JP5081240B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP5081240B2
JP5081240B2 JP2009520228A JP2009520228A JP5081240B2 JP 5081240 B2 JP5081240 B2 JP 5081240B2 JP 2009520228 A JP2009520228 A JP 2009520228A JP 2009520228 A JP2009520228 A JP 2009520228A JP 5081240 B2 JP5081240 B2 JP 5081240B2
Authority
JP
Japan
Prior art keywords
memory cell
read
data
cell blocks
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009520228A
Other languages
English (en)
Other versions
JPWO2009001426A1 (ja
Inventor
正幸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Publication of JPWO2009001426A1 publication Critical patent/JPWO2009001426A1/ja
Application granted granted Critical
Publication of JP5081240B2 publication Critical patent/JP5081240B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/17748Structural details of configuration resources
    • H03K19/1776Structural details of configuration resources for memories
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • G01R31/318505Test of Modular systems, e.g. Wafers, MCM's
    • G01R31/318511Wafer Test
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • G01R31/318516Test of programmable logic devices [PLDs]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/17724Structural details of logic blocks
    • H03K19/17728Reconfigurable logic blocks, e.g. lookup tables
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/17736Structural details of routing resources

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Logic Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Static Random-Access Memory (AREA)
  • Read Only Memory (AREA)

Description

本発明は、メモリを論理回路として動作させることができる半導体装置に関する。
従来、LSI(Large Scale Integration)などの半導体装置は、機能設計、論理回路設計、ウェハ製造、組立などの多くの工程を経て製造されていた。そして、その製造工程は、同一製品の多量生産には適していたが、多種類の製品の少量ずつの生産にはコストがかかるため適していなかった。
そこで、単一の半導体装置を多量に生産しても顧客サイドで別々の製品として使い分けることができるように、FPGA(Field Programmable Gate Array)などの製造技術も開発された。FPGAとは、製造した後に論理回路をプログラムできるLSIなどの半導体装置のことである。
しかし、FPGAは、論理回路、配線、スイッチなど多種の部品から構成されるため、半導体プロセス上の配線の多層構造や高度な製造技術を必要とするという問題があった。
そして、その1つの解決手法として、メモリを論理回路として動作させる技術が開発された。
たとえば、特許文献1では、複数のメモリを配線接続し、所定のアドレス入力に対して所定のデータを出力するように、メモリに所定の真理値を書き込むことで論理回路として動作する半導体装置に関する技術が開示されている。
また、特許文献2では、SRAM(Static Random Access Memory)などのメモリに真理値表データを書き込み、アドレスを入力とし、出力を出力値とすることで論理回路として動作する半導体装置に関する技術が開示されている。
特開2003−149300号公報 特開2003−224468号公報
しかしながら、特許文献1の半導体装置では、メモリの真理値を書き換える場合には、配線を接続しなおさなければならないという問題があった。
また、特許文献2の半導体装置では、所定量のデータを記憶するメモリセルを複数集めたメモリセルブロックがアレイ状に並べられ、1つのメモリセルブロックからのデータは、隣接する4つのメモリセルブロックのうち2つ(たとえば上下左右のうち右と下)にしか出力されないため、データを帰還させる(元のメモリセルブロックに戻す)論理回路として動作させることが困難であった。
そこで、本発明は、前記問題点に鑑みてなされたものであり、論理回路として動作するメモリであり、メモリの真理値を書き換えても配線を接続しなおす必要がなく、また、データを帰還させることができる半導体装置を提供することを目的とする。
前記課題を解決するために、本発明は、所定量のデータを記憶するメモリセルを複数備えたメモリセルブロックを複数有する半導体装置である。それぞれのメモリセルブロックは、入力数および出力数が4以上であり、内部に、メモリセルに対する読出アドレスデコーダ、および、外部への出力時に電圧を増幅するセンスアンプを備え、所定のアドレス入力に対して所望の論理値を出力するための真理値表データをメモリセルに記憶し、論理回路として動作するように構成されている。メモリセルは、読出アドレスデコーダに対応して読出ワード線を有しており、その読出ワード線の電圧が印加された場合に、そのとき保持しているデータが読出データ線から読み出される。メモリセルブロック同士は、1つのメモリセルブロックからの4以上の出力がセンスアンプを介して他の4以上のメモリセルブロックへ入力されるように接続されている。
本発明によれば、論理回路として動作するメモリであり、メモリの真理値を書き換えても配線を接続しなおす必要がなく、また、データを帰還させることができる半導体装置を提供することができる。
半導体装置と情報処理装置の構成図である。 図1の半導体装置を構成する記憶素子であるメモリセルの構成図である。 メモリセルブロックの構成図である。 半導体装置における読出ポートの接続状況を示した図である。 半導体装置の内部構造図である。 3ビット加算器の構成例である。 (a)はメモリセルブロック300の簡略図、(b)はメモリセルブロック300d、300eおよび300fに格納する真理値表である。 (a)はメモリセルブロック300の簡略図、(b)はメモリセルブロック300g、300j、300kおよび300lに格納する真理値表である。 (a)はメモリセルブロック300の簡略図、(b)はメモリセルブロック300hおよび300iに格納する真理値表である。 n値が「2」の場合のメモリセルブロックの構成例を示す図である。 n値が「2」の場合の半導体装置110の構成例を示す図である。 n値が「3」の場合のメモリセルブロックの構成例を示す図である。 n値が「3」の場合のメモリセルブロックの構成例を示す図である。 n値が「3」の場合の半導体装置110の構成例を示す図である。 n値が「6」の場合のメモリセルブロックの構成例を示す図である。 n値が「6」の場合の半導体装置110の構成例を示す図である。 n値が「8」の場合のメモリセルブロックの構成例を示す図である。 n値が「8」の場合の半導体装置110の構成例を示す図である。 n値が「2.5」の場合のメモリセルブロックの構成例を示す図である。 n値が「2.5」の場合の半導体装置110の構成例を示す図である。 代数的除算の例を示す図である。 必要なメモリ容量とクリティカルパスのセル数の大小比較を示す表である。 代数的除算を利用したテスタなどの構成図である。 半導体装置に、論理回路として動作させるためのビットデータを搭載するときの処理の流れを示すフローチャートである。
符号の説明
100 情報処理装置
110 半導体装置
200 メモリセル
201,202 読出ワード線
211 書込ワード線
221,222 読出データ線
231,232 書込データ線
300 メモリセルブロック
301 セレクト線
311 読出アドレスデコーダ
401 書込/読出回路
601,701,801 真理値表
1400 大規模メモリ
1900 テスタ
以下、本発明の実施形態に係る半導体装置について、図面を参照しながら説明する。
図1は、半導体装置と情報処理装置の構成図である。情報処理装置100は、コンピュータ装置であり、キーボードなどの入力部101、ハードディスクなどの記憶部102、RAM(Random Access Memory)などのメモリ103、CRT(Cathode Ray Tube)などの出力部104、通信装置である通信部105、および、CPU(Central Processing Unit)などの処理部106を備えている。
なお、情報処理装置100で作成するビットデータ(図18のステップS1204で後記)を、図示しないROM(Read Only Memory)で保持するようにしてもよい。
半導体装置110は、情報処理装置100の通信部105と接続されている。半導体装置110は、ハードウェア的には、たとえば、通常のSRAM(Static Random Access Memory)と同様の記憶装置であり、詳細は図2以降で説明する。
図2は、図1の半導体装置110を構成する記憶素子であるメモリセルの構成図である。メモリセル200は、読出ワード線201、書込ワード線211、読出データ線221,222、書込データ線231,232、ゲート241,242,261,262およびフリップフロップ271を備えて構成される。
なお、ゲート241,242,261および262は、N−MOS(Negative-Metal Oxide Semiconductor)で構成するものとしているが、その代わりにP−MOS(Positive-Metal Oxide Semiconductor)を用いて構成してもよく、さらに、N−MOSとP−MOSの複合ゲートとしてもよい。その場合、周辺の回路を必要に応じて適宜変更することで対応すればよい。
読出ワード線201は、メモリセル200のデータを外部から読み出すときに電圧が印加される配線である。読出ワード線201の電圧が印加されるとゲート241とゲート242が開く。
書込ワード線211は、メモリセル200に外部からデータを書き込むときに電圧が印加される配線である。書込ワード線211の電圧が印加されると、ゲート261とゲート262が開く。
読出データ線221,222は、読出ワード線201に所定の電圧が印加され、ゲート241および242が開いたときに、フリップフロップ271に保持されているデータを読み出すための配線である。なお、読出データ線221からデータ「0」が読み出されたときは読出データ線222からはデータ「1」が読み出され、読出データ線221からデータ「1」が読み出されたときは読出データ線222からはデータ「0」が読み出される、いわゆる差動信号の動作をするようになっている。
書込データ線231,232は、書込ワード線211の電圧が印加され、ゲート261とゲート262が開いたときに、フリップフロップ271にデータを書き込むための配線である。書込データ線231からデータ「0」を書き込むときは書込データ線232からはデータ「1」を書き込み、書込データ線231からデータ「1」を書き込むときは書込データ線232からはデータ「0」を書き込むようになっている。
フリップフロップ271は、上記の意味でのメモリセル200に記憶される「0」か「1」のデータを保持する記憶回路である。
図3は、図1の半導体装置110における内部構造の一部のメモリセルブロックの構成図である(適宜図2参照)。
メモリセルブロック300は、アレイ状に並べて接続された複数のメモリセル200、読出アドレスデコーダ311、2つのセンスアンプ600を含んで構成される。なお、センスアンプ600は、メモリセル200から出力される微弱な電圧を増幅するための回路であり、これによりメモリセルブロック300間に流れる電流が安定する。また、センスアンプ600は、yアドレス(横方向のアドレス)に関する読出アドレスデコーダの役割も兼ねる。
読出アドレスデコーダ311は、アドレス入力線322から複数のアドレス差動信号(A0と/A0、A1と/A1)を受ける。
なお、特許請求の範囲における、入力数および出力数の「4」というのは、差動信号の場合であれば「4対」という意味に相当し、差動信号の場合でなければ(単一配線の場合)「4本」という意味に相当する。他の数値に関しても同様である。
メモリセルブロック300では、最上段の外側のメモリセル200、すなわち、メモリセル200(Cell31,0)とメモリセル200(Cell31,3)の上側と、最下段の内側のメモリセル200、すなわち、メモリセル200(Cell0,1)とメモリセル200(Cell0,2)の下側において、読出データ線221,222が、センスアンプ600を介して他のメモリセルブロック300(不図示)に接続されるように構成されている。また、センスアンプ600には、アドレス入力線323からyアドレスの差動信号(A2と/A2、A3と/A3)が入力される。
メモリセルブロック300では、最上段の内側のメモリセル200、すなわち、メモリセル200(Cell31,1)とメモリセル200(Cell31,2)の上側と、最下段の外側のメモリセル200、すなわち、メモリセル200(Cell0,0)とメモリセル200(Cell0,3)の下側において、読出データ線221,222が切断されている。
すなわち、メモリセルブロック300において、読出データ線は、外側の複数対が上方に、また、内側の複数対が下方に、センスアンプ600を介して出力するように構成されている。このようにすることで、メモリセルブロック300の出力(読出し)の規模を必要最小限に抑え、各種データ処理の負担を軽くすることができ、また、複数の方向に複数の出力を行うことができる。
メモリセルブロック300では、これらのアドレス入力線322、アドレス入力線323およびセレクト線(特定のアドレス選択線)301(SEL)からの入力により、特定のメモリセル200における情報を読み出すことができる。
また、セレクト線301にはインバータ302が備えられている。さらに、読出アドレスデコーダ311には複数個の論理回路(AND回路やNAND回路など)370が備えられている。また、書込ワード線371(図2の書込ワード線211に対応)は、書込アドレスデコーダ411(図5参照)に接続されている。
図3に示すように、たとえば、セレクト線301から「1」が入力されたときは、メモリセルブロック300におけるメモリセル200の上半分が動作し、セレクト線301から「0」が入力されたときは、メモリセルブロック300におけるメモリセル200の下半分が動作するようになっている。
したがって、たとえば、メモリセルブロック300におけるメモリセル200の上半分を加算器、メモリセル200の下半分を減算器として動作するように設定しておけば、セレクト線301からの信号を切り替えるだけで、瞬時に、加算器と減算器の切り替えを行うことができる。また、加算器、減算器だけでなく、乗算器、除算器に関しても同様である。さらに、同様にして、それ以外に、加算器と通常の記憶装置との切り替えなども行うことができる。
なお、メモリセルブロック300に入力する信号、および、メモリセルブロック300から出力される信号は、差動信号であってもよいし、単一の信号であってもよい。
図4は、半導体装置110(図1参照)における読出ポート(図3の読出データ線の上下2出力ずつとアドレス入力線322,323からの2入力ずつ)の接続状況を示した図である。また、図4では、半導体装置110を平面視した場合の左上の一部を表わしている。
メモリセルブロック300d〜300lにおいて、入力A0(以下「A0」という:A1〜A3も同様)は表記の簡略のために図3のA0と/A0を合わせたものを示すものとし、A1〜A3についても同様である。
また、メモリセルブロック300d〜300lにおいて、出力D0(以下「D0」という:D1〜D3も同様)は表記の簡略のために図3のメモリセル200(Cell31,0)の読出データ線2つを合わせたものを示すものとし、D1〜D3についても同様である。
メモリセルブロック300d〜300lのA0〜A3およびD0〜D3は、図4に示すように接続される。
なお、ドライバ回路420は、外部装置から本デバイス(半導体装置110)に入力される信号を差動信号に変換するものである。また、アンプ430は、入力した差動信号を通常の信号に増幅および変換して外部装置に出力するものである。
このような配線にすることで、半導体装置110において、データの帰還を容易に行うことができる。具体的には、たとえば、メモリセルブロック300dのD3からメモリセルブロック300gのA1にデータを送る場合、メモリセルブロック300gにおいてA1から入ったデータをD1から出力するようにメモリセルブロック300gに真理値表を書き込んでおけば、そのデータをメモリセルブロック300dのA3に帰還させることができる。
また、メモリセルブロック300d〜300lに書き込む真理値表を変更するだけで、配線を変更することなく、半導体装置110を様々な論理回路として動作させることができる。
なお、このような配線の折れ曲がりの回数や具合は、特にこの図4に限定されることなく、適宜変更が可能である。
図5は、半導体装置110(図1参照)の内部構造図である。それぞれのメモリセルブロック300はアレイ状に並べられ、左側に書込アドレスデコーダ411、下側に書込/読出回路401が配置され、そららが図のように接続される。つまり、図5は、図4と同様の半導体装置110において、読出ポートの接続状況以外の様子を示した図である。
書込アドレスデコーダ411は、メモリセルブロック300にデータを書き込む際に、メモリセルブロック300のxアドレス(図5の半導体装置110の縦方向のアドレス)を特定するための装置である。
書込アドレスデコーダ411には、複数のメモリセルブロック300のうちのいずれのメモリセルブロック300かを特定するためのxアドレスが上位アドレス(この場合はA4w以降のA5w,A6w,・・・)に入力され、その特定されたメモリセルブロック300の内部(メモリセル200)を特定するためのxアドレスが下位アドレス(この場合はA0w〜A3w)から入力される。
また、書込/読出回路401は、データの読み書きを行うメモリセルブロック300のyアドレスを特定し、さらに、特定されたメモリセルブロック300に対してデータの読み書きを行う装置である。
具体的には、書込/読出回路401には、複数のメモリセルブロック300のうちのいずれかのメモリセルブロック300かを特定するためのyアドレス(図5の半導体装置110の横方向のアドレス)が(この場合はAyw2に)入力され、その特定されたメモリセルブロック300の内部(メモリセル200)を特定するためのyアドレスが(この場合はAyw0,Ayw1に)入力される。また、書込/読出回路401には、入力402から複数のビット数(この場合は4ビット)のデータが入力される。
このようにして、特定のメモリセルブロック300における特定のメモリセル200を適宜選択し、真理値表データの書き換えなどを行うことができる。
すなわち、半導体装置110は、複数のメモリセルブロック300のうち、一部のメモリセルブロック300のメモリセル200が記憶する真理値表データを書き換えられた場合、その書き換えられた真理値表データにしたがって動作を変更できる。
続いて、図6〜図9を参照しながら、半導体装置110(図4参照)を3ビット加算器として使用する場合の例について説明する。
図6は、3ビット加算器の構成例である。この図6におけるメモリセルブロック同士の接続は、図4の場合と同じである。
ここでは、3ビットの2数E,Fを加算し、その結果をYとする場合について説明する。なお、Eの最下位ビットをE0、次のビットをE1、最上位ビットをE2とする。また、Fの最下位ビットをF0、次のビットをF1、最上位ビットをF2とする。さらに、Yの最下位ビットをY0、次のビットをY1、最上位ビットをY2とする。また、最下位ビットの加算による桁上がりをC0、次のビットの加算による桁上がりをC1、最上位のビットの加算による桁上がりをC2とする。また、各々の信号は差動であるが、記載上簡略して記述した。
メモリセルブロック300dでは、A0にE0が、A1にF0が入力され、加算を行い、D3からY0を出力し、D2からC0を出力する。
メモリセルブロック300eでは、A0にE1が、A1にF1が入力され、また、A3にC0が入力され、加算を行い、D3からY1を出力し、D2からC1を出力する。
メモリセルブロック300fでは、A0にE2が、A1にF2が入力され、また、A3にC1が入力され、加算を行い、D3からY2を出力し、D2からC2を出力する。
メモリセルブロック300dのD3から出力されたY0は、図のような経路(太線)を経て、メモリセルブロック300jのD3から出力される。
メモリセルブロック300eのD3から出力されたY1は、図のような経路(太線)を経て、メモリセルブロック300kのD3から出力される。
メモリセルブロック300fのD3から出力されたY2は、図のような経路(太線)を経て、メモリセルブロック300lのD3から出力される。
このようにして、加算結果であるY0、Y1およびY2を得ることができる。
図7において、(a)はメモリセルブロック300の簡略図、(b)はメモリセルブロック300d、300eおよび300fに格納する真理値表である(適宜図6参照)。
図7(a)に示すように、メモリセルブロック300において、A0〜A3に入力があると、その入力に応じてD0〜D3から真理値表に定義されたデータが出力される。
図7(b)に示すように、A0,A1,A3にE(E0〜E2),F(F0〜F2),Cin(C0〜C2)の入力があると、それら3つの加算結果として、そのビットの値をD3にY(Y0〜Y2)として出力し、桁上がりをD2にCout(C0〜C2)として出力する。
なお、D0とD1は、ここでは使用しないため、すべての場合で「0」を出力するようにしている。
また、上から1段目〜4段目と5段目〜8段目では、A2以外の真理値が同じになっているが、これは、A2に「0」と「1」のいずれのデータが入力されても正確な出力結果が得られるようにするためである。9段目〜12段目と13段目〜16段目についても同様である。
図8において、(a)はメモリセルブロック300の簡略図、(b)はメモリセルブロック300g、300j、300kおよび300lに格納する真理値表である(適宜図6参照)。
図8(a)に示すように、メモリセルブロック300において、A0〜A3に入力があると、その入力に応じてD0〜D3から真理値表に定義されたデータが出力される。
図8(b)に示すように、A1にY(Y0〜Y2)の入力があると、その値をD3にそのまま出力する。
なお、D0〜D2は、ここでは使用しないため、すべての場合で「0」を出力するようにしている。
また、実際にはA1からD3へ「0」→「0」、「1」→「1」という2種類(2段分)の真理値表があればよいのであるが、A0、A2、A3に「0」と「1」のいずれのデータが入力されても正確な出力結果が得られるように、16段の真理値表となっている。
図9において、(a)はメモリセルブロック300の簡略図、(b)はメモリセルブロック300hおよび300iに格納する真理値表である(適宜図6参照)。
図9(a)に示すように、メモリセルブロック300において、A0〜A3に入力があると、その入力に応じてD0〜D3から真理値表に定義されたデータが出力される。
図9(b)に示すように、A0にC(C0〜C2)の入力があると、その値をD1にそのまま出力する。また、A1にY(Y0〜Y2)の入力があると、その値をD3にそのまま出力する。
なお、D0とD2は、ここでは使用しないため、すべての場合で「0」を出力するようにしている。
また、図8(b)の場合と同様、A2とA3に「0」と「1」のいずれのデータが入力されても正確な出力結果が得られるようになっている。
このようにして、半導体装置110は、加算器として使用することができ、また、同様に、減算器、乗算器、除算器として使用することもできる。
次に、図10A〜図14Bを参照しながら、本実施形態の半導体装置110の構成例について説明する(適宜他図参照)。なお、以下、メモリセルブロック300からの出力数を2で割った値を「n値」と呼ぶ。つまり、n値とは、メモリセルブロック300の上下それぞれからの出力数の平均値を示す。
図10Aは、n値が「2」の場合のメモリセルブロックの構成例を示す図である。メモリセルブロック300Zは、読出アドレスデコーダ311、2つのセンスアンプ600、および、4つのメモリセルマット500Zを備えて構成される。メモリセルマット500Zは、32(8×4)個のメモリセル200から構成される。メモリセルブロック300Zは、左右から2つずつの入力を受け、上下から2つずつの出力を行う。
図10Bは、n値が「2」の場合の半導体装置110の構成例を示す図である。メモリセルブロック300Zをこのように相互接続することで、各メモリセルブロック300Zは、4つの入力に対し4つの出力を行うことができる。
図11Aは、n値が「3」の場合の一方のメモリセルブロックの構成例を示す図である。メモリセルブロック300Aは、読出アドレスデコーダ311、2つのセンスアンプ600、および、6つのメモリセルマット500Aを備えて構成される。メモリセルマット500Aは、128(16×8)個のメモリセル200から構成される。メモリセルブロック300Aは、左右から3つずつの入力を受け、上から4つ、下から2つの出力を行う。
図11Bは、n値が「3」の場合の他方のメモリセルブロックの構成例を示す図である。メモリセルブロック300Bは、読出アドレスデコーダ311、2つのセンスアンプ600、および、6つのメモリセルマット500Aを備えて構成される。メモリセルブロック300Bは、左右から3つずつの入力を受け、上から2つ、下から4つの出力を行う。
図11Cは、n値が「3」の場合の半導体装置110の構成例を示す図である。メモリセルブロック300A,300Bをこのように相互接続することで、各メモリセルブロック300A,300Bは、6つの入力に対し6つの出力を行うことができる。
図12Aは、n値が「6」の場合のメモリセルブロックの構成例を示す図である。メモリセルブロック300Cは、読出アドレスデコーダ311、2つのセンスアンプ600、および、12個のメモリセルマット500Cを備えて構成される。メモリセルマット500Cは、8192(128×64)個のメモリセル200から構成される。メモリセルブロック300Cは、左右から6つずつの入力を受け、上下から6つずつの出力を行う。
図12Bは、n値が「6」の場合の半導体装置110の構成例を示す図である。メモリセルブロック300Cをこのように相互接続することで、各メモリセルブロック300Cは、12個の入力に対し12個の出力を行うことができる。
図13Aは、n値が「8」の場合のメモリセルブロックの構成例を示す図である。メモリセルブロック300Dは、読出アドレスデコーダ311、2つのセンスアンプ600、および、16個のメモリセルマット500Dを備えて構成される。メモリセルマット500Dは、131072(512×256)個のメモリセル200から構成される。メモリセルブロック300Dは、左右から8つずつの入力を受け、上下から8つずつの出力を行う。
図13Bは、n値が「8」の場合の半導体装置110の構成例を示す図である。メモリセルブロック300Dをこのように相互接続することで、各メモリセルブロック300Dは、16個の入力に対し16個の出力を行うことができる。
図14Aは、n値が「2.5」の場合のメモリセルブロックの構成例を示す図である。メモリセルブロック300Eは、読出アドレスデコーダ311、2つのセンスアンプ600、および、5個のメモリセルマット500Eを備えて構成される。メモリセルマット500Eは、64(8×8)個のメモリセル200から構成される。メモリセルブロック300Eは、左から2つ、右から3つの入力を受け、上から3つ、下から2つの出力を行う。
図14Bは、n値が「2.5」の場合の半導体装置110の構成例を示す図である。メモリセルブロック300Eをこのように相互接続することで、各メモリセルブロック300Eは、5個の入力に対し5個の出力を行うことができる。
これらの、n値が「2」、「2.5」、「3」、「6」および「8」の場合の半導体装置110によって代数的除算を行う場合について、図15〜図17を参照しながら説明する。なお、図6〜図9で説明した加算器の場合と同様にして、n値が「2」、「2.5」、「3」、「6」および「8」の場合の半導体装置110において代数的除算機能を実現することができる。つまり、半導体装置110において、それぞれのメモリセルブロック300が、アドレス入力に対して代数的除算を行った値をランダムパターンとして出力するように真理値表データをメモリセル200に記憶しておけばよい。
図15は、代数的除算の例を示す図である。ここで、代数的除算とは、「(被除数)=(除数)×(商)+(剰余)」という関係を満たす一般の除算とは異なるもので、除算における途中の計算での減算時に、各位について「1−1=0」「1−0=1」「0−1=1」「0−0=0」という計算を行い、繰り上がりや繰り下がりを行わない除算のことである。このように、代数的除算は、繰り上がりや繰り下がりを行わないことにより、計算が簡単になり、2進数のランダムパターンの発生に適している。なお、途中の計算時、繰り上がりや繰り下がりを行わないので、たとえば、「1−1=0」の代わりに「1+1=0」という演算規則を適用してもかまわなく(計算結果は同一)、他の演算規則に関しても同様である。また、代数的除算でなく、通常の除算を行うことでランダムパターンを発生するようにしてもよい。
図15に示すように、このような代数的除算によれば、被除数「10010011010010・・・」を除数「1010」で割った場合、商は「0001011110001・・・」となり、剰余は「0110」となる。
図16は、n値が「2」、「2.5」、「3」、「6」および「8」の場合の半導体装置110によって代数的除算を行う場合における、必要なメモリ容量とクリティカルパスの数の大小比較を示す表である。なお、クリティカルパスの数とは、演算時に使用するメモリセルブロック300のうち最も長い経路をとった場合のメモリセルブロック300の数のことである。
図16に示すように、必要なメモリ容量は、n値が「2」、「2.5」、「3」、「6」および「8」の場合の半導体装置110において、n値が「2.5」のときが最小となり、n値が「2」および「3」のときがそれよりも少し大きな値となる。
一方、クリティカルパスのセル数は、n値が「2」のときに最大となるが、n値がそれ以外のときはほぼ同等である。
つまり、半導体装置110によって代数的除算を行う場合、n値は「2.5」(メモリセルブロック300における入出力数が「5」)または「3」(メモリセルブロック300における入出力数が「6」)のときが効率的であることがわかる。
なお、半導体装置110の全体に対するセンスアンプ600の面積比率を小さくしたい場合などは、n値を「6」あるいは「8」などとすればよく、つまり、動作の規模や速度、センスアンプ600の面積比率などのニーズに合わせて、n値を適宜自由に選択することができる。
次に、図17を参照しながら、代数的除算を利用したテスタに半導体装置を使用した場合について説明する。図17は、そのテスタなどの構成図である。なお、テスタ1900は、テスト対象LSI1910(他の半導体装置)の動作確認を行う装置である。
テスタ1900は、大規模メモリ1400(記憶装置)、半導体装置110、ドライバ1901、コンパレータ1902、処理部1903および剰余生成部1904を備えて構成される。
大規模メモリ1400は、半導体装置110に対して除数を提供する。
半導体装置110は予め被除数に対応したメモリセル200の構成となっている。
除数を入力した半導体装置110は、商(ランダムパターン)をドライバ1901に出力し、剰余A(剰余の正解値)をコンパレータ1902に出力する。
ドライバ1901は駆動回路であり、半導体装置110から商を受信するとテスト対象LSI1910に対してその商に基づいた信号を送信する。
テスト対象LSI1910は、ドライバ1901から入力した商に基づいて動作し、出力値を剰余生成部1904に出力する。
剰余生成部1904は、テスト対象LSI1910から入力した出力値を変換し、剰余Bとする。
コンパレータ1902は比較器であり、半導体装置110から入力した剰余Aと、剰余生成部1904から入力した剰余Bとを比較する。
処理部1903は、コンパレータ1902からの出力を受けて処理を行う装置であり、たとえば、CPU(Central Processing Unit)によって実現され、剰余Aと剰余Bが同じであるときのコンパレータ1902からの出力を受けたときにテスト対象LSI1910が「正常」と判定する。
また、特に図示しないが、テスタ1900は、直流電源、タイミングジェネレータなどを、必要に応じて備えるものとする。
このようにして、代数的除算を利用したテスタに半導体装置110を適用することができる。なお、半導体装置110がいわゆるパターン発生器に相当し、剰余生成部1904がいわゆるパターン圧縮器に相当する。
次に、半導体装置110の動作プログラムについて説明する。
なお、従来のFPGAの製造では、たとえば、C言語プログラムを作成して、それからHDL(Hardware Description Language)を作成する。そのHDLから論理合成を行い、論理回路を作成する。その論理回路から、該当するFPGAに論理の配置と配置配線を行う。つまり、複雑で高度な作業工程が必要であった。
一方、本実施形態の半導体装置は、メモリであり記憶装置であるので、C言語プログラムをコンパイルしてそのデータを真理値として搭載できるため、作業工程が単純で容易となる。また、本実施形態の半導体装置は、記憶装置であるため、異なった論理回路を実現する場合でも、配線はそのままで、メモリセル200に書き込む真理値表データを書き換えるだけで済む。
これを、図18を参照しながら、より具体的に説明する(適宜図1参照)。図18は、半導体装置に、論理回路として動作させるためのビットデータを搭載するときの処理の流れを示すフローチャートである。
まず、情報処理装置100は、実現したい機能を記述したC言語プログラムを入力部101から入力し(ステップS1201)、記憶部102に記憶する。
また、記憶部102には、あらかじめ、各種機能(加算、減算など)のプログラムが記憶されているものとする。
情報処理装置100の操作者は、記憶部102に記憶されているプログラムのうち必要なものを引用するため、入力部101を用いて宣言文(Include文)を追加する(ステップS1202)。
処理部106は、Include文が追加されたC言語プログラムに基づいて真理値表(図7の真理値表601など)を作成し(ステップS1203)、その真理値表に基づいてビットデータを作成し(ステップS1204)、さらに、通信部105を介して半導体装置110にそのビットデータを搭載する(ステップS1205)。
このように、本実施形態の半導体装置110によれば、半導体装置110を論理回路として動作させるための作業が簡単に済む。
このようにして、本実施形態によれば、論理回路として動作するメモリであり、メモリの真理値を書き換えても配線を接続しなおす必要がなく、また、データを帰還させることができる半導体装置を実現することができる。
また、本実施形態の半導体装置によれば、実際の論理回路を使用していないので、メモリの一部に故障が発生しても、その箇所の使用を避けるなどしてその対応(救済)を容易に行うことができる。
さらに、本実施形態の半導体装置によれば、複数のメモリを使用し、そのうちのいくつかのメモリにテストプログラムを入れることで、他の1つのメモリをテストすることができる。そして、テスト終了後は、テストプログラムを入れたメモリからテストプログラムを消去することで、それらのメモリを通常のメモリとして使用することができる。
また、メモリを内蔵するシステムLSIで、そのメモリを本実施形態の半導体装置の構造にして自己テストし、かつ、その部分にC言語で記述されるテストプログラムを記述してテスト論理回路を構成することで、システムLSIにおける他の論理回路をテストすることができる。
さらに、1つのメモリセルブロックにおけるセンスアンプの数は、2個に限定されず、1個や3個以上であってもよい。
以上で実施形態の説明を終えるが、本発明の態様はこれらに限定されるものではない。
たとえば、本発明の半導体装置は、SRAMに代えて、DRAM(Dynamic Random Access Memory)やフラッシュメモリを用いて実現してもよい。
また、メモリでの性能向上のためのプリチャージ機能等の機能搭載を制限するものではない。
さらに、メモリセルは、読出ワード線を2本使ったいわゆるダブルゲート方式のものであってもよい。
その他、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。

Claims (8)

  1. 所定量のデータを記憶するメモリセルを複数備えたメモリセルブロックを複数有する半導体装置であって、
    それぞれの前記メモリセルブロックは、入力数および出力数が4以上であり、内部に、前記メモリセルに対する読出アドレスデコーダ、および、外部への出力時に電圧を増幅するセンスアンプを備え、所定のアドレス入力に対して所望の論理値を出力するための真理値表データを前記メモリセルに記憶し、論理回路として動作するように構成され、
    前記メモリセルは、前記読出アドレスデコーダに対応して読出ワード線を有しており、その読出ワード線の電圧が印加された場合に、そのとき保持しているデータが読出データ線から読み出され、
    前記メモリセルブロック同士は、1つのメモリセルブロックからの4以上の出力が前記センスアンプを介して他の4以上のメモリセルブロックへ入力されるように接続されており、
    前記メモリセルブロックは、入力数および出力数が5または6であり、
    前記メモリセルブロック同士は、1つのメモリセルブロックからの当該5または6の出力が前記センスアンプを介して他の4以上のメモリセルブロックへ入力されるように接続されている
    ことを特徴とする半導体装置。
  2. 所定量のデータを記憶するメモリセルを複数備えたメモリセルブロックを複数有する半導体装置であって、
    それぞれの前記メモリセルブロックは、入力数および出力数が4以上であり、内部に、前記メモリセルに対する読出アドレスデコーダ、および、外部への出力時に電圧を増幅するセンスアンプを備え、所定のアドレス入力に対して所望の論理値を出力するための真理値表データを前記メモリセルに記憶し、論理回路として動作するように構成され、
    前記メモリセルは、前記読出アドレスデコーダに対応して読出ワード線を有しており、その読出ワード線の電圧が印加された場合に、そのとき保持しているデータが読出データ線から読み出され、
    前記メモリセルブロック同士は、1つのメモリセルブロックからの4以上の出力が前記センスアンプを介して他の4以上のメモリセルブロックへ入力されるように接続されており、
    それぞれの前記メモリセルブロックは、アドレス入力に対して除算を行った値をランダムパターンとして出力するように真理値表データを前記メモリセルに記憶している
    ことを特徴とする半導体装置。
  3. 所定量のデータを記憶するメモリセルを複数備えたメモリセルブロックを複数有する半導体装置であって、
    それぞれの前記メモリセルブロックは、入力数および出力数が4以上であり、内部に、前記メモリセルに対する読出アドレスデコーダ、および、外部への出力時に電圧を増幅するセンスアンプを備え、所定のアドレス入力に対して所望の論理値を出力するための真理値表データを前記メモリセルに記憶し、論理回路として動作するように構成され、
    前記メモリセルは、前記読出アドレスデコーダに対応して読出ワード線を有しており、その読出ワード線の電圧が印加された場合に、そのとき保持しているデータが読出データ線から読み出され、
    前記メモリセルブロック同士は、1つのメモリセルブロックからの4以上の出力が前記センスアンプを介して他の4以上のメモリセルブロックへ入力されるように接続されており、
    複数の前記メモリセルブロックは、それぞれ同様の大きさの長方形状をしており、アレイ状の配置から少なくとも一部をずらして配置することで、前記メモリセルブロック同士の接続を行っていることを特徴とする半導体装置。
  4. 所定量のデータを記憶するメモリセルを複数備えたメモリセルブロックを複数有する半導体装置であって、
    それぞれの前記メモリセルブロックは、入力数および出力数が4以上であり、内部に、前記メモリセルに対する読出アドレスデコーダ、および、外部への出力時に電圧を増幅するセンスアンプを備え、所定のアドレス入力に対して所望の論理値を出力するための真理値表データを前記メモリセルに記憶し、論理回路として動作するように構成され、
    前記メモリセルは、前記読出アドレスデコーダに対応して読出ワード線を有しており、その読出ワード線の電圧が印加された場合に、そのとき保持しているデータが読出データ線から読み出され、
    前記メモリセルブロック同士は、1つのメモリセルブロックからの4以上の出力が前記センスアンプを介して他の4以上のメモリセルブロックへ入力されるように接続されており、
    前記メモリセルブロックのメモリセルが前記真理値表データを記憶していないときは、記憶装置として動作することを特徴とする半導体装置。
  5. 所定量のデータを記憶するメモリセルを複数備えたメモリセルブロックを複数有する半導体装置であって、
    それぞれの前記メモリセルブロックは、入力数および出力数が4以上であり、内部に、前記メモリセルに対する読出アドレスデコーダ、および、外部への出力時に電圧を増幅するセンスアンプを備え、所定のアドレス入力に対して所望の論理値を出力するための真理値表データを前記メモリセルに記憶し、論理回路として動作するように構成され、
    前記メモリセルは、前記読出アドレスデコーダに対応して読出ワード線を有しており、その読出ワード線の電圧が印加された場合に、そのとき保持しているデータが読出データ線から読み出され、
    前記メモリセルブロック同士は、1つのメモリセルブロックからの4以上の出力が前記センスアンプを介して他の4以上のメモリセルブロックへ入力されるように接続されており、
    前記メモリセルブロックは、
    動作する前記メモリセルのエリアが2分されており、
    前記読出アドレスデコーダにおける特定のアドレス選択線が切り替えられたときに、前記動作するメモリセルのエリアが切り替えられ、2種類の論理回路としての動作、あるいは、論理回路としての動作と記憶装置としての動作、のいずれかが瞬時に切り替わる
    ことを特徴とする半導体装置。
  6. 所定量のデータを記憶するメモリセルを複数備えたメモリセルブロックを複数有する半導体装置であって、
    それぞれの前記メモリセルブロックは、入力数および出力数が4以上であり、内部に、前記メモリセルに対する読出アドレスデコーダ、および、外部への出力時に電圧を増幅するセンスアンプを備え、所定のアドレス入力に対して所望の論理値を出力するための真理値表データを前記メモリセルに記憶し、論理回路として動作するように構成され、
    前記メモリセルは、前記読出アドレスデコーダに対応して読出ワード線を有しており、その読出ワード線の電圧が印加された場合に、そのとき保持しているデータが読出データ線から読み出され、
    前記メモリセルブロック同士は、1つのメモリセルブロックからの4以上の出力が前記センスアンプを介して他の4以上のメモリセルブロックへ入力されるように接続されており、
    複数の前記メモリセルブロックのうち、一部の前記メモリセルブロックのメモリセルが記憶する真理値表データが書き換えられた場合、
    その書き換えられた真理値表データにしたがって動作を変更することを特徴とする半導体装置。
  7. システムLSIを構成する請求項の半導体装置であって、
    自己テストし、かつ、前記システムLSIにおける他の論理回路をテストすることを特徴とする半導体装置。
  8. 動作記述されたC言語プログラムによってコンパイルされることを特徴とする請求項1から請求項7のいずれか一項に記載の半導体装置。
JP2009520228A 2007-06-25 2007-06-25 半導体装置 Expired - Fee Related JP5081240B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/062691 WO2009001426A1 (ja) 2007-06-25 2007-06-25 半導体装置

Publications (2)

Publication Number Publication Date
JPWO2009001426A1 JPWO2009001426A1 (ja) 2010-08-26
JP5081240B2 true JP5081240B2 (ja) 2012-11-28

Family

ID=40185260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009520228A Expired - Fee Related JP5081240B2 (ja) 2007-06-25 2007-06-25 半導体装置

Country Status (4)

Country Link
US (1) US8050132B2 (ja)
JP (1) JP5081240B2 (ja)
CN (1) CN101689858B (ja)
WO (1) WO2009001426A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162116A1 (ja) 2010-06-24 2011-12-29 太陽誘電株式会社 半導体装置
JP6564186B2 (ja) 2012-10-28 2019-08-21 太陽誘電株式会社 再構成可能な半導体装置
EP3211795A4 (en) * 2014-10-22 2018-10-03 Taiyo Yuden Co., Ltd. Reconfigurable device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049591A (ja) * 1998-07-31 2000-02-18 Nippon Telegr & Teleph Corp <Ntt> 書き換え可能な論理回路
WO2000052753A1 (fr) * 1999-03-04 2000-09-08 Hitachi, Ltd. Circuit integre a semiconducteur, et procede de conception de circuits integres logiques comprenant ledit circuit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3773773D1 (de) * 1986-06-25 1991-11-21 Nec Corp Pruefschaltung fuer eine speichereinrichtung mit willkuerlichem zugriff.
JP2717712B2 (ja) * 1989-08-18 1998-02-25 三菱電機株式会社 半導体記憶装置
JP3631277B2 (ja) * 1995-01-27 2005-03-23 株式会社日立製作所 メモリモジュール
JP3607407B2 (ja) * 1995-04-26 2005-01-05 株式会社日立製作所 半導体記憶装置
US5760602A (en) * 1996-01-17 1998-06-02 Hewlett-Packard Company Time multiplexing a plurality of configuration settings of a programmable switch element in a FPGA
JP2003149300A (ja) 2001-11-16 2003-05-21 Hitachi Ltd テスト方法および半導体装置
JP2003224468A (ja) 2002-01-31 2003-08-08 Hitachi Ltd 半導体集積回路および製造方法並びにテスト方法
JP4208498B2 (ja) * 2002-06-21 2009-01-14 株式会社ルネサステクノロジ 薄膜磁性体記憶装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049591A (ja) * 1998-07-31 2000-02-18 Nippon Telegr & Teleph Corp <Ntt> 書き換え可能な論理回路
WO2000052753A1 (fr) * 1999-03-04 2000-09-08 Hitachi, Ltd. Circuit integre a semiconducteur, et procede de conception de circuits integres logiques comprenant ledit circuit

Also Published As

Publication number Publication date
US20100188923A1 (en) 2010-07-29
JPWO2009001426A1 (ja) 2010-08-26
CN101689858B (zh) 2012-08-22
WO2009001426A1 (ja) 2008-12-31
US8050132B2 (en) 2011-11-01
CN101689858A (zh) 2010-03-31

Similar Documents

Publication Publication Date Title
JP4703655B2 (ja) 半導体装置
US12063041B2 (en) Flip flop standard cell
US5210701A (en) Apparatus and method for designing integrated circuit modules
TW202207228A (zh) 記憶體裝置以及記憶體單元
JP5081240B2 (ja) 半導体装置
US7954077B2 (en) Integrated circuit design utilizing array of functionally interchangeable dynamic logic cells
TW202217638A (zh) 電腦實施方法、電腦實施系統以及非暫時性電腦可讀媒體
TW202203069A (zh) 從暫存器傳輸級設計產生可合成連線表的方法
US6581188B1 (en) Semiconductor device and method of designing the same
Jidin et al. A review paper on memory fault models and test algorithms
Barth et al. A 500-MHz multi-banked compilable DRAM macro with direct write and programmable pipelining
JP5032996B2 (ja) 半導体装置
US6229741B1 (en) Semiconductor integrated circuit device
JP5196538B2 (ja) 半導体集積回路の設計方法、半導体集積回路の設計プログラム、及び半導体集積回路
TWI357212B (ja)
JP2008065862A (ja) 半導体記憶装置
JP4436734B2 (ja) 処理装置
JP4187714B2 (ja) 半導体メモリのレイアウト方法及び半導体メモリ
US7539034B2 (en) Memory configured on a common substrate
JPH04217359A (ja) 半導体記憶装置
JP2006268905A (ja) 半導体記憶回路、半導体記憶回路の構成方法、及び、半導体記憶回路のレイアウト生成方法
JPH0945781A (ja) スタンダードセル型半導体チップ設計方法及び装置並びにこれらを用いた半導体チップ設計装置並びにスタンダードセル型半導体チップ
JP2001195877A (ja) 半導体集積装置
JPH06112315A (ja) 集積回路設計方法及び集積回路設計用cad装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5081240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees