sectional nozzles 16 and the circular sectional nozzles 17 are substantially the same. However, depending on the manufacturing conditions, the numbers of the modified sectional nozzles 16 and the circular sectional nozzles 17 may be different. It may be better to take the arrangement. As such an arrangement, for example, a case where a circular cross-section nozzle 17 that is easy to process is arranged in the peripheral portion and arranged so as to be mutually arranged in the central portion can be considered.

さらに、図6は異形断面ノズル16について、断面形状が同一である単一種類のノズルを示しているが、製造条件によっては断面形状が異なる複数種類の異形断面ノズル16を組み合わせて、さらに円形断面ノズル17と組み合わせることで、より良好な特性を持つ繊維シート3が得られる場合が考えられる。   Further, FIG. 6 shows a single type of nozzle having the same cross-sectional shape with respect to the modified cross-section nozzle 16, but a plurality of different cross-section nozzles 16 having different cross-sectional shapes may be combined depending on the manufacturing conditions to further form a circular cross section. A combination of the nozzle 17 and the fiber sheet 3 with better characteristics can be considered.

なお、製造条件によっては断面形状が異なる複数種類の異形断面ノズル16のみを組み合わせることで、より良好な特性を持つ繊維シート3が得られる可能性も考えられるが、この場合には、前記従来の発明における3突起異形断面繊維13だけで繊維シート3を作製したときに説明したように、異形断面繊維1の突起部11間の凹部14に他の異形断面繊維1の突起部11が噛み合わさり、繊維同士の接触部15が広く面接触している箇所が多数発生し、良好な特性が得られないようなことがないように、組み合わせる異なる断面形状を有する異形断面繊維1について、基準円直径ds9、突起先端幅dk8及び突起高さhk7を十分検討する必要がある。   In addition, there is a possibility that the fiber sheet 3 having better characteristics can be obtained by combining only a plurality of types of irregular cross-section nozzles 16 having different cross-sectional shapes depending on the manufacturing conditions. As described when the fiber sheet 3 is produced only with the three-protrusion modified cross-section fibers 13 in the invention, the protrusions 11 of the other modified cross-section fibers 1 mesh with the recesses 14 between the protrusions 11 of the deformed cross-section fibers 1, The standard circular diameter ds9 is used for the modified cross-section fibers 1 having different cross-sectional shapes to be combined so that many contact portions 15 of the fibers are widely in surface contact and good characteristics cannot be obtained. Therefore, it is necessary to sufficiently examine the protrusion tip width dk8 and the protrusion height hk7.

以上述べたように、図6で示したこの実施の形態1に係る繊維シートの溶融紡糸用ダイ15のノズル配置は一例を示したものであり、これに限定されるものではない。隣接するノズル形状が異なるような配列条件を満たしていれば、一般的な製造条件ではよりよい特性を得やすいが、全てのノズル配置においてこの配置条件を満たしていない場合であっても、製造条件によってはよりよい効果が得られる場合も容易に想定できる。すなわち、一部のノズル配置においてでもこの配置条件を満たすことで、この発明の実施の形態1に係る繊維シートが得られることは自明である。   As described above, the nozzle arrangement of the fiber sheet melt spinning die 15 according to the first embodiment shown in FIG. 6 is an example, and the present invention is not limited to this. If the arrangement conditions such that adjacent nozzle shapes are different are satisfied, it is easy to obtain better characteristics under general manufacturing conditions, but even if not all nozzle arrangements satisfy this arrangement condition, the manufacturing conditions Depending on the case, a better effect can be easily assumed. That is, it is obvious that the fiber sheet according to the first embodiment of the present invention can be obtained by satisfying this arrangement condition even with some nozzle arrangements.

実施の形態2.
図7はこの発明の実施の形態2による真空断熱材の繊維シートを構成する一組の繊維を模式的に示した断面図である。図7において、繊維シート3は円形断面繊維2と、異形断面繊維1として7個の突起部11を有する7突起異形断面繊維18とが混在する形で構成されている。
Embodiment 2. FIG.
FIG. 7 is a cross-sectional view schematically showing a set of fibers constituting a fiber sheet of a vacuum heat insulating material according to Embodiment 2 of the present invention. In FIG. 7, the fiber sheet 3 is configured such that a circular cross-section fiber 2 and a seven-protrusion modified cross-section fiber 18 having seven protrusions 11 as the irregular cross-section fiber 1 coexist.

基準円直径ds9が約8μm、突起先端幅dk8が約3μm、突起高さhk7が約2μmである7突起異形断面繊維18を用いて、厚さ約0.5mmの繊維シート3を構成している。その他の構成ならびに製造方法は前記実施の形態1と同様であるため説明を省略する。これを25枚積層して芯材4を作製した。芯材4を外被材5であるアルミラミネートシート(ナイロン15μm+ポリエチレンテレフタレート12μm+アルミシート6μm+ポリエチレン50μm)に吸着剤とともに挿入して、真空チャンバ内で約1Paまで減圧させて、外被材5の間口部を熱融着によって密閉し、真空断熱材を製造した。   A fiber sheet 3 having a thickness of about 0.5 mm is formed using 7-protrusion deformed cross-section fibers 18 having a reference circle diameter ds9 of about 8 μm, a protrusion tip width dk8 of about 3 μm, and a protrusion height hk7 of about 2 μm. . Other configurations and the manufacturing method are the same as those of the first embodiment, and thus description thereof is omitted. The core material 4 was produced by laminating 25 sheets. The core material 4 is inserted into an aluminum laminate sheet (nylon 15 μm + polyethylene terephthalate 12 μm + aluminum sheet 6 μm + polyethylene 50 μm) with an adsorbent, and the pressure is reduced to about 1 Pa in a vacuum chamber. The part was sealed by heat sealing to produce a vacuum heat insulating material.

このように製造した真空断熱材の熱伝導率を測定した結果、この発明の実施の形態2に係る真空断熱材は、前記実施の形態1と同等の熱伝導率0.0015W/(m・K)程度が得られた。また、繊維シート3の断面を観察したところ、それぞれの繊維接触部での突起部11同士の面接触及び噛み合わせはほとんど見られなかった。したがってこの発明の実施の形態2における真空断熱材は、前記実施の形態1と同等の断熱効果が得られる。   As a result of measuring the thermal conductivity of the vacuum heat insulating material manufactured as described above, the vacuum heat insulating material according to the second embodiment of the present invention has a heat conductivity equal to that of the first embodiment 0.0015 W / (m · K). ) Degree was obtained. Moreover, when the cross section of the fiber sheet 3 was observed, the surface contact and meshing | engagement of the projection parts 11 in each fiber contact part were hardly seen. Therefore, the vacuum heat insulating material in the second embodiment of the present invention can obtain the same heat insulating effect as that in the first embodiment.

また同様にして、異形断面繊維1として7個の突起部11を有する7突起異形断面繊維18とし、基準円直径ds9が約8μm、突起先端幅dk8が約3μm、突起高さhk7が約1.5μmになるようにして繊維シート3を試作したところ、熱伝導率は約30%上昇、すなわち断熱効果が約30%悪化した。この原因は突起高さhk7が低いために突起部11間の凹部14に円断面が接しているためであることが断面観察の結果認められた。このことから7突起異形断面繊維18では突起高さが1.5μm以上であることが望ましい。   Similarly, the modified cross-section fiber 1 is a seven-protrusion modified cross-section fiber 18 having seven protrusions 11, a reference circle diameter ds9 of about 8 μm, a protrusion tip width dk8 of about 3 μm, and a protrusion height hk7 of about 1. When the fiber sheet 3 was prototyped so as to have a thickness of 5 μm, the thermal conductivity increased by about 30%, that is, the heat insulating effect deteriorated by about 30%. As a result of cross-sectional observation, it was confirmed that this was because the circular height was in contact with the recess 14 between the protrusions 11 because the protrusion height hk7 was low. For this reason, it is desirable that the height of the protrusions in the seven-protrusion deformed cross-section fiber 18 is 1.5 μm or more.

実施の形態3.
図8はこの発明の実施の形態3による真空断熱材の繊維シートを構成する一組の繊維を模式的に示した断面図である。図8において、繊維シート3は円形断面繊維2と、異形断面繊維1として8個の突起部11を有する8突起異形断面繊維19とが混在する形で構成されている。
Embodiment 3 FIG.
FIG. 8 is a cross-sectional view schematically showing a set of fibers constituting a fiber sheet of a vacuum heat insulating material according to Embodiment 3 of the present invention. In FIG. 8, the fiber sheet 3 is configured such that a circular cross-section fiber 2 and an eight-protruded modified cross-section fiber 19 having eight projecting portions 11 as the modified cross-section fiber 1 are mixed.

基準円直径ds9が約8μm、突起先端幅dk8が約3μm、突起高さhk7が約1.5μmである8突起異形断面繊維19を用いて、厚さ約0.5mmの繊維シート3を構成している。その他の構成ならびに製造方法は前記実施の形態1と同様であるため説明を省略する。これを25枚積層して芯材4を作製した。芯材4を外被材5であるアルミラミネートシート(ナイロン15μm+ポリエチレンテレフタレート12μm+アルミシート6μm+ポリエチレン50μm)に吸着剤とともに挿入して、真空チャンバ内で約1Paまで減圧させて、外被材5の間口部を熱融着によって密閉し、真空断熱材を製造した。   A fiber sheet 3 having a thickness of about 0.5 mm is formed by using the eight-protrusion deformed cross-section fiber 19 having a reference circle diameter ds9 of about 8 μm, a protrusion tip width dk8 of about 3 μm, and a protrusion height hk7 of about 1.5 μm. ing. Other configurations and the manufacturing method are the same as those of the first embodiment, and thus description thereof is omitted. The core material 4 was produced by laminating 25 sheets. The core material 4 is inserted into an aluminum laminate sheet (nylon 15 μm + polyethylene terephthalate 12 μm + aluminum sheet 6 μm + polyethylene 50 μm) with an adsorbent, and the pressure is reduced to about 1 Pa in a vacuum chamber. The part was sealed by heat sealing to produce a vacuum heat insulating material.

このように製造した真空断熱材の熱伝導率を測定した結果、この発明の実施の形態3に係る真空断熱材は、前記実施の形態1と同等の熱伝導率0.0015W/(m・K)程度が得られた。また、繊維シート3の断面を観察したところ、それぞれの繊維接触部での突起部11同士の面接触及び噛み合わせはほとんど見られなかった。したがってこの発明の実施の形態3における真空断熱材は、前記実施の形態1と同等の断熱効果が得られる。   As a result of measuring the thermal conductivity of the vacuum heat insulating material thus manufactured, the vacuum heat insulating material according to the third embodiment of the present invention has a heat conductivity equal to that of the first embodiment 0.0015 W / (m · K). ) Degree was obtained. Moreover, when the cross section of the fiber sheet 3 was observed, the surface contact and meshing | engagement of the projection parts 11 in each fiber contact part were hardly seen. Therefore, the vacuum heat insulating material in the third embodiment of the present invention can obtain the same heat insulating effect as that in the first embodiment.

また同様にして、異形断面繊維1として8個の突起部11を有する8突起異形断面繊維19とし、基準円直径ds9が約8μm、突起先端幅dk8が約3μm、突起高さhk7が約1.0μm になるようにして繊維シート3を試作したところ、熱伝導率は約40%上昇、すなわち断熱効果が約40%悪化した。この原因は突起高さhk7が低いために突起部11間の凹部14に円断面が接しているためであることが断面観察の結果認められた。このことから8突起異形断面繊維19では突起高さが1.0μm以上であることが望ましい。   Similarly, an eight-protruded modified cross-section fiber 19 having eight protrusions 11 as the modified cross-section fiber 1 has a reference circle diameter ds9 of about 8 μm, a protrusion tip width dk8 of about 3 μm, and a protrusion height hk7 of about 1. When the fiber sheet 3 was prototyped so as to have a thickness of 0 μm, the thermal conductivity increased by about 40%, that is, the heat insulating effect deteriorated by about 40%. As a result of cross-sectional observation, it was confirmed that this was because the circular height was in contact with the recess 14 between the protrusions 11 because the protrusion height hk7 was low. For this reason, it is desirable that the protrusion height of the eight-protrusion deformed cross-section fiber 19 is 1.0 μm or more.

なお、前記実施の形態において、繊維材料としてポリエチレンテレフタレート繊維を用いたが、ポリエステル系やそれ以外の有機繊維、例えばポリプロピレン、ポリスチレン、またはポリエチレンなどの有機繊維を用いてもよい。また、円形断面繊維2と異形断面繊維1を別個の材料としても同様な効果が得られる。   In the above embodiment, polyethylene terephthalate fiber is used as the fiber material. However, polyester-based or other organic fibers such as polypropylene, polystyrene, or polyethylene may be used. The same effect can be obtained by using the circular cross-section fiber 2 and the modified cross-section fiber 1 as separate materials.

また、前記実施の形態において、繊維シート3を作製する方法として、溶融紡糸法を用いたが、これに限定されるものではなく、繊維シート3を形成できるのであればその他の方法、例えば乾式紡糸法および湿式紡糸法ならびに湿式製法等を用いてもよい。   In the above embodiment, the melt spinning method is used as a method for producing the fiber sheet 3. However, the method is not limited to this, and other methods such as dry spinning can be used as long as the fiber sheet 3 can be formed. A method, a wet spinning method, a wet manufacturing method, and the like may be used.

1 異形断面繊維、2 円形断面繊維、3 繊維シート、4 芯材、5 外被材、6 6突起異形断面繊維、7 突起高さhk、8 突起先端幅dk、9 基準円直径ds、10 円形部、11 突起部、12 5突起異形断面繊維、13 3突起異形断面繊維、14 凹部、15 溶融紡糸用ダイ、16 異形断面ノズル、17 円形断面ノズル、18 7突起異形断面繊維、19 8突起異形断面繊維   DESCRIPTION OF SYMBOLS 1 Abnormal cross-section fiber, 2 Circular cross-section fiber, 3 Fiber sheet, 4 Core material, 5 Cover material, 6 Protrusion irregular cross-section fiber, 7 Protrusion height hk, 8 Protrusion tip width dk, 9 Reference | standard circle diameter ds, 10 circular Part, 11 protrusion part, 125 protrusion irregular cross-section fiber, 13 3 protrusion irregular cross section fiber, 14 recess, 15 melt spinning die, 16 irregular cross section nozzle, 17 circular cross section nozzle, 187 protrusion irregular cross section fiber, 188 protrusion irregular shape Cross-section fiber

Claims (6)

繊維シートが複数枚積層されてなる芯材と、該芯材を真空密閉して覆う外被材とを備えた真空断熱材において、前記繊維シートは、円形部と該円形部の円周上に配置された複数の突起部からなる異形断面繊維と、略円形の断面を有する円形断面繊維とを混合して形成されていることを特徴とする真空断熱材。   In a vacuum heat insulating material provided with a core material in which a plurality of fiber sheets are laminated and a jacket material that covers the core material by vacuum-sealing, the fiber sheet is formed on a circular portion and a circumference of the circular portion. A vacuum heat insulating material, characterized in that it is formed by mixing irregular cross-section fibers composed of a plurality of arranged protrusions and circular cross-section fibers having a substantially circular cross section. 前記異形断面繊維と前記円形断面繊維が隣接した平面幾何学配置において、前記突起部の少なくとも1つの先端部と前記円形断面繊維の円周の一部とが接触していることを特徴とする請求項1記載の真空断熱材。   The planar geometric arrangement in which the irregular cross-section fiber and the circular cross-section fiber are adjacent to each other, wherein at least one tip portion of the protrusion is in contact with a part of the circumference of the circular cross-section fiber. Item 1. The vacuum heat insulating material according to Item 1. 前記突起部における先端部の幅が、前記円形断面繊維の直径より小さいことを特徴とする請求項1または請求項2記載の真空断熱材。   The vacuum heat insulating material according to claim 1 or 2, wherein a width of a tip portion of the protrusion is smaller than a diameter of the circular cross-section fiber. 前記突起部の突起数が6以上としたことを特徴とする請求項1乃至請求項3のいずれか1つに記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 3, wherein the number of protrusions of the protrusions is 6 or more. 前記異形断面繊維を放出するノズルである異形断面ノズルと、前記円形断面繊維を放出するノズルである円形断面ノズルとを互いに1つおきに配置した紡糸用ダイを有することを特徴とする前記請求項1乃至前記請求項4のいずれか1つに記載の真空断熱材の製造装置。   The spinning die according to claim 1, further comprising: a spinning die in which the odd-shaped cross-section nozzle that discharges the irregular-shaped cross-section fibers and the circular cross-section nozzle that discharges the circular cross-section fibers are alternately arranged. The apparatus for manufacturing a vacuum heat insulating material according to any one of claims 1 to 4. 前記異形断面繊維を放出するノズルである異形断面ノズルと、前記円形断面繊維を放出するノズルである円形断面ノズルとを互いに1つおきに配置した紡糸用ダイを用いたことを特徴とする前記請求項1乃至前記請求項4のいずれか1つに記載の真空断熱材の製造方法。   The spinning die in which the odd-shaped cross-section nozzle that discharges the irregular-shaped cross-section fibers and the circular cross-section nozzle that discharges the circular cross-section fibers are alternately arranged. The manufacturing method of the vacuum heat insulating material as described in any one of Claim 1 thru | or the said Claim 4.
JP2009010860A 2009-01-21 2009-01-21 Vacuum heat insulating material, manufacturing apparatus and manufacturing method thereof Expired - Fee Related JP5093129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009010860A JP5093129B2 (en) 2009-01-21 2009-01-21 Vacuum heat insulating material, manufacturing apparatus and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009010860A JP5093129B2 (en) 2009-01-21 2009-01-21 Vacuum heat insulating material, manufacturing apparatus and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010169147A JP2010169147A (en) 2010-08-05
JP5093129B2 true JP5093129B2 (en) 2012-12-05

Family

ID=42701494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009010860A Expired - Fee Related JP5093129B2 (en) 2009-01-21 2009-01-21 Vacuum heat insulating material, manufacturing apparatus and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5093129B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5554211B2 (en) * 2010-11-24 2014-07-23 三菱電機株式会社 Vacuum heat insulating core material manufacturing apparatus and vacuum heat insulating core material manufacturing method using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237671A (en) * 1985-08-12 1987-02-18 株式会社日立製作所 Vacuum heat-insulating material
JP2001208289A (en) * 2000-01-27 2001-08-03 Nippon Muki Co Ltd Heat insulating material for piping
JP2007071247A (en) * 2005-09-05 2007-03-22 Toyota Auto Body Co Ltd Vacuum heat insulating material, heat insulating panel, and heat insulating box
JP2007239931A (en) * 2006-03-10 2007-09-20 Nippon Sheet Glass Co Ltd Vacuum heat insulation material
JP4814684B2 (en) * 2006-04-20 2011-11-16 日立アプライアンス株式会社 Vacuum heat insulating material, refrigerator and vehicle using the same
JP4986548B2 (en) * 2006-09-05 2012-07-25 有限会社大和 Insulation manufacturing method and insulation
JP2008223922A (en) * 2007-03-14 2008-09-25 Sharp Corp Vacuum heat insulating material
JP5216510B2 (en) * 2008-09-30 2013-06-19 日立アプライアンス株式会社 Vacuum insulation material and equipment using the same

Also Published As

Publication number Publication date
JP2010169147A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
JP5169531B2 (en) Vacuum insulation
KR100943374B1 (en) Manufacturing method of the vacuum heat insulator
EP2631524B1 (en) Vacuum insulation material, and manufacturing method for same
JP2008223922A (en) Vacuum heat insulating material
AU2006243259A1 (en) Non-woven gauntlets for batteries
US10883647B2 (en) Vacuum heat insulator and method of manufacturing the same
EP2306128A3 (en) Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator
JP2011196392A (en) Vacuum heat insulation material and method for producing the same
JP5093129B2 (en) Vacuum heat insulating material, manufacturing apparatus and manufacturing method thereof
CN102162567A (en) Heat-insulating material
JP5664297B2 (en) Vacuum insulation and insulation box
JP2009228886A (en) Vacuum heat insulating material and heat insulating box using the same
JP2008286282A (en) Vacuum heat insulation material
JP5627773B2 (en) Vacuum heat insulating material and heat insulating box using the same
CN101450284A (en) Efficient hollow fiber membrane module device and method
JP2007167627A (en) Manufacturing process for corrugated mattress structure
JP4591288B2 (en) Manufacturing method of vacuum insulation
JP2008057793A5 (en)
KR101774078B1 (en) Core material for vacuum insulation having organic synthetic fibers and vacuum insulation including the same
JP5554211B2 (en) Vacuum heat insulating core material manufacturing apparatus and vacuum heat insulating core material manufacturing method using the same
JPWO2015159646A1 (en) Vacuum heat insulating material and heat insulator provided with the same
JP4892945B2 (en) Vacuum insulation
JP2017068051A (en) Structure of tension member used for optical fiber cable and structure of optical fiber cable using tension member
JP2017116017A (en) Vacuum heat insulation material
JP6306881B2 (en) Convex part molding sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R151 Written notification of patent or utility model registration

Ref document number: 5093129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees