JP5086479B2 - 発振器 - Google Patents

発振器 Download PDF

Info

Publication number
JP5086479B2
JP5086479B2 JP2011544742A JP2011544742A JP5086479B2 JP 5086479 B2 JP5086479 B2 JP 5086479B2 JP 2011544742 A JP2011544742 A JP 2011544742A JP 2011544742 A JP2011544742 A JP 2011544742A JP 5086479 B2 JP5086479 B2 JP 5086479B2
Authority
JP
Japan
Prior art keywords
signal
frequency
output
amplifier
mems
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011544742A
Other languages
English (en)
Other versions
JPWO2012017572A1 (ja
Inventor
岳彦 山川
邦彦 中村
慶治 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2011544742A priority Critical patent/JP5086479B2/ja
Application granted granted Critical
Publication of JP5086479B2 publication Critical patent/JP5086479B2/ja
Publication of JPWO2012017572A1 publication Critical patent/JPWO2012017572A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L5/00Automatic control of voltage, current, or power
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B19/00Generation of oscillations by non-regenerative frequency multiplication or division of a signal from a separate source
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • H03L1/026Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using a memory for digitally storing correction values
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • H03L1/027Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using frequency conversion means which is variable with temperature, e.g. mixer, frequency divider, pulse add/substract logic circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Description

技術分野は、発振器に関し、特に、MEMS共振器を用いた発振器に関する。
従来、電子機器等において回路の動作のタイミングをとる(同期をとる)ために発振器が用いられる。動作の基準となる電気信号を正確に出力する発振器は電子機器にとって必要不可欠のデバイスである。水晶振動子を用いた水晶発振器は、そのような発振器の一例だが、水晶発振器は、小型化が困難であること、集積化に不向きであること、試作工数が多いこと、歩留まりが良くないこと、納期に時間を要すること、などの課題を抱えている。そこで近年、水晶発振器に代わるデバイスとして、シリコン等から半導体プロセスにより作成される微小電気機械(MEMS:Micro Electro-Mechanical Systems)を用いた発振器が注目されている。
微小電気機械発振器(以下、「MEMS発振器」と称する。)は、増幅回路とMEMS共振器からなる帰還型の発振回路を備える。MEMS共振器は、特定の周波数、すなわちMEMS振動子の共振周波数(振動子の固有振動数)、の近傍の周波数を有する電気信号についてのみ入出力電極間の電気通過特性が著しく向上する、という特性を有する。MEMS発振器においては、MEMS振動子のこのような特性を利用して増幅回路からの出力に含まれる共振周波数の電気信号を増幅回路へ帰還させることにより発振状態を作り出す。そして、MEMS発振器は、発振状態において増幅回路から出力される電気信号を発振信号として出力する。したがって、MEMS発振器から出力される発振信号の周波数は、MEMS振動子の共振周波数に基づいて定まる。
MEMS共振器の共振周波数には温度依存性があることが知られる。MEMS共振器は、一般的にはシリコンなどから形成され、シリコンの温度特性によりその共振周波数に−20[ppm/℃]程度の温度特性がある。例えば、動作温度が−20〜+80℃まで100℃変化すれば、共振周波数は、2000[ppm]程度変化する。そのため、MEMS共振器の動作温度が変化することで、発振信号の周波数も変化する。そこで、従来のMEMS発振器においては、MEMS共振器近傍に温度センサを配し、温度センサが計測する温度にもとづいてMEMS共振器の共振周波数の温度依存性に起因する発振信号の周波数変動を補償し、温度に依らずに一定の周波数の電気信号を出力する。
図21は、従来のMEMS発振器のブロック図である。従来のMEMS発振器300は、原発振信号を出力する発振部301と、原発振信号の周波数を補正して所望の周波数を有する出力信号を出力する補正部302とを有する(特許文献1参照。)。
発振部301においては、増幅器312とMEMS共振器313とで帰還型の発振回路が構成され、増幅器312からの出力が原発振信号として取り出されて補正部302へ入力される。
温度変化等によりMEMS共振器313の共振周波数が変動すると、原発振信号の周波数も変動する。MEMS発振器300においては、補正部302が、原発振信号の周波数の変動を補償することにより、出力信号の周波数を一定に保つ。
補正部302は、PLL(Phase-Locked Loop)回路321と、PLL回路321のフィードバックに設けた分周器(不図示)の分周比を制御する分周比制御部322と、温度センサ1101とを備える。
分周比制御部322は、温度センサ1101からの入力にもとづき、PLL321が出力する出力信号の周波数が所望の値になるようにPLL321のフィードバックに設けた分周器(不図示)の分周比を調整する。より詳細には、分周比制御部322は、既知のMEMS共振器313の共振周波数の温度特性と、温度センサ1101からの入力と、予め設定される出力信号の周波数とから、PLL321のフィードバックに配置された分周器(不図示)の分周比を決定する。
図22は、上述のMEMS共振器300の側部断面図である。同図に示すように、MEMS共振器313は、空気などが振動子の機械的振動へ影響を及ぼさないよう、振動子の周囲が真空に保たれるようにパッケージングされる。このような構造を有するMEMS共振器313は、増幅部312および補正部302が形成される第1のチップ1301とは別の第2のチップ1302として形成される。温度センサ1101は、第1のチップ1301内のMEMS共振器313近傍に形成される。
そして、第1のチップ1301と第2のチップ1302とは、第2のチップ1302の外装表面から回路の表層まで延びた配線803に接続されたパッド804と、第1のチップ1301に接続されたパッド805とを金属ワイヤ806で繋ぐことで接続され、縦積みで実装される。
上述のとおり、MEMS共振器313の振動子の周囲は真空状態にある。そのため、振動子と、その外部との間の熱伝導性は低い。しかるに、第1のチップ1301の温度センサ1101が計測する温度の時間変動と、MEMS共振器313の振動子の実際の温度の時間変動との間には差違が生じる。
図23は、温度センサ1101が計測した温度、および、MEMS共振器313内振動子の実際の温度、の時間変化の例を模式的に表した図である。温度センサ1101が計測した温度901が同図のように変動する場合には、振動子の実際の温度902は、温度901に少し遅れて温度901に追従するように変動する。そのため、温度センサ1101が計測した温度901は、期間D903や、時刻T904、T905、T906といった非常に限られた時刻においてのみ、振動子の実際の温度902と一致し、その他の時刻において、両者は一致しない。換言すれば、従来のMEMS発振器300の構成では、振動子の実際の温度に基づいてリアルタイムにMEMS共振器313の共振周波数の温度依存性を正しく補償して所望の周波数と精確に一致した周波数を有する出力信号を常時出力することは困難である。
特表2007−518351号公報 特開2008−311884号公報
上記従来技術における問題点を鑑み、MEMS共振器の温度が変動する場合においても安定して動作するMEMS発振器を提供する。
その一態様は、MEMS共振器と増幅器とを含んだ帰還型発振回路、および、増幅器からの出力を受けて該出力のレベルに基づいて増幅器からの出力のレベルを一定に保つように増幅器のゲインを制御する自動利得制御器を備え、増幅器からの出力を原発振信号として出力する発振部と、原発振信号を入力し原発振信号から所定の設定周波数の信号を生成し出力信号として出力する補正部と、を有し、補正部は、原発振信号とは別に、MEMS共振器の共振周波数におけるゲインと対応関係を有する信号を含む情報信号を発振部から入力し、情報信号に基づいて原発振信号の周波数を補正して所定の設定周波数の信号を生成し出力信号として出力する、MEMS発振器である。
その一態様においては、補正部は、分周比を可変的に制御可能なプログラマブル分周器を備えた周波数シンセサイザと、プログラマブル分周器の分周比を制御する分周比制御部と、を備え、分周比制御部は、情報信号に基づいてプログラマブル分周器の分周比を制御し、周波数シンセサイザは、原発振信号を入力し原発振信号から所定の設定周波数の信号を生成し出力信号として出力してもよい。
その一態様においては、情報信号は、MEMS共振器から増幅器への帰還信号でもよい。
その一態様においては、情報信号は、自動利得制御器が出力する増幅器のゲインを制御するための制御信号でもよい。
その一態様においては、自動利得制御器は、原発振信号を入力して原発振信号のピーク電圧を検出するピークホールド回路と、検出にかかるピーク電圧と所定の基準電圧とを比較し、該比較の結果を示す信号を出力するコンパレータと、を備え、自動利得制御器は、制御信号として比較の結果を示す信号を出力して増幅器のゲインを制御してもよい。
その一態様においては、補正部は、さらに、原発振信号を入力し該原発振信号を分周して周波数シンセサイザへ出力する第2の分周器を備えてもよい。
その一態様においては、第2の分周器は、第2のプログラマブル分周器でもよい。その場合、分周比制御部は、情報信号に基づいて第2のプログラマブル分周器の分周比を制御してもよい。
その一態様においては、補正部は、さらに、原発振信号を入力し該原発振信号を逓倍して周波数シンセサイザへ出力する逓倍器を備えてもよい。
その一態様においては、逓倍器は、プログラマブル逓倍器でもよい。その場合、分周比制御部は、情報信号に基づいてプログラマブル逓倍器の逓倍比を制御してもよい。
本実施の形態のMEMS発振器は、MEMS共振器の温度が変動する場合においても、所望の周波数を有する電気信号を安定的に出力することができる。
実施の形態1のMEMS発振器のブロック図 MEMS共振器の出力の周波数特性の図 自動利得制御器のブロック図 周波数シンセサイザのブロック図 MEMS共振器の共振周波数の温度特性の図 MEMS共振器の出力の温度特性の図 MEMS共振器の出力の周波数特性の図 MEMS共振器の出力電圧の温度特性の図 分周比制御部のブロック図 分周比制御部の別例のブロック図 MEMS共振器の出力の温度特性の図 MEMS共振器の出力の周波数特性の図 MEMS共振器の出力電圧の温度特性の図 実施の形態2のMEMS発振器のブロック図 MEMS共振器の出力と増幅器の出力の関係を示す図 MEMS共振器の出力と増幅器の出力の関係を示す図 補正部の変形例のブロック図 補正部の変形例のブロック図 実施の形態1のMEMS発振器の変形例のブロック図 実施の形態2のMEMS発振器の変形例のブロック図 従来のMEMS発振器のブロック図 従来のMEMS発振器の側部断面図 温度センサが計測する温度変動と振動子の実際の温度変動との関係を示す図
以下、実施の形態について、詳細に説明する。
本実施の形態のMEMS発振器は、MEMS共振器と、増幅器と、増幅器からの出力を一定に保つように増幅器のゲインを制御する自動利得制御器と、で構成された帰還型発振回路を備えた発振部、および、発振部から出力される原発振信号から所望の周波数の出力信号を生成して出力する補正部、を有する。
本実施の形態のMEMS発振器の補正部は、原発振信号を入力し出力信号を出力するPLL周波数シンセサイザと、PLL周波数シンセサイザのフィードバックに配置されたプログラマブル分周器の分周比を、MEMS共振器のゲインに基づいて制御する分周比制御部と、を備える。後述するように、MEMS共振器のゲインの大きさは、共振周波数と同様の温度依存性を有し温度が変化することで単調に変化するため、当該ゲインの大きさからそのときのMEMS共振器の共振周波数を知ることが可能である。そこで、補正部では、MEMS共振器のゲインの大きさに基づきプログラマブル分周器の分周比を制御し、周波数シンセサイザからの出力信号の周波数を所望の周波数に保つ。
なお、分周比制御部は、MEMS共振器から増幅器へ帰還される信号を受けて、当該信号のレベルからMEMS共振器のゲインを取得する。または、分周比制御部は、自動利得制御器から出力される、増幅器からの出力のレベルを一定に保つように増幅器のゲインを制御するための制御信号(振幅制限信号)を受けて、当該振幅制御信号からMEMS共振器のゲインを取得する。
このような構成により、本実施の形態のMEMS発振器は、MEMS共振器の共振周波数の温度依存性に起因した原発振信号の周波数の変動をよく補正し、一定の所望の周波数の出力信号を出力することが可能である。
(実施の形態1)
1.MEMS発振器の構成
図1は、実施の形態1にかかるMEMS発振器のブロック図である。MEMS発振器100は、原発振信号を出力する発振部1と、原発振信号を受けて所望の周波数を有する出力信号を出力する補正部2と、を有する。
発振部1は、自動利得制御器11と、自動利得制御器11の制御下で入力信号(発振部帰還信号)を一定のレベル(電圧)にまで増幅して出力する増幅器12と、増幅器12からの出力を受け発振部帰還信号を増幅器12へ返すMEMS共振器13と、を含む。
自動利得制御器11は、増幅器12からの出力を入力し、増幅器12の出力のレベルを一定に保つように増幅器12のゲインを制御する。ここで、当該制御に用いられる制御信号を振幅制限信号と称する。増幅器12は、MEMS共振器13からの帰還信号を受け、自動利得制御器11から入力した振幅制限信号によるゲインコントロールの下で帰還信号を増幅し出力する。増幅器12からの出力(原発振信号)は、自動利得制御器11、補正部2、MEMS共振器13へ送られる。MEMS共振器13は、増幅器12からの出力を受け、帰還信号を出力する。なお、後述する補正部2の周波数シンセサイザ21の帰還回路を流れる帰還信号と混同されるおそれがある場合には、MEMS共振器13から増幅器12への帰還信号をとくに発振部帰還信号と称することとする。
2.MEMS発振器の動作
2.1発振部の動作
図2は、MEMS共振器13の入出力電極間の電気通過特性(単体通過特性)を示すグラフである。同図において横軸は周波数を示し、縦軸は減衰量(MEMS共振器ゲイン)を示す。MEMS共振器13は、適切なレベルの入力を受けた場合には、共振周波数fについて左右対称な通過特性401を示す。しかし、MEMS共振器13は、過大なレベルの入力を受けた場合には、通過特性402のように歪んだ通過特性を示す。そのような過大なレベルの入力をMEMS共振器13が受けると、MEMS共振器13の共振周波数は変化するとともに、不安定化する。併せて、Q値も劣化し、場合によっては、MEMS共振器13を構成する振動子がギャップを隔てて隣接する励振電極と接触し、MEMS共振器13は破壊される。そこで、MEMS共振器13に対し過大なレベルの信号が入力されないように、自動利得制御器11は、増幅器12の出力がMEMS共振器13にとって適切なレベルになるように増幅器12のゲインを制御し、増幅器12の出力を所定のレベルに保つ。なお、MEMS共振器13への入力として適切なレベルは、MEMS共振器13の共振モードや、MEMS共振器13を構成する振動子と励振電極とのギャップ間隔や、振動子および/または励振電極に印加されるバイアス電圧などから決定され、一般的にはおおよそ数十から数百ミリボルト程度である。
図3は、自動利得制御器11の詳細を示すブロック図である。自動利得制御器(AGC:Automatic Gain Controller)11は、増幅器12からの出力、すなわち原発振信号、を入力し、ピークホールド回路111で原発振信号の最大レベル(ピーク電圧)を検出する。また、自動利得制御器11には、基準電圧源(図示せず)から基準電圧入力端子112を介して基準電圧が入力される。ピーク電圧および基準電圧は、コンパレータ113へ入力され、コンパレータ113は、両電圧を比較し、ピーク電圧が基準電圧よりも低い場合には、振幅制限信号「Low」を出力し、逆にピーク電圧が基準電圧よりも高い場合には、振幅制限信号「High」を出力する。
自動利得制御器11が出力する振幅制限信号は、例えば、増幅器12の出力端子と並列に配置されたMOS(Metal Oxide Semiconductor)トランジスタのゲートに入力される。該ゲートに振幅制限信号「Low」が入力されると並列抵抗が小さくなり、増幅器12のゲインはアップし、逆に該ゲートに振幅制限信号「High」が入力されると並列抵抗が大きくなり、増幅器12のゲインはダウンする。このようにして、自動利得制御器11は、基準電圧に基づき、増幅器12からの出力のレベルをリアルタイムに制御する。そうすることで、増幅器12からの出力(MEMS共振器13への入力)のレベルは、常時適切なレベルに保たれ、もって、MEMS共振器13の正常動作が確保される。
なお、自動利得制御器11の構成例として、ピークホールド回路111およびコンパレータ113から構成される回路を挙げたが、これは一例であり、自動利得制御器11の構成は、これに限られるものではない。増幅器12からの出力のレベル(電圧)が一定になるように増幅器12のゲインを制御することができる回路であれば、自動利得制御器11として利用することが可能である。例えば、振幅制限信号として具体的に増幅器12のゲインの値を指定して増幅器12を制御するような回路であってもよい。
2.2補正部の動作(原発振信号の周波数補正)
図4は、補正部2の周波数シンセサイザ21の詳細を示すブロック図である。周波数シンセサイザ21は、PLL周波数シンセサイザである。周波数シンセサイザ21では、先ずその位相比較器211が、発振部1から入力される原発振信号と、VCO(Voltage Controlled Oscillator)213からプログラマブル分周器214を介して帰還される帰還信号(PLL帰還信号)の位相差を検出し、検出した位相差を誤差信号としてループフィルタ212へ出力する。ループフィルタ212は、誤差信号に含まれる不要な短周期(高周波数)の変動成分を除去し、補正信号としてVCO213へ出力する。VCO213は、入力される補正信号のレベル(電圧)にしたがって出力信号の周波数を制御し、補正信号のレベルに対応した周波数の出力信号を出力する。
2.2.1.プログラマブル分周器の分周比の制御
プログラマブル分周器214は、外部からの制御にしたがいその分周比を可変的に設定可能な分周器である。補正部2においては、プログラマブル分周器214の分周比は、分周比制御部22が出力する分周被制御信号にしたがって設定される。以下、分周比制御部22が、MEMS共振器13の発振部帰還信号を受けて、当該発振部帰還信号のレベル(電圧)の大きさからMEMS共振器13のゲインを取得し、MEMS共振器13のゲインに基づいてプログラマブル分周器214の分周比を制御する動作について説明する。
図5は、MEMS共振器13の共振周波数の温度特性を示すグラフである。ここでの共振周波数は、図2における通過特性401におけるピークの周波数fと対応する。同図に示されるように、MEMS共振器13の共振周波数は、−20[ppm/℃]程度の温度依存性を有する。図から明らかだが、MEMS共振器13の共振周波数は、温度上昇にともない単調に減少する。なお、本実施の形態および下記実施の形態2のMEMS発振器は、共振器の共振周波数が温度上昇とともに単調に増大する場合であっても、適用可能である。
図6は、MEMS共振器13の減衰量(MEMS共振器ゲイン)の温度特性を示すグラフである。同図に示されるように、MEMS共振器13の減衰量もまた、その温度が上昇するにしたがって単調に減少する温度特性404を有する。
図5および図6から、MEMS共振器13の共振周波数とゲインとの対応関係が導出される。図7は、MEMS共振器13の共振周波数とゲインの対応関係を示すグラフである。同図において、通過特性401Hは、温度T=THにおけるMEMS共振器13の通過特性である。例えば、MEMS共振器13が共振周波数fTHを示すなら、そのときのMEMS共振器13のゲインはgTHであることがわかる。通過特性401MおよびLも同様であり、ここで温度TH、TM、TLは、TH>TM>TLの関係にある。各温度における共振周波数(fTH、fTM、fTL)ならびに図示しない他の温度における共振周波数のゲインを繋ぐことにより曲線403が得られる。曲線403は、MEMS共振器13の共振周波数とゲインとの対応関係を示す曲線である。
ところで、発振部1においては、その自動利得制御器11の作用により、増幅器12からの出力のレベルは常時一定に保たれる。よって、MEMS共振器13からの帰還信号のレベルは、MEMS共振器13のゲインと対応する。そのため、MEMS共振器13からの帰還信号のレベルは、図8に示す曲線601のような温度特性を示す。例えば、MEMS共振器13は、その動作温度がTLであれば、レベル(電圧)VTLを有する周波数fTLの周波数成分を含んだ帰還信号を出力し、当該周波数成分のレベルは帰還信号のピーク電圧と実質一致する。他の温度においても同様である。
図1に示すように、分周比制御部22は、MEMS共振器13からの発振部帰還信号(原発振周波数情報信号)を入力し、当該発振部帰還信号の最大レベル(ピーク電圧)を検出し、当該ピーク電圧と、図7に示した共振周波数−ゲインの対応関係とに基づき、その時点におけるMEMS共振器13の共振周波数を導出する。つまり、発振部帰還信号(原発振周波数情報信号)はMEMS共振器13のゲインに関する情報を含んだ情報信号である。分周比制御部22は、当該情報信号から共振周波数を導出する。そして、導出した共振周波数と、予め設定される出力信号の周波数とから、プログラマブル分周器214に設定されるべき分周比を決定し、プログラマブル分周器214の分周比を当該決定した分周比にするための分周比制御信号をプログラマブル分周比214へ出力する。
図9は、分周比制御部22の例を示すブロック図である。信号生成部221は、原発振周波数情報信号(発振部帰還信号)を入力し、そのピーク電圧を検出し、ピーク電圧とプログラマブル分周器214の分周比との対応を示すテーブルが格納されたテーブルメモリ222を参照し、プログラマブル分周器214に設定されるべき分周比を決定する。なお、分周比制御部22は、原発振周波数情報信号のピーク電圧を検出するためにピークホールド回路を備えてよい。
図10は、分周比制御部22の別例を示すブロック図である。信号生成部221は、原発振周波数情報信号(発振部帰還信号)を入力し、そのピーク電圧を検出する。そして、分周比演算部224が、当該検出したピーク電圧を、図7に例示したMEMS共振器13の共振周波数−ゲイン対応関係を近似した関数に入力し、そのときのMEMS共振器13の共振周波数を算出し、予め設定された出力信号の周波数と算出したMEMS共振器13の共振周波数とからプログラマブル分周器214に設定されるべき分周比を算出する。そして、信号生成部223は、算出した分周比を分周比制御信号としてプログラマブル分周器214へ出力する。
3.実施の形態1まとめ
このようにして、本実施の形態のMEMS発振器100は、温度変動等に起因して変動する原発振信号の周波数を、MEMS共振器13のゲインと共振周波数との対応関係に基づいて補正し、予め設定された周波数を有する出力信号を出力することができる。本実施の形態のMEMS発振器100は、MEMS共振器13自身が発する信号を用いてリアルタイムにMEMS共振器13のゲインを取得し、原発振信号の周波数の補正を行うことが可能になっている。つまり、MEMS共振器13のゲイン(発振部帰還信号のレベル)は、MEMS共振器13の動作温度に関する情報として用いることができる。そこで、MEMS発振器100においては、MEMS共振器13のゲインから動作温度を求め、共振周波数の温度特性からそのときのMEMS共振器13の共振周波数を求め、周波数シンセサイザ21の動作を制御し、所望の周波数を有する出力信号を出力する。
そのため、MEMS共振器100は、従来の構成のように、温度センサを要さない。よって、温度センサの計測温度と振動子の実際の動作温度とのずれに起因して出力信号の周波数の設定値からのずれは、MEMS発振器100においては発生しない。しかるに、MEMS発振器100は、高品質の出力信号を常時安定して出力することが可能である。
なお、図11に示すようなゲインの温度特性504を示すMEMS共振器13であっても、本実施の形態のMEMS発振器100を構成することが可能である。この場合、MEMS共振器13の共振周波数−ゲインの対応関係は、図12に示す曲線503のように、温度上昇に伴って単調に減少する曲線となる。よって、MEMS共振器13からの発振部帰還信号のレベルは、温度の変化に伴い図13に示す曲線701のように変化する。
なお、本実施の形態においては、周波数シンセサイザ21として、アナログPLL回路を用いたPLL周波数シンセサイザの構成を示したが、周波数シンセサイザ21は、アナログPLL回路に限らず、デジタルPLL回路、または、オールデジタルPLL回路を用いて構成してもよい。また、周波数シンセサイザ21は、PLL回路以外の回路構成でもよい。
また、本実施の形態のPLL周波数シンセサイザ21のプログラマブル分周器214は、整数型の分周器、または、分数型の分周器のいずれを用いて構成してもよい。
(実施の形態2)
図14は、実施の形態2にかかるMEMS発振器のブロック図である。実施の形態1のMEMS発振器100と同等の構成要素については同様の参照数字を付し、その説明を適宜省略する。
実施の形態2にかかるMEMS発振器200は、原発振周波数情報信号として、自動利得制御器11が出力する振幅制限信号を利用する。上述のように振幅制限信号は、増幅器12を制御してそのゲインを一定に保つことに用いられる信号である。
図15は、MEMS共振器13のゲイン404と増幅器12のゲイン405の関係を、MEMS共振器13の動作温度に沿って示すグラフである。このように、増幅器12のゲイン405と、MEMS共振器13のゲイン404とは、一対一の対応関係を有する。つまり、振幅制限信号(原発振周波数情報信号)はMEMS共振器13の共振周波数におけるゲインと対応関係を有する信号を含んだ情報信号である。そのため、増幅器12のゲインを制御するための信号である振幅制限信号をモニタリングすることにより、MEMS共振器13のゲインを取得することが可能である。分周比制御部22は、振幅制限信号を原発振周波数情報信号として入力し、当該信号に基づいてMEMS共振器13のゲインを検出し、図7に示したようなMEMS共振器13の共振周波数−ゲインの対応関係からそのときのMEMS共振器13の共振周波数を導出する。そして、分周比制御部22は、実施の形態1と同様にして、プログラマブル分周器214に設定されるべき分周比を決定する。
なお、図16に示すようなゲインの温度特性504を示すMEMS共振器13であっても、本実施の形態のMEMS発振器200を構成することが可能である。この場合、MEMS共振器13のゲインと増幅器12のゲインの対応関係は、同図に示す曲線505のように、温度上昇に伴って単調に減少する曲線となる。
(補正部の第1変形例)
図17は、MEMS発振器100および200に適用可能な、補正部2の第1の変形例を示す図である。本変形例においては、PLL周波数シンセサイザ21の前段に、原発振信号の周波数を1/Rに分周する分周器31が配置される。このように、分周器31を用いて原発振信号の周波数を分周してからPLL周波数シンセサイザ21へ入力することにより、原発振信号の周波数と出力信号の周波数とが同程度のオーダである場合でも、原発振信号の周波数の補正を精緻に行うことが可能になる。また、同図において破線で示すように、分周器31を第2のプログラマブル分周器で構成し、分周比制御部22が分周器31の分周比を制御するように構成してもよい。この場合、補正部2は、分周比制御部22の制御の下、原発振信号の周波数を任意の実数倍の周波数に精緻に補正することが可能である。
(補正部の第2変形例)
図18は、MEMS発振器100および200に適用可能な、補正部2の第2の変形例を示す図である。本変形例においては、PLL周波数シンセサイザ21の前段に、原発振信号の周波数をR倍する逓倍器32が配置される。このように、逓倍器32を用いて原発振信号の周波数を逓倍してからPLL周波数シンセサイザ21へ入力することにより、原発振信号の周波数の周波数に較べて出力信号の周波数が十分小さいような場合でも、原発振信号の周波数の補正を精緻に行うことが可能になる。また、変形例1と同様、破線で示すように、逓倍器32をプログラマブル逓倍器で構成し、分周比制御部22が逓倍器32の逓倍比を制御するように構成してもよい。この場合も、補正部2は、分周比制御部22の制御の下、原発振信号の周波数を任意の実数倍の周波数に精緻に補正することが可能である。
なお、補正部2は、PLL周波数シンセサイザ21の後段(VCO213の出力が入力される側)に、さらに、分周器あるいは逓倍器を備えてもよい。
(実施の形態1のMEMS発振器の変形例)
図19は、実施の形態1によるMEMS発振器100の変形例を示す図である。MEMS発振器変形例1100は、MEMS発振器100の構成に加え、温度センサ1101を有する。温度センサ1101の出力は、分周比制御部22へ入力される。
図8に示すように、所定の温度T以下の温度領域602においては、温度変化によるMEMS共振器13の出力レベルの変化は、他の温度領域に較べて小さい。そこで、所定の温度T以下においては、分周比制御部22は、温度センサ1101の出力を用いて分周比制御信号を生成してもよい。そうすることで、MEMS発振器1100は、MEMS共振器13の出力のレベルの温度変化による変動が比較的小さい温度領域においても、高品質な出力信号を安定的に出力することが可能である。
なお、MEMS共振器13の出力レベルが温度上昇に伴って単調増加する場合(図13の特性701のような場合)、所定の温度T’以上の温度領域702においては、温度変化によるMEMS共振器13の出力レベルの変化は、他の温度領域に較べて小さい。そこで、所定の温度T’以上においては、分周比制御部22は、温度センサ1101の出力を用いて分周比制御信号を生成してもよい。
(実施の形態2のMEMS発振器の変形例)
図20は、実施の形態2によるMEMS発振器200の変形例を示す図である。MEMS発振器変形例1200は、MEMS発振器200の構成に加え、温度センサ1101を有する。温度センサ1101の出力は、分周比制御部22へ入力される。
図15に示すように、所定の温度T’’以下の温度領域406においては、温度変化による増幅器12のゲインの変化は、他の温度領域に較べて小さい。そこで、所定の温度T’’以下においては、分周比制御部22は、温度センサ1101の出力を用いて分周比制御信号を生成してもよい。そうすることで、MEMS発振器1100は、増幅器12のゲインの温度変化による変動が比較的小さい温度領域においても、高品質な出力信号を安定的に出力することが可能である。
なお、増幅器12のゲインが温度上昇に伴って単調減少する場合(図16の特性505のような場合)、所定の温度T’’’以上の温度領域506においては、温度変化による増幅器12のゲインの変化は、他の温度領域に較べて小さい。そこで、所定の温度T’’’以上においては、分周比制御部22は、温度センサ1101の出力を用いて分周比制御信号を生成してもよい。
(まとめ)
本実施の形態のMEMS発振器は、MEMS共振器と、増幅器と、増幅器からの出力を一定に保つように増幅器のゲインを制御する自動利得制御器と、で構成された帰還型発振回路を備えた発振部、および、発振部から出力される原発振信号から所望の周波数の出力信号を生成して出力する補正部、を有する。
補正部は、周波数シンセサイザと、周波数シンセサイザのフィードバックに配置されたプログラマブル分周器の分周比を、MEMS共振器のゲインに基づいて制御する分周比制御部と、を備える。分周比制御部は、MEMS共振器のゲインの大きさに基づき、プログラマブル分周器の分周比を決定する。MEMS共振器のゲインの大きさは、その共振周波数と同様、温度依存性を有し、温度が変化することで単調に変化する。よって、MEMS共振器の共振周波数とゲインの大きさとは、互いに一方から他方を一意に求めることができる、一対一の対応関係にある。そのため、MEMS共振器のゲインの大きさから、そのときの共振周波数を知ることができる。分周比制御部は、当該対応関係に基づいてプログラマブル分周器の分周比を、MEMS共振器のゲインの時間変動を受けてリアルタイムに制御する。そうすることで、原発振信号の周波数の時間変動はリアルタイムに正確に補正され、MEMS発振器からは、常時、所望の周波数と一致した周波数を有する出力信号が出力される。
なお、分周比制御部は、MEMS共振器から増幅器へ帰還される信号を受けて、当該信号のレベルからMEMS共振器のゲインを取得することが可能である。なぜなら、発振部においては、自動利得制御器の作用により増幅器からの出力は常時一定に保たれるため、MEMS共振器の帰還信号のレベル(電圧)は、MEMS共振器のゲインとよく対応するからである。
また、分周比制御部は、自動利得制御器から出力される、増幅器からの出力のレベルを一定に保つように増幅器のゲインを制御するための制御信号(振幅制限信号)をモニタリングすることで、MEMS共振器のゲインを取得することが可能である。なぜなら、発振部においては、自動利得制御器は、増幅器からの出力を一定レベルに保つように振幅制御信号を出力している。よって、振幅制御信号から、MEMS共振器から増幅器へ帰還される信号のレベル(すなわち、MEMS共振器のゲイン)を知ることができるからである。
上記実施の形態1および2のMEMS発振器は、MEMS共振器の共振周波数の温度依存性に起因した、原発振信号の周波数の変動をよく補正し、所望の周波数の出力信号を常時安定して出力することが可能である。
本実施の形態のMEMS発振器が出力する出力信号は、常時安定した周波数を有するため、例えばクロックジェネレータ等の用途に有用である。
1 発振部
2 補正部
11 自動利得制御器
12 増幅器
13 MEMS共振器
21 周波数シンセサイザ
22 分周比制御部
111 ピークホールド回路
112 基準電圧入力端子
113 コンパレータ
211 位相比較器
212 ループフィルタ
213 電圧制御発振器
214 プログラマブル分周器
221 信号生成部
222 テーブルメモリ
223 信号生成部
224 分周比演算部

Claims (9)

  1. MEMS共振器と増幅器とを含んだ帰還型発振回路、および、前記増幅器からの出力を受けて該出力のレベルに基づいて前記増幅器からの出力のレベルを一定に保つように前記増幅器のゲインを制御する自動利得制御器を備え、前記増幅器からの出力を原発振信号として出力する発振部と、
    前記原発振信号を入力し前記原発振信号から所定の設定周波数の信号を生成し出力信号として出力する補正部と、を有し、
    前記補正部は、前記原発振信号とは別に、前記MEMS共振器の共振周波数におけるゲインと対応関係を有する信号を含む情報信号を前記発振部から入力し、前記情報信号に基づいて前記原発振信号の周波数を補正して前記所定の設定周波数の信号を生成し出力信号として出力する、MEMS発振器。
  2. 前記補正部は、分周比を可変的に制御可能なプログラマブル分周器を備えた周波数シンセサイザと、前記プログラマブル分周器の分周比を制御する分周比制御部と、を備え、
    前記分周比制御部は、前記情報信号に基づいて前記プログラマブル分周器の分周比を制御し、前記周波数シンセサイザは、前記原発振信号を入力し前記原発振信号から前記所定の設定周波数の信号を生成し出力信号として出力する、請求項1に記載のMEMS発振器。
  3. 前記情報信号は、前記MEMS共振器から前記増幅器への帰還信号である、請求項1に記載のMEMS発振器。
  4. 前記情報信号は、前記自動利得制御器が出力する前記増幅器のゲインを制御するための制御信号である、請求項1に記載のMEMS発振器。
  5. 前記自動利得制御器は、前記原発振信号を入力して前記原発振信号のピーク電圧を検出するピークホールド回路と、前記検出にかかるピーク電圧と所定の基準電圧とを比較し、該比較の結果を示す信号を出力するコンパレータと、を備え、
    前記自動利得制御器は、前記制御信号として前記比較の結果を示す信号を出力して前記増幅器のゲインを制御する、請求項1に記載のMEMS発振器。
  6. 前記補正部は、さらに、前記原発振信号を入力し該原発振信号を分周して前記周波数シンセサイザへ出力する第2の分周器を備える、請求項2に記載のMEMS発振器。
  7. 前記第2の分周器は、第2のプログラマブル分周器であり、
    前記分周比制御部は、前記情報信号に基づいて前記第2のプログラマブル分周器の分周比を制御する、請求項6に記載のMEMS発振器。
  8. 前記補正部は、さらに、前記原発振信号を入力し該原発振信号を逓倍して前記周波数シンセサイザへ出力する逓倍器を備える、請求項2に記載のMEMS発振器。
  9. 前記逓倍器は、プログラマブル逓倍器であり、
    前記分周比制御部は、前記情報信号に基づいて前記プログラマブル逓倍器の逓倍比を制御する、請求項8に記載のMEMS発振器。
JP2011544742A 2010-08-06 2011-03-03 発振器 Expired - Fee Related JP5086479B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011544742A JP5086479B2 (ja) 2010-08-06 2011-03-03 発振器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010177556 2010-08-06
JP2010177556 2010-08-06
JP2011544742A JP5086479B2 (ja) 2010-08-06 2011-03-03 発振器
PCT/JP2011/001243 WO2012017572A1 (ja) 2010-08-06 2011-03-03 発振器

Publications (2)

Publication Number Publication Date
JP5086479B2 true JP5086479B2 (ja) 2012-11-28
JPWO2012017572A1 JPWO2012017572A1 (ja) 2013-09-19

Family

ID=45559098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011544742A Expired - Fee Related JP5086479B2 (ja) 2010-08-06 2011-03-03 発振器

Country Status (4)

Country Link
US (1) US8525605B2 (ja)
JP (1) JP5086479B2 (ja)
CN (1) CN102439844B (ja)
WO (1) WO2012017572A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8821009B2 (en) * 2009-12-23 2014-09-02 Intel Corporation Thermal sensors having flexible substrates and use thereof
JP5204354B1 (ja) * 2011-06-09 2013-06-05 パナソニック株式会社 発振器
WO2013030842A1 (en) 2011-09-04 2013-03-07 Maradin Technologies Ltd. Apparatus and methods for locking resonating frequency of a miniature system
US8884711B2 (en) * 2012-09-24 2014-11-11 Invensense, Inc. MEMS device oscillator loop with amplitude control
US8803622B1 (en) * 2012-09-28 2014-08-12 Integrated Device Technology, Inc Microelectromechanical-based oscillators having adjustable gain amplifiers therein that support Q-factor control
US9621170B2 (en) * 2013-08-13 2017-04-11 Silicon Laboratories Inc. Accurate frequency control using a MEMS-based oscillator
US9112448B2 (en) * 2013-10-28 2015-08-18 Qualcomm Incorporated Ultra low-power high frequency crystal oscillator for real time clock applications
JP6350793B2 (ja) * 2013-12-25 2018-07-04 セイコーエプソン株式会社 発振回路、発振器、電子機器、移動体及び発振器の製造方法
CN105375921A (zh) * 2014-08-27 2016-03-02 硅谷实验室公司 使用基于mems的振荡器的准确频率控制
US9543891B2 (en) * 2015-04-09 2017-01-10 Texas Instruments Incorporated Low-power low-phase-noise oscillator
US9866336B2 (en) * 2015-06-17 2018-01-09 Google Llc Phased array antenna self-calibration
US10250200B2 (en) * 2016-09-12 2019-04-02 Avago Technologies International Sales Pte. Limited Low power spectrally pure offset local oscillator system
JP6372545B2 (ja) * 2016-11-14 2018-08-15 横河電機株式会社 振動式トランスデューサ
CN113765516B (zh) * 2021-09-10 2024-01-12 中国航空工业集团公司西安飞行自动控制研究所 一种mems谐振器闭环控制方法及控制结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276088A (ja) * 1993-03-24 1994-09-30 Matsushita Electric Ind Co Ltd システム時計回路
JP2001014057A (ja) * 1999-07-02 2001-01-19 Nec Yonezawa Ltd 温度管理機能搭載クロックジェネレータ
JP2007208584A (ja) * 2006-02-01 2007-08-16 Ricoh Co Ltd 周波数調整回路
JP2008278543A (ja) * 2008-08-04 2008-11-13 Epson Toyocom Corp 機器及び機器の製造方法
JP2009194613A (ja) * 2008-02-14 2009-08-27 Panasonic Corp シンセサイザと、これを用いた受信装置及び電子機器
JP2009200888A (ja) * 2008-02-22 2009-09-03 Seiko Instruments Inc Mems発振器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5495206A (en) * 1993-10-29 1996-02-27 Motorola, Inc. Fractional N frequency synthesis with residual error correction and method thereof
US6052036A (en) * 1997-10-31 2000-04-18 Telefonaktiebolaget L M Ericsson Crystal oscillator with AGC and on-chip tuning
US6278338B1 (en) * 2000-05-01 2001-08-21 Silicon Wave Inc. Crystal oscillator with peak detector amplitude control
EP1432119A1 (en) * 2002-12-17 2004-06-23 Dialog Semiconductor GmbH High quality serial resonance oscillator
US6995622B2 (en) * 2004-01-09 2006-02-07 Robert Bosh Gmbh Frequency and/or phase compensated microelectromechanical oscillator
US20070257728A1 (en) * 2006-05-03 2007-11-08 Sitime Corporation Microelectromechanical multi-stage oscillator
JP5205827B2 (ja) 2007-06-14 2013-06-05 日本電気株式会社 発振周波数制御方法及び発振器
US8044736B2 (en) * 2008-04-29 2011-10-25 Sand9, Inc. Timing oscillators and related methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276088A (ja) * 1993-03-24 1994-09-30 Matsushita Electric Ind Co Ltd システム時計回路
JP2001014057A (ja) * 1999-07-02 2001-01-19 Nec Yonezawa Ltd 温度管理機能搭載クロックジェネレータ
JP2007208584A (ja) * 2006-02-01 2007-08-16 Ricoh Co Ltd 周波数調整回路
JP2009194613A (ja) * 2008-02-14 2009-08-27 Panasonic Corp シンセサイザと、これを用いた受信装置及び電子機器
JP2009200888A (ja) * 2008-02-22 2009-09-03 Seiko Instruments Inc Mems発振器
JP2008278543A (ja) * 2008-08-04 2008-11-13 Epson Toyocom Corp 機器及び機器の製造方法

Also Published As

Publication number Publication date
US20120182077A1 (en) 2012-07-19
CN102439844A (zh) 2012-05-02
WO2012017572A1 (ja) 2012-02-09
JPWO2012017572A1 (ja) 2013-09-19
US8525605B2 (en) 2013-09-03
CN102439844B (zh) 2015-02-11

Similar Documents

Publication Publication Date Title
JP5086479B2 (ja) 発振器
JP5204354B1 (ja) 発振器
US7595701B2 (en) Crystal oscillator
TWI684327B (zh) 調整時脈訊號中之工作周期的裝置與方法
JP2012124549A (ja) 温度制御型水晶振動子及び水晶発振器
JP2014068316A (ja) 発振装置
WO2016190130A1 (ja) 発振装置
WO2015151870A1 (ja) 発振装置
JP5381162B2 (ja) 温度補償型発振器
JP6060011B2 (ja) 発振器
JP2013143601A (ja) 発振装置
JP5253318B2 (ja) 発振装置
US11239844B2 (en) Oscillator
JP5291564B2 (ja) 発振器
TW201513560A (zh) 振盪裝置
JP2013017074A (ja) 温度補償発振器および電子機器
US20240048100A1 (en) Circuit Apparatus And Oscillator
JP2015119378A (ja) 高安定発振器
JP5918546B2 (ja) 温度補償型水晶発振器
JP2014146958A (ja) 水晶発振器
JP4314982B2 (ja) 温度補償型圧電発振器
JP6707366B2 (ja) 発振装置
JP2015170997A (ja) 温度補償型発振デバイス及び温度補償型圧電発振器
JP2015119212A (ja) 発振器
JP6046993B2 (ja) 発振器

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

R150 Certificate of patent or registration of utility model

Ref document number: 5086479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees