JP5089775B2 - 容量負荷駆動回路およびこれを備えた表示装置 - Google Patents

容量負荷駆動回路およびこれを備えた表示装置 Download PDF

Info

Publication number
JP5089775B2
JP5089775B2 JP2010524679A JP2010524679A JP5089775B2 JP 5089775 B2 JP5089775 B2 JP 5089775B2 JP 2010524679 A JP2010524679 A JP 2010524679A JP 2010524679 A JP2010524679 A JP 2010524679A JP 5089775 B2 JP5089775 B2 JP 5089775B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
output
input
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010524679A
Other languages
English (en)
Other versions
JPWO2010018706A1 (ja
Inventor
クリストファー・ブラウン
康行 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010524679A priority Critical patent/JP5089775B2/ja
Publication of JPWO2010018706A1 publication Critical patent/JPWO2010018706A1/ja
Application granted granted Critical
Publication of JP5089775B2 publication Critical patent/JP5089775B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electronic Switches (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、入力電圧に基づき容量負荷を駆動する容量負荷駆動回路、および、容量負荷駆動回路を備えた表示装置に関する。
液晶表示装置を小型・低消費電力化する方法の1つとして、画素回路と画素回路の駆動回路とを同一の基板上に一体に形成する方法が知られている。以下、この方法を用いて構成された液晶表示装置を「ドライバ一体型液晶表示装置」という。ドライバ一体型液晶表示装置では、駆動回路は、低温ポリシリコンやCGシリコン(Continuous Grain Silicon:連続粒界結晶シリコン)などによる薄膜トランジスタ(Thin Film Transistor:以下、TFTと略称する)を用いて構成される。
図7は、従来のドライバ一体型液晶表示装置の構成を示すブロック図である。図7に示す液晶表示装置は、ガラス基板上に画素回路82、ゲートドライバ回路83、および、ソースドライバ回路84を一体に形成した液晶パネル81を備えている。ソースドライバ回路84は、シフトレジスタ85、D/A変換回路86、バッファ回路87、および、サンプリングゲート88を含んでいる。バッファ回路87は、D/A変換回路86から出力されたアナログ電圧Vinに基づき、画素回路82に接続されたソース線SLを駆動する。サンプリングゲート88は、バッファ回路87とソース線SLを接続するか否かを切り替える。サンプリングゲート88は、ソース線SLをバッファ回路87から切り離し、ソース線SLの電圧を一定に保つために設けられる。また、サンプリングゲート88は、複数のソース線SLを切り替えて駆動するためにも使用される。複数のソース線SLを切り替えて駆動することにより、D/A変換回路86やバッファ回路87をソース線SLの本数よりも少なくすることができる。
図8は、図7に示す液晶表示装置のD/A変換回路86より後段の部分を示す回路図である。図8に示す回路では、バッファ回路87は、オペアンプ89を用いて構成されている。オペアンプ89の正側入力端子には、D/A変換回路86から出力されたアナログ電圧Vinが印加される。オペアンプ89の出力端子は、負側入力端子にフィードバック接続される。オペアンプ89は、ユニティゲインアンプとして機能し、ソース線SLの電圧をアナログ電圧Vinに等しくなるように制御する。
図9は、オペアンプ89の一例を示す回路図である。図9に示すオペアンプ89は、TFT:M1〜M7とコンデンサC1を含み、差動入力電圧Vin+、Vin−をA級増幅して出力電圧Voutを生成する。オペアンプ89でA級増幅を行うことにより、歪みの小さい出力電圧Voutに基づきソース線SLを駆動することができる。
本願発明に関連する技術は、以下の文献にも記載されている。特許文献1には、図10に示すソースドライバ回路の出力段回路が記載されている。図10に示す出力段回路は、図11に示すタイミングチャートに従い、初期設定、書き込みおよび保持の3段階動作を行う。スイッチSW7〜SW10の状態は、比較回路92の出力がハイレベルかローレベルかに応じて変化する。特許文献2〜4にも、入力電圧に基づきソース線を駆動するソースドライバ回路の他の例が記載されている。
日本国特開2004−166039号公報 日本国特開2001−222261号公報 日本国特開2005−338131号公報 日本国特開2006−133444号公報
ドライバ一体型液晶表示装置のソースドライバ回路には、消費電力が大きい、プロセスばらつきに弱い、回路面積が大きいなどの問題点がある。例えば図9に示すオペアンプ89では、A級増幅を行うために、TFT:M5とTFT:M7に定常的にバイアス電流Istが流れる。このように定常電流が流れるオペアンプを使用すると、ソースドライバ回路の消費電力は増大する。また、差動増幅回路では使用できるコモンモード電圧に制限があるので、その制限を満たしながら所望の性能を発揮させるためには、回路の動作電圧を高くする必要がある。ところが、動作電圧を高くすると、回路の消費電力は増大する。また、サンプリングゲートには容量成分と抵抗成分があるので、サンプリングゲートでも電力が消費される。このような理由により、ソースドライバ回路の消費電力が大きいことが問題となる。
また、ガラス基板上にTFTを形成した場合、TFTの特性(例えば、閾値電圧)にはばらつき(プロセスばらつき)が生じやすい。TFTの閾値電圧がばらつくと、TFTで構成されたオペアンプの性能にばらつきが生じる。また、オペアンプに供給されるバイアス電圧にもばらつきが生じる。このような理由によりソースドライバ回路の性能がばらつくと、表示画面に線状のノイズが現れ、表示画面の画質が低下することが問題となる。
表示画面の画質低下を防止するためには、プロセスばらつきを補償する回路を設ければよい。ところが、補償回路を追加すると、その分だけソースドライバ回路の回路面積が増大することが問題となる。また、ソースドライバ回路にはサンプリングゲートとその制御回路が設けられるが、これによっても回路面積は増大する。
それ故に、本発明は、ドライバ一体型表示装置のソースドライバ回路の出力段回路などに好適な小型、低消費電力で、プロセスばらつきに強い容量負荷駆動回路、および、これを備えた表示装置を提供することを目的とする。
本発明の第1の局面は、入力電圧に基づき容量負荷を駆動する容量負荷駆動回路であって、
入力端子から入力された入力電圧と出力端子から出力される出力電圧とを比較し、比較結果に応じた比較結果電圧を出力する電圧比較部と、
第1期間ではそれぞれの初期レベルに設定され、第2期間では前記比較結果電圧に応じて変化する充電制御電圧と放電制御電圧を出力する駆動制御部と、
前記充電制御電圧に基づき前記出力端子に接続された容量負荷を充電する充電回路と、前記放電制御電圧に基づき前記容量負荷を放電させる放電回路とを含むプッシュプル出力部とを備え、
前記駆動制御部は、
前記充電回路に対して前記充電制御電圧を出力する充電側増幅回路と、
前記放電回路に対して前記放電制御電圧を出力する放電側増幅回路と、
前記電圧比較部の出力と前記充電側増幅回路の入力とを容量結合するための充電側容量素子と、
前記電圧比較部の出力と前記放電側増幅回路の入力とを容量結合するための放電側容量素子と、
第1期間ではオン状態になり、前記充電側増幅回路の入力にオフ電圧を与える充電側セットアップスイッチと、
第1期間ではオン状態になり、前記放電側増幅回路の入力にオフ電圧を与える放電側セットアップスイッチとを含み、
第1期間では前記充電制御電圧と前記放電制御電圧をそれぞれ前記充電回路と前記放電回路が動作しないレベルに設定し、第2期間では前記比較結果電圧に基づき、前記出力電圧が前記入力電圧よりも低いときには前記充電制御電圧を前記充電回路が動作するレベルに設定し、前記出力電圧が前記入力電圧よりも高いときには前記放電制御電圧を前記放電回路が動作するレベルに設定することにより、前記出力電圧が前記入力電圧と等しくなるように前記充電回路と前記放電回路を選択的に動作させることを特徴とする。
本発明の第2の局面は、本発明の第1の局面において、
前記電圧比較部は、
前記入力端子と所定の節点の間に設けられ、第1期間でオン状態になる入力側選択スイッチと、
前記出力端子と前記節点の間に設けられ、第2期間でオン状態になる出力側選択スイッチと、
入力が前記節点に接続され、第1期間における前記入力電圧と第2期間における前記出力電圧とを比較して前記比較結果電圧を出力する比較回路とを含む。
本発明の第3の局面は、本発明の第2の局面において、
前記比較回路は、
インバータ回路と、
前記インバータ回路の入力と前記節点の間に設けられた容量素子と、
前記インバータ回路の入力と出力の間に設けられ、第1期間でオン状態になる短絡用スイッチとを含み、
前記容量素子は、第1期間では前記入力電圧と前記インバータ回路の反転電圧との差を保持し、前記インバータ回路は、第2期間では前記出力電圧と前記入力電圧の差に前記反転電圧を加えた電圧に応じた電圧を前記比較結果電圧として出力することを特徴とする。
本発明の第の局面は、本発明の第1の局面において、
前記プッシュプル出力部は、
前記充電回路として、高電圧側電源配線と前記出力端子の間に設けられ、前記充電制御電圧を用いて制御される充電用スイッチを含み、
前記放電回路として、低電圧側電源配線と前記出力端子の間に設けられ、前記放電制御電圧を用いて制御される放電用スイッチを含む。
本発明の第の局面は、本発明の第の局面において、
前記プッシュプル出力部は、
前記高電圧側電源配線と前記出力端子の間に前記充電用スイッチと直列に設けられた充電停止用スイッチと、
前記低電圧側電源配線と前記出力端子の間に前記放電用スイッチと直列に設けられた放電停止用スイッチとをさらに含む。
本発明の第の局面は、表示装置であって、第1〜第のいずれかの局面に係る容量負荷駆動回路を用いて、画素回路に接続された信号線を駆動することを特徴とする。
本発明の第1の局面によれば、入力電圧と出力電圧を比較した結果に基づき、プッシュプル出力部に含まれる充電回路と放電回路を選択的に動作させて容量負荷の充放電を行うことにより、出力電圧を入力電圧と等しくすることができる。また、充電回路と放電回路を選択的に動作させることにより、回路に定常電流が流れることを防止し、回路の消費電力を削減することができる。また、出力電圧が入力電圧と等しくないときにだけ容量負荷の充放電を行うことにより、容量負荷の充放電による無駄な電力消費を防止することができる。また、第2期間では出力電圧は入力電圧に等しくなるように制御されるので、出力電圧を保持する回路(例えば、サンプリングゲート)は不要であり、その分だけ回路の面積と消費電力を削減することができる。また、電圧比較部、駆動制御部およびプッシュプル出力部については、プロセスばらつきに強い回路を容易に構成することができる。したがって、小型、低消費電力で、プロセスばらつきに強い容量負荷駆動回路を構成することができる。
また、第1期間では充電回路と放電回路を停止させ、第2期間では出力電圧が入力電圧よりも低いときには充電回路を動作させ、出力電圧が入力電圧よりも高いときには放電回路を動作させることにより、第1期間では出力電圧を変化させずに、第2期間では出力電圧を入力電圧に等しくすることができる。
また、2個の増幅回路を用いることにより、第1期間では充電制御電圧と放電制御電圧をそれぞれの初期レベルに設定し、第2期間では比較結果電圧に応じて充電制御電圧と放電制御電圧を変化させる駆動制御部を容易に構成することができる。
また、第1期間では、2個のセットアップスイッチをオン状態にして、各増幅回路の入力にオフ電圧を与えることにより、充電制御電圧と放電制御電圧をそれぞれの初期レベルに設定することができる。第2期間では、2個のセットアップスイッチをオフ状態にして、各増幅回路の入力に容量素子を介して比較結果電圧を与えることにより、充電制御電圧と放電制御電圧を比較結果電圧に応じて変化させることができる。
本発明の第2の局面によれば、2個のスイッチの状態を好適に制御することにより、比較回路に入力される電圧を第1期間と第2期間の間で切り替え、比較回路を用いて、第1期間における入力電圧と第2期間における出力電圧との比較結果に応じた比較結果電圧を求めることができる。
本発明の第3の局面によれば、容量素子とインバータ回路とスイッチを含む比較回路において、スイッチの状態を好適に制御することにより、インバータ回路は第2期間では出力電圧と入力電圧の差にインバータ回路の反転電圧(インバータ回路の入力と出力を短絡したときの入出力電圧)を加えた電圧に応じた電圧を出力する。インバータ回路から出力された電圧を比較結果電圧とした場合、充電制御電圧と放電制御電圧はインバータ回路の閾値電圧のばらつきの影響を受けない。したがって、インバータ回路の閾値電圧のばらつきの影響を受けることなく、出力電圧を入力電圧に等しくすることができる。よって、プロセスばらつきに強い容量負荷駆動回路を構成することができる。
本発明の第の局面によれば、2本の電源配線と出力端子の間にそれぞれスイッチを設け、各スイッチを充電制御電圧と放電制御電圧を用いて制御することにより、充電制御電圧に基づき容量負荷を充電する充電回路と放電制御電圧に基づき容量負荷を放電させる放電回路と含むプッシュプル出力部を容易に構成することができる。このプッシュプル出力部を用いることにより、回路に定常電流が流れることを防止し、回路の消費電力を削減することができる。
本発明の第の局面によれば、2本の電源配線と出力端子の間にそれぞれスイッチを追加し、追加したスイッチの状態を好適に制御することにより、容量負荷の充放電を行う期間を制限し、回路の誤動作を防止し、消費電力を削減することができる。
本発明の第の局面によれば、画素回路に接続された信号線を駆動するときに、小型、低消費電力で、プロセスばらつきに強い容量負荷駆動回路を用いることにより、小型、低消費電力で、高画質の表示装置を構成することができる。
本発明の実施形態に係るプッシュプル型バッファ回路の回路図である。 図1に示すバッファ回路を備えたドライバ一体型液晶表示装置の構成を示すブロック図である。 図1に示すバッファ回路のセットアップ期間におけるスイッチの状態を示す図である。 図1に示すバッファ回路の駆動期間におけるスイッチの状態を示す図である。 図1に示すバッファ回路のタイミングチャートである。 本発明の実施形態の変形例に係るプッシュプル型バッファ回路の回路図である。 従来のドライバ一体型液晶表示装置の構成を示すブロック図である。 図7に示す液晶表示装置のD/A変換回路より後段の部分を示す回路図である。 図8に示す回路に含まれるオペアンプの一例を示す回路図である。 ある文献に記載されたソースドライバ回路の出力段回路の回路図である。 図10に示す出力段回路のタイミングチャートである。
図1は、本発明の実施形態に係るプッシュプル型バッファ回路の回路図である。図1に示すバッファ回路1は、本発明の容量負荷駆動回路の一具体例であり、入力端子INから入力された電圧に基づき、出力端子OUTに接続された容量負荷9を駆動する。以下、入力端子INから入力された電圧を入力電圧Vinといい、出力端子OUTから出力される電圧を出力電圧Voutという。
バッファ回路1は、例えば、ドライバ一体型液晶表示装置(画素回路とその駆動回路を同一の基板上に一体に形成した液晶表示装置)において、ソース線(データ信号線、映像信号線などとも呼ばれる)を駆動するソースドライバ回路の出力段回路として使用される。図2は、バッファ回路1を備えたドライバ一体型液晶表示装置の構成を示すブロック図である。図2に示す液晶表示装置40は、ガラス基板上に画素回路42、ゲートドライバ回路43、および、ソースドライバ回路44を一体に形成した液晶パネル41を備えている。ガラス基板上の回路は、低温ポリシリコンやCGシリコンなどによるTFTを用いて構成される。
液晶パネル41には、互いに平行な複数のゲート線GLと、ゲート線GLと直交する互いに平行な複数のソース線SLとが形成される(図2にはゲート線GLとソース線SLを1本ずつ記載)。ゲート線GLとソース線SLの各交点に対応して、TFT45、液晶容量Ccおよび補助容量Csを含む画素回路42が形成される。画素回路42は、対応するゲート線GLと対応するソース線SLに接続される。
さらに液晶パネル41には、画素回路42の駆動回路として、ゲートドライバ回路43とソースドライバ回路44が形成される。ゲートドライバ回路43は、複数のゲート線GLの中から1本のゲート線を選択する。ソースドライバ回路44は、選択されたゲート線GLに接続された画素回路42に書き込むべき電圧をソース線SLに印加する。ソースドライバ回路44は、シフトレジスタ46、D/A変換回路47、および、本実施形態に係るバッファ回路1を含んでいる。D/A変換回路47は、液晶表示装置40の外部から供給されたデジタル映像データDATをアナログ電圧Vinに変換する。バッファ回路1は、容量負荷であるソース線SLに接続され、D/A変換回路47から出力されたアナログ電圧Vinに基づきソース線SLを駆動する。なお、バッファ回路1はソース線SLを接続するか否かを切り替える機能を有するので、バッファ回路1を含むソースドライバ回路44にはサンプリングゲートを設ける必要はない。
以下、図1を参照して、バッファ回路1の詳細を説明する。バッファ回路1は、図1に示すように、電圧比較部2、駆動制御部3、および、プッシュプル出力部4を備えている。これらの回路は、スイッチ11〜15、TFT21〜26、コンデンサ31〜33、および、インバータ回路34を用いて構成される。TFT21、23、25はP型TFTであり、TFT22、24、26はN型TFTである。
電圧比較部2は、スイッチ11〜13、コンデンサ31およびインバータ回路34を含んでいる。スイッチ11は、入力端子INとコンデンサ31の一方の電極(図1では左側の電極。以下、入力側電極という)との間に設けられる。スイッチ12は、出力端子OUTとコンデンサ31の入力側電極との間に設けられる。コンデンサ31の他方の電極は、インバータ回路34の入力に接続される。スイッチ13は、インバータ回路34の入力と出力の間に設けられる。スイッチ13、コンデンサ31およびインバータ回路34は、順次入力された2個の電圧を比較する比較回路を構成する。
駆動制御部3は、スイッチ14、15、TFT21〜24およびコンデンサ32、33を含んでいる。TFT21、22は、直列に接続され、高電圧側電源配線と低電圧側電源配線(以下、前者をVDD配線、後者をVSS配線という)の間に配置される。より詳細には、TFT21、22のドレイン端子は相互に接続され、TFT21、22のソース端子はそれぞれVDD配線とVSS配線に接続される。TFT22のゲート端子には所定のバイアス電圧Vbnが印加され、TFT22はバイアストランジスタとして機能する。コンデンサ32は、インバータ回路34の出力とTFT21のゲート端子との間に設けられる。スイッチ14は、VDD配線とTFT21のゲート端子との間に設けられる。このようにTFT21、22は増幅回路(以下、放電側増幅回路という)を構成し、放電側増幅回路の入力は電圧比較部2の出力と容量結合される。
TFT23、24は、TFT21、22と同様に、直列に接続され、VDD配線とVSS配線の間に配置される。TFT23のゲート端子には所定のバイアス電圧Vbpが印加され、TFT23はバイアストランジスタとして機能する。コンデンサ33は、インバータ回路34の出力とTFT24のゲート端子との間に設けられる。スイッチ15は、VSS配線とTFT24のゲート端子との間に設けられる。このようにTFT23、24は増幅回路(以下、充電側増幅回路という)を構成し、充電側増幅回路の入力は電圧比較部2の出力と容量結合される。
プッシュプル出力部4は、TFT25、26を含んでいる。TFT25、26は、TFT21、22と同様に、直列に接続され、VDD配線とVSS配線の間に配置される。TFT25のゲート端子はTFT23、24のドレイン端子に接続され、TFT26のゲート端子はTFT21、22のドレイン端子に接続される。TFT25、26のドレイン端子は出力端子OUTに接続される。このようにTFT25はVDD配線と出力端子OUTの間に設けられ、TFT26はVSS配線と出力端子OUTの間に設けられる。
なお、バッファ回路1において、スイッチ11〜15は、それぞれ、入力側選択スイッチ、出力側選択スイッチ、短絡用スイッチ、放電側セットアップスイッチ、および、充電側セットアップスイッチとして機能する。コンデンサ32は放電側容量素子として機能し、コンデンサ33は充電側容量素子として機能する。TFT25は充電用スイッチとして機能し、TFT26は放電用スイッチとして機能する。充電用スイッチは充電回路を構成し、放電用スイッチは放電回路を構成する。
スイッチ11、13〜15にはスイッチ制御信号Xsが与えられ、スイッチ12にはスイッチ制御信号Xdが与えられる。スイッチ11〜15は、与えられたスイッチ制御信号がハイレベルのときにはオン状態になり、当該信号がローレベルのときにはオフ状態になるとする。以下、スイッチ11、12とコンデンサ31が接続された節点をN1、インバータ回路34の入力が接続された節点をN2、インバータ回路34の出力が接続された節点をN3、TFT21、24、25、26のゲート端子が接続された節点をそれぞれN4〜N7という。
バッファ回路1は、セットアップと駆動の2段階動作を行うことにより、容量負荷9を駆動する。以下、セットアップ動作を行う期間を「セットアップ期間」、駆動動作を行う期間を「駆動期間」という。セットアップ期間では、スイッチ制御信号Xsはハイレベルに制御され、スイッチ制御信号Xdはローレベルに制御される。したがって、セットアップ期間では、スイッチ11、13〜15はオン状態になり、スイッチ12はオフ状態になる(図3を参照)。これに対して駆動期間では、スイッチ制御信号Xsはローレベルに制御され、スイッチ制御信号Xdはハイレベルに制御される。したがって、駆動期間では、スイッチ11、13〜15はオフ状態になり、スイッチ12はオン状態になる(図4を参照)。
図5は、バッファ回路1のタイミングチャートである。図5には、スイッチ制御信号Xs、Xd、入力電圧Vin、節点N1〜N7の電圧、および、出力電圧Voutの変化が記載されている。スイッチ制御信号Xsがハイレベルである期間がセットアップ期間であり、スイッチ制御信号Xdがハイレベルである期間が駆動期間である。セットアップ期間と駆動期間は、重複しないように設定される。また、バッファ回路1の誤動作を防止するために、セットアップ期間と駆動期間の間には若干の空き時間が設けられる。
図5に示す例では、入力電圧Vinは、時刻t1で上昇し、時刻t3で下降する。バッファ回路1は、時刻t1から始まるセットアップ期間では、回路の状態を初期化するセットアップ動作を行う。時刻t2から始まる駆動期間では、バッファ回路1は、容量負荷9を充電し、出力電圧Voutを上昇させる駆動動作を行う。時刻t3から始まるセットアップ期間では、バッファ回路1は、時刻t1から始まるセットアップ期間と同じセットアップ動作を行う。時刻t4から始まる駆動期間では、バッファ回路1は、容量負荷9を放電させ、出力電圧Voutを下降させる駆動動作を行う。以下、各期間におけるバッファ回路1の動作を詳細に説明する。
時刻t1または時刻t3から始まるセットアップ期間では、スイッチ制御信号Xsはハイレベルに制御され、スイッチ制御信号Xdはローレベルに制御されるので、スイッチ11、13〜15はオン状態になり、スイッチ12はオフ状態になる(図3を参照)。スイッチ11がオン状態で、スイッチ12がオフ状態であるので、コンデンサ31の入力側電極にはスイッチ11を経由して入力電圧Vinが印加され、節点N1の電圧は入力電圧Vinに等しくなる。
また、スイッチ13がオン状態であるので、インバータ回路34の入力と出力は短絡され、インバータ回路34の入力電圧と出力電圧は等しくなる。入力と出力を短絡したときのインバータ回路34の入出力電圧を反転電圧Vmという。セットアップ期間では、節点N2、N3の電圧は反転電圧Vmに等しくなり、コンデンサ31の電極間電圧は(Vin−Vm)となる。コンデンサ31は、セットアップ期間終了時にこの電極間電圧を保持する。
また、スイッチ14、15がオン状態であるので、節点N4にはVDD配線から高電圧側の電源電圧(以下、VDDとする)が与えられ、節点N5にはVSS配線から低電圧側の電源電圧(以下、VSSとする)が与えられる。このため、コンデンサ32の電極間電圧は(VDD−Vm)となり、コンデンサ33の電極間電圧は(VSS−Vm)となる。コンデンサ32、33は、セットアップ期間終了時にそれぞれの電極間電圧を保持する。
TFT24は、ゲート端子に電圧VSSが印加されているのでオフ状態になる。このとき節点N6の電圧は、TFT23によって引き上げられ、TFT25の閾値電圧よりも高くなる。また、TFT21は、ゲート端子に電圧VDDが印加されているのでオフ状態になる。このとき節点N7の電圧は、TFT22によって引き下げられ、TFT26の閾値電圧よりも低くなる。したがって、セットアップ期間では、TFT25、26は両方ともオフ状態になるので、バッファ回路1の出力はフローティング状態になり、出力電圧Voutは変化しない。
時刻t2から始まる駆動期間では、スイッチ制御信号Xsはローレベルに制御され、スイッチ制御信号Xdはハイレベルに制御されるので、スイッチ11、13〜15はオフ状態になり、スイッチ12はオン状態になる(図4を参照)。スイッチ11がオフ状態で、スイッチ12がオン状態であるので、コンデンサ31の入力側電極にはスイッチ12を経由して出力電圧Voutが印加され、節点N1の電圧は出力電圧Voutに等しくなる。このように節点N1の電圧は、時刻t2においてVinからVoutに下降する。
また、時刻t2以降、スイッチ13はオフ状態になる。コンデンサ31に保持された電圧は時刻t2の前後では変化しないので、節点N1の電圧がVinからVoutに下降すると、節点N2の電圧は同じ量だけ下降して(Vout−Vin+Vm)になる。節点N2の電圧が下降すると、インバータ回路34の出力が接続された節点N3の電圧は上昇する。一般に、インバータ回路の出力電圧は、入力電圧が反転電圧Vmの近傍で変化したときには、入力電圧よりも大きく変化する。したがって、節点N3の電圧は、節点N2の電圧の下降量(Vout−Vin+Vm)に応じて当該下降量よりも大きく上昇する。
また、時刻t2以降、スイッチ14、15はオフ状態になる。コンデンサ32、33に保持された電圧は時刻t2の前後では変化しないので、節点N3の電圧が上昇すると、これに伴い節点N4、N5の電圧はそれぞれ同じ量だけ上昇する。節点N5の電圧が上昇すると、TFT24はオン状態になり、節点N6の電圧は下降し、TFT25はオン状態になる。一方、節点N4の電圧が上昇しても、TFT21、26はオフ状態のままである。このようにTFT25はオン状態に変化し、TFT26はオフ状態を保つので、容量負荷9はTFT25を介してVDD配線に接続される。この結果、容量負荷9は充電され、出力電圧Voutは上昇する。
出力電圧Voutは、上昇を続け、やがて入力電圧Vinに等しくなる。出力電圧Voutが入力電圧Vinに等しくなると、節点N1〜N7の電圧はセットアップ期間と同じレベルに戻る。例えば、節点N2、N3の電圧は反転電圧Vmに等しくなり、節点N4、N5の電圧はそれぞれVDDとVSSに等しくなる。したがって、出力電圧Voutが入力電圧Vinに等しくなると、TFT24、25はオフ状態に戻り、出力電圧Voutは上昇を停止する。
時刻t4から始まる駆動期間では、スイッチ11〜15は、時刻t2から始まる駆動期間と同じ状態になる(図4を参照)。スイッチ11がオフ状態で、スイッチ12がオン状態であるので、節点N1の電圧は出力電圧Voutに等しくなる。このように節点N1の電圧は、時刻t4においてVinからVoutに上昇する。
節点N1の電圧がVinからVoutに上昇すると、節点N2の電圧は同じ量だけ上昇して(Vout−Vin+Vm)になり、インバータ回路34の出力に接続された節点N3の電圧は下降する。節点N3の電圧が下降すると、これに伴い節点N4、N5の電圧はそれぞれ同じ量だけ下降する。節点N4の電圧が下降すると、TFT21はオン状態になり、節点N7の電圧は上昇し、TFT26はオン状態になる。一方、節点N5の電圧が下降しても、TFT24はオフ状態のままであり、TFT25もオフ状態のままである。このようにTFT26はオン状態に変化し、TFT25はオフ状態を保つので、容量負荷9はTFT26を介してVSS配線に接続される。この結果、容量負荷9は放電され、出力電圧Voutは下降する。
出力電圧Voutは、下降を続け、やがて入力電圧Vinに等しくなる。出力電圧Voutが入力電圧Vinに等しくなると、節点N1〜N7の電圧はセットアップ期間と同じレベルに戻る。したがって、出力電圧Voutが入力電圧Vinに等しくなると、TFT21、26はオフ状態に戻り、出力電圧Voutは下降を停止する。
ここで、電圧比較部2から駆動制御部3に出力される電圧(節点N3の電圧)を「比較結果電圧」といい、駆動制御部3からプッシュプル出力部4に出力される電圧のうち、TFT25のゲート端子に印加されるもの(節点N6の電圧)を「充電制御電圧」といい、TFT26のゲート端子に印加されるもの(節点N7の電圧)を「放電制御電圧」という。これらの用語を用いると、バッファ回路1の構成と動作は以下のように説明できる。
電圧比較部2は、スイッチ13とコンデンサ31とインバータ回路34で構成された比較回路、入力側選択スイッチとしてのスイッチ11、および、出力側選択スイッチとしてのスイッチ12を含んでいる。セットアップ期間では、スイッチ11、13がオン状態になり、コンデンサ31は電極間電圧(Vin−Vm)を保持する。駆動期間では、スイッチ12がオン状態になり、インバータ回路34は節点N2の電圧(Vout−Vin+Vm)に応じた比較結果電圧を出力する。比較結果電圧は、出力電圧Voutが入力電圧Vinよりも低いときには反転電圧Vmよりも高くなり、出力電圧Voutが入力電圧Vinよりも高いときには反転電圧Vmよりも低くなる。このように電圧比較部2は、入力端子INから入力された入力電圧Vinと出力端子OUTから出力される出力電圧Voutとを比較し、比較結果に応じた比較結果電圧を出力する。電圧比較部2に含まれる比較回路は、セットアップ期間における入力電圧Vinと駆動期間における出力電圧Voutとを比較して、比較結果電圧を出力する。
駆動制御部3は、TFT23、24で構成された充電側増幅回路、TFT21、22で構成された放電側増幅回路、充電側容量素子としてのコンデンサ33、放電側容量素子としてのコンデンサ32、充電側セットアップスイッチとしてのスイッチ15、および、放電側セットアップスイッチとしてのスイッチ14を含んでいる。セットアップ期間では、スイッチ14、15がオン状態になり、2個の増幅回路にはオフ電圧(TFT21、24がオフ状態になる電圧)が与えられる。このとき、充電制御電圧はTFT25がオフ状態になるほど高くなり、放電制御電圧はTFT26がオフ状態になるほど低くなる。駆動期間では、スイッチ14、15はオフ状態になり、2個の増幅回路の入力電圧、充電制御電圧および放電制御電圧は比較結果電圧に応じて変化する。このように駆動制御部3は、セットアップ期間ではそれぞれの初期レベルに設定され、駆動期間では電圧比較部2から出力された比較結果電圧に応じて変化する充電制御電圧と放電制御電圧を出力する。
プッシュプル出力部4は、容量負荷9を充電するTFT25を充電用スイッチとして含み、容量負荷9を放電させるTFT26を放電用スイッチとして含んでいる。TFT25は充電制御電圧を用いて制御され、TFT26は放電制御電圧を用いて制御される。また、充電用スイッチは充電回路を構成し、放電用スイッチは放電回路を構成する。このようにプッシュプル出力部4は、充電制御電圧に基づき容量負荷9を駆動する充電回路と、放電制御電圧に基づき容量負荷9を駆動する放電回路とを含んでいる。
出力電圧Voutが入力電圧Vinよりも低いときには、比較結果電圧は反転電圧Vmよりも高くなり、2個の増幅回路の入力電圧はいずれも上昇する。このとき、充電側増幅回路に含まれるTFT24はオン状態になり、充電制御電圧はTFT25がオン状態になるほど下降する。一方、放電側増幅回路に含まれるTFT21はオフ状態のままであるので、放電制御電圧は変化しない。このため、プッシュプル出力部4では放電回路は動作せず、充電回路のみが動作する。充電回路が動作すると、容量負荷9は充電され、出力電圧Voutは上昇する。出力電圧Voutは、入力電圧Vinに等しくなるまで上昇する。
出力電圧Voutが入力電圧Vinよりも高いときには、比較結果電圧は反転電圧Vmよりも低くなり、2個の増幅回路の入力電圧はいずれも下降する。このとき、放電側増幅回路に含まれるTFT21はオン状態になり、放電制御電圧はTFT26がオン状態になるほど上昇する。一方、充電側増幅回路に含まれるTFT24はオフ状態のままであるので、充電制御電圧は変化しない。このため、プッシュプル出力部4では充電回路は動作せず、放電回路のみが動作する。放電回路が動作すると、容量負荷9は放電され、出力電圧Voutは下降する。出力電圧Voutは、入力電圧Vinに等しくなるまで下降する。
このように駆動制御部3は、出力電圧Voutが入力電圧Vinと等しくなるように、プッシュプル出力部4に含まれる充電回路と放電回路を選択的に動作させる。具体的には、駆動制御部3は、セットアップ期間では、充電制御電圧と放電制御電圧をそれぞれ充電回路と放電回路が動作しないレベルに設定し、駆動期間では比較結果電圧に基づき、出力電圧Voutが入力電圧Vinよりも低いときには充電制御電圧を充電回路が動作するレベルに設定し、出力電圧Voutが入力電圧Vinよりも高いときには放電制御電圧を放電回路が動作するレベルに設定する。
以下、本実施形態に係るバッファ回路1の効果を説明する。上述したように、バッファ回路1では、入力電圧Vinと出力電圧Voutを比較した結果に基づき、プッシュプル出力部4に含まれる充電回路(TFT25)と放電回路(TFT26)が選択的に動作し、これにより容量負荷9の充放電が行われる。したがって、出力電圧Voutを入力電圧Vinと等しくすることができる。
また、充電回路と放電回路を選択的に動作させることにより、プッシュプル出力部4には定常電流が流れない。したがって、バッファ回路1の消費電力を削減することができる。また、充電回路と放電回路が同時に動作することはないので、電源間を貫通する電流が流れない分だけ効率的に充電または放電が行われる。したがって、A級増幅回路(図9に示すオペアンプ89)と比べて、より小さいサイズのTFTで十分な電流駆動力が得られ、より高速に充放電を行うことができる。また、バッファ回路1では、出力電圧Voutが入力電圧Vinと等しくないときにだけ、充電回路と放電回路のうちの一方が動作し、容量負荷9の充電または放電が行われる。したがって、容量負荷9の充放電による無駄な電力消費を防止することができる。また、バッファ回路1は、出力電圧Voutとして電圧VDDや電圧VSSを出力することができる(レールツーレール動作)。したがって、バッファ回路1の動作電圧を低くし、消費電力を削減することができる。
また、バッファ回路1の出力は、セットアップ期間ではどこにも接続されないフローティング状態となり、駆動期間では入力電圧Vinに等しくなるように制御される。このため、ドライバ一体型液晶表示装置においてソース線SLの駆動にバッファ回路1を用いる場合(図2を参照)には、ソース線SLを接続するか否かを切り替えるサンプリングゲート(図7に示すサンプリングゲート88)は不要になる。したがって、サンプリングゲートやその制御回路などを設けない分だけ、回路の面積を削減することができる。なお、バッファ回路1とソース線SLを接続しない期間(以下、非接続期間という)とセットアップ期間を独立して制御する場合には、スイッチ11、13とスイッチ14、15に異なる制御信号を供給すればよい。これにより、複数のソース線SLを時分割で駆動することができる。また、電圧比較部2、駆動制御部3およびプッシュプル出力部4については、以下に示すように、プロセスばらつきに強い回路を容易に構成することができる。
電圧比較部2は、スイッチ13とコンデンサ31とインバータ回路34で構成された比較回路の入力端子にスイッチ11、12を接続し、スイッチ11の他端を入力端子INに接続し、スイッチ12の他端を出力端子OUTに接続することにより、容易に構成することができる。セットアップ期間ではスイッチ11をオン状態に制御し、駆動期間ではスイッチ12をオン状態に制御することにより、比較回路に入力される電圧をセットアップ期間と駆動期間の間で切り替えることができる。また、スイッチ13をセットアップ期間ではオン状態に、駆動期間ではオフ状態に制御することにより、インバータ回路34は駆動期間では電圧(Vout−Vin+Vm)に応じた電圧を出力する。インバータ回路34から出力された電圧を比較結果電圧として駆動制御部3に入力した場合、駆動制御部3から出力される充電制御電圧と放電制御電圧は、インバータ回路34の閾値電圧のばらつきの影響を受けない。したがって、インバータ回路34の閾値電圧のばらつきの影響を受けることなく、出力電圧Voutを入力電圧Vinに等しくすることができる。
駆動制御部3は、TFT23、24で充電側増幅回路を構成し、TFT21、22で放電側増幅回路を構成し、2個の増幅回路の入力をそれぞれ電圧比較部2の出力と容量結合し、さらに、2個の増幅回路の入力にそれぞれセットアップスイッチを設けることにより、容易に構成することができる。セットアップ期間では、2個のセットアップスイッチをオン状態にして、各増幅回路の入力にオフ電圧を与えることにより、充電制御電圧と放電制御電圧をそれぞれの初期レベルに設定することができる。駆動期間では、2個のセットアップスイッチをオフ状態にして、各増幅回路の入力に容量素子を介して比較結果電圧を与えることにより、充電制御電圧と放電制御電圧を比較結果電圧に応じて変化させることができる。このように、セットアップ期間に充電制御電圧と放電制御電圧をそれぞれの初期レベルに設定することにより、TFTの閾値電圧のばらつきによらず、プッシュプル出力部4を確実にオフ状態から動作させることができる。さらに、駆動期間では、プッシュプル出力部4の状態は比較結果電圧に応じて一方向に変化するので、充電側増幅回路と放電側増幅回路の両方が同時に動作することは原理的にあり得ない。
プッシュプル出力部4は、VDD配線と出力端子OUTの間にTFT25を設け、VSS配線と出力端子の間にTFT26を設け、TFT25のゲート端子を充電側増幅回路の出力(TFT23、24のドレイン端子)に接続し、TFT26のゲート端子を放電側増幅回路の出力(TFT21、22のドレイン端子)に接続することにより、容易に構成することができる。プッシュプル出力部4に含まれる充電回路と放電回路は選択的に動作するので、プッシュプル出力部4は、バイアス電圧によって出力電圧が敏感に変化するアナログ回路のように動作するのではなく、デジタル回路のように動作をオン・オフする。このようにプッシュプル出力部4は、プロセスばらつきがある場合でも動作不具合が起こりにくい回路構成を有する。
以上に示すように、本実施形態に係るバッファ回路1は、小型、低消費電力で、プロセスばらつきに強いという効果を有する。したがって、ドライバ一体型液晶表示装置においてソース線を駆動するときに、本実施形態に係るバッファ回路1を用いることにより、小型、低消費電力で、高画質の液晶表示装置を構成することができる。
本実施形態に係るバッファ回路1は、図10に示す出力段回路(以下、従来の回路という)に比べて、以下の有利な点を有する。まず、従来の回路では、初期化期間において容量負荷が充放電され、このときに無駄な電力が消費される。これに対してバッファ回路1では、初期化期間はなく、容量負荷の充放電は駆動期間において出力電圧を所望のレベルに変化させるためだけに行われる。したがって、バッファ回路1によれば、従来の回路よりも消費電力を削減することができる。
また、従来の回路では、比較回路91、92に含まれるインバータ回路の閾値電圧とANDゲートG1、G2の閾値電圧が一致していなければ、出力電圧にオフセットエラーが発生する。これに対してバッファ回路1では、上述した電圧比較部2と駆動制御部3を用いることにより、インバータ回路34の閾値電圧のばらつきの影響を受けない充電制御電圧と放電制御電圧を生成し、プロセスばらつきの影響を受けることなく出力電圧Voutを入力電圧Vinに等しくすることができる。したがって、バッファ回路1によれば、従来の回路よりもプロセスばらつきに対して強くなる。
また、従来の回路では、ANDゲートG1、G2などを設けるために回路面積が大きくなり、比較回路92の出力に応じてスイッチSW7〜SW10の状態を切り替えるために制御も複雑になる。これに対してバッファ回路1では、ANDゲートなどは不要であり、スイッチ11〜15には変化パターンが固定されたスイッチ制御信号Xs、Xを与えればよい。したがって、バッファ回路1によれば、従来の回路よりも回路面積を削減することができる。
さらに、従来の回路では、書き込み期間では充電か放電のいずれか一方のみが行われるので、回路内の遅延によって出力電圧にオフセットエラーが発生することがある。これに対してバッファ回路1では、駆動期間では充電と放電が必要に応じて切り替えて行われるので、回路内の遅延によって出力電圧が過剰に変化しても(オーバーシュートしても)、過剰に変化した出力電圧は直ちに自動的に補正される。したがって、バッファ回路1によれば、出力電圧をより正確に入力電圧に等しくすることができる。
なお、本実施形態に係るバッファ回路1については、以下の変形例を構成することができる。図6は、本発明の実施形態の変形例に係るプッシュプル型バッファ回路の回路図である。図6に示すバッファ回路5は、上述したバッファ回路1においてプッシュプル出力部4をプッシュプル出力部6に置換したものである。プッシュプル出力部6は、プッシュプル出力部4に、充電停止用スイッチとしてのTFT27と、放電停止用スイッチとしてのN型TFT28とを追加したものである。
バッファ回路5では、TFT27はVDD配線とTFT25の間に設けられ、TFT28はVSS配線とTFT26の間に設けられる。より詳細には、TFT27のソース端子はVDD配線に接続され、ドレイン端子はTFT25のソース端子に接続される。TFT28のソース端子はVSS配線に接続され、ドレイン端子はTFT26のソース端子に接続される。TFT27のゲート端子にはスイッチ制御信号Xdの反転信号が印加され、TFT28のゲート端子にはスイッチ制御信号Xdが印加される。
駆動期間では、スイッチ制御信号Xdはハイレベルに制御されるので、TFT27、28はオン状態になり、バッファ回路5はバッファ回路1と同様に動作する。これに対してセットアップ期間では、スイッチ制御信号Xdはローレベルに制御されるので、TFT27、28はオフ状態になる。このため、TFT25、26がオン状態になっても容量負荷9の充放電は行われない。
このようにプッシュプル出力部6は、VDD配線と出力端子OUTの間にTFT25と直列に設けられたTFT27と、VSS配線と出力端子OUTの間にTFT26と直列に設けられたTFT28とを含み、TFT27、28は駆動期間においてオン状態に制御される。したがって、バッファ回路5によれば、容量負荷9の充放電を行う期間を駆動期間のみに制限することにより、回路の誤動作を防止することができる。また、非接続期間とセットアップ期間を独立して制御できるので、複数のソース線SLを時分割で駆動することができる。具体的には、スイッチ12とプッシュプル出力部6をソース線SLごとに設け、それ以外の回路を複数のソース線SL間で共有することにより、小さい回路規模で多くのソース線SLを時分割で駆動することができる。
本発明のプッシュプル型バッファ回路は、液晶表示装置のソースドライバ回路の出力段回路以外にも、入力電圧に基づき容量負荷を駆動する容量負荷駆動回路として種々の形態で利用することができる。
本発明の容量負荷駆動回路は、小型、低消費電力で、プロセスばらつきに強いという特徴を有するので、液晶表示装置のソースドライバ回路の出力段回路を始めとして、入力電圧に基づき容量負荷を駆動する種々の形態で利用することができる。
1、5…バッファ回路
2…電圧比較部
3…駆動制御部
4、6…プッシュプル出力部
9…容量負荷
11〜15…スイッチ
21〜28、45…TFT
31〜33…コンデンサ
34…インバータ回路
40…液晶表示装置
41…液晶パネル
42…画素回路
43…ゲートドライバ回路
44…ソースドライバ回路
46…シフトレジスタ
47…D/A変換回路

Claims (6)

  1. 入力電圧に基づき容量負荷を駆動する容量負荷駆動回路であって、
    入力端子から入力された入力電圧と出力端子から出力される出力電圧とを比較し、比較結果に応じた比較結果電圧を出力する電圧比較部と、
    第1期間ではそれぞれの初期レベルに設定され、第2期間では前記比較結果電圧に応じて変化する充電制御電圧と放電制御電圧を出力する駆動制御部と、
    前記充電制御電圧に基づき前記出力端子に接続された容量負荷を充電する充電回路と、前記放電制御電圧に基づき前記容量負荷を放電させる放電回路とを含むプッシュプル出力部とを備え、
    前記駆動制御部は、
    前記充電回路に対して前記充電制御電圧を出力する充電側増幅回路と、
    前記放電回路に対して前記放電制御電圧を出力する放電側増幅回路と、
    前記電圧比較部の出力と前記充電側増幅回路の入力とを容量結合するための充電側容量素子と、
    前記電圧比較部の出力と前記放電側増幅回路の入力とを容量結合するための放電側容量素子と、
    第1期間ではオン状態になり、前記充電側増幅回路の入力にオフ電圧を与える充電側セットアップスイッチと、
    第1期間ではオン状態になり、前記放電側増幅回路の入力にオフ電圧を与える放電側セットアップスイッチとを含み、
    第1期間では前記充電制御電圧と前記放電制御電圧をそれぞれ前記充電回路と前記放電回路が動作しないレベルに設定し、第2期間では前記比較結果電圧に基づき、前記出力電圧が前記入力電圧よりも低いときには前記充電制御電圧を前記充電回路が動作するレベルに設定し、前記出力電圧が前記入力電圧よりも高いときには前記放電制御電圧を前記放電回路が動作するレベルに設定することにより、前記出力電圧が前記入力電圧と等しくなるように前記充電回路と前記放電回路を選択的に動作させることを特徴とする、容量負荷駆動回路。
  2. 前記電圧比較部は、
    前記入力端子と所定の節点の間に設けられ、第1期間でオン状態になる入力側選択スイッチと、
    前記出力端子と前記節点の間に設けられ、第2期間でオン状態になる出力側選択スイッチと、
    入力が前記節点に接続され、第1期間における前記入力電圧と第2期間における前記出力電圧とを比較して前記比較結果電圧を出力する比較回路とを含む、請求項1に記載の容量負荷駆動回路。
  3. 前記比較回路は、
    インバータ回路と、
    前記インバータ回路の入力と前記節点の間に設けられた容量素子と、
    前記インバータ回路の入力と出力の間に設けられ、第1期間でオン状態になる短絡用スイッチとを含み、
    前記容量素子は、第1期間では前記入力電圧と前記インバータ回路の反転電圧との差を保持し、前記インバータ回路は、第2期間では前記出力電圧と前記入力電圧の差に前記反転電圧を加えた電圧に応じた電圧を前記比較結果電圧として出力することを特徴とする、請求項2に記載の容量負荷駆動回路。
  4. 前記プッシュプル出力部は、
    前記充電回路として、高電圧側電源配線と前記出力端子の間に設けられ、前記充電制御電圧を用いて制御される充電用スイッチを含み、
    前記放電回路として、低電圧側電源配線と前記出力端子の間に設けられ、前記放電制御電圧を用いて制御される放電用スイッチを含む、請求項1に記載の容量負荷駆動回路。
  5. 前記プッシュプル出力部は、
    前記高電圧側電源配線と前記出力端子の間に前記充電用スイッチと直列に設けられた充電停止用スイッチと、
    前記低電圧側電源配線と前記出力端子の間に前記放電用スイッチと直列に設けられた放電停止用スイッチとをさらに含む、請求項に記載の容量負荷駆動回路。
  6. 請求項1〜のいずれかに記載の容量負荷駆動回路を用いて、画素回路に接続された信号線を駆動することを特徴とする、表示装置。
JP2010524679A 2008-08-11 2009-06-02 容量負荷駆動回路およびこれを備えた表示装置 Expired - Fee Related JP5089775B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010524679A JP5089775B2 (ja) 2008-08-11 2009-06-02 容量負荷駆動回路およびこれを備えた表示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008206610 2008-08-11
JP2008206610 2008-08-11
PCT/JP2009/060025 WO2010018706A1 (ja) 2008-08-11 2009-06-02 容量負荷駆動回路およびこれを備えた表示装置
JP2010524679A JP5089775B2 (ja) 2008-08-11 2009-06-02 容量負荷駆動回路およびこれを備えた表示装置

Publications (2)

Publication Number Publication Date
JPWO2010018706A1 JPWO2010018706A1 (ja) 2012-01-26
JP5089775B2 true JP5089775B2 (ja) 2012-12-05

Family

ID=41668853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010524679A Expired - Fee Related JP5089775B2 (ja) 2008-08-11 2009-06-02 容量負荷駆動回路およびこれを備えた表示装置

Country Status (7)

Country Link
US (1) US8487922B2 (ja)
EP (1) EP2312754A4 (ja)
JP (1) JP5089775B2 (ja)
CN (1) CN102113216B (ja)
BR (1) BRPI0914552A2 (ja)
RU (1) RU2454791C1 (ja)
WO (1) WO2010018706A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9374545B2 (en) 2013-09-13 2016-06-21 BAE Systems Imaging Solutions Inc. Amplifier adapted for CMOS imaging sensors
US9374093B2 (en) * 2014-01-10 2016-06-21 Freescale Semiconductor, Inc. Capacitively coupled input buffer
CN104157252B (zh) * 2014-07-29 2017-01-18 京东方科技集团股份有限公司 一种移位寄存器、栅极驱动电路及显示装置
TWI563482B (en) 2014-10-21 2016-12-21 Ind Tech Res Inst Driver circuit with device variation compensation and operation method thereof
CN106891744B (zh) * 2015-12-18 2019-11-08 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
CN106891748B (zh) * 2015-12-18 2019-02-26 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
CN106549600A (zh) * 2016-10-27 2017-03-29 深圳市汉拓数码有限公司 驱动电路
CN110136642B (zh) 2019-05-30 2021-02-02 上海天马微电子有限公司 一种像素电路及其驱动方法和显示面板
CN114120884A (zh) * 2020-09-01 2022-03-01 深圳市柔宇科技股份有限公司 一种显示面板发光驱动电路与显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05134627A (ja) * 1991-11-11 1993-05-28 Seiko Epson Corp 液晶表示体駆動装置
JPH11259052A (ja) * 1998-03-16 1999-09-24 Nec Corp 液晶表示装置の駆動回路
JP2004166039A (ja) * 2002-11-14 2004-06-10 Alps Electric Co Ltd 容量素子駆動回路
JP2006197541A (ja) * 2005-01-13 2006-07-27 Denmos Technology Inc プッシュプルバッファ増幅器とソースドライバ
JP2006279512A (ja) * 2005-03-29 2006-10-12 Hiji High-Tech Co Ltd 負荷駆動回路

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2944302B2 (ja) * 1992-05-27 1999-09-06 株式会社沖エル・エス・アイ・テクノロジ関西 サンプリング回路
US7880594B2 (en) * 2000-09-08 2011-02-01 Automotive Technologies International, Inc. Switch assemblies and method for controlling vehicular components
EP0821362B1 (en) * 1996-07-24 2004-05-26 STMicroelectronics S.r.l. Output stage for a memory device and for low voltage applications
US6603294B2 (en) * 1999-10-21 2003-08-05 Seiko Epson Corporation Voltage supplying device, and semiconductor device, electro-optical device and electronic instrument using the same
JP2001222261A (ja) 2000-02-08 2001-08-17 Toshiba Corp 表示装置の駆動回路及び表示装置
US6404089B1 (en) 2000-07-21 2002-06-11 Mark R. Tomion Electrodynamic field generator
TW580787B (en) * 2003-03-14 2004-03-21 Novatek Microelectronics Corp Slew rate enhancement device and slew rate enhancement method
KR100983706B1 (ko) * 2003-12-29 2010-09-24 엘지디스플레이 주식회사 아날로그 버퍼 및 그 구동방법
JP2005338131A (ja) 2004-05-24 2005-12-08 Mitsubishi Electric Corp 駆動回路およびそれを備える表示装置
JP2006133444A (ja) 2004-11-05 2006-05-25 Sharp Corp 電圧ホロワおよびそれを用いた表示装置
TWI299938B (en) * 2005-03-03 2008-08-11 Novatek Microelectronics Corp Current driving enhance device and method thereof
US7250795B2 (en) * 2005-03-29 2007-07-31 Promos Technologies Pte. Ltd. High-speed, low-power input buffer for integrated circuit devices
EP1845514B1 (en) 2006-04-14 2013-10-02 Semiconductor Energy Laboratory Co., Ltd. Display device and method for driving the same
JP4921106B2 (ja) * 2006-10-20 2012-04-25 キヤノン株式会社 バッファ回路
RU2339158C2 (ru) 2006-11-13 2008-11-20 Виктор Анатольевич Алексеев Высоковольтный импульсный модулятор со стабилизацией амплитуды импульсов и электронный ключ для него (варианты)
US8022730B2 (en) * 2009-10-13 2011-09-20 Himax Technologies Limited Driving circuit with slew-rate enhancement circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05134627A (ja) * 1991-11-11 1993-05-28 Seiko Epson Corp 液晶表示体駆動装置
JPH11259052A (ja) * 1998-03-16 1999-09-24 Nec Corp 液晶表示装置の駆動回路
JP2004166039A (ja) * 2002-11-14 2004-06-10 Alps Electric Co Ltd 容量素子駆動回路
JP2006197541A (ja) * 2005-01-13 2006-07-27 Denmos Technology Inc プッシュプルバッファ増幅器とソースドライバ
JP2006279512A (ja) * 2005-03-29 2006-10-12 Hiji High-Tech Co Ltd 負荷駆動回路

Also Published As

Publication number Publication date
RU2454791C1 (ru) 2012-06-27
EP2312754A4 (en) 2011-09-28
CN102113216A (zh) 2011-06-29
BRPI0914552A2 (pt) 2015-12-15
EP2312754A1 (en) 2011-04-20
US20110074755A1 (en) 2011-03-31
CN102113216B (zh) 2013-08-21
WO2010018706A1 (ja) 2010-02-18
US8487922B2 (en) 2013-07-16
JPWO2010018706A1 (ja) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5089775B2 (ja) 容量負荷駆動回路およびこれを備えた表示装置
US7265602B2 (en) Voltage generating circuit with two resistor ladders
JP5057828B2 (ja) 表示装置
JP4515821B2 (ja) 駆動回路、動作状態検出回路及び表示装置
US7903078B2 (en) Data driver and display device
US8988402B2 (en) Output circuit, data driver, and display device
US7646371B2 (en) Driver circuit, electro-optical device, and electronic instrument
US10199007B2 (en) Output circuit and data driver of liquid crystal display device
US8427236B2 (en) Operational amplifier, driver and display
US8552960B2 (en) Output amplifier circuit and data driver of display device using the circuit
US8139015B2 (en) Amplification circuit, driver circuit for display, and display
JP4103468B2 (ja) 差動回路と増幅回路及び該増幅回路を用いた表示装置
US7019735B2 (en) Pumping circuit and flat panel display device
JP2007281661A (ja) 増幅器及びこれを用いた駆動回路
US20040095306A1 (en) Driving circuit for driving capacitive element with reduced power loss in output stage
US7821340B2 (en) Output stage circuit and operational amplifier
JP4680960B2 (ja) 表示装置の駆動回路および表示装置
JP2010086637A (ja) シフトレジスタ回路およびそれを備える画像表示装置
JP2009003260A5 (ja)
JPH07235844A (ja) アナログドライバicの出力バッファ回路
KR20100076259A (ko) 디스플레이의 소스 드라이버
JP4696180B2 (ja) 表示装置の駆動回路および表示装置
JPH10294660A (ja) 差動増幅装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5089775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees