JP5554211B2 - Vacuum heat insulating core material manufacturing apparatus and vacuum heat insulating core material manufacturing method using the same - Google Patents

Vacuum heat insulating core material manufacturing apparatus and vacuum heat insulating core material manufacturing method using the same Download PDF

Info

Publication number
JP5554211B2
JP5554211B2 JP2010261472A JP2010261472A JP5554211B2 JP 5554211 B2 JP5554211 B2 JP 5554211B2 JP 2010261472 A JP2010261472 A JP 2010261472A JP 2010261472 A JP2010261472 A JP 2010261472A JP 5554211 B2 JP5554211 B2 JP 5554211B2
Authority
JP
Japan
Prior art keywords
fiber
core material
vacuum heat
heat insulating
insulating core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010261472A
Other languages
Japanese (ja)
Other versions
JP2012112065A (en
Inventor
俊雄 篠木
俊圭 鈴木
修一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010261472A priority Critical patent/JP5554211B2/en
Publication of JP2012112065A publication Critical patent/JP2012112065A/en
Application granted granted Critical
Publication of JP5554211B2 publication Critical patent/JP5554211B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、真空断熱芯材製造装置およびそれを用いる真空断熱芯材の製造方法に関するものである。   The present invention relates to a vacuum heat insulating core material manufacturing apparatus and a method for manufacturing a vacuum heat insulating core material using the same.

近年、省エネ効率向上のために、より高性能な断熱材が求められている。そして、従来から、高い断熱性能を有する真空断熱パネルの芯材として、芯材に積層状の繊維シートが用いられている。その中でも、糸同士の密着、接触面積が少なくなり、空間を細分化しやすく、剛直性も向上し、安定に空間を維持することができるとの理由から、その断面を異形断面糸にした真空断熱パネルが提案されている(例えば、特許文献1参照)。   In recent years, in order to improve energy saving efficiency, higher performance heat insulating materials have been demanded. And conventionally, a laminated fiber sheet has been used as a core material of a vacuum heat insulating panel having high heat insulating performance. Among them, vacuum insulation with a cross-section of the cross section of a deformed cross-section yarn because the contact between yarns, the contact area is reduced, the space is easy to subdivide, the rigidity is improved, and the space can be stably maintained. A panel has been proposed (see, for example, Patent Document 1).

一方、樹脂繊維では、衣料等を用途にし、繊維の空隙率を上げつつ断面割れを防止するためや、軽量化とふくらみを高めるために、繊維断面積を複数の突起形状に溶融紡糸するための紡口形状に関する技術が示されている。そして、3〜6個の突出部を持つ多葉断面形状をした異形断面糸を溶融紡糸する紡糸口金の吐出孔が、中心に位置する円形孔と該円形孔に連結して放射状に突出する3〜6本のスリット孔と該スリット孔の先端部に連結して位置する円形孔から構成され、該吐出孔が下式を満足するものである。但し、Dは中心円形孔の直径(mm)、Eはスリット孔の巾(mm)、Lはスリット孔の長さ(mm)、dはスリット孔先端の円形孔の直径(mm)、χは中心円形孔からのスリット孔の突出数(3〜6)、SDは中心円形孔の面積(mm)、Sdはスリット孔先端の円形孔の面積(mm)である(例えば、特許文献2および特許文献3参照)。 On the other hand, in the case of resin fibers, for use in clothing, etc., in order to prevent cross-section cracks while increasing the porosity of the fibers, and to melt-spin the fiber cross-sectional area into a plurality of protrusion shapes in order to reduce weight and bulge Techniques related to the spinneret shape are shown. Then, the discharge hole of the spinneret for melt-spinning the irregular cross-section yarn having a multi-leaf cross-sectional shape with 3 to 6 protrusions is connected to the circular hole at the center and the circular hole 3 to protrude radially 3 It is composed of 6 slit holes and a circular hole positioned in connection with the tip of the slit hole, and the discharge hole satisfies the following formula. Where D is the diameter of the central circular hole (mm), E is the width of the slit hole (mm), L is the length of the slit hole (mm), d is the diameter of the circular hole at the tip of the slit hole (mm), and χ is The number of projections of the slit hole from the central circular hole (3 to 6), SD is the area of the central circular hole (mm 2 ), and Sd is the area of the circular hole at the tip of the slit hole (mm 2 ) (for example, Patent Document 2) And Patent Document 3).

0.10mm<D<0.50mm (1)
0.05mm<E<0.10mm (2)
5<(L+d)/E<15 (3)
2<L/E<10 (4)
3.5<χ(EL+Sd)/SD<20 (5)
2.5<χSd/SD<14 (6)
0.5<Sd/EL<10 (7)
0.10 mm <D <0.50 mm (1)
0.05mm <E <0.10mm (2)
5 <(L + d) / E <15 (3)
2 <L / E <10 (4)
3.5 <χ (EL + Sd) / SD <20 (5)
2.5 <χSd / SD <14 (6)
0.5 <Sd / EL <10 (7)

特開2002−58604号公報JP 2002-58604 A 特開昭63−295709号公報JP-A 63-295709 特開平7−173708号公報JP-A-7-173708

しかしながら、従来の技術で示された異形断面糸は具体的にその形状を形成することが難しく、特に真空断熱芯材に使用する繊維は、衣料用とは異なり、紡口から吐出後に繊維が結晶化するまで延伸させることが必要であることから、その形状を維持することが困難であった。   However, the modified cross-section yarns shown in the prior art are difficult to form specifically, and the fibers used for the vacuum insulation core material are different from those for clothing, and the fibers are crystallized after being discharged from the spinning nozzle. It was difficult to maintain the shape because it was necessary to stretch the film until it was made.

この発明は、前記のような課題を解決するためになされたものであり、繊維断面を異形形状に維持しながら真空断熱芯材用繊維を作製する真空断熱芯材製造装置およびそれを用いる真空断熱芯材の製造方法を得ることを目的とする。   The present invention has been made to solve the above-described problems, and a vacuum heat insulating core material manufacturing apparatus for manufacturing a fiber for a vacuum heat insulating core material while maintaining a fiber cross section in an irregular shape, and a vacuum heat insulation using the same. It aims at obtaining the manufacturing method of a core material.

この発明に係る真空断熱芯材製造装置は、繊維シートを積層構造にした芯材を外被材で真空密封させて真空断熱パネルを作製するに際し、溶解された熱可塑性樹脂を複数の紡口から吐出するとともに上記吐出した熱可塑性樹脂を冷却させながら延伸して繊維を作製する溶融紡糸機構と、上記繊維を開繊させて移動する金網コンベヤ上に捕集し搬送して部分接着することにより上記繊維をシート化する繊維シート化機構と、を備えた真空断熱芯材製造装置において、上記複数の紡口の少なくとも一部は、長方形または台形と上記長方形の一方の短辺の中央または上記台形の下底の中央を中心とする円とが重なった少なくとも3個の単位図形が上記長方形の他方の短辺の中央または上記台形の上底の中央が一致するように配置しながら互いに所定の角度で交差する開口であり、上記円の直径が上記長方形の短辺または上記台形の上底より大きい。   The vacuum heat insulating core material manufacturing apparatus according to the present invention, when a vacuum heat insulating panel is produced by vacuum-sealing a core material having a laminated structure of fiber sheets with an outer cover material, a melted thermoplastic resin from a plurality of spouts A melt spinning mechanism that produces fibers by cooling and discharging while discharging the thermoplastic resin, and collecting and transporting the fibers on a wire mesh conveyor that opens and moves the fibers, and partially bonding them. In a vacuum heat insulating core manufacturing apparatus comprising a fiber sheet forming mechanism for forming fibers into a sheet, at least a part of the plurality of spinning nozzles is a rectangle or a trapezoid and a center of one short side of the rectangle or the trapezoid. At least three unit figures that overlap with a circle centered at the center of the bottom base are arranged so that the center of the other short side of the rectangle or the center of the top base of the trapezoid coincides with each other. An opening that intersects at an angle, the diameter of the circle is greater than the upper base of the short sides or the trapezoid of the rectangle.

この発明に係る真空断熱芯材製造装置は、繊維シートから真空断熱芯材を作製する場合、紡口形状を異形紡口にしたため、真空断熱芯材に適した延伸条件においても繊維断面を異形形状に維持しながら繊維が成形でき、剛性が高い繊維となり、繊維と繊維の接触面積が低減されるとともに、芯材の充填率が低減されることで真空断熱パネルの高性能化が図れる。   The vacuum heat insulating core material manufacturing apparatus according to the present invention has a spout shape that is an irregular shape when producing a vacuum heat insulating core material from a fiber sheet, so that the cross section of the fiber is also deformed even under stretching conditions suitable for the vacuum heat insulating core material. The fibers can be molded while maintaining the same, and the fibers become highly rigid, the contact area between the fibers is reduced, and the filling rate of the core material is reduced, so that the performance of the vacuum heat insulating panel can be improved.

この発明の実施の形態1に係る真空断熱パネルの構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the vacuum heat insulation panel which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る真空断熱芯材製造装置の溶融紡糸用の紡口の平面図である。It is a top view of the spinneret for melt spinning of the vacuum heat insulation core material manufacturing apparatus which concerns on Embodiment 1 of this invention. 図2の溶融紡糸用の紡口を構成する単位図形である。FIG. 3 is a unit graphic constituting the spinneret for melt spinning in FIG. 2. FIG. 本実施の形態1における紡糸繊維の断面写真である。2 is a cross-sectional photograph of a spun fiber in Embodiment 1. この発明の実施の形態2に係る真空断熱芯材製造装置の溶融紡糸用の紡口の平面図である。It is a top view of the spinning nozzle for melt spinning of the vacuum heat insulation core material manufacturing apparatus which concerns on Embodiment 2 of this invention. 図5の溶融紡糸用の紡口を構成する単位図形である。FIG. 6 is a unit graphic constituting the spinneret for melt spinning in FIG. 5. FIG. 本実施の形態2における紡糸繊維の断面写真である。It is a cross-sectional photograph of the spun fiber in the second embodiment. 本実施の形態3における紡糸繊維の断面写真である。It is a cross-sectional photograph of the spun fiber in this Embodiment 3.

以下、本発明の真空断熱芯材製造装置の好適な実施の形態につき図面を用いて説明する。
実施の形態1.
図1は、この発明の実施の形態1に係る真空断熱パネルの構造を模式的に示した断面図である。
この発明の実施の形態1に係る真空断熱パネルは、図1に示すように、繊維の断面形状が非円形である異形断面繊維1からなる繊維シート2と、該繊維シート2を積層して構成された芯材3と、該芯材3を覆って密閉する外被材4とを有している。
Hereinafter, preferred embodiments of the vacuum heat insulating core manufacturing apparatus of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
1 is a cross-sectional view schematically showing the structure of a vacuum heat insulation panel according to Embodiment 1 of the present invention.
As shown in FIG. 1, the vacuum heat insulation panel according to Embodiment 1 of the present invention is configured by laminating a fiber sheet 2 composed of a modified cross-section fiber 1 having a non-circular cross-sectional shape of the fiber, and the fiber sheet 2. The core material 3 is formed, and the outer cover material 4 that covers and seals the core material 3 is provided.

図2は、この発明の実施の形態1に係る繊維シート2用の異形断面繊維1を溶融紡糸する真空断熱芯材製造装置の紡口の平面図である。図3は、図2の紡口を構成する単位図形である。
この発明の実施の形態1に係る真空断熱芯材製造装置の紡口10は、図2、図3に示すように、長方形11と円12が長方形11の一方の短辺の中央13を円12の中心として重なる単位図形14を6個長方形11の他方の短辺の中央15を揃えて順次60°回転した略星形六角形の開口である。
そして、長方形11の短辺の長さをW、円12の半径をRとする。また、長方形11の他方の短辺の中央15から一方の短辺の中央13を通る線を延長し、延長した線が円12の外周と交わるとき他方の短辺の中央15と線が交わった点16との距離をLとする。なお、必要に応じて長方形11の部分をスリット6、円12の部分を吐出端部5と称す。
FIG. 2 is a plan view of a spout of a vacuum heat insulating core material manufacturing apparatus that melt-spins a modified cross-section fiber 1 for a fiber sheet 2 according to Embodiment 1 of the present invention. FIG. 3 is a unit graphic constituting the spinneret of FIG.
As shown in FIG. 2 and FIG. 3, the spinning port 10 of the vacuum heat insulating core material manufacturing apparatus according to Embodiment 1 of the present invention has a rectangle 11 and a circle 12 that are formed at a center 13 on one short side of the rectangle 11. This is a substantially star-shaped hexagonal opening formed by aligning the center 15 of the other short side of the rectangle 11 and successively rotating 60 °.
The length of the short side of the rectangle 11 is W, and the radius of the circle 12 is R. Further, a line passing through the center 15 of one short side from the center 15 of the other short side of the rectangle 11 is extended, and when the extended line intersects the outer periphery of the circle 12, the line intersects the center 15 of the other short side. Let L be the distance to the point 16. In addition, the part of the rectangle 11 is called the slit 6 and the part of the circle 12 is called the discharge end part 5 as needed.

図4は、この発明の実施の形態1に係る真空断熱芯材製造装置を用いて作製した異形断面繊維の断面写真である。   FIG. 4 is a cross-sectional photograph of a modified cross-section fiber produced using the vacuum heat insulating core manufacturing apparatus according to Embodiment 1 of the present invention.

次に、この発明の実施の形態1に係る真空断熱パネルの製造方法について説明する。
まず、繊維シート2の作製方法について説明する。
例えば、ポリエチレンテレフタレート樹脂(以下、PET樹脂と記載)のペレットを押出し機で融点以上に加熱して溶解し、溶解された液状またはゲル状のPET樹脂をギアポンプで加圧して複数の紡口から吐出する。
複数の紡口から吐出された液状またはゲル状のPET樹脂は、冷却されることにより紡糸となる。この時、さらにスパンボンド方式やメルトブロー方式により圧縮空気で延伸して、10〜15μm程度の径の繊維を得る。
この延伸して得られた繊維をコンベア上に吐出して堆積する。そして、コンベア上に堆積した繊維同士を、繊維と当る表面がフラットまたはエンボス加工したロールによって、一部熱融着させて繊維をシート化する。これによりシートの引張強度を増すことができ、シートのロール巻きや巻き戻しが可能になる。
このシート化された繊維をロール巻きする。
Next, the manufacturing method of the vacuum heat insulation panel which concerns on Embodiment 1 of this invention is demonstrated.
First, a method for producing the fiber sheet 2 will be described.
For example, pellets of polyethylene terephthalate resin (hereinafter referred to as PET resin) are melted by heating to a melting point or higher with an extruder, and the dissolved liquid or gel PET resin is pressurized with a gear pump and discharged from a plurality of nozzles. To do.
The liquid or gel-like PET resin discharged from the plurality of spinning nozzles is spun by being cooled. At this time, the fiber is further stretched with compressed air by a spun bond method or a melt blow method to obtain a fiber having a diameter of about 10 to 15 μm.
The fibers obtained by stretching are discharged and deposited on a conveyor. Then, the fibers deposited on the conveyor are partly heat-sealed by a roll whose surface that comes into contact with the fibers is flat or embossed to form the fibers into a sheet. As a result, the tensile strength of the sheet can be increased, and the sheet can be rolled and unwound.
This sheeted fiber is rolled.

次に、このロール化されたシート(以下、シートロールと記載)から必要なサイズのシートを引き出して裁断することで繊維シート2を得る。この繊維シート2を複数枚重ね芯材3を得る。この後、2枚の外被素材を重ね合わせた外被材4もしくは1枚の外被素材を折り返した外被材4で覆い、真空チャンバ内に配置し減圧することで外被材4に覆われた空間を真空状態にする。
外被材4で覆われた空間が所定の圧力、例えば0.1〜3Pa程度の真空圧になっている状態で外被材4の外周部を密閉し、真空チャンバ内の圧力を大気圧状態にまで戻す。
以上の工程により、この発明の実施の形態1に係る真空断熱パネルが完成する。
この真空断熱パネルの内部空間は真空状態に保持され、外被材4および芯材3は外部との圧力差による圧縮力を受けている。
Next, a fiber sheet 2 is obtained by drawing out a sheet having a required size from the rolled sheet (hereinafter referred to as a sheet roll) and cutting the sheet. A plurality of fiber sheets 2 are stacked to obtain a core material 3. After this, the outer cover material 4 in which two outer cover materials are overlapped or the outer cover material 4 of one outer cover material is covered with the outer cover material 4, and the outer cover material 4 is covered by placing in a vacuum chamber and reducing the pressure. Vacuum the closed space.
In a state where the space covered with the jacket material 4 is at a predetermined pressure, for example, a vacuum pressure of about 0.1 to 3 Pa, the outer periphery of the jacket material 4 is sealed, and the pressure in the vacuum chamber is at atmospheric pressure. Return to.
The vacuum heat insulation panel according to Embodiment 1 of the present invention is completed through the above steps.
The internal space of the vacuum heat insulating panel is maintained in a vacuum state, and the jacket material 4 and the core material 3 receive a compressive force due to a pressure difference with the outside.

なお、長期真空下に置くことにより、芯材3または外被材4からガスが発生する場合とか、外部から気体が混入する場合とか、水分が混入する場合などが想定される場合には、必要に応じて外被材4で覆われた空間に適切なガス吸着剤を挿入する。   In addition, it is necessary when it is assumed that gas is generated from the core material 3 or the jacket material 4, gas is mixed from the outside, or water is mixed by placing it under vacuum for a long time. Accordingly, an appropriate gas adsorbent is inserted into the space covered with the jacket material 4.

また、繊維シート2に含有される水分については、裁断前後などに繊維シート2を加熱しながら減圧するような工程を設けてこの水分を除去してもよい。
また、外被材4で覆われた芯材3が真空チャンバ内において減圧された状態で、真空チャンバ内を加熱するような機構を設けて、繊維シート2に熱収縮や熱分解などの熱負荷が掛からない温度で、且つ真空放電などを誘発しない圧力に設定するなど、適切な条件にて繊維シート2の水分を除去してもよい。
Moreover, about the water | moisture content contained in the fiber sheet 2, the process of decompressing, heating the fiber sheet 2 before and behind cutting etc. may be provided, and this water | moisture content may be removed.
In addition, a mechanism for heating the inside of the vacuum chamber is provided in a state where the core material 3 covered with the jacket material 4 is decompressed in the vacuum chamber, and the fiber sheet 2 is subjected to a thermal load such as thermal contraction or thermal decomposition. The moisture of the fiber sheet 2 may be removed under appropriate conditions, for example, by setting the pressure so as not to induce vacuum discharge or the like.

また、外被材4は、あらかじめ芯材挿入口を残して製袋加工しておき、芯材3を挿入した後、真空チャンバに配置し、所定の圧力になった後、芯材挿入口のみを密閉してもよい。   In addition, the envelope material 4 is made in a bag-making process leaving the core material insertion port in advance, and after the core material 3 is inserted, it is placed in a vacuum chamber, and after reaching a predetermined pressure, only the core material insertion port is formed. May be sealed.

ここで、複数の突起形状を有する異形断面繊維1からなる繊維シート2を芯材3とする真空断熱パネルは、繊維を異形断面化することによって繊維と繊維の接触面積を小さくすることができ、接触熱抵抗を大きくすることができる。その結果、固体熱伝導が低下し断熱性能が向上する。   Here, the vacuum heat insulation panel having the fiber sheet 2 composed of the modified cross-section fibers 1 having a plurality of protrusion shapes as the core material 3 can reduce the contact area between the fibers and the fibers by making the fibers into a modified cross-section, Contact thermal resistance can be increased. As a result, solid heat conduction is reduced and heat insulation performance is improved.

ところで、例えばPET樹脂を考えた場合、延伸工程で十分延伸させてPET繊維を非晶質構造から結晶構造にすることによって、繊維の剛直性向上と素材の熱伝導率低減が図れる。
実際、我々発明者は、延伸速度と結晶化度の関係を調べ、真空断熱芯材の繊維としてPET樹脂を適用するには、延伸繊維線速度が4100m/分以上であることが好ましいことが分かった。さらに、延伸繊維線速度を4500m/分以上に速くして延伸させることが、結晶化を進める上ではより好ましいことが分かった。しかし、延伸繊維線速度が速くなるに従って糸切れが発生するという課題が生じる。
By the way, for example, when considering a PET resin, the rigidity of the fiber can be improved and the thermal conductivity of the material can be reduced by sufficiently stretching in the stretching process to change the PET fiber from an amorphous structure to a crystalline structure.
In fact, the inventors have investigated the relationship between the drawing speed and the crystallinity, and found that the drawing fiber linear velocity is preferably 4100 m / min or more in order to apply PET resin as the fiber of the vacuum heat insulating core material. It was. Furthermore, it has been found that it is more preferable to stretch the drawn fiber linear velocity at 4500 m / min or more in order to advance crystallization. However, there is a problem that yarn breakage occurs as the drawn fiber linear velocity increases.

また、繊維径が太くなると繊維の傾斜に応じて、繊維自体を通した固体熱伝導が大きくなり、また繊維同士の接触点数が減少することなどから断熱性能の低減を招く。従って、熱伝導率低減には繊維径は細い方が好ましい。
このように結晶化を進めるとともに熱伝導率を低減するためには延伸繊維線速度を上昇し且つ繊維の細径化が好ましいが、逆に、延伸繊維線速度の上昇と繊維の細径化は共に紡糸の不安定さという課題を抱えている。
Further, when the fiber diameter is increased, the solid heat conduction through the fiber itself is increased in accordance with the inclination of the fiber, and the number of contact points between the fibers is decreased, resulting in a reduction in heat insulation performance. Therefore, it is preferable that the fiber diameter is narrower for reducing the thermal conductivity.
In order to advance the crystallization and reduce the thermal conductivity in this way, it is preferable to increase the drawn fiber linear velocity and reduce the fiber diameter, but conversely, the increase in the drawn fiber linear velocity and the fiber diameter reduction Both have the problem of spinning instability.

また、異形断面繊維1の場合、紡口から押し出された紡糸をさらに延伸させる中で、異形断面形状を維持しながら成形することが難しい。
そこで、図2に示す紡口の開口形状寸法をそれぞれ変化させて繊維の断面形状を確認した。この結果、スリット数をnとし、W(mm)が式(8)、L/Wが式(9)、R(mm)が式(10)、nが式(11)を満たすときに、繊維断面が星形多角形形状になることが確認された。尚、星形多角形には複合多角形を含む。
Further, in the case of the irregular cross-section fiber 1, it is difficult to mold while maintaining the irregular cross-sectional shape while further drawing the spun extruded from the spinneret.
Thus, the cross-sectional shape of the fiber was confirmed by changing the opening shape dimensions of the spinning nozzle shown in FIG. As a result, when the number of slits is n, W (mm) is the formula (8), L / W is the formula (9), R (mm) is the formula (10), and n is the formula (11). It was confirmed that the cross section was a star polygon. The star polygon includes a complex polygon.

0.040≦W≦0.050 (8)
5≦L/W≦10 (9)
0.035≦R≦0.050 (10)
3≦n≦8 (11)
0.040 ≦ W ≦ 0.050 (8)
5 ≦ L / W ≦ 10 (9)
0.035 ≦ R ≦ 0.050 (10)
3 ≦ n ≦ 8 (11)

そこで、樹脂材料がPETの場合における真空断熱芯材として適用するために必要な延伸繊維線速度を4600m/分にして、紡口への押出量を変化させた。異形断面繊維1の断面積と同じ断面積の円の直径を相当直径とすると、相当直径が10μm以上では糸切れなく紡糸ができた。
さらに、相当直径を13μmにすれば長期連続紡糸も可能であった。この長期連続紡糸時でも、繊維断面を星形多角形形状に成形することができる(図4の断面写真参照)。
Therefore, the drawing fiber linear velocity required for application as a vacuum heat insulating core material in the case where the resin material is PET was set to 4600 m / min, and the extrusion amount to the spinning nozzle was changed. Assuming that the diameter of a circle having the same cross-sectional area as the cross-sectional area of the irregular cross-section fiber 1 is the equivalent diameter, spinning was possible without breakage when the equivalent diameter was 10 μm or more.
Furthermore, long-term continuous spinning was possible if the equivalent diameter was 13 μm. Even during this long-term continuous spinning, the fiber cross-section can be formed into a star-shaped polygon (see the cross-sectional photograph in FIG. 4).

次に、この異形断面繊維1を芯材とする厚み約8mmの真空断熱パネルを作製し、熱伝導率と芯材の充填率を測定した。その結果、熱伝導率は0.0018W/(m・K)、芯材充填率は,0.14であった。この異形断面繊維1の相当直径と同じ直径の円断面繊維の熱伝導率は、0.0021W/(m・K)、芯材充填率は、0.16であった。従って、芯材繊維の異形断面化によって断熱性能が向上し、さらに芯材としての繊維を少なくすることができることから高性能で低コストの真空断熱が実現できる。   Next, a vacuum heat insulation panel having a thickness of about 8 mm using the modified cross-section fiber 1 as a core material was produced, and the thermal conductivity and the filling rate of the core material were measured. As a result, the thermal conductivity was 0.0018 W / (m · K), and the core material filling rate was 0.14. The thermal conductivity of the circular cross-section fiber having the same diameter as that of the irregular cross-section fiber 1 was 0.0021 W / (m · K), and the core material filling rate was 0.16. Therefore, the heat insulation performance is improved by making the cross section of the core material fibers into a different shape, and further, the number of fibers as the core material can be reduced, so that high performance and low cost vacuum heat insulation can be realized.

一方、参考例1として、図2に示す紡口の吐出端部5の曲率半径Rをスリット幅Wの半分にして同様の紡糸試験を実施した。
その結果、繊維断面はほぼ円形に近い六角形になった。さらに同様に真空断熱パネル化して、熱伝導率と芯材充填率を測定した結果、熱伝導率は0.0021W/(m・K)で、芯材充填率は0.14と円断面繊維と同じ値であった。つまり、吐出端部5の曲率半径がスリット幅Wの半分の紡口形状の場合は安定に紡糸されるものの、繊維断面が星型多角形形状に成形されず、性能の向上も見られないことが確認された。
On the other hand, as Reference Example 1, a similar spinning test was performed with the radius of curvature R of the discharge end portion 5 of the spinning nozzle shown in FIG.
As a result, the fiber cross section became a hexagonal shape that was almost circular. Furthermore, as a result of forming a vacuum heat insulation panel and measuring the thermal conductivity and the core material filling rate, the thermal conductivity is 0.0021 W / (m · K), the core material filling rate is 0.14, It was the same value. That is, in the case of a spinneret shape in which the radius of curvature of the discharge end portion 5 is half of the slit width W, the fiber cross section is not formed into a star-shaped polygonal shape, and the performance is not improved. Was confirmed.

さらに、参考例2として、図2に示す紡口の吐出端部5の曲率半径Rと同じ半径の円からなる開口を図形14の長方形の他方の短辺の中央15に重ねた紡口を作製し、これにて同様の紡糸試験を実施した。
その結果、繊維断面は参考例1と良く似た正六角形になった。同様にこれを真空断熱パネル化して、熱伝導率と芯材充填率を測定した結果、熱伝導率は0.0021W/(m・K)、芯材充填率は0.14であった。つまり、異形紡口の中央に吐出端部5と同じ半径の円の開口を設けた場合も繊維断面が星型多角形形状に成形されず、したがって断熱性能の向上も見られないことが確認された。
Further, as a reference example 2, a spinneret in which an opening made of a circle having the same radius as the curvature radius R of the discharge end 5 of the spinneret shown in FIG. Then, the same spinning test was carried out.
As a result, the fiber cross section was a regular hexagon similar to that of Reference Example 1. Similarly, this was made into a vacuum heat insulation panel, and as a result of measuring the thermal conductivity and the core material filling rate, the thermal conductivity was 0.0021 W / (m · K) and the core material filling rate was 0.14. That is, it is confirmed that even when a circular opening having the same radius as the discharge end portion 5 is provided in the center of the odd-shaped spout, the fiber cross section is not formed into a star-shaped polygonal shape, and therefore the heat insulation performance is not improved. It was.

以上の2つの参考例は、真空断熱芯材用として繊維を高い線速度で延伸させたことに対して、溶融された樹脂の表面張力が勝って突起のある異形断面形状が維持できず、円断面に近づいたものだと考えられる。   In the above two reference examples, the fiber was stretched at a high linear velocity for a vacuum heat insulating core material, whereas the surface tension of the molten resin was won and the irregular cross-sectional shape with protrusions could not be maintained. It is thought that it was close to the cross section.

実施の形態2.
図5は、この発明の実施の形態2に係る真空断熱パネルの繊維シートを製作する真空断熱芯材製造装置の紡口の平面図である。図6は、図5の紡口を構成する単位図形である。図7は、この発明の実施の形態2における真空断熱芯材として作製した繊維断面写真である。
この発明の実施の形態2に係る真空断熱芯材製造装置の紡口10Bは、図5、図6に示すように、台形17と円12が台形17の下底の中央13で円12の中心が重なる単位図形14Bを6個台形17の上底部の中央15を揃えて順次60°回転した略星形六角形の開口である。
そして、台形17の上底の長さをWmin、円12の半径をRとする。また、台形17の上底の中央15から下底の中央13を通る線を延長し、延長した線が円12の外周と交わるとき上底の中央15と線が交わった点16との距離をLとする。なお、必要に応じて台形17の部分をテーパ状スリット6B、円12の部分を吐出端部5と称す。
Embodiment 2. FIG.
FIG. 5 is a plan view of a spinning port of a vacuum heat insulating core material manufacturing apparatus for manufacturing a fiber sheet of a vacuum heat insulating panel according to Embodiment 2 of the present invention. FIG. 6 is a unit graphic constituting the spinneret of FIG. FIG. 7 is a fiber cross-sectional photograph produced as a vacuum heat insulating core material in Embodiment 2 of the present invention.
As shown in FIGS. 5 and 6, the spinning nozzle 10 </ b> B of the vacuum heat insulating core material manufacturing apparatus according to Embodiment 2 of the present invention has a trapezoid 17 and a circle 12 at the center 13 of the bottom of the trapezoid 17 and the center of the circle 12. 6 are unit shapes 14B having overlapping shapes, and are substantially star-shaped hexagonal openings obtained by aligning the center 15 of the upper base of the trapezoid 17 and sequentially rotating 60 °.
The length of the upper base of the trapezoid 17 is Wmin, and the radius of the circle 12 is R. Further, when a line passing through the center 15 of the lower base from the center 15 of the upper base of the trapezoid 17 is extended and the extended line intersects the outer periphery of the circle 12, the distance between the center 15 of the upper base and the point 16 where the line intersects is set. Let L be. Note that the trapezoidal 17 portion is referred to as a tapered slit 6B and the circle 12 portion is referred to as a discharge end portion 5 as necessary.

次に、この発明の実施の形態2に係る真空断熱芯材製造装置における真空断熱芯材用の繊維紡糸について説明する。
実施の形態1で示したものと同様の寸法範囲になる様に図5の形状の紡口を製作し紡糸を試みた。
実施の形態1と同様に延伸繊維線速度を4600m/minにして、紡口10Bへの押出量を変化させた。異形断面繊維の断面積と同じ断面積の円断面繊維の相当直径を求めたところ15μm以上で糸切れなく紡糸できた。また、長期連続紡糸については,相当直径を18μmにすることでこれが実現できた。また、この長期連続紡糸時における繊維断面を観察した結果、図7に示すように、繊維径は実施の形態1と比較して大きくなるものの、同様な星形多角形の断面が形成できることを確認した。
Next, fiber spinning for a vacuum heat insulating core material in a vacuum heat insulating core material manufacturing apparatus according to Embodiment 2 of the present invention will be described.
A spinneret having the shape shown in FIG. 5 was produced so as to have a size range similar to that shown in the first embodiment, and spinning was attempted.
Similarly to the first embodiment, the drawn fiber linear velocity was set to 4600 m / min, and the amount of extrusion to the spinning nozzle 10B was changed. When the equivalent diameter of the circular cross-section fiber having the same cross-sectional area as that of the irregular cross-section fiber was determined, spinning was possible with no breakage at 15 μm or more. For long-term continuous spinning, this can be realized by setting the equivalent diameter to 18 μm. Moreover, as a result of observing the fiber cross section during the long-term continuous spinning, as shown in FIG. 7, it was confirmed that a similar star polygonal cross section could be formed although the fiber diameter was larger than that of the first embodiment. did.

次に、この異形断面繊維を芯材とする厚み約8mmの真空断熱パネルを作製し、熱伝導率と芯材の充填率を測定した。その結果、熱伝導率は0.0019W/(m・K)、芯材の充填率は、0.13であった。従って、熱伝導率については実施の形態1に係る真空断熱パネルよりも高くなるものの、従来の円断面繊維よりは抑制できていることが分かる。
また、芯材の充填率は、円断面繊維は勿論、実施の形態1に係る異形断面繊維を用いたときよりもさらに低充填率であった。従って、この発明の実施の形態2に係る真空断熱芯材製造装置を用いて製作した異形断面繊維を繊維シート2に使用することにより、真空断熱パネルの断熱性能が向上するとともに、芯材の充填率をより低減させた低コストの真空断熱パネルが実現できる。
Next, a vacuum heat insulation panel having a thickness of about 8 mm with the modified cross-section fiber as a core material was produced, and the thermal conductivity and the filling rate of the core material were measured. As a result, the thermal conductivity was 0.0019 W / (m · K), and the filling rate of the core material was 0.13. Therefore, although it becomes higher than the vacuum heat insulation panel which concerns on Embodiment 1, it turns out that it can suppress compared with the conventional circular section fiber about thermal conductivity.
Further, the filling rate of the core material was lower than that when using the irregular cross-section fiber according to Embodiment 1 as well as the circular cross-section fiber. Therefore, by using the modified cross-section fiber manufactured using the vacuum heat insulating core material manufacturing apparatus according to Embodiment 2 of the present invention for the fiber sheet 2, the heat insulating performance of the vacuum heat insulating panel is improved and the core material is filled. A low-cost vacuum insulation panel with a reduced rate can be realized.

実施の形態3.
この発明の実施の形態3においては、この発明の実施の形態1において説明した真空断熱芯材製造装置を用いて、繊維材料としてPET樹脂の代りにポリスチレン(PS)樹脂を用いて異形断面繊維を繊維紡糸する。従って、真空断熱芯材製造装置について説明を省略する。
図8は、この発明の実施の形態3において繊維紡糸した異形断面繊維の断面写真である。
Embodiment 3 FIG.
In Embodiment 3 of the present invention, using the vacuum heat insulating core manufacturing apparatus described in Embodiment 1 of the present invention, a modified cross-section fiber is used by using polystyrene (PS) resin instead of PET resin as the fiber material. Spin the fiber. Therefore, description of the vacuum heat insulating core material manufacturing apparatus is omitted.
FIG. 8 is a cross-sectional photograph of a modified cross-section fiber spun in Embodiment 3 of the present invention.

PS樹脂はPET樹脂と比較して粘度が異なり、PET樹脂の繊維紡糸に適用した高い延伸繊維線速度で延伸させると糸切れが発生してしまう。従って、従来の円断面紡口を用いた場合も、糸の延伸繊維線速度は、約3千〜4千前半m/min台が限界である。
しかし、真空断熱パネルの芯材としてPS樹脂からなる異形断面繊維を用いるとき、繊維の結晶化を考慮すると、延伸樹脂線速度を3100m/min以上にすることが望まれるし、可能であれば3600m/min以上で延伸させることがさらに望まれる。
そこで、延伸繊維線速度を4000m/minに設定して、紡口への押出量を変化させた試験を試みた。その結果、異形断面繊維の断面積と同じ断面積の円断面繊維の相当直径が10μmまで糸切れなく紡糸できることを確認した。また、長期連続紡糸については、相当直径13μmにすることでこれが実現できた。この時の繊維断面を観察した結果、図7に示したように実施の形態1ならびに実施の形態2と同様に繊維の断面は星型多角形形状が形成されていることを確認した。
PS resins have different viscosities compared to PET resins, and thread breakage will occur when drawn at a high drawn fiber linear velocity applied to PET resin fiber spinning. Accordingly, even when a conventional circular cross-section nozzle is used, the draw fiber linear velocity of the yarn is limited to about 3,000 to 4,000 m / min.
However, when using a modified cross-section fiber made of PS resin as the core material of the vacuum heat insulation panel, it is desirable to set the drawn resin linear velocity to 3100 m / min or more, if possible, 3600 m if possible. It is further desired to stretch at a rate of at least / min.
Therefore, an experiment was attempted in which the drawn fiber linear velocity was set to 4000 m / min and the amount of extrusion to the spinning nozzle was changed. As a result, it was confirmed that the equivalent cross-sectional diameter of the circular cross-section fiber having the same cross-sectional area as that of the irregular cross-section fiber could be spun without breaking up to 10 μm. For long-term continuous spinning, this can be realized by setting the equivalent diameter to 13 μm. As a result of observing the fiber cross section at this time, as shown in FIG. 7, it was confirmed that the cross section of the fiber had a star-shaped polygonal shape as in the first and second embodiments.

次に、この繊維を芯材とする厚み約8mmの真空断熱パネルを作製し、熱伝導率と芯材の充填率を測定した。その結果、熱伝導率は0.0018W/(m・K)、芯材の充填率は、0.14と実施の形態1と同じ結果であった。従って、熱伝導率については実施の形態1と同様、断熱性能の向上ならびに芯材充填率の低減が実現できる。また一方で、PSは素材の密度が小さいことから、同一の真空断熱パネルを製作する場合、軽量化が図れる。   Next, a vacuum heat insulation panel having a thickness of about 8 mm using this fiber as a core material was produced, and the thermal conductivity and the filling rate of the core material were measured. As a result, the thermal conductivity was 0.0018 W / (m · K), and the core material filling rate was 0.14, which is the same result as in the first embodiment. Therefore, as with the first embodiment, the thermal conductivity can be improved and the core material filling rate can be reduced. On the other hand, since PS has a low material density, the weight can be reduced when the same vacuum insulation panel is manufactured.

実施の形態4.
この発明の実施の形態4においては、この発明の実施の形態1において説明した真空断熱芯材製造装置を用いて、繊維材料としてPET樹脂の代りにアルミナホウ酸系のEガラスを用いて異形断面繊維を繊維紡糸する。真空断熱芯材製造装置の説明は省略する。
Embodiment 4 FIG.
In the fourth embodiment of the present invention, using the vacuum heat insulating core material manufacturing apparatus described in the first embodiment of the present invention, an irregular-shaped fiber using an alumina boric acid-based E glass as the fiber material instead of PET resin is used. The fiber is spun. The description of the vacuum heat insulating core material manufacturing apparatus is omitted.

次に、真空断熱パネルの製造方法について説明する。
繊維シートに用いるガラス繊維の製造方法として、Eガラス素材を溶解させて複数の口金から冷却させつつ延伸させながら繊維を作製する遠心法を用いた。この口金に上述した実施の形態1に係る紡口と幾何学的に相似な紡口を設けた。紡口の断面積と同じ断面積の円形紡口の相当直径を約0.7mmとし、延伸した繊維の相当直径が約5μmになる様に延伸して繊維を作製した。そして、延伸した繊維を移動する金網コンベヤ上に捕集し搬送してプレスまたはバインダ溶剤などを用いて繊維シート化させる。尚、この後の工程は実施の形態1の説明と同様である。
Next, the manufacturing method of a vacuum heat insulation panel is demonstrated.
As a manufacturing method of the glass fiber used for a fiber sheet, the centrifugation method which melts | dissolves E glass raw material and produces a fiber, making it cool and cool from several nozzle | cap | die was used. The nozzle is provided with a nozzle that is geometrically similar to the nozzle according to the first embodiment described above. A circular spinneret having the same cross-sectional area as the cross-sectional area of the spinneret was made to have an equivalent diameter of about 0.7 mm and drawn so that the equivalent diameter of the drawn fiber was about 5 μm. Then, the drawn fibers are collected and conveyed on a moving wire mesh conveyor, and formed into a fiber sheet using a press or a binder solvent. The subsequent steps are the same as those described in the first embodiment.

このガラス繊維の断面も星形多角形形状に成形されることで、樹脂繊維と同等の効果が得られる。例えば、断面が円形状のガラス繊維を芯材として用いた真空断熱パネルの熱伝導率は、0.0018W/(m・K)であるのに対して、断面が星形六角形形状のガラス繊維を芯材として用いた真空断熱パネルの熱伝導率は、0.0015W/(m・K)である。
また、断面が円形状のガラス繊維を芯材として用いた真空断熱パネルの芯材の充填率は、10%であるのに対して、断面が星形六角形形状のガラス繊維を芯材として用いた真空断熱パネルの芯材の充填率は、8%であり、いずれも低減できる。従って、この場合も高性能で低コストの真空断熱パネルが実現できる。
The cross-section of the glass fiber is also formed into a star-shaped polygon, so that the same effect as that of the resin fiber can be obtained. For example, the heat conductivity of a vacuum heat insulating panel using glass fibers having a circular cross section as a core material is 0.0018 W / (m · K), whereas the glass fibers having a star hexagonal cross section. The heat conductivity of the vacuum heat insulation panel using as a core is 0.0015 W / (m · K).
Moreover, the filling rate of the core material of the vacuum heat insulation panel using the glass fiber having a circular cross section as the core material is 10%, whereas the glass fiber having the star-shaped hexagonal cross section is used as the core material. The filling rate of the core material of the vacuum insulation panel was 8%, which can be reduced. Therefore, in this case as well, a high-performance and low-cost vacuum insulation panel can be realized.

尚、口金の断面積と繊維の断面積の比が50倍以上且つ200倍以下であることが好ましい。   The ratio of the cross-sectional area of the die to the cross-sectional area of the fiber is preferably 50 times or more and 200 times or less.

1 異形断面繊維、2 繊維シート、3 芯材、4 外被材、5 吐出端部、6 スリット、6B テーパ状スリット、10、10B 紡口、11 長方形、12 円、13 (長方形の一方の短辺の)中央、14、14B 単位図形、15 (長方形の他方の短辺の)中央、16 点、17 台形。   1 irregular cross-section fiber, 2 fiber sheet, 3 core material, 4 jacket material, 5 discharge end, 6 slit, 6B tapered slit, 10, 10B spout, 11 rectangle, 12 circle, 13 (one short of the rectangle) Center of side, 14, 14B Unit graphic, 15 Center of other short side of rectangle, 16 points, 17 trapezoid.

Claims (5)

繊維シートを積層構造にした芯材を外被材で真空密封させて真空断熱パネルを作製するに際し、溶解された熱可塑性樹脂を複数の紡口から吐出するとともに上記吐出した熱可塑性樹脂を冷却させながら延伸して繊維を作製する溶融紡糸機構と、上記繊維を開繊させて移動する金網コンベヤ上に捕集し搬送して部分接着することにより上記繊維をシート化する繊維シート化機構と、を備えた真空断熱芯材製造装置において、
上記複数の紡口の少なくとも一部は、長方形または台形と上記長方形の一方の短辺の中央または上記台形の下底の中央を中心とする円とが重なった少なくとも3個の単位図形が上記長方形の他方の短辺の中央または上記台形の上底の中央が一致するように配置しながら互いに所定の角度で交差する開口であり、
上記円の直径が上記長方形の短辺または上記台形の上底より大きいことを特徴とする真空断熱芯材製造装置。
When a vacuum insulation panel is produced by vacuum-sealing a core material having a laminated structure of fiber sheets with a jacket material, the molten thermoplastic resin is discharged from a plurality of spinning nozzles and the discharged thermoplastic resin is cooled. A fiber spinning mechanism for producing a fiber by stretching the fiber, and a fiber sheeting mechanism for collecting and transporting and partially bonding the fiber on a wire mesh conveyor that opens and moves the fiber. In the vacuum insulation core material manufacturing equipment provided,
At least a part of the plurality of spinning nozzles is a rectangle or trapezoid and at least three unit figures in which a circle centered on the center of one short side of the rectangle or the center of the lower base of the trapezoid overlaps the rectangle. An opening that intersects with each other at a predetermined angle while being arranged so that the center of the other short side of the trapezoid or the center of the upper base of the trapezoid coincides,
The vacuum heat insulating core manufacturing apparatus, wherein a diameter of the circle is larger than a short side of the rectangle or an upper base of the trapezoid.
上記長方形の短辺または上記台形の上底をW(mm)、上記長方形の長辺または上記台形の高さと上記円の半径との和をL(mm)、上記円の半径をR(mm)、上記単位図形の数をnとしたとき、上記紡口は下記式を満足していることを特徴とする請求項1に記載の真空断熱芯材製造装置。
0.040≦W≦0.050
5≦L/W≦10
0.035≦R≦0.050
3≦n≦8
W (mm) for the short side of the rectangle or the upper base of the trapezoid, L (mm) for the sum of the height of the long side of the rectangle or the trapezoid and the radius of the circle, and R (mm) for the radius of the circle 2. The vacuum heat insulating core material manufacturing apparatus according to claim 1, wherein when the number of unit figures is n, the spinning nozzle satisfies the following formula.
0.040 ≦ W ≦ 0.050
5 ≦ L / W ≦ 10
0.035 ≦ R ≦ 0.050
3 ≦ n ≦ 8
請求項1に記載の真空断熱芯材製造装置を用いてポリエチレンテレフタレートからなる熱可塑性樹脂を4100m/分以上の繊維線速度で延伸することを特徴とする真空断熱芯材の製造方法。   A method for producing a vacuum heat insulating core material, comprising: stretching a thermoplastic resin made of polyethylene terephthalate at a fiber linear velocity of 4100 m / min or more using the vacuum heat insulating core material manufacturing device according to claim 1. 請求項1に記載の真空断熱芯材製造装置を用いてポリスチレンからなる熱可塑性樹脂を3100m/分以上の繊維線速度で延伸することを特徴とする真空断熱芯材の製造方法。   A method for producing a vacuum heat insulating core material, comprising: stretching a thermoplastic resin made of polystyrene at a fiber linear velocity of 3100 m / min or more using the vacuum heat insulating core material manufacturing apparatus according to claim 1. 繊維シートを積層構造にした芯材を外被材で真空密封させて真空断熱パネルを作製するに際し、溶解されたガラス素材を複数の口金から吐出するとともに上記吐出したガラス素材を冷却させながら延伸して繊維を作製する遠心工程と、上記繊維を移動する金網コンベヤ上に捕集し搬送してシート化する繊維シート化工程と、を含む真空断熱芯材の製造方法において、
上記複数の口金の少なくとも一部は、長方形または台形と上記長方形の一方の短辺の中央または上記台形の下底の中央を中心とする円とが重なった少なくとも3個の単位図形が上記長方形の他方の短辺の中央または上記台形の上底の中央が一致するように配置しながら互いに所定の角度で交差する開口であり、
上記円の直径が上記長方形の短辺または上記台形の上底より大きく、
上記口金の断面積と上記繊維の断面積の比が50倍以上且つ200倍以下にしたことを特徴とする真空断熱芯材の製造方法。
When a vacuum insulation panel is produced by vacuum-sealing a core material having a laminated structure of fiber sheets with a jacket material, the melted glass material is discharged from a plurality of bases and stretched while cooling the discharged glass material. In the manufacturing method of the vacuum heat insulating core material, including a centrifugation step of producing fibers and a fiber sheeting step of collecting and transporting the fibers on a wire mesh conveyor that moves and forming a sheet,
At least a part of the plurality of bases has a rectangular or trapezoidal shape and at least three unit figures in which a circle centering on the center of one short side of the rectangular shape or the center of the lower base of the trapezoidal shape is the rectangular shape. An opening that intersects with each other at a predetermined angle while being arranged so that the center of the other short side or the center of the upper base of the trapezoid coincides,
The diameter of the circle is larger than the short side of the rectangle or the upper base of the trapezoid,
A method for producing a vacuum heat insulating core material, wherein a ratio of a cross-sectional area of the die and a cross-sectional area of the fiber is 50 times or more and 200 times or less.
JP2010261472A 2010-11-24 2010-11-24 Vacuum heat insulating core material manufacturing apparatus and vacuum heat insulating core material manufacturing method using the same Expired - Fee Related JP5554211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010261472A JP5554211B2 (en) 2010-11-24 2010-11-24 Vacuum heat insulating core material manufacturing apparatus and vacuum heat insulating core material manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010261472A JP5554211B2 (en) 2010-11-24 2010-11-24 Vacuum heat insulating core material manufacturing apparatus and vacuum heat insulating core material manufacturing method using the same

Publications (2)

Publication Number Publication Date
JP2012112065A JP2012112065A (en) 2012-06-14
JP5554211B2 true JP5554211B2 (en) 2014-07-23

Family

ID=46496578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010261472A Expired - Fee Related JP5554211B2 (en) 2010-11-24 2010-11-24 Vacuum heat insulating core material manufacturing apparatus and vacuum heat insulating core material manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP5554211B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010983A1 (en) 2012-07-12 2014-01-16 주식회사 케이씨씨 Vacuum insulation panel including annealed binderless glass fiber

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149939A (en) * 1985-12-19 1987-07-03 東レ株式会社 Light weight heat insulating synthetic fiber structure
JPS62199813A (en) * 1986-02-24 1987-09-03 Toray Ind Inc Synthetic fibrous material and production thereof
JPS63295709A (en) * 1987-05-27 1988-12-02 Mitsubishi Rayon Co Ltd Spinneret for melt spinning
JPH02277808A (en) * 1989-04-17 1990-11-14 Teijin Ltd Spinneret
JPH07173708A (en) * 1993-12-17 1995-07-11 Kuraray Co Ltd Spinneret for modified cross-section fiber and production of modified cross-section fiber using the same
JP3365141B2 (en) * 1995-04-28 2003-01-08 鐘淵化学工業株式会社 Deformed cross-section fiber for artificial hair
KR100359056B1 (en) * 2000-05-12 2002-11-07 한국과학기술연구원 Vacuum insulator using glass white wool and its fabrication method
JP5169531B2 (en) * 2008-06-24 2013-03-27 三菱電機株式会社 Vacuum insulation
JP5093129B2 (en) * 2009-01-21 2012-12-05 三菱電機株式会社 Vacuum heat insulating material, manufacturing apparatus and manufacturing method thereof

Also Published As

Publication number Publication date
JP2012112065A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
CN102168319B (en) Production method for high-strength high-modulus low-shrink polyester industrial yarns
KR20120109289A (en) A separator, a method and an apparatus for manufacturing the same
JP5398604B2 (en) Vacuum insulation material and manufacturing method thereof
JP5554211B2 (en) Vacuum heat insulating core material manufacturing apparatus and vacuum heat insulating core material manufacturing method using the same
KR960014548B1 (en) Method for molding a liquid crystal resin sheet and molding apparatus thereof
EP2105648B1 (en) Vacuum heat insulating material and heat insulating box using the same
WO2023029550A1 (en) High-elongation polyolefin microporous membrane, preparation method therefor, and battery
CN218038703U (en) Cable insulation wraps up device
CN105479714B (en) A kind of method for preparing buffering combination board using air pressure support one-shot forming
CN106498567A (en) Polymer calculus nanometer layer overlapping membrane method carbon fibre precursor and preparation method thereof
JP2013087843A (en) Vacuum heat insulation material, method for manufacturing vacuum heat insulation material and heat insulating box for refrigerator
KR20110023394A (en) Nonwoven fabric of hollow filament for supporting an active material and manufacturing method thereof
CN204538102U (en) A kind of stacked fibrage battery diaphragm process units
JPS6250566B2 (en)
CN105757400A (en) Core material for vacuum insulation plate and vacuum insulation plate form by same
JP2013036595A (en) Vacuum heat insulating material
KR200356866Y1 (en) Apparatus of HDPE FLAT YARN
JP2012013158A (en) Vacuum heat insulating material, heat insulating box, and method of manufacturing vacuum heat insulating material
CN200992614Y (en) One-step different shrinkage special conjugate yarn winding device
JP5093129B2 (en) Vacuum heat insulating material, manufacturing apparatus and manufacturing method thereof
JP2013245428A (en) Separator, method for producing separator and apparatus for producing separator
JP5297752B2 (en) Cylindrical film, manufacturing apparatus and manufacturing method thereof
JP2013190022A (en) Vacuum heat insulating material, method for manufacturing the same, heat insulating body and method for dismounting the same
CN213680999U (en) Device for manufacturing nano-fibers by changing melt-blowing method into electrostatic spinning
CN213447403U (en) System for postpone many F fine denier regenerated polyester filament of silk bundle cooling spinning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140528

R150 Certificate of patent or registration of utility model

Ref document number: 5554211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees