JP5083115B2 - 地紋画像生成プログラム及び地紋画像生成装置 - Google Patents

地紋画像生成プログラム及び地紋画像生成装置 Download PDF

Info

Publication number
JP5083115B2
JP5083115B2 JP2008211321A JP2008211321A JP5083115B2 JP 5083115 B2 JP5083115 B2 JP 5083115B2 JP 2008211321 A JP2008211321 A JP 2008211321A JP 2008211321 A JP2008211321 A JP 2008211321A JP 5083115 B2 JP5083115 B2 JP 5083115B2
Authority
JP
Japan
Prior art keywords
latent image
dither matrix
image
copy
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008211321A
Other languages
English (en)
Other versions
JP2010041698A (ja
Inventor
誠 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008211321A priority Critical patent/JP5083115B2/ja
Priority to US12/199,686 priority patent/US20090059254A1/en
Publication of JP2010041698A publication Critical patent/JP2010041698A/ja
Application granted granted Critical
Publication of JP5083115B2 publication Critical patent/JP5083115B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0021Image watermarking
    • G06T1/0028Adaptive watermarking, e.g. Human Visual System [HVS]-based watermarking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2201/00General purpose image data processing
    • G06T2201/005Image watermarking
    • G06T2201/0051Embedding of the watermark in the spatial domain

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Editing Of Facsimile Originals (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Record Information Processing For Printing (AREA)

Description

本発明は,地紋画像生成プログラム及び地紋画像生成装置に関し,特に,印刷媒体に印刷されるための地紋画像データを生成するプログラム及び装置に関する。さらに,この地紋画像データに基づいて地紋画像を印刷した印刷媒体(原本)の複写による偽造を抑止する効果,あるいは原本と複写物とを区別する効果を有する地紋画像データの生成プログラム及び地紋画像生成装置に関する。
地紋は,原本の本来の画像に背景として合成され,印刷された文書が原本か複写物かを区別することを可能にする。地紋は,原本では識別することが難しいが,複写すると地紋の文字や画像が浮かび上がる。それを利用して,原本と複写物とを容易に区別することが可能になる。また,複写によって地紋の文字や画像が浮かび上がるので,地紋を合成して原本を生成すれば,心理的に原本の複写を抑止する効果が得られる。
地紋については,特許文献1に記載され,この記載によれば以下の通りである。
地紋の一般的な構成は,複写によって原本に印刷されたドットが残るまたはドットの減少が少ない「潜像部」と,複写によって原本に印刷されたドットが消失またはドットが大きく減少する「背景部」の2つの領域からなる。つまり,潜像部は複写による濃度変化が少なく原本の画像がそのまま再現され,背景部は複写による濃度変化が大きく原本の画像が消失する。この2つの領域により地紋の文字や画像が形成され,この地紋の文字や画像を「潜像」と称する。
この潜像部と背景部の2つの領域は濃度がほぼ同等であり,原本の状態では一見すると「複写」などの地紋の文字や画像が隠れていることが判別困難であるが,ミクロ的には背景部と潜像部の各々が異なる特性を持っている。そして,複写されるとそれらの濃度変化の差により,潜像部と背景部との間に濃度差が生じてこの2つの領域で形成された地紋の文字や画像の判別が容易になる。
潜像部は複写時(コピーによるスキャニング時)にドットを読み取り易くするために,集中したドットの固まりで構成し,逆に背景部は複写時にドットを読み取り難くするために分散したドットで構成する。このようにすることで,潜像部は複写後にドットが残り易く,背景部は潜像部よりもドットが消え易い特性になる。集中したドットや分散したドットは,異なる線数の網点を用いた網点処理によって実現することができる。すなわち,集中したドット配置を得るためには低い線数の網点を用い,分散したドット配置を得るためには高い線数の網点を用いる。
一般に複写機には,複写対象の原稿の微小なドットをスキャナーで読み取る工程での入力解像度と,スキャナーで読み取った微小なドットを印刷エンジンで再現する工程での出力解像度とに依存した画像再現能力の限界が存在する。従って,複写機の画像再現能力の限界を超えた孤立した微小なドットが原稿中に存在すると,その複写物では微小なドットを完全には再現できず,孤立した微小なドットの部分が消失する。即ち,地紋の背景部が複写機で再現できるドットの限界を超えるように作成されている場合,地紋の大きなドット(集中したドット)は複写によって再現できるが,小さなドット(分散したドット)は複写によって再現できず,複写原稿に隠された潜像が浮かび上がる。また,複写により背景部の分散したドットが完全に消えなくとも,潜像部の集中したドットと比較してドットの消失の程度が大きければ,複写後に背景部と潜像部で濃度差が発生し,複写原稿において隠された潜像が浮かび上がる。
また,地紋では,潜像として隠されている文字や画像をより判別し難くするために,「カモフラージュ」と言う技術が利用される。このカモフラージュ技術は,潜像部や背景部とは濃度が異なる模様を地紋画像全体に配置する方法であり,マクロ的には一見すると潜像部や背景部とは異なる濃度のカモフラージュ模様が目立ち,潜像が更に目立たなくなる効果がある。つまり,カモフラージュ模様のコントラストが大きく,それに比較して潜像部と背景部のコントラストが小さいため,目の錯覚により潜像がより効果的に隠蔽される。さらに,カモフラージュ模様は印刷物に装飾的な印象を与えることができ,意匠性に優れた地紋を作成することができるといった利点もある。尚,一般的にカモフラージュ模様はドットを発生させるか発生させないかの2値で作成されており,カモフラージュ模様に相当する領域で地紋のドットを発生させないことでカモフラージュ模様を形成している。2値のカモフラージュ模様については,特許文献2に記載されている。以上が地紋の概要である。
図1は,地紋の潜像とカモフラージュ模様の例を示す図である。文字「複」の潜像マスクパターン10は,その拡大図10Xにも示されるとおり,例えば黒い部分が地紋の潜像部LIに対応し白い部分が地紋の背景部BIに対応する。一方,カモフラージュ模様12は,その拡大図12Xにも示されるとおり,例えば黒い部分CAMが地紋のドットが形成されない領域になり,白い部分が地紋のドットが形成される領域になる。言いかえると,カモフラージュ模様のデータは,各画素が,地紋画像を印刷する部分と印刷しない部分とを示す2値の画像データである。
図2は,地紋を印刷した原本の例を示す図である。地紋14は,図1の潜像マスクパターン10に基づいて潜像部LIと背景部BIとが形成されている。潜像部LIは,ドット集中型ディザ法による低網点線数(53lpi)のドットで形成され,背景部BIは,ドット分散型ディザ法による高網点線数(212lpi)のドットで形成されている。拡大された地紋14Xから明らかなとおり,地紋全体が一定の出力濃度になっているが,潜像部LIのドットは低い網点線数のスクリーンにより形成されているので大きなドットであり,背景部BIのドットは高い網点線数のスクリーンにより形成されているので微少なドットである。
地紋16は,図1の潜像マスクパターン10とカモフラージュ模様12に基づき,潜像部LIと背景部BIとがカモフラージュ模様の黒い部分CAMの領域を除いて形成されている。拡大された地紋16Xに示されるとおり,地紋全体は一定の出力濃度であり,カモフラージュ模様の領域CAMにはドットが形成されず,それ以外の領域では,図1と同様に大きなドットからなる潜像部LIと微少なドットからなる背景部BIとが形成されている。カモフラージュ模様のコントラストが大きいため,コントラストが小さい潜像部LIと背景部BIとで形成される潜像(文字「複」)が目立たない。
図2の地紋の原本は,潜像部LIと背景部BIの出力濃度が同じであるので,それにより形成される潜像「複」が隠蔽される。これを原本における潜像の隠蔽性が高いと称する。
図3は,地紋の複写物の例を示す図である。複写物18は,複写によるスキャニング工程とドット形成工程(スキャニング工程によって生成されたスキャンデータに基づき,印刷媒体に印刷する工程)とを経て形成され,その拡大図18Xに示されるとおり,潜像部LIの大きなドットはほとんど消失していないが,背景部BIの微少なドットはかなり消失している。その結果,複写物18において,潜像部LIの出力濃度はほとんど低下しないが,背景部BIの出力濃度はかなり低下し,潜像「複」が浮き上がって見える。つまり,複写物における潜像の識別性が高くなっている。
複写物20もカモフラージュ模様の領域CAMを除いて,複写物18と同様である。背景部BIの出力濃度が低下したことでカモフラージュ模様のコントラストが低下し,潜像「複」が浮き上がって見えている。
図4は,図2の原本の拡大図と図3の複写物の拡大図とを更に拡大した図である。(a)原本では,潜像部LIは網点線数が低く面積が大きなドット(網点)で構成され,背景部BIは網点線数が高く微少なドットで構成される。そして,カモフラージュ模様の黒い部分CAMにはいずれのドットも形成されていない。一方,(b)複写物では,潜像部LIの大きなドット(網点)のサイズはそれほど変化していないのに対して,背景部BIの微少なドットはかなりの数が消失ししている。その結果,複写物では,潜像部LIの出力濃度の低下はほとんどなく,背景部BIの出力濃度の低下は大きく,地紋の潜像「複」が顕在化される。
特開2005−151456号公報 特開平4−170569号公報
上記の通り,地紋は,原本における潜像の隠蔽性が高いことと,複写物における潜像の識別性が高いこととが両立することが求められる。その点,カモフラージュ模様を付加すると原本の隠蔽性を向上させ,印刷物に装飾的なイメージを与え意匠性に優れた地紋を提供することができる。
しかしながら,第1に,地紋にドットを発生させるか発生させないかの2値の情報で構成されたカモフラージュ模様では模様の表現力に乏しい。第2に,図2中のカモフラージュ模様付き地紋16では,カモフラージュ模様のコントラストが高く潜像が判別しずらく原本の隠蔽性向上には有利に働くが,逆にコントラストが強すぎて本来の画像(印刷文書画像)を合成した場合にカモフラージュ模様が目立ちすぎる問題がある。第3に,図3のカモフラージュ模様なしの複写物18とカモフラージュ模様ありの複写物20とを比較すると,潜像「複」においてカモフラージュ模様に対応する領域CAMでドットが形成されていないので,複写物20の潜像の識別性が複写物18より低下している。つまりカモフラージュ模様の存在が複写物での潜像の識別性を低下させている。
上記のように,2値情報で構成されるカモフラージュ模様を利用した場合に,原本の文書の判別性低下を防止し,複写物の潜像の識別性低下を防止することが望まれる。また,カモフラージュ模様の表現力向上も望まれている。
そこで,本発明の目的は,カモフラージュ模様の自由度を高くした地紋を生成するプログラム及び装置を提供することにある。
本発明の別の目的は,原本の潜像の隠蔽性を維持しつつ本来の印刷文書画像の判別性低下を防止できるカモフラージュ模様付き地紋を生成するプログラム及び装置を提供することにある。
さらに,本発明の別の目的は,複写物の潜像の識別性低下を防止できるカモフラージュ模様付き地紋を生成するプログラム及び装置を提供することにある。
上記の目的を達成するために,本発明の第1の側面によれば,
複写時に再現される出力濃度が異なる潜像部と背景部とを含む地紋画像を印刷媒体上に形成する地紋画像データを生成する地紋画像生成工程をコンピュータに実行させる地紋画像生成プログラムにおいて,
前記地紋画像生成工程は,
2階調を超える多階調のカモフラージュ模様データを取得する第1の工程と,
前記潜像部及び背景部の入力階調値に基づいて前記カモフラージュ模様データの階調値を補正して補正カモフラージュ模様データを生成する第2の工程と,
前記補正カモフラージュ模様データの階調値について,前記潜像部に対応する領域では,潜像部ディザマトリクスを参照して前記階調値に対する潜像部画像データを生成し,前記背景部に対応する領域では,背景部ディザマトリクスを参照して前記階調値に対する背景部画像データを生成する第3の工程とを有する。
上記の第1の側面において,好ましい態様によれば,前記潜像部ディザマトリクス及び背景部ディザマトリクスを参照してそれぞれ生成される前記潜像部画像データ及び背景部画像データは,多階調の潜像部画像と背景部画像をそれぞれ再生する画像データである。
上記の第1の側面において,好ましい態様によれば,前記潜像部画像データは,前記補正カモフラージュ模様データの階調値に対応する位置に複数の第1のドットを形成する画像データであり,
前記背景部画像データは,前記補正カモフラージュ模様データの階調値に対応する位置に複数の第2のドットを形成する画像データであり,
前記潜像部ディザマトリクスは前記第1のドットの中心にドットを集中して形成するドット集中型ディザマトリクスであり,前記背景部ディザマトリクスは前記第2のドットを分散して形成するドット分散型ディザマトリクスである。
上記の第1の側面において,好ましい態様によれば,前記潜像部ディザマトリクスと背景部ディザマトリクスとが,階調値の取りうる範囲に対する出力濃度の特性が一致していて,前記潜像部及び背景部の入力階調値が同じである。
上記の第1の側面において,好ましい態様によれば,前記多階調のカモフラージュ模様データが複数色の階調値データを有し,
前記第1の工程では,前記カモフラージュ模様データの階調値が前記複数色の階調値から求められるグレー階調値である。
上記の目的を達成するために,本発明の第2の側面によれば,
複写時に再現される出力濃度が異なる潜像部と背景部とを含む地紋画像を印刷媒体上に形成する地紋画像データを生成する地紋画像生成工程をコンピュータに実行させる地紋画像生成プログラムにおいて,
前記地紋画像生成工程は,
2階調を超える多階調のカモフラージュ模様データを取得する工程と,
前記カモフラージュ模様データの階調値について,前記潜像部に対応する領域では,潜像部ディザマトリクスを参照して前記階調値に対する潜像部画像データを生成し,前記背景部に対応する領域では,背景部ディザマトリクスを参照して前記階調値に対する背景部画像データを生成する工程とを有し,
前記潜像部ディザマトリクスと背景部ディザマトリクスとが,入力階調値の取りうる範囲に対する出力濃度の特性が一致していて,前記潜像部及び背景部の階調値が前記潜像部ディザマトリクスと背景部ディザマトリクスの入力階調値の取りうる範囲内で最大の入力階調値に設定されている。
上記の目的を達成するために,本発明の第3の側面は,上記第1,第2の側面の地紋画像生成装置である。
以下,図面にしたがって本発明の実施の形態について説明する。但し,本発明の技術的範囲はこれらの実施の形態に限定されず,特許請求の範囲に記載された事項とその均等物まで及ぶものである。
図5は,本実施の形態における地紋画像形成装置の構成を示す図である。地紋画像形成装置は,ホストコンピュータ30にインストールされているプリンタドライバプログラム32と,潜像部ディザマトリクス33と,背景部ディザマトリクス34と,カモフラージュ模様データ35と,プリンタ40とで構成される。潜像部ディザマトリクス33と背景部ディザマトリクス34は,プリンタメーカが記録媒体を介してもしくはインターネットなどのネットワーク回線を介して,ユーザに配布するプリンタドライバプログラム32に含まれ,プリンタドライバプログラム32をホストコンピュータにインストールするときに,ホストコンピュータ内の記録媒体に保存される。ホストコンピュータ30は,CPUとRAMとアプリケーションプログラム31とを更に有し,アプリケーションプログラム31を実行して文字,イメージ,グラフィックスなどからなる画像データ(印刷文書画像データ)を生成する。
さらに,ホストコンピュータ30は,ユーザからの要求に応答して,プリンタドライバ32を実行してカモフラージュ模様付き地紋データ37を生成する。そして,アプリケーション31が生成した画像データについて,ユーザから印刷要求を受けると,プリンタドライバ32はプリンタ装置40が解釈可能なプリンタ制御言語に基づき,印刷対象の画像データ36の印刷ジョブデータを生成する。もし,ユーザからの印刷要求に,印刷対象の画像データ36に対して地紋データを付加することが含まれていた場合には,プリンタドライバ32は,地紋データを生成しプリントジョブに地紋データ37を含めてプリンタ40のインターフェースIFに送信する。
画像データ36は,例えば,ページ記述言語で記述されたデータ,プリンタの中間コードに展開されたデータ,または画素に展開したRGBのビットマップデータなど様々な形態をとりうる。また,カモフラージュ模様付き地紋データ37は,多階調のカモフラージュ模様の階調データを地紋の入力階調で補正(または変調)した階調データをディザマトリクス33,34でスクリーニング処理した画像データである。本実施の形態では,カモフラージュ模様が多階調(3階調以上)であり,カモフラージュ模様の階調データは3ビット以上のバイナリデータである。地紋データ37は,例えば画素毎のドットの有無(ON/OFF)を示すデータである。地紋データのドットの有無は,例えば画素毎に0と1の2値で表現される。または,印刷対象の画像データがRGB各色8ビット階調値で表現される場合には,地紋データのドットの有無は,画素毎にその最大階調値に対応する値255と最小階調値に対応する値0として8ビットで表現されてもよい。
一方,プリンタ40は,印刷媒体給紙部,印刷媒体上に画像を形成する印刷実行部,印刷媒体排紙部などからなる印刷エンジン46と,受信した画像データ36と地紋データ37について所定の画像処理を行いさらに印刷エンジン42の制御を行うコントローラ41とを有する。コントローラ41のCPUは,画像形成プログラム42を実行して,受信した画像データ36から画素に展開したビットマップデータを生成する。受信した画像データ36がビットマップデータの形態であればそのビットマップデータがそのまま利用できる。
そして,合成部43が,画像データ36の画素毎に階調値を持つビットマップデータと
,地紋データ37のドットデータとを合成する。この合成は,例えば地紋データ37の画像に画像データ36の画像を重ねる処理により行われる。さらに,色変換部44が合成されたRGBのデータをCMYKのデータに色変換し,二値化ユニット45がCMYKのビットマップデータから所定のスクリーンを用いてデータから画素内のドットのデータに変換し,印刷エンジン46に出力する。その結果,印刷エンジン46は,アプリケーションプログラムにより生成された印刷対象の画像とプリンタドライバ32により生成された地紋画像とを合成した画像を印刷媒体上に印刷する。これが地紋の原本である。
あるいは,別の合成方法によれば,画像データ36のRGBビットマップデータと地紋画像画像データを合成する前に,画像データ36のRGBビットマップデータをCMYKのビットマップデータに色変換し,CMYKのいずれかの色のビットマップデータに地紋データ37を合成する。この場合は,地紋データ37における画素毎のドットON/OFF情報をビットマップデータの最大階調値/最小階調値とし,その地紋データ37を画像
データ36のCMYKのうちいずれかの色のビットマップデータに上書きする。例えば,画像データ36が黒色Kの文字データの場合にCMYのいずれかの色のビットマップデータを地紋データ37に変換する。もしくは,画像データ36のいずれかの色のビットマップデータの最小濃度の階調値の画素に地紋データ37を上書きする。
図5の実施の形態では,ホストコンピュータ30のプリンタドライバ32が地紋画像生成プログラムに対応し,地紋データ37を生成している。ただし,変型例として,プリンタ内で地紋データとカモフラージュ模様データとを生成しそれに基づいて地紋画像を生成してもよい。この場合は,プリンタドライバ32が印刷対象の画像データ36に地紋画像を合成して印刷する指定を含む印刷ジョブデータを生成し,プリンタ40のコントローラ41が地紋画像生成プログラムを実行し,プリンタ40内に記憶された潜像部ディザマトリクスと背景部ディザマトリクスとを使用して,印刷ジョブデータからカモフラージュ模様付き地紋データを生成する。地紋生成用の印刷ジョブデータは,複写時に消失するもしくは再現される文字やパターンの指定,地紋の濃度の指定,カモフラージュ模様の指定など,カモフラージュ模様付き地紋データ生成するために必要な情報を含むデータである。このプリンタ40内での地紋生成処理は,プリンタのCPUが画像生成プログラムを実行す
ることにより実施されてもよいし,ASICなどの専用画像処理生成装置で実行されてもよい。
[地紋生成手順の概略]
以下,本実施の形態における地紋画像生成装置による地紋生成方法の概略について説明する。なお,地紋画像生成装置とは,プリンタドライバ32により地紋画像が生成される場合はホストコンピュータ,画像形成プログラム42により地紋画像が生成される場合にはプリンタ40をいう。本実施の形態では,図1,図2と同様に,地紋画像生成装置が,ユーザがデフォルトパターンから選択した潜像マスクパターンまたはユーザが独自に生成した潜像マスクパターンに対応して,潜像部と背景部とからなる地紋画像データを生成する。
図6は,本実施の形態における地紋データの生成手順を示すフローチャート図である。まず,地紋画像生成装置は,潜像マスクパターンデータを生成する(S1)。潜像マスクパターンデータは,図1に示した文字「複」の潜像マスクパターン10のデータであり,各画素が潜像部LIか背景部BIかを示すデータ0,1で構成される。そして,地紋画像生成装置は,多階調のカモフラージュ模様データを取得する(S2)。ユーザにより取得された写真データやイメージデータなどの多階調画像データや,あらかじめホストコンピュータ30内のメモリに格納されている複数のカモフラージュ模様データ35から選択されたデータが,カモフラージュ模様データとなる。多階調のカモフラージュ模様データは,画素毎に例えば8ビットの階調データで構成され,そのカモフラージュ模様は2階調を超える256階調を表現することができる。カモフラージュ模様が多階調化されることで,原本における本来の印刷対象の印刷文書画像の識別性低下を抑制することができ,複写物における潜像の識別性低下も抑制することができる。さらに,多階調のカモフラージュ模様を使用することができるので,意匠性に優れた印刷物を作成することができる。
本実施の形態でのカモフラージュ模様データは,画素毎の8ビット(0:黒〜255:白)の階調値データであり,256階調で表現されるグレイイメージデータである。カモフラージュ模様は,階調値0(黒)に近いほど出力濃度が低く,階調値255(白)に近いほど出力濃度が高く構成されている。そして,カモフラージュ模様の階調値A(A=0〜255)に対して出力される地紋の出力濃度DAは,カモフラージュ模様を付加しない場合の地紋の出力濃度Dmaxに対して,
DA=(A/255)×Dmax (0≦A≦255) (1)
になる。
よって,カモフラージュ模様の階調値が全て白(A=255)では,カモフラージュ模様付き地紋の出力濃度DAは,DA=Dmaxとなり,カモフラージュ模様を付加しない地紋と同じ出力濃度になる。つまり,図2中の16の模様CAM以外の領域の出力になる。また,カモフラージュ模様の階調値が255(白)に近いほど,地紋の出力濃度Dmaxの
減少量が小さくなる。一方,カモフラージュ模様の階調値が0(黒)に近いほど,地紋の出力濃度Dmaxの減少量が大きくなる。そして,カモフラージュ模様の階調値が全て黒(A=0)では,カモフラージュ模様付き地紋の出力濃度DAは,DA=0になり,地紋のドットは形成されない。つまり,図2中の16の模様CAM内の出力になる。
上記の通り,多階調のカモフラージュ模様を利用することで,地紋の潜像部と背景部とに多階調のカモフラージュ模様が合成されることになり,1ビットのカモフラージュ模様データに比較すると,カモフラージュ模様のコントラストを低下させることができる。
上記のカモフラージュ模様を地紋に反映するために,地紋画像生成装置は,潜像部,背景部の入力階調に基づいて補正カモフラージュ模様階調データを生成する(S3)。潜像部,背景部の入力階調は,地紋画像の出力濃度に対応するものであり,デフォルトで決められた階調値,もしくは,ユーザが任意に選択した地紋画像の出力濃度に対応する階調値である。上記式(1)で示したとおり,カモフラージュ模様付き地紋画像は,潜像部と背景部とからなる地紋画像が多階調のカモフラージュ模様の階調値で変調された画像である。言い換えると,多階調のカモフラージュ模様の階調値が地紋画像の入力階調で変調された画像である。上記の手順S3は,この変調処理を行ってカモフラージュ模様階調データを生成する手順であり,補正カモフラージュ模様階調データが変調処理された階調データである。
最後に,地紋画像生成装置は,補正カモフラージュ模様階調データを,潜像マスクパターンデータに応じて,潜像部ディザマトリクス33か背景部ディザマトリクス34かを参照してスクリーニング処理し,カモフラージュ模様付き地紋データ37を生成する(S4)。つまり,潜像部に対応する領域では,潜像部ディザマトリクス33を参照して地紋の画像データを生成し,背景部に対応する領域では,背景部ディザマトリクス34を参照して地紋の画像データを生成する。
この潜像部,背景部ディザマトリクス33,34は,例えば閾値マトリクス,階調変換マトリクスなどであり,いずれも多階調の画像データに変換可能なディザマトリクスである。ディザマトリクス33,34は,ドット面積で多階調を表現するAMスクリーンでも良いし,ドット密度で多階調を表現するFMスクリーンでもよい。ただし,地紋画像の本来の機能として潜像部と背景部とで複写時に再現される出力濃度が異なる必要があるので,それを実現できるスクリーンであることが求められる。例えば,潜像部,背景部ディザマトリクス33,34は,各々スクリーン線数が異なる。または,ドット集中型マトリクスとドット分散型マトリクスである。
以下,本実施の形態におけるカモフラージュ模様付き地紋データの生成手順について詳述する。
[潜像部ディザマトリクスと背景部ディザマトリクス]
潜像部は潜像部ディザマトリクス33を使用して複数の第1のドットにより所定の出力濃度の画像に形成され,一方,背景部は背景部ディザマトリクス34を使用して複数の第2のドットにより所定の出力濃度の画像に形成される。原本における潜像の隠蔽性を高くするために,潜像部と背景部とは同等の出力濃度の画像になることが望ましい。
図7は,地紋の背景部BIと潜像部LIの画像を生成するためのディザマトリクスの例を示す図である。図7(a)の背景部基本ディザマトリクスDM−BIは,4×4のマトリクスの各要素に閾値1〜8を有するドット分散型ディザマトリクスである。閾値「1」は変位ベクトル(−2,2),(2,2)の位置の要素に割り当てられ,閾値「2」は閾値1の要素と離間した位置に配置され,閾値「3〜8」はそれらの間に配置されている。地紋画像の形成工程で,背景部の入力階調値と背景部基本ディザマトリクスDM−BIの各要素の閾値とが比較され,入力階調値が閾値以上であればその画素にドットが形成される。そして,図7(a)の背景部基本ディザマトリクスDM−BIに対しては,入力階調値が「1」に設定され,閾値「1」の黒い画素の位置に第2のドットD2が形成される。その拡大図が図4(a)の背景部BIに示され,背景部BIは微少ドットD2が網点線数212lpiで形成されている。
一方,図7(b)の潜像部基本ディザマトリクスDM−LIは,32×32のマトリクスの各要素の閾値1〜128を有するドット集中型ディザマトリクスである。閾値「1」は変位ベクトル(−8,8)(8,8)の位置の画素に割り当てられ,第1のドット(網点)D1の中心位置に対応する。また,閾値「2〜128」は第1のドット(網点)D1の中心位置に対応する閾値「1」の画素から順に分配されている。地紋画像の形成工程で,潜像部の入力階調値と潜像部基本ディザマトリクスDM−LIの各画素の閾値が比較され,入力階調値が閾値以上であればその画素にドットが形成される。図7(b)の潜像部基本ディザマトリクスDM−LIに対しては,入力階調値「31」が設定され,閾値「1〜31」の要素の位置にドットが形成され,大きなドット(網点)D1が形成される。その拡大図が図4(a)の潜像部LIに示され,大きなドットD1が網点線数53lpiで形成されている。
前述のとおり,地紋は,原本において背景部と潜像部の出力濃度を等しくして潜像の隠蔽性を高く保つことが求められている。また,複写物においては背景部と潜像部の出力濃度の違いを大きくし且つ潜像部の出力濃度を高くして,潜像の識別性を高くすることが求められる。大きな第1のドットD1は複写物で消失しにくく,一方,小さな第2のドットD2は複写物で消失しやすい。これにより潜像部と背景部とで複写時の出力濃度が異なる。
しかしながら,図7に示すディザマトリクスDM−BI,DM−LIにより形成される画像は,地紋に使われる低い出力濃度領域,例えば10〜15%の出力濃度領域では,出力濃度の階調数(分解能)に限りがある。背景部の基本ディザマトリクスDM−BIでは,閾値「1」の位置に微少ドットD2が形成されるので,それに対応する出力濃度で背景部が形成される。それに対して,潜像部の形成工程では,背景部の出力濃度と同じ出力濃度を生成できる入力階調値が選択され,その入力階調値と潜像部基本ディザマトリクスDM−LIとの比較により潜像部の画像が形成される。しかし,前述のとおり潜像部LIの出力濃度の階調数(分解能)に限りがあるので,かならずしも背景部の出力濃度と一致する出力濃度を潜像部LIに形成することができない場合がある。
図8は,背景部基本ディザマトリクスDM−BI及び潜像部基本ディザマトリクスDM−LIの入力階調と出力濃度の特性を示す図である。図8に示された特性は,簡単のために,基本ディザマトリクスにおいて入力階調以下の閾値の画素に形成されるドットの数と,プリンタエンジンにより生成される地紋画像の出力濃度とが理想的なリニアな関係にあると仮定している。
地紋画像生成装置が,潜像部ディザマトリクス33として図7(b)に示した潜像部基本ディザマトリクスDM−LIを,背景部ディザマトリクス34として図7(a)に示した背景部基本ディザマトリクスDM−BIを使用した場合,入力階調値とそれに対応する潜像部画像データ及び背景部画像データによる出力濃度の特性は,図8に示されるとおりである。すなわち,背景部の場合は,入力階調値IN=0〜7に対して出力濃度OUTは「0」も含めると8つの出力濃度値をとりうる。つまり,全ての画素がドットoffの紙白から全ての画素がドットonの最大出力濃度までの出力濃度の階調数(または分解能)は8である。そして,図7(a)に示したとおり,背景部では入力階調値IN=1に対して,ディザマトリクスDM−BIの閾値「1」の画素の位置に分散した微少の第2ドットD2の画像になる。それに対して,潜像部の場合は,入力階調値IN=0〜127に対して出力濃度OUTは「0」も含めると128の出力濃度値をとりうる。つまり,紙白から最大出力濃度までの出力濃度の階調数(または分解能)は128である。
しかしながら,背景部で入力階調IN=1に対応する出力濃度は,潜像部で入力階調In=12,13に対応する2つの出力濃度の中間に位置している。そのため,背景部と潜像部とで等しい出力濃度にすることができない。
地紋画像として採用される出力濃度の範囲は,最大出力濃度の10%〜15%である。そして,10〜15%の出力濃度の範囲では,潜像部基本ディザマトリクスにより再現可能な出力濃度の階調数は高々20階調程度である。そのため,潜像部の入力階調値を1段階変更することにより調整可能な出力濃度の変化量が一定以上に大きくなるので,潜像部ディザマトリクスの網点線数を低くして潜像部の出力濃度の階調数を多くしたとしても,潜像部の出力濃度を背景部の出力濃度に高精度に一致させることは困難または不可能である。
さらに,背景部基本ディザマトリクスのサイズを2倍または4倍に大きくして背景部の出力濃度の階調数を増加させて,10〜15%の範囲内で地紋画像の出力濃度変更を可能にした場合も,上記と同様の理由により背景部の出力濃度と潜像部の出力濃度とを高精度に一致させることは困難または不可能である。
図9は,原本における潜像の隠蔽性が悪化した例を示す図である。図9(a)の潜像マスクパターン「複写」について,図9(b)は潜像部の入力階調値を「12」にした場合の地紋画像,図9(c)は潜像部の入力階調値を「13」にした場合の地紋画像を示す。図9(b)では,潜像マスクパターンの出力濃度が背景部より低くなり,潜像「複写」の隠蔽性が低下している。同様に,図9(c)では,潜像マスクパターンの出力濃度が背景部より高くなり,同様に潜像「複写」の隠蔽性が低下している。
そこで,本実施の形態では,背景部ディザマトリクスと潜像部ディザマトリクスについて,図7の基本ディザマトリクスをもとに生成され,入力階調値0〜255に対して出力濃度が例えば0〜15%程度の低濃度領域内で増加する特性をもつディザマトリクスを採用する。
図10,図11は,本実施の形態で採用される潜像部の低濃度領域拡張ディザマトリクス33と背景部の低濃度領域拡張ディザマトリクス34を示す図である。そして,図12は,それら潜像部ディザマトリクス33と背景部ディザマトリクス34の入力階調値に対する出力濃度特性を示す図である。
図7の基本ディザマトリクスDM−BI,DM−LIを十分な階調数になるまでサイズを拡大する。例えば,128×128のマトリクスサイズまで拡大する。ただし,図10,図11には,便宜上32×32のマトリクスサイズが示されている。そして,拡大したディザマトリクスの全ての閾値について,入力階調値の増大に対応してドットを生成させる順に全ての閾値が異なるように分散及び拡散して配置する。これを拡散ディザマトリクスと称する。
次に,拡散ディザマトリクスを使用して複数の入力階調値に対する背景部と潜像部とをプリンタにより印刷し,測色器で出力濃度を測定する。この出力濃度の測定結果を基に入力階調0〜255に対して理想的な出力濃度特性,例えばリニアな特性,になるように閾値を補正する。この補正は,通常行われるスクリーンガンマテーブルのキャリブレーション工程で行われる補正と同様である。この結果,補正拡散ディザマトリクスが生成される。
そして,最後に,最大出力濃度の15%程度が最大値になるように,補正拡散ディザマトリクスの閾値を15/100倍して低濃度領域拡張ディザマトリクス33,34を生成する。つまり,低濃度領域拡張ディザマトリクスによりスクリーニング処理を行えば,入力階調0〜255に対して,出力濃度が最大で15%程度までしか増加しない出力濃度特性を有する。
図10の潜像部の低濃度領域拡張ディザマトリクス33では,変位ベクトル(−8,8),(8,8)の位置の要素には閾値1〜7が与えられ,その周りのグレーの要素に閾値8〜254が与えられている。つまり,黒とグレーの画素は,第1のドットD1の最大サイズに対応する。そして,それ以外の要素には閾値255が与えられている。この場合,入力階調0〜254に対してはそれ以下の閾値の画素にドットが生成されるが,便宜上,入力階調255に対してはその閾値の画素はドットoffに制御される。若しくは,背景部において入力階調255が禁止される。
よって,潜像部の低濃度領域拡張ディザマトリクス33を使用することにより,潜像部の画像は,入力階調0〜255に対して,第1のドットD1が変位ベクトル(−8,8),(8,8)の位置の要素による最小サイズから,黒とグレーの要素による最大サイズまで変化する。第1のドットD1が最大サイズでの出力濃度は黒ベタの15%であるので,入力階調0〜255に対して出力濃度は0〜15%と変化する。よって,出力濃度0〜15%の範囲に多くの階調数(254階調)を有する。
図7(b)の潜像部基本ディザマトリクスDM−LIには,最大サイズの第1のドットD1が生成される要素には閾値1〜31が与えられている。それに対して,図10の潜像部の低濃度領域拡張ディザマトリクス33には,最大サイズの第1のドットD1が生成される要素には閾値1〜254が与えられている。つまり,出力濃度の階調数(分解能)が格段に多くなっている。よって,濃度調整における分解能が高くなり潜像部の出力濃度を背景部と同じ出力濃度に高精度に調整することができる。
図11の背景部の低濃度領域拡張ディザマトリクス34は,変位ベクトル(−2,2),(2,2)の位置の要素に閾値1〜254が分散して与えられ,それ以外の要素には閾値255が与えられる。この場合も,入力階調0〜254に対してはそれ以下の閾値の要素に対応する画素にドットが生成されるが,便宜上,入力階調255に対してはその閾値の画素はドットoffに制御される。若しくは,背景部において入力階調255が禁止される。
この背景部の低濃度領域拡張ディザマトリクス34を使用すれば,入力階調値0〜255に対して,変位ベクトル(−2,2),(2,2)の位置の画素にのみ微少ドットD2が順次生成し,それ以外の画素にはドットは生成しない。よって,背景部の画像は,網点線数212lpiの位置に分散された微少ドットD2を有するだけであり,それ以上のドットは形成されない。変位ベクトル(−2,2),(2,2)の位置の画素全てに微少ドットD2が生成された時の出力濃度は黒ベタの約12%である。つまり,背景部の低濃度領域拡張ディザマトリクス34は,入力階調0〜255に対して,出力濃度は0〜約12%の範囲内で増減する。その結果,背景部の特性を最も引き出せるような安定した微少ドットの配置が保証される。
図10,図11の低濃度領域拡張ディザマトリクス33,34の入力階調値に対する出力濃度特性が,図12に示されている。上述したとおり,背景部のディザマトリクス34の入力階調値に対する出力濃度特性は,入力階調0〜255に対して出力濃度は0〜約12%の範囲になる。一方,潜像部のディザマトリクス33の入力階調値に対する出力濃度特性は,入力階調0〜255に対して出力濃度は0〜15%の範囲になる。いずれも,キャリブレーションにより入力階調値に対して出力濃度は単純増加のリニアな関係になっている。
以上が,本実施の形態における背景部と潜像部のディザマトリクス33,34の説明である。
[地紋画像データの生成方法]
以下,本実施の形態における多階調カモフラージュ模様付きの地紋画像データの生成方法について説明する。
図13は,本実施の形態における地紋画像データの生成方法を示すフローチャート図である。プリンタユーザは,ホストコンピュータ30のプリンタドライバ32において,地紋生成メニューを選択し,図13のフローチャートに従って地紋画像データの生成を実行する。
ユーザが独自に潜像マスクパターンを生成する場合,まず,ユーザは,地紋の文言を入力する(S10)。例えば,「複写」「コピー」「社外秘」などの文言であり,この文言が地紋の潜像になる。さらに,48ポイントなどの地紋文言のサイズを入力し(S11),40度などの地紋文言の角度を入力し(S12),地紋効果と配置を選択する(S13)。地紋効果とは,文言が白抜きになるか(文言が白,周囲が黒)浮きだしになるか(文言が黒,周囲が白)のいずれかである。白抜きの場合は文言が背景部に周囲が潜像部になり,浮きだしの場合は文言が潜像部に周囲が背景部になる。また,地紋の配置とは,正方配置,斜交配置,反転配置などである。
図14は,地紋効果の例を示す図である。地紋パターン50,51は,文言が「複写」「コピー」でその文言が原本または複写物で浮きだしになる地紋効果の例である。地紋パターン52,53は,同じ文言でその文言が原本または複写物で白抜きになる地紋効果の例である。いずれも文言の角度が40度に設定されている。
図15は,地紋の配置の例を示す図である。いずれも文言が「複写」,角度が40度,地紋効果が浮きだしである。(a)正方配置では,潜像マスクパターンがタイル状に貼り付けられるように地紋画像が生成される。(b)斜交配置では,潜像マスクパターンが改行のたびに所定の位相だけずらして配置される。(c)反転配置では,潜像マスクパターンが改行のたびに上下反転して配置される。
工程S10〜S13によりユーザによる入力または選択が終わると,プリンタドライバ32は潜像マスクパターンを生成する(S14)。潜像マスクパターンの例は,図14に示したとおり,潜像部領域と背景部領域とを区別可能な1ビットデータからなる。
ユーザがデフォルトの潜像マスクパターンを使用する場合は,S10〜S14は省略され,ユーザによる潜像マスクパターンの選択がされる。 次に,プリンタドライバ32は,地紋画像の入力階調値を設定する(S16)。図10,図11に示した潜像部ディザマトリクス33,背景部ディザマトリクス34を使用する場合は,背景部では入力階調値を最大値の「255」に,潜像部では背景部の出力濃度(黒ベタの12%)と一致する入力階調値In=170が選ばれる。すなわち,背景部では,入力階調値を「255」にすることで背景部ディザマトリクス34(図11)の変位ベクトル(−2,2),(2,2)の位置の黒い画素全てに微少ドットD2が生成される。この時の出力濃度は黒ベタの12%であり,分散された第2の微少ドットが最大限生成されるので,地紋画像としては最適である。一方,潜像部では,入力階調値In=170にすることで,潜像部ディザマトリクス33(図10)の黒い要素とグレーの要素に対応する画素で構成される網点領域内に,In=170に対応する数のドットが生成される。その結果,入力階調値In=170に対応するサイズの大ドットD1が形成される。
図12の出力濃度特性に示したとおり,図10,11の潜像部ディザマトリクス33,背景部ディザマトリクス34は,入力階調に対する出力濃度特性が異なっている。つまり,潜像部ディザマトリクスのほうが入力階調に対する出力濃度の傾きが大きい。よって,背景部において最適な出力画像を再生できる入力階調「255」を選択した場合,それと出力濃度が一致する入力階調In=170が潜像部において選択される。
プリンタドライバ32は,ユーザの選択要求に応じて,カモフラージュ模様データを取得する(S17)。ホストコンピュータ内のメモリ,または外付けメモリ内にカモフラージュ模様データが格納されており,ユーザの選択要求に応じて,カモフラージュ模様データを取得する。
図16は,カモフラージュ模様の一例とそれを採用した地紋画像の例を示す図である。カモフラージュ模様50は,複数の矩形領域の組み合わせからなり,各矩形領域の階調値Aは,図16に示される通りである。このような多階調のカモフラージュ模様を選択した場合の地紋画像52が示されている。この地紋画像52は,前述した式(1)により,地紋画像の出力濃度Dmax(例えばDmax=40%)がA/255倍されている。このように,カモフラージュ模様がより黒い領域では,地紋画像の出力濃度がより低下し,カモフラージュ模様がより白い領域では,地紋画像の出力濃度の低下はより少ない。
図17は,メモリに格納されているカモフラージュ模様の例である。図17には10種類のカモフラージュ模様が示されている。ただし,(1)は黒べた(階調値=0)であるので,このカモフラージュ模様を採用すると地紋画像は白ベタになる。
カモフラージュ模様の階調値Aは,前述のとおりグレイデータである。カモフラージュ模様がRGBのカラー画像データの場合は,階調値Aは以下の式(2)により求められる。
A=0.3×R+0.59×G+0.11B (2)
カモフラージュ模様データの階調値を,黒で「0」,白で「255」と定義した結果,カモフラージュ模様データによるカモフラージュ模様画像と,地紋に反映されるカモフラージュ模様画像とは,白黒が反転した画像になる。よって,ユーザが地紋に反映された状態でカモフラージュ模様を選択可能にするために,プリンタドライバ32は,選択画面において,白黒反転したカモフラージュ模様の画像を表示することが望ましい。白黒反転画像の画像データの階調値Kは,以下の式(3)により求められる。
K=255−A (3)
さらに,プリンタドライバ32は,ユーザの選択要求に応じて,地紋の色(ブラック,シアン,マゼンタなど)の選択を行う(S18)。地紋の色は,単色であることが望ましい。それに伴い,カモフラージュ模様データの階調値は,前述のとおりグレイデータの階調値Aを反転した式(3)による階調値Kにする。その理由は,加法混色表示のRGBと減法混色表示のCMYKとの違いによる。
以上のユーザによる入力などS10〜S17が終了すると,プリンタドライバ32は地紋画像生成処理を実行する(S19)。地紋画像生成処理は,図18のフローチャートに従って行われる。
図18は,本実施の形態における地紋画像生成処理のフローチャート図である。つまり,図13の地紋画像生成処理S19が,図18のフローチャートに示されている。まず,潜像部及び背景部の入力階調値に基づいてカモフラージュ模様データの階調値を補正して補正カモフラージュ模様データを生成する(S21)。この手順は,図6の手順S3に対応する。
カモフラージュ模様の階調値A(0≦A≦255),地紋を構成する潜像部と背景部の入力階調In(1≦In≦254)とする。まず,階調値Aを式(3)により階調値Kに変換する。そして,補正カモフラージュ模様の階調値Kiは,
以下の式(4)により演算される。
Ki=(K/255)×In (4)
この演算式は,前述の式(1)に対応している。
図13の地紋画像の入力階調値を設定する工程S16で,背景部では入力階調を「255」に設定し,潜像部では入力階調をIn=170と設定した。このように背景部と潜像部とで異なる入力階調を設定した場合,上記式(4)による補正カモフラージュ模様階調データの演算で,潜像マスクパターンに応じて,潜像部と背景部とで変調すべき入力階調Inを異ならせることが必要になる。この理由は,図12に示したとおり,潜像部ディザマトリクス33と背景部ディザマトリクス34とが異なる出力濃度特性を有することに起因する。
そこで,本実施の形態では,演算を簡単化するために,潜像部と背景部の両方で入力階調をIn=170に共通化する。ただし,背景部ディザマトリクス34を入力階調In=170で最大出力濃度(12%)になるように正規化し(例えば図20),正規化された背景部ディザマトリクスを参照してスクリーニング処理を行う。
もしくは,後述する実施の形態の変形例(図27)で説明するように,潜像部と背景部の両方で入力階調を取りうる階調値の最大値(例えば255)にし,但し,潜像部ディザマトリクス33を入力階調値「255」で入力階調値In=170に対応する出力濃度(12%)になるように正規化する。つまり,図10,12の潜像部ディザマトリクスの入力階調値0〜170とその出力濃度の特性が,入力階調値0〜255に正規化される。
以下は,入力階調In=170に設定した場合について説明する。工程S21で,入力階調In=170について式(4)に基づき補正カモフラージュ模様の階調値データが演算される。そして,プリンタドライバ32は,図11,12の背景部ディザマトリクス34を正規化して正規化背景部ディザマトリクスを生成する(S22)。
図19は,正規化背景部ディザマトリクス34Nを示す図である。図11の背景部ディザマトリクス34の変位ベクトル(−2,2),(2,2)の位置の黒い画素内の閾値0〜254を,以下の式(5)により新たな閾値0〜170(=In)に正規化する。
正規化閾値=(閾値/254)×In (5)
よって,図19の正規化背景部ディザマトリクス34Nでは,黒い画素内の閾値は0〜170に置き換えられ,入力階調値が「170」の時に全ての黒い画素にドットが形成され最大出力濃度(黒ベタの12%)になる。
図20は,正規化背景部ディザマトリクスと正規化前の背景部ディザマトリクスと潜像部ディザマトリクスの入力・出力濃度特性を示す図である。背景部ディザマトリクス34と潜像部ディザマトリクス33の出力濃度特性は,図12と同じである。前述の例では,背景部では変位ベクトル上の要素に対応する画素全てにドットを生成する入力階調「255」が採用され,潜像部ではそれと同じ出力濃度を再生できる入力階調値In=170が採用された。そこで,背景部でも入力階調値In=170を採用するために,背景部ディザマトリクス34を入力階調In=170で正規化して,図20中の破線の特性34Nに示される正規化背景部ディザマトリクス34Nを生成する。上記式(5)による演算により正規化背景ディザマトリクス34Nは簡単に演算することができる。
エンジンの経年変化に応じて,潜像部の入力階調値Inが変動する場合がある。よって,変動時の入力階調値Inを使用して正規化背景ディザマトリクス34Nを生成することで,経年変化を吸収することができる。
図18に戻り,補正カモフラージュ模様階調データについて,潜像マスクパターンに応じて,潜像部ディザマトリクス33または正規化背景部ディザマトリクス34Nを参照して,カモフラージュ模様付き地紋画像データを生成する(S23〜S27)。このカモフラージュ模様付き地紋画像データは,画素毎にドット有りまたはドットなしを示す画像データである。
図21は,図18の地紋画像生成処理を説明する図である。図21(A)には,A4の印刷サイズ60に複数の潜像マスクパターン10が正方配置された地紋画像が示されている。A4サイズの場合は,横方向に4720ドットの画素数,縦方向に6776ドットの画素数になる。図21(B)は,図21(A)の左上の潜像マスクパターン10と,タイル状に配置されたカモフラージュ模様12との位置関係が示されている。潜像マスクパターン10は横方向に2030ドットの画素数,縦方向に2030ドットの画素数を有する正方形のパターンである。それに対して,図21(C)に示されるとおり,カモフラージュ模様12は横方向に215ドット,縦方向に215ドットの画素数を有する正方形パターンである。
図21(D)は,図30(C)の左上端部領域を拡大したものである。潜像部ディザマトリクス33−4及び背景部ディザマトリクス34−5は,共に,32セル×32セルのマトリクスであり,左上から順番にタイル状に貼り付けるように画素に対応させる。このように,潜像部と背景部のディザマトリクス33−4,34−5は,同じマトリクスサイズであるので,図21(D)に示されるとおり画素との対応関係は全く一致する。
そして,プリンタドライバは,補正カモフラージュ模様の階調値と,ディザマトリクス33−4,34−5の閾値とを比較し,階調値が閾値以上であれば画素ドットON,階調値が閾値未満であれば画素ドットOFFにする。ただし,補正カモフラージュ模様の階調値は0〜254までしか取りえないように設定されている。若しくは,入力階調値が255の場合は一律画素ドットOFFにする。比較対象のディザマトリクスは,潜像マスクパターンの黒または白に対応して選択される。
図18のフローチャートに戻って,地紋画像生成処理を説明する。地紋画像の画素のインデックスi,jをそれぞれi=0,j=0に初期化する(S23)。そして,画素(i,j)で潜像マスクパターンが黒なら(S28のYES)潜像部ディザマトリクス33の対応する画素の閾値と補正カモフラージュ模様階調値Kiとが比較され(S29),潜像部マスクパターンが黒でないなら(S28のNO)正規化背景部ディザマトリクス34Nの対応する画素の閾値と補正階調値Inとが比較される(S31)。いずれの比較でも補正階調値Kiが閾値以上の場合は地紋画像データ(i,j)はドットONになり(S30),補正階調値Kiが閾値未満の場合は地紋画像データ(i,j)はドットOFFになる(S32)。
これにより,潜像部では補正カモフラージュ模様階調値Kiに対応したサイズの第1のドット(網点)が生成され,背景部では補正階調値Kiに対応した数の第2のドットが対応した位置の画素に生成される。
上記の処理が完了すると,画素の行方向のインデックスjがインクリメント(j=j+1)され(S24),インデックスjが印刷サイズ幅に達するまで(S25)同じ処理が繰り返される。インデックスjが印刷サイズ幅に達すると(S25のYES),列方向のインデックスiがインクリメント(i=i+1)され且つ行方向のインデックスjが0にリセットされ(S26),同じ処理が繰り返される。そして,列方向のインデックスiが印刷サイズ高さに達すると(S27のYES),1頁の地紋画像生成処理が完了する。このように処理対象画素は左上からラスタスキャン方向に移動し,各画素がドットONかOFFにされる。
以上の処理により,多階調のカモフラージュ模様を反映した地紋画像データが生成される。
このようにして生成された地紋画像は,画素毎にドットON/OFFのいずれかを有する地紋画像データとなる。
生成された地紋画像データと印刷対象の画像データ36の合成は以下の通りである。
印刷対象の画像データが,RGBの階調値を持つRGBビットマップデータからプリンタの色であるCMYKビットマップデータに変換された後,印刷対象の画像データのCMYKビットマップデータのうち,ユーザが指定した地紋の色(本実施例では,シアン,マゼンタ,ブラックのいずれか。)のビットマップデータに対して地紋画像が合成される。
この合成方法は,まず,地紋画像のドットONのデータを上記ビットマップデータの最大濃度に対応する階調値に変換し,ドットOFFのデータを上記ビットマップデータの最小濃度「0」に対応する階調値に変換する。プリンタ内で画素毎のRGBの値が各色8ビットの階調値の場合には,最大濃度に対応する階調値は「255」,最小濃度に対応する階調値は「0」となる。そして,この最大階調値もしくは最小階調値に変換された地紋画像データに,印刷対象の画像データの地紋指定色のビットマップデータで階調値「0」よりも大きい階調値を持つ画素の階調データを上書きする。これにより,印刷対象の画像の階調値「0」の画素には地紋画像が形成され,それ以外の画素には印刷対象画像が形成される。
あるいは,別の合成方法は,印刷対象の画像データの地紋指定色のビットマップデータに地紋画像データを上書きする。たとえば,印刷対象画像データが黒色の文字を形成するデータの場合,CMYのビットマップデータは全ての画素で階調値「0」になっている。したがって,CMYのうち地紋指定色のビットマップデータは印刷対象画像データとしての情報を有していないので,その色のビットマップデータが全て地紋画像データに置き換えられる。
合成方法は上記の上書きに限定されず,印刷対象の画像データの各画素毎の画像種別(テキスト,イメージ,グラフィックなど)と階調値とに基づき,印刷対象の画像と地紋画像とを所定の割合でブレンディング処理するようにしてもよい。さらに,地紋指定色のビットマップデータのうち,CMYKいずれも印刷対象のデータの階調値が「0」,つまり印刷対象画像データで印刷媒体上に画像が形成されない部分にのみ,地紋データを上書きするようにしてもよい。
合成された画像データは,通常のプリンタの2値化処理(スクリーン処理)を経て,印刷媒体に印刷される。
合成された画像データのうち,地紋画像のみからなる部分は,最大濃度階調値と最小階調値からなる階調値を持つ画素で構成されることになるので,スクリーン処理の閾値マトリクスがどのようなものであろうと,スクリーン処理後も最高濃度「255」の部分はその濃度値が保存されるように階調変換され,最小濃度「0」の部分は濃度が「0」となるように階調変換される。その結果,地紋生成処理で生成した地紋画像が印刷媒体上に印刷される。
[具体例]
本実施の形態における多階調カモフラージュ模様付き地紋画像の生成を,具体例を示して説明する。
図22は,潜像マスクパターンの一例を示す図である。32×32のマトリクス内に潜像マスクパターン10が形成されている。パターン10Aが潜像部,パターン10A以外が背景部に対応する。よって,潜像マスクパターンのマトリクスデータは,32×32マトリクスの各画素に「0」(潜像部)または「1」(背景部)の1ビットを有する。
図23は,カモフラージュ模様の一例を示す図である。このカモフラージュ模様12は,32×32のマトリクス内の画素が9つのストライプ状の領域12A〜12Iを有する。各領域12A〜12Iの階調値Kは,図示されるとおりである。つまり,領域12A,12E,12Iが階調値「255」の白の領域であり,領域12B,12Hが階調値「64」と最も黒に近い領域である。
図24は,補正カモフラージュ模様階調値の一例を示す図である。この補正カモフラージュ模様階調値データ120は,前述の式(4)により求められる。この例では,地紋画像の入力階調値In=170に基づいて,図23のカモフラージュ模様を補正して得られた階調値データである。図24中には,潜像マスクパターン10Aをグレーで示し,カモフラージュ模様の領域12A〜12Iが破線で区分して示されている。図23に示したカモフラージュ模様の階調値Kに対して,補正カモフラージュ模様の階調値Kiが図24中に示されている。
図25は,カモフラージュ模様付き地紋画像の一例を示す図である。これは,図24に示した補正カモフラージュ模様の階調値Kiについて,図10,図19,図20の潜像部ディザマトリクス33と正規化背景部ディザマトリクス34Nを参照してスクリーン処理した結果得られた地紋画像16である。図中,カモフラージュ模様の領域12A〜12Iが一点鎖線で示され,潜像マスクパターン10Aが破線で示されている。
潜像マスクパターン10A内においては,領域12Eでは補正階調Ki=170に対する第1のドットD1が,領域12D,12C,12F,12Gでも補正階調Ki=128,85に対する第1のドットD1が形成されている。潜像マスクパターン10Aの外側においては,領域12Aでは補正階調Ki=170に対する第2のドットD2が全ての変位ベクトル上に形成され,それ以外の領域12B,12C,12D,12F,12G,12Hでも,それぞれ補正階調Ki=43,85,128,128,85,43に対する第2のドットD2が形成されている。
図25の地紋画像に示されるとおり,多階調のカモフラージュ模様を採用することにより,地紋画像にカモフラージュ模様の階調値に対応した密度またはサイズのドットが形成されている。
図26は,従来の2階調のカモフラージュ模様の場合の地紋画像の一例を示す。従来の2階調のカモフラージュ模様では,ドット有りの領域12A,12E,12Iと,ドットなしの領域12X,12Yしか存在していない。つまり,中間階調の領域12B,12C,12D,12F,12G,12Hは存在しない。よって,領域12X,12Yでは,ドットが全く形成されていない。
[変型例]
図27は,本実施の形態の変型例における背景部ディザマトリクスと正規化潜像部ディザマトリクスの入力・出力濃度特性を示す図である。前述の実施の形態では,図20に示した正規化背景部ディザマトリクス34Nと潜像部ディザマトリクス33とを参照してスクリーン処理を行った。図27は,背景部ディザマトリクス34は図12と同じであるが,正規化潜像部ディザマトリクス33Nは,入力階調値「170」に対する出力濃度(12%)が最大入力階調値「255」になるように正規化されている。
正規化の演算式は,以下の式(6)(7)の通りである。
正規化閾値=(閾値/In)×254 (1≦閾値≦In) (6)
正規化閾値=255 (if In<閾値) (7)
すなわち,図10の潜像部ディザマトリクス33内の閾値1〜In(=170)は,正規化閾値1〜254に変換され,閾値In〜254は正規化閾値「255」に変換される。これにより,階調値Kiに対して出力濃度が0〜12%の範囲の画像データを生成することになる。
図27の背景部ディザマトリクス34と正規化潜像部ディザマトリクス33Nを使用する場合は,地紋画像の入力階調値InはIn=255に設定される。つまり,地紋画像は背景部と潜像部が共に出力濃度12%になる。その結果,前述の式(4)は,In=255では
Ki=(K/255)×In=K
となり,補正後のカモフラージュ模様の階調値Kiは補正前のカモフラージュ模様の階調値Kと等しくなる。
つまり,補正カモフラージュ模様の階調値を演算する工程(図6のS3,図18のS21)が不要になる。そして,補正後のカモフラージュ模様の階調値Kiは最大の階調レンジ0〜255のいずれかになる。よって,カモフラージュ模様の多階調表現を最大限に生かすことができる。
ただし,潜像部ディザマトリクス33Nと背景部ディザマトリクス34とが,入力階調値の取りうる範囲0〜255に対する出力濃度の特性が一致していて,地紋画像の潜像部及び背景部の入力階調値Inが潜像部ディザマトリクスと背景部ディザマトリクスの入力階調値の取りうる範囲内で最大の入力階調値「255」であることが必要になる。逆に言えば,潜像部と背景部のディザマトリクスを上記のように最大入力階調値In=255で適な出力濃度になるように設計しておけば,カモフラージュ模様の階調値について潜像マスクパターンに応じてそれらディザマトリクスを参照するハーフトーン処理することで,多階調のカモフラージュ模様付き地紋画像を生成することができる。
図20の正規化ディザマトリクス34N,図27の正規化ディザマトリクス33Nは,工場出荷時のエンジン特性に基づいて生成されたものが採用される。ただし,エンジンの出力濃度特性が経年変化する場合は,適宜のタイミングでもしくは地紋画像を生成するときに,その都度正規化されることが望ましい。
[実験例]
図28は,多階調カモフラージュ模様の実験例を示す図である。この多階調のカモフラージュ模様12は中間階調を有する。ただし,前述のとおり地紋画像に反映されるときは白黒反転したカモフラージュ模様13のようになる。12X,13Xはそれぞれ拡大図である。
図29は,図28の多階調カモフラージュ模様を反映させた地紋画像の原本と複写物の実験例を示す図である。図30はその拡大図16X,20Xをより拡大した図である。図29(a)の原本16に示されるとおり,多階調のカモフラージュ模様はコントラストが抑制されるので,本来の印刷文書画像の判別性を損なうことが少ない。また,図29(b)の複写物20に示されるとおり,多階調のカモフラージュ模様により複写物において潜像「複」がより忠実に再現され,複写物での潜像の識別性を高めることができる。図2の原本16と図3の複写物20と対比することで,上記の効果がより明確に理解できる。
以上説明したとおり,本実施の形態によれば,多階調のカモフラージュ模様を利用することにより,立体的な模様も表現することができ,カモフラージュ模様の表現力と自由度を大幅に向上することができる。また,カモフラージュ模様のコントラストを低下させるように調整することができ,印刷文書画像と合成した場合にカモフラージュ模様により判別性が低下することは少ない。さらに,地紋画像の複写物においては,潜像部と背景部の両方でカモフラージュ模様の階調値に対応してドットを残すことができるので,複写物における潜像「複」の識別性を高めることができる。
地紋の潜像とカモフラージュ模様の例を示す図である。 地紋の原本の例を示す図である。 地紋の複写物の例を示す図である。 図2の原本の拡大図と図3の複写物の拡大図とを更に拡大した図である。 本実施の形態における地紋画像形成装置の構成を示す図である。 本実施の形態における地紋データの生成手順を示すフローチャート図である。 地紋の背景部BIと潜像部LIの画像を生成するためのディザマトリクスの例を示す図である。 背景部基本ディザマトリクスDM−BI及び潜像部基本ディザマトリクスDM−LIの入力階調と出力濃度の特性を示す図である。 第1の実施の形態における背景部ディザマトリクスと潜像部ディザマトリクスの入力階調値に対する出力濃度の特性を示す図である。 本実施の形態で採用される潜像部の低濃度領域拡張ディザマトリクス33を示す図である。 本実施の形態で採用される背景部の低濃度領域拡張ディザマトリクス34を示す図である。 潜像部ディザマトリクス33と背景部ディザマトリクス34の入力階調値に対する出力濃度特性を示す図である。 本実施の形態における地紋画像データの生成方法を示すフローチャート図である。 地紋効果の例を示す図である。 地紋の配置の例を示す図である。 カモフラージュ模様の一例とそれを採用した地紋画像の例を示す図である。 メモリに格納されているカモフラージュ模様の例である。 本実施の形態における地紋画像生成処理のフローチャート図である。 正規化背景部ディザマトリクス34Nを示す図である。 正規化背景部ディザマトリクスと正規化前の背景部ディザマトリクスと潜像部ディザマトリクスの入力・出力濃度特性を示す図である。 図18の地紋画像生成処理を説明する図である。 潜像マスクパターンの一例を示す図である。 カモフラージュ模様の一例を示す図である。 補正カモフラージュ模様階調値の一例を示す図である。 カモフラージュ模様付き地紋画像の一例を示す図である。 従来の2階調のカモフラージュ模様の場合の地紋画像の一例を示す。 本実施の形態の変型例における背景部ディザマトリクスと正規化潜像部ディザマトリクスの入力・出力濃度特性を示す図である。 多階調カモフラージュ模様の実験例を示す図である。 図28の多階調カモフラージュ模様を反映させた地紋画像の原本と複写物の実験例を示す図である。 図29の拡大図14X,16Xをより拡大した図である。
符号の説明
16:原本 20:複写物
LI:潜像部 BI:背景部
16X:原本の拡大画像 20X:複写物の拡大画像
33:潜像部ディザマトリクス 34:背景部ディザマトリクス

Claims (10)

  1. 複写時に再現される出力濃度が異なる潜像部と背景部とを含む地紋画像を印刷媒体上に形成する地紋画像データを生成する地紋画像生成工程をコンピュータに実行させる地紋画像生成プログラムにおいて,
    前記地紋画像生成工程は,
    2階調を超える多階調のカモフラージュ模様データを取得する第1の工程と,
    前記潜像部及び背景部の入力階調値に基づいて前記カモフラージュ模様データの階調値を補正して補正カモフラージュ模様データを生成する第2の工程と,
    前記補正カモフラージュ模様データの階調値について,前記潜像部に対応する領域では,潜像部ディザマトリクスを参照して前記階調値に対応する潜像部画像データを生成し,前記背景部に対応する領域では,背景部ディザマトリクスを参照して前記階調値に対応する背景部画像データを生成する第3の工程とを有する
    ことを特徴とするコンピュータ読み取り可能な地紋画像生成プログラム。
  2. 請求項1において,
    前記潜像部ディザマトリクス及び背景部ディザマトリクスを参照してそれぞれ生成される前記潜像部画像データ及び背景部画像データは,多階調の潜像部画像と背景部画像をそれぞれ再生する画像データであることを特徴とする地紋画像生成プログラム。
  3. 請求項1において,
    前記潜像部画像データは,前記補正カモフラージュ模様データの階調値に対応する位置に複数の第1のドットを形成する画像データであり,
    前記背景部画像データは,前記補正カモフラージュ模様データの階調値に対応する位置に複数の第2のドットを形成する画像データであり,
    前記潜像部ディザマトリクスは複数の画素のドットを集中して前記第1のドットを形成するドット集中型ディザマトリクスであり,前記背景部ディザマトリクスは前記第2のドットを分散して形成するドット分散型ディザマトリクスであることを特徴とする地紋画像生成プログラム。
  4. 請求項1において,
    前記潜像部ディザマトリクスと背景部ディザマトリクスとが,階調値の取りうる範囲に対する出力濃度の特性が一致していて,
    前記潜像部及び背景部の入力階調値が同じであることを特徴とする地紋画像生成プログラム。
  5. 請求項1において,
    前記多階調のカモフラージュ模様データが複数色の階調値データを有し,
    前記第1の工程では,前記カモフラージュ模様データの階調値が前記複数色の階調値から求められるグレー階調値であることを特徴とする地紋画像生成プログラム。
  6. 請求項1において,
    前記第1の工程では,ユーザの選択要求に応答して,メモリに格納された複数種類のカモフラージュ模様データのうち選択されたカモフラージュ模様データを取得することを特徴とする地紋画像生成プログラム。
  7. 複写時に再現される出力濃度が異なる潜像部と背景部とを含む地紋画像を印刷媒体上に形成する地紋画像データを生成する地紋画像生成工程をコンピュータに実行させる地紋画像生成プログラムにおいて,
    前記地紋画像生成工程は,
    2階調を超える多階調のカモフラージュ模様データを取得する工程と,
    前記カモフラージュ模様データの階調値について,前記潜像部に対応する領域では,潜像部ディザマトリクスを参照して前記階調値に対応する潜像部画像データを生成し,前記背景部に対応する領域では,背景部ディザマトリクスを参照して前記階調値に対応する背景部画像データを生成する工程とを有し,
    前記潜像部ディザマトリクスと背景部ディザマトリクスとが,入力階調値の取りうる範囲に対する出力濃度の特性が一致していて,前記潜像部及び背景部の階調値が前記潜像部ディザマトリクスと背景部ディザマトリクスの入力階調値の取りうる範囲内で最大の入力階調値に設定されている
    ことを特徴とするコンピュータ読み取り可能な地紋画像生成プログラム。
  8. 請求項7において,
    前記潜像部ディザマトリクスと背景部ディザマトリクスの前記最大の入力階調値に対応する出力濃度が,前記地紋画像の出力濃度の最大値に対応していることを特徴とする地紋画像生成プログラム。
  9. 複写時に再現される出力濃度が異なる潜像部と背景部とを含む地紋画像を印刷媒体上に生成する地紋画像生成装置において,
    2階調を超える多階調のカモフラージュ模様データを取得するカモフラージュ模様データ取得手段と,
    前記潜像部及び背景部の入力階調値に基づいてカモフラージュ模様データの階調値を補正して補正カモフラージュ模様データを生成する補正手段と,
    前記補正カモフラージュ模様データの階調値について,前記潜像部に対応する領域では,潜像部ディザマトリクスを参照して前記階調値に対応する潜像部画像データを生成し,前記背景部に対応する領域では,背景部ディザマトリクスを参照して前記階調値に対応する背景部画像データを生成する地紋画像データ生成手段とを有することを特徴とする地紋画像生成装置。
  10. 複写時に再現される出力濃度が異なる潜像部と背景部とを含む地紋画像を印刷媒体上に生成する地紋画像生成装置において,
    2階調を超える多階調のカモフラージュ模様データを取得するカモフラージュ模様データ取得手段と,
    前記カモフラージュ模様データの階調値について,前記潜像部に対応する領域では,潜像部ディザマトリクスを参照して前記階調値に対応する潜像部画像データを生成し,前記背景部に対応する領域では,背景部ディザマトリクスを参照して前記階調値に対応する背景部画像データを生成する地紋画像データ生成手段とを有し,
    前記潜像部ディザマトリクスと背景部ディザマトリクスとが,入力階調値の取りうる範囲に対する出力濃度の特性が一致していて,前記潜像部及び背景部の階調値が前記潜像部ディザマトリクスと背景部ディザマトリクスの入力階調値の取りうる範囲内で最大の入力階調値に設定されていることを特徴とする地紋画像生成装置。
JP2008211321A 2007-08-28 2008-08-20 地紋画像生成プログラム及び地紋画像生成装置 Expired - Fee Related JP5083115B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008211321A JP5083115B2 (ja) 2007-08-28 2008-08-20 地紋画像生成プログラム及び地紋画像生成装置
US12/199,686 US20090059254A1 (en) 2007-08-28 2008-08-27 Tint Block Image Generation Program and Tint Block Image Generation Device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007221074 2007-08-28
JP2007221074 2007-08-28
JP2008177568 2008-07-08
JP2008177568 2008-07-08
JP2008211321A JP5083115B2 (ja) 2007-08-28 2008-08-20 地紋画像生成プログラム及び地紋画像生成装置

Publications (2)

Publication Number Publication Date
JP2010041698A JP2010041698A (ja) 2010-02-18
JP5083115B2 true JP5083115B2 (ja) 2012-11-28

Family

ID=40406947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211321A Expired - Fee Related JP5083115B2 (ja) 2007-08-28 2008-08-20 地紋画像生成プログラム及び地紋画像生成装置

Country Status (2)

Country Link
US (1) US20090059254A1 (ja)
JP (1) JP5083115B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434819B2 (ja) * 2010-06-28 2014-03-05 ブラザー工業株式会社 ディザマトリクス選択装置及びディザマトリクス選択プログラム
WO2015095975A1 (en) * 2013-12-23 2015-07-02 Orell Füssli Sicherheitsdruck Ag Security device for security document
JP2020046561A (ja) * 2018-09-20 2020-03-26 富士ゼロックス株式会社 画像形成装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2695523B2 (ja) * 1990-11-02 1997-12-24 大蔵省 印刷局長 複写防止に適する印刷物
JP3609511B2 (ja) * 1995-11-09 2005-01-12 大日本印刷株式会社 印刷物
US5951055A (en) * 1997-06-11 1999-09-14 The Standard Register Company Security document containing encoded data block
JP4000970B2 (ja) * 2002-09-18 2007-10-31 富士ゼロックス株式会社 画像処理装置、画像処理方法及び画像処理プログラム
JP4125203B2 (ja) * 2003-09-17 2008-07-30 キヤノン株式会社 画像処理装置及び画像処理方法
US8049933B2 (en) * 2003-09-17 2011-11-01 Canon Kabushiki Kaisha Copy-forgery-inhibited pattern image generation method and image processing apparatus
JP2006092363A (ja) * 2004-09-24 2006-04-06 Canon Inc 印刷制御プログラム、印刷制御方法、および情報処理装置
JP4273096B2 (ja) * 2005-06-13 2009-06-03 キヤノン株式会社 システム、コンピュータ、及びそれらの制御方法
JP4402092B2 (ja) * 2005-10-07 2010-01-20 キヤノン株式会社 画像形成装置および画像形成装置の制御方法

Also Published As

Publication number Publication date
US20090059254A1 (en) 2009-03-05
JP2010041698A (ja) 2010-02-18

Similar Documents

Publication Publication Date Title
US5694224A (en) Method and apparatus for tone adjustment correction on rendering gray level image data
US7440139B2 (en) Systems and methods for controlling a tone reproduction curve using error diffusion
US7940434B2 (en) Image processing apparatus, image forming apparatus, method of image processing, and a computer-readable storage medium storing an image processing program
US5729632A (en) Reproduction apparatus and method for adjusting rendering with toners of different particle sizes
US5565994A (en) Multiple separation error diffusion, with cross separation correlation control for color images
US8711436B2 (en) Tint block image generation program and tint block image generation device
JP4535194B2 (ja) 地紋画像生成プログラム,地紋画像生成方法及び地紋画像生成装置
US5956157A (en) Method and apparatus for locally blending gray dot types of the same or different types to reproduce an image with gray level printing
JP2007166303A (ja) 画像処理装置、画像処理方法、プログラム、及び記憶媒体
JP7005314B2 (ja) 画像処理装置、画像処理方法、及びプログラム
US5835238A (en) Phantom level edge enhanced error diffusion
JP4502014B2 (ja) 地紋画像生成プログラム及び地紋画像生成装置
JP5083115B2 (ja) 地紋画像生成プログラム及び地紋画像生成装置
US8537410B2 (en) Tint block image generation program and tint block image generation device using multi-grayscale camouflage pattern data
JP4434282B2 (ja) 地紋画像生成プログラム及び地紋画像生成装置
US7511857B2 (en) Halftoning method and system
JP2009100230A (ja) 画像処理装置およびその方法
JP4404155B2 (ja) 地紋画像生成プログラム及び地紋画像生成装置
JP5278217B2 (ja) 画像処理プログラム、画像処理方法、画像処理装置
JP5071315B2 (ja) 地紋画像生成プログラム及び地紋画像生成装置
JP4826549B2 (ja) 地紋画像生成プログラム及び地紋画像生成装置
JP4930387B2 (ja) 地紋画像生成プログラム及び地紋画像生成装置
JP4502013B2 (ja) 地紋画像生成プログラム及び地紋画像生成装置
JP4363489B2 (ja) 地紋画像生成プログラム,地紋画像生成装置及び地紋画像生成方法
US7394572B2 (en) Method and apparatus for processing of half-tone image

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5083115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees