JP5075424B2 - Manufacturing method of wiring board with built-in electronic components - Google Patents

Manufacturing method of wiring board with built-in electronic components Download PDF

Info

Publication number
JP5075424B2
JP5075424B2 JP2007038385A JP2007038385A JP5075424B2 JP 5075424 B2 JP5075424 B2 JP 5075424B2 JP 2007038385 A JP2007038385 A JP 2007038385A JP 2007038385 A JP2007038385 A JP 2007038385A JP 5075424 B2 JP5075424 B2 JP 5075424B2
Authority
JP
Japan
Prior art keywords
electronic component
layer
wiring
wiring board
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007038385A
Other languages
Japanese (ja)
Other versions
JP2008205124A (en
Inventor
孝治 本戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2007038385A priority Critical patent/JP5075424B2/en
Publication of JP2008205124A publication Critical patent/JP2008205124A/en
Application granted granted Critical
Publication of JP5075424B2 publication Critical patent/JP5075424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Description

本発明は電子部品内蔵型配線基板及びその製造方法に関し、特に内蔵部品の放熱効果が向上し組立てが容易な多層配線基板によるパッケージ構造及びその製造方法に関する。   The present invention relates to a wiring board with a built-in electronic component and a method for manufacturing the same, and more particularly to a package structure with a multilayer wiring board that improves the heat dissipation effect of the built-in component and is easy to assemble and a method for manufacturing the same.

プリント基板分野では、半導体IC/LSI素子のようなウエハプロセスで製造された素子に信号伝達や給電を行うために、素子と外部回路または機器とを電気的に接続するためのパッケージ基板が使用されている。従来のパッケージ基板には、個片化(分割)されたICチップを、再配線層が形成されたICチップよりも大きな回路基板上に搭載し、ワイヤボンディング接続したものが用いられてきた。また、金属バンプ端子を有するベアチップICを異方性導電接着材によって、再配線層が形成された回路基板に実装するパッケージ方式も採用されている。   In the printed circuit board field, a package substrate for electrically connecting an element and an external circuit or device is used to transmit a signal or supply power to an element manufactured by a wafer process such as a semiconductor IC / LSI element. ing. As a conventional package substrate, an IC chip that has been separated (divided) is mounted on a circuit substrate larger than the IC chip on which the redistribution layer is formed, and wire bonding connection has been used. Further, a package system is also employed in which a bare chip IC having metal bump terminals is mounted on a circuit board on which a rewiring layer is formed by using an anisotropic conductive adhesive.

しかしながら、近年の携帯電子機器の多機能化に伴い、半導体デバイスにも更なる小形化が要求され、半導体IC/LSIの高集積化要求にも増してパッケージの小形化に焦点が当てられてきている。   However, with the recent increase in the number of functions of portable electronic devices, further miniaturization of semiconductor devices is required, and in addition to the demand for higher integration of semiconductor IC / LSI, the focus has been on miniaturization of packages. Yes.

このような状況において、近年、究極的な小形パッケージとして、ビルトアップ法のみで構成されるウエハレベル・チップスケールパッケージ(WLCSP)が開発されている。このWLCSPは、シリコンウエハを土台として、IC上に直接的に配線をビルトアップ法で形成するもので、パッケージサイズがICチップサイズと同等程度に最小化されるパッケージである。しかし、実装基板の端子ピッチのルールによってパッケージ上に配置できる端子数が制約されるために、WLCSPの適用は、ピン数の少ない素子に限定される。   Under such circumstances, in recent years, a wafer level chip scale package (WLCSP) constituted only by a built-up method has been developed as an ultimate small package. The WLCSP is a package in which wiring is formed directly on an IC using a silicon wafer as a base by a built-up method, and the package size is minimized to the same extent as the IC chip size. However, since the number of terminals that can be arranged on the package is restricted by the rule of the terminal pitch of the mounting board, the application of WLCSP is limited to an element having a small number of pins.

WLCSPの前記制約を解決する技術として、例えば特許文献1に開示されているようなEWLP(Embedded Wafer Level Package)が知られている。しかしながら、このようなEWLP技術においても次のような問題がある。   As a technique for solving the restriction of WLCSP, for example, EWLP (Embedded Wafer Level Package) as disclosed in Patent Document 1 is known. However, the EWLP technology has the following problems.

即ち、前記EWLP技術によるパッケージ形成が、レジストマスク利用のメッキ等によるビルトアップ法によって行われるために、半導体素子チップの裏面(実装面の反対側)に放熱用のビア(導熱路部材)を配置できず、素子動作中の発生熱を効果的に放散させるパッケージ構造を得難い問題がある。また、その製造にあっては、工程数が多く長時間を要し製造コストが高く、ビルトアップによる多層化に当たって多数回の加熱プレス工程を要するために一部の絶縁基板樹脂層に多くの熱履歴が加わり樹脂劣化が生じ易いなどの問題がある。   That is, since the package formation by the EWLP technology is performed by a built-up method such as plating using a resist mask, a heat radiation via (heat conduction path member) is disposed on the back surface (opposite side of the mounting surface) of the semiconductor element chip. However, it is difficult to obtain a package structure that effectively dissipates heat generated during device operation. In addition, the number of processes is long and the manufacturing cost is high, and a large number of heat pressing processes are required to build up multiple layers by built-up. There is a problem that a history is added and resin deterioration is likely to occur.

なお、放熱効果を改善した従来技術としては、特許文献2〜4などがある。特許文献2及び特許文献3は、複数の電子部品をスタックするタイプの多層基板に関し、前者ではスタックされる枠体に放熱性を高めるための通気路を設けた技術が開示され、後者ではスタックされた複数の電子部品に対して一つの放熱用のメタルコア基板を設けた技術が開示されている。特許文献4では、ハイブリッドモジュールに関し、回路部品を収納する凹部を形成するように多数のグリーンシートを積層して得られた多層回路基板の前記凹部に回路部品が収納され、この回路部品が、放熱板を介して別体の親回路基板に接触される技術が開示されている。また、前記特許文献2〜4と本発明との差異を補足的に後述する。
特開2004― 95836号特許公開公報 特開2001―210954号特許公開公報 特開2003― 31955号特許公開公報 特開平 11―220226号特許公開公報
In addition, there exist patent documents 2-4 etc. as a prior art which improved the heat dissipation effect. Patent Document 2 and Patent Document 3 relate to a multilayer substrate of a type in which a plurality of electronic components are stacked. In the former, a technique in which a ventilation path for improving heat dissipation is provided in a stacked frame body is disclosed, and in the latter, stacking is performed. In addition, a technique in which one heat dissipation metal core substrate is provided for a plurality of electronic components is disclosed. Patent Document 4 relates to a hybrid module, in which circuit components are accommodated in the recesses of a multilayer circuit board obtained by laminating a large number of green sheets so as to form recesses for accommodating circuit components. A technique for contacting a separate parent circuit board via a board is disclosed. Moreover, the difference between the said patent documents 2-4 and this invention is supplementarily mentioned later.
Japanese Patent Laid-Open No. 2004-95836 Japanese Patent Application Laid-Open No. 2001-210954 Japanese Patent Laid-Open No. 2003-31955 Japanese Patent Laid-Open No. 11-220226

本発明は、前記従来の問題点を解決するものであり、特に内蔵部品の放熱効果が優れ組立てが容易な多層配線基板によるパッケージ構造を得るのに好適な電子部品内蔵型配線基板及びその製造方法を提供することを目的とする。   The present invention solves the above-described conventional problems, and particularly has a built-in electronic component built-in wiring board suitable for obtaining a package structure with a multilayer wiring board that has excellent heat dissipation effects of built-in components and is easy to assemble, and a method of manufacturing the same. The purpose is to provide.

発明の電子部品内蔵型配線基板の製造方法は、絶縁基板の一方の面に配線層をパターニング形成して配線基板を形成する工程と、前記絶縁基板に、前記配線層の一部分に対応する貫通孔を形成する工程と、前記貫通孔に充填され一端面が前記配線層に接続され他端面が前記絶縁基板の他方の面に露出された貫通電極を形成する工程と、一方の面に電極層を有する電子部品チップを用意し、前記貫通電極の前記他端面を前記電極層に電気的に接続し、前記電子部品チップを前記絶縁基板の前記他方の面に接着して相互に一体化する工程と、放熱基板の電子部品チップ搭載予定面に熱放散用の導熱性接着層を複数の突起状に形成する工程と、前記電子部品チップ及び前記導熱接着層相互を位置合わせして前記配線基板、電子部品チップ及び放熱基板を重ね合わせる工程と、前記電子部品チップを囲む絶縁性封止材料を前記放熱基板及び前記配線基板相互間に介在させて前記重ね合わせ方向に一括熱プレスを行う工程と、を備えることを特徴とする電子部品内蔵型配線基板の製造方法。
明の電子部品内蔵型配線基板の製造方法において、前記貫通孔に対応する配線層の中央の部分に、前記貫通孔と連通し、前記貫通孔より小径の小孔を形成する工程を有し、前記貫通電極を形成する工程は、前記貫通孔及び前記小孔に導電性ペーストを充填して前記貫通電極を形成することを特徴とする。
Method of manufacturing an electronic component built-in wiring board of the present invention includes the steps of forming a wiring board by pattern training forming a wiring layer on one surface of the insulating substrate, the insulating substrate, corresponding to a portion of the wiring layer Forming a through hole, forming a through electrode filled in the through hole and having one end surface connected to the wiring layer and the other end surface exposed on the other surface of the insulating substrate; An electronic component chip having an electrode layer is prepared, the other end surface of the through electrode is electrically connected to the electrode layer, and the electronic component chip is bonded to the other surface of the insulating substrate and integrated with each other. step and a step of forming a thermally conductive adhesive layer for heat dissipation in a plurality of projecting the electronic component chip mounting scheduled surface of the radiating board, said aligning the electronic component chip and said heat conducting adhesive layers together and Wiring board, electronic component chip and Superposing a thermal substrate, and interposing an insulating sealing material surrounding the electronic component chip between the heat radiating substrate and the wiring substrate and performing batch heat pressing in the superimposing direction. A method of manufacturing a wiring board with a built-in electronic component as a feature.
Yes In the production method of the present onset Ming electronic component built-in wiring board, the center portion of the wiring layer corresponding to the through hole, the through holes and communicating, the step of forming a small diameter of the small holes from the through hole The step of forming the through electrode is characterized in that the through electrode is formed by filling the through hole and the small hole with a conductive paste.

本発明の電子部品内蔵型配線基板の構造及び製造方法によれば、前記従来の問題点が解決され、特に内蔵部品の放熱効果に優れたパッケージ構造が組立て容易に得られるという効果がある。このような効果は、電子部品の多機能/多端子数化要求に対応するための多層配線基板によるパッケージ構造を得る場合に特に発揮できる。   According to the structure and manufacturing method of the electronic component built-in wiring board of the present invention, the conventional problems are solved, and in particular, there is an effect that a package structure excellent in the heat dissipation effect of the built-in component can be easily assembled. Such an effect can be exerted particularly when a package structure using a multilayer wiring board to meet the demand for multifunction / multiple terminals of electronic components is obtained.

以下、本発明の電子部品内蔵型配線基板の一実施形態について、図1を参照して説明する。   Hereinafter, an embodiment of a wiring board with a built-in electronic component according to the present invention will be described with reference to FIG.

例えば銅箔製の放熱基板1は電子部品内蔵型配線基板のパッケージの一方の面(下面)の最外層を構成して外表面が露出されている。前記放熱基板1の内表面(上面)の部品チップ搭載予定面である中央部には、例えば半導体ICチップからなる電子部品チップ2の底面が導熱性接着層3を介して接着固定されている。前記放熱基板1は、電子部品チップ2の主構成物、例えばSiなどの半導体材料基板と熱膨張係数が近く放熱特性に優れた物質で構成されるとよいので、銅箔に限らず、例えばモリブデンやインバー合金を両側から銅で挟み込んだ金属板などの金属材料を使用しても、同様な熱特性を有する樹脂板などの絶縁材料を使用してもよい。   For example, the heat radiating substrate 1 made of copper foil constitutes the outermost layer of one surface (lower surface) of the package of the electronic component built-in wiring substrate, and the outer surface is exposed. The bottom surface of the electronic component chip 2 made of, for example, a semiconductor IC chip is bonded and fixed to the central portion of the inner surface (upper surface) of the heat radiating substrate 1 which is a component chip mounting planned surface through a heat conductive adhesive layer 3. The heat dissipating substrate 1 is preferably composed of a main component of the electronic component chip 2, such as a semiconductor material substrate such as Si, and a material having a close thermal expansion coefficient and excellent heat dissipation characteristics. Alternatively, a metal material such as a metal plate in which an Invar alloy is sandwiched by copper from both sides may be used, or an insulating material such as a resin plate having similar thermal characteristics may be used.

前記導熱性接着層3は、前記電子部品チップ2及び前記放熱基板1相互間の導熱路ビアを構成するものであり、材料としては電気的及び熱的伝導性に優れた例えば導電性ペースト(具体的成分は後述する)が用いられている。   The heat conductive adhesive layer 3 constitutes a heat path via between the electronic component chip 2 and the heat radiating substrate 1 and is made of, for example, a conductive paste (specifically, excellent in electrical and thermal conductivity). The target component is used later).

前記ICチップ2は、Siなどの半導体材料基板の表層内に形成された多数の機能素子領域、その上表面に被覆されたSi酸化膜や窒化膜などの絶縁被膜、及びその絶縁被膜上に形成されたチップ内部配線層及びその一部を構成する多数の電極層2bを有する半導体基板2aを母体として構成されている。前記ICチップ2は、更に、これら電極層2b表面を露出させた状態で、半導体基板2aの上面に形成された絶縁保護層2cを有する。   The IC chip 2 is formed on a large number of functional element regions formed in the surface layer of a semiconductor material substrate such as Si, an insulating film such as a Si oxide film or a nitride film coated on the upper surface thereof, and the insulating film. A semiconductor substrate 2a having a chip internal wiring layer and a large number of electrode layers 2b constituting part of the chip internal wiring layer is configured as a base. The IC chip 2 further includes an insulating protective layer 2c formed on the upper surface of the semiconductor substrate 2a with the surface of the electrode layer 2b exposed.

前記電極層2bに接続されて前記絶縁保護層2c上に配置された再配線層2Bは、例えば金メッキ或いは蒸着などにより形成され、前記ICチップ2に対して積層/接続される配線基板などの他の部材の電極や端子等の接続部分に対応する所望の配線ピッチ、配線長、配線面積及びパターン形状をもってパターンニングされている。   The rewiring layer 2B connected to the electrode layer 2b and disposed on the insulating protective layer 2c is formed by, for example, gold plating or vapor deposition, and is other than a wiring board laminated / connected to the IC chip 2 Patterning is performed with a desired wiring pitch, wiring length, wiring area, and pattern shape corresponding to the connection portions of the members such as electrodes and terminals.

従って、前記再配線層2Bは、前記電極層2bのパターンが確定している前記ICチップ2をパッケージ等に実装するに当たって、配線ピッチなどに関して、他の部材の電極や端子配列に適応したパターン変更ができる。また、前記ICチップ2に他の部材の電極や端子を押圧させて電気的に接続する場合に、前記絶縁保護層2c上に這わされた前記再配線層2Bの部分において、前記他の部材の電極や端子を押圧接続させることができるので、その際の押圧力が前記絶縁保護層2cにより吸収され部品へのダメージが緩和される。   Therefore, the rewiring layer 2B has a pattern change adapted to the electrode and terminal arrangement of other members with respect to the wiring pitch and the like when the IC chip 2 in which the pattern of the electrode layer 2b is fixed is mounted on a package or the like. Can do. Further, when the IC chip 2 is electrically connected by pressing an electrode or a terminal of another member, the rewiring layer 2B formed on the insulating protective layer 2c has a portion of the other member. Since the electrodes and the terminals can be pressed and connected, the pressing force at that time is absorbed by the insulating protective layer 2c and the damage to the parts is alleviated.

前記ICチップ2の上方に対面配置された第1配線基板4は、例えばポリイミド樹脂フィルムからなる第1絶縁基板4aおよびその一方の面(上面)にパターンニング形成された銅箔製の第1配線層4bを有する。前記第1絶縁基板4aには、前記第1配線層4bと前記ICチップ2の再配線層2Bとの間に位置する所望の部分に第1貫通孔4c(図示では2箇所)が形成されている。   The first wiring substrate 4 disposed facing the IC chip 2 is a first insulating substrate 4a made of, for example, a polyimide resin film and a first wiring made of copper foil patterned on one surface (upper surface) thereof. It has a layer 4b. In the first insulating substrate 4a, first through holes 4c (two locations in the drawing) are formed in desired portions located between the first wiring layer 4b and the rewiring layer 2B of the IC chip 2. Yes.

前記第1貫通孔4cの各々に充填して設けられた第1貫通電極4dは、その一端面(上面)が前記第1配線層4bの内面(下面)に接続され、その他端面(下面)が前記再配線層2Bの上面に接続されている。前記第1貫通電極4dは、いわゆる層間導電路を構成するものであり、ここでは、電気的及び熱的伝導性に優れた前記導熱性接着層3と同一の導電性ペーストが用いられている。   One end surface (upper surface) of the first through electrode 4d provided to fill each of the first through holes 4c is connected to the inner surface (lower surface) of the first wiring layer 4b, and the other end surface (lower surface) thereof. It is connected to the upper surface of the rewiring layer 2B. The first through electrode 4d constitutes a so-called interlayer conductive path, and here, the same conductive paste as the heat conductive adhesive layer 3 having excellent electrical and thermal conductivity is used.

前記放熱基板1と第1配線基板4との間に設けられた絶縁性封止層5は、前記ICチップ2を挿入可能とする開口部Hを有する樹脂フィルム製の絶縁性のスペーサ5a、前記スペーサ5aの下方及び上方にそれぞれ設けられた絶縁性の接着材層5b、5cで構成されている。そして前記絶縁性封止層5は、前記ICチップ2の側周をも囲み、前記放熱板1と第1配線基板4とを相互固定して気密封止していてパッケージの一部を構成するものであり、前記ICチップ2が直接的には前記接着材層5b、5cに埋め込まれた状態にある。   The insulating sealing layer 5 provided between the heat dissipation substrate 1 and the first wiring substrate 4 includes an insulating spacer 5a made of a resin film having an opening H through which the IC chip 2 can be inserted. The insulating adhesive layers 5b and 5c are provided below and above the spacer 5a, respectively. The insulating sealing layer 5 also surrounds the side periphery of the IC chip 2, and the heat radiating plate 1 and the first wiring board 4 are fixed to each other and hermetically sealed to form a part of the package. The IC chip 2 is directly embedded in the adhesive layers 5b and 5c.

前記スペーサ5aは、前記接着材層5b、5cの組立て時の流動性による不所望な変形を抑制し、前記放熱板1と第1配線基板4との平行性或いは平坦性や前記第1配線電子部品チップ2の位置精度を高めることができる。   The spacer 5a suppresses undesired deformation due to fluidity at the time of assembling the adhesive layers 5b and 5c, and the parallelism or flatness between the heat sink 1 and the first wiring board 4 and the first wiring electrons. The positional accuracy of the component chip 2 can be increased.

前記第1配線基板4の上方に重ねて配置された第2配線基板6は、第1配線基板4と同様な材料が用いられ、ポリイミド樹脂フィルムからなる第2絶縁基板6aおよびその一方の面(上面)にパターンニング形成された銅箔製の第2配線層6bを有する。前記第2絶縁基板6aには、前記第2配線層6bと前記第1配線基板4の第1配線層4bとの間に位置する所望の部分に第2貫通孔6c(図示では4箇所)が形成されている。   The second wiring board 6 disposed above the first wiring board 4 is made of the same material as that of the first wiring board 4, and includes a second insulating substrate 6a made of a polyimide resin film and one surface thereof ( The upper wiring has a second wiring layer 6b made of copper foil and patterned. The second insulating substrate 6a has second through holes 6c (four locations in the figure) at desired portions located between the second wiring layer 6b and the first wiring layer 4b of the first wiring substrate 4. Is formed.

前記第2貫通孔6cの各々に充填して設けられた第2貫通電極6dは、その一端面(上面)が前記第2配線層6bの内面(下面)に接続され、その他端面(下面)が前記第1配線層4bの上面に接続されている。前記第1配線基板4上面及び第2配線基板6相互は、接着材層6eによって接着固定されている。   One end surface (upper surface) of the second through electrode 6d provided by filling each of the second through holes 6c is connected to the inner surface (lower surface) of the second wiring layer 6b, and the other end surface (lower surface). It is connected to the upper surface of the first wiring layer 4b. The upper surface of the first wiring board 4 and the second wiring board 6 are bonded and fixed by an adhesive layer 6e.

このように前記第1配線基板4と第2配線基板6とを積層し、更には、例えば前記電子部品チップ2の多機能/高機能化に応じて、希望する複数の配線基板を積層した多層配線基板構造によるパッケージを提供することによって、高機能化する電子機器への搭載対応が自在に行える。   In this way, the first wiring board 4 and the second wiring board 6 are laminated, and further, for example, according to the multi-function / high functionality of the electronic component chip 2, a multilayer in which a plurality of desired wiring boards are laminated. By providing a package with a wiring board structure, it can be freely mounted on a highly functional electronic device.

また、前記第2配線層6b上面(表面)は、前記第2貫通電極6dの各々に対応する部分を露出させた状態で、ソルダーレジストのような絶縁性の保護マスク7によって被覆されている。そして、前記第2配線層6bの各露出面に、ボール状のはんだバンプからなる外部端子8がそれぞれ形成されている。前記外部端子8は、前記ボールバンプに限らず、搭載する電子機器等の接続端子構造などに応じて、例えばビームリードタイプなど他の外部端子構造を採用することも可能である。なお、放熱板1、前記第1、第2配線基板4、6及びスペーサ5aの平面外形は、相互にほぼ同一の形状および寸法とされている。   Further, the upper surface (front surface) of the second wiring layer 6b is covered with an insulating protective mask 7 such as a solder resist in a state in which portions corresponding to the second through electrodes 6d are exposed. External terminals 8 made of ball-like solder bumps are formed on the exposed surfaces of the second wiring layer 6b. The external terminals 8 are not limited to the ball bumps, and other external terminal structures such as a beam lead type can be adopted according to the connection terminal structure of an electronic device or the like to be mounted. The planar outer shapes of the heat radiating plate 1, the first and second wiring boards 4 and 6, and the spacer 5a have substantially the same shape and dimensions.

次に、本発明の前記一実施形態に係わる電子部品内蔵型配線基板の製造方法ついて、図2〜図4を参照して説明する。図2(a)〜(e)は前記第1配線基板関連の製造方法を説明するための工程別断面図、図3(a)〜(d)は前記電子部品チップ(ICチップ)の製造方法を説明するための個片化工程別断面図、図4(a)〜(d)は電子部品内蔵型配線基板の製造方法を説明するための組立て工程別断面図である。これら各図面(含む図5)相互における同一引用符号は同一または同様な構成部分(部材)を表しているので、ある図において説明済みの構成部分については、後の図に係わる説明においてその詳細説明を省略することがある。   Next, a method for manufacturing an electronic component built-in wiring board according to the embodiment of the present invention will be described with reference to FIGS. 2A to 2E are cross-sectional views for explaining the manufacturing method related to the first wiring board, and FIGS. 3A to 3D are methods for manufacturing the electronic component chip (IC chip). FIG. 4A to FIG. 4D are cross-sectional views according to assembly steps for explaining a method of manufacturing an electronic component built-in wiring board. In these drawings (including FIG. 5), the same reference numerals denote the same or similar components (members), so that the components already described in a certain drawing will be described in detail in the description relating to the subsequent drawings. May be omitted.

そこで、前記第1配線基板4関連の製造方法を図2を参照して説明する。まず、図2(a)に示す工程では、ポリイミド樹脂フィルムからなるフレキシブルな第1絶縁基板4aの一方の面(上面)に銅箔製の配線材料層4Bが設けられた片面銅張板(CCL)が用意される。前記第1絶縁基板4a及び配線材料層4Bにはそれぞれ厚さ25μm及び12μmのものを使用した。   A manufacturing method related to the first wiring board 4 will be described with reference to FIG. First, in the step shown in FIG. 2A, a single-sided copper-clad plate (CCL) in which a wiring material layer 4B made of copper foil is provided on one surface (upper surface) of a flexible first insulating substrate 4a made of a polyimide resin film. ) Is prepared. As the first insulating substrate 4a and the wiring material layer 4B, those having thicknesses of 25 μm and 12 μm were used, respectively.

図2(b)に示す工程では、前記配線材料層4B表面にフォトリソグラフィにより所望の回路パターン対応のエッチングレジストパターン(エッチングマスク)を形成した後、前記配線材料層4Bに化学エッチングを施して、所望の回路パターンを有する第1配線層4bを形成することにより第1配線基板4が得られる。前記エッチングには、塩化第二鉄を主成分とするエッチャントを用いた。   2B, after forming an etching resist pattern (etching mask) corresponding to a desired circuit pattern on the surface of the wiring material layer 4B by photolithography, the wiring material layer 4B is chemically etched, The first wiring board 4 is obtained by forming the first wiring layer 4b having a desired circuit pattern. For the etching, an etchant mainly composed of ferric chloride was used.

図2(c)に示す工程では、前記第1絶縁基板4aの他方の面(第1配線層4bと反対側下面)に接着材層5c及び樹脂フィルムFが順次貼り合わされる。前記接着材層5cには素材厚さ25μmのエポキシ系熱硬化性樹脂フィルム接着材を使用し、前記樹脂フィルムFには厚さ25μmのポリイミド樹脂フィルムを使用した。   In the step shown in FIG. 2C, the adhesive layer 5c and the resin film F are sequentially bonded to the other surface (the lower surface opposite to the first wiring layer 4b) of the first insulating substrate 4a. An epoxy thermosetting resin film adhesive having a thickness of 25 μm was used for the adhesive layer 5c, and a polyimide resin film having a thickness of 25 μm was used for the resin film F.

前記接着材層5cの素材としては、前記エポキシ系熱硬化性樹脂に代えてアクリル系樹脂などの接着材或いは熱可塑性の接着材を使用することもできる。また、前記接着材層5cは、フィルム状素材に代えて例えばワニス状の樹脂接着剤を前記第1絶縁基板4a下表面に塗布して形成することもできる。前記樹脂フィルムFは、ポリイミドに代えてPETやPENなどのプラスチックフイルムを使用してもよく、前記接着材層5cの表面にUV照射によって接着や剥離が可能なフイルムを被着形成してもよい。   As a material of the adhesive layer 5c, an adhesive such as an acrylic resin or a thermoplastic adhesive can be used instead of the epoxy thermosetting resin. The adhesive layer 5c may be formed by applying, for example, a varnish-like resin adhesive on the lower surface of the first insulating substrate 4a instead of the film material. For the resin film F, a plastic film such as PET or PEN may be used instead of polyimide, and a film that can be bonded or peeled off by UV irradiation may be formed on the surface of the adhesive layer 5c. .

次に、図2(d)に示す工程では、前記第1絶縁基板4a、接着材層5c及び樹脂フィルムFを下面側から貫通して複数の第1貫通孔4c(図中では2箇所)が形成される。これら第1貫通孔4cは、前記第1絶縁基板4aを例えばYAGレ−ザで穿孔することによって直径100μmのビアホールとして形成される。このレーザ加工時に、第1配線層4bのうち各第1貫通孔4cに対応する中央の部分に直径30μm程度の小孔hが形成される。前記第1貫通孔4cや小孔hは、炭酸レーザやエキシマレーザなどによるレーザ加工或いはドリル加工や化学的エッチングによって形成することもできる。   Next, in the step shown in FIG. 2D, the first insulating substrate 4a, the adhesive layer 5c, and the resin film F are penetrated from the lower surface side, and a plurality of first through holes 4c (two places in the drawing) are formed. It is formed. These first through holes 4c are formed as via holes having a diameter of 100 μm by punching the first insulating substrate 4a with, for example, a YAG laser. During this laser processing, a small hole h having a diameter of about 30 μm is formed in the central portion of the first wiring layer 4b corresponding to each first through hole 4c. The first through holes 4c and the small holes h can also be formed by laser processing using a carbonic acid laser, excimer laser, or the like, drilling, or chemical etching.

そして、図2(e)に示す工程では、前記第1貫通孔4cに、スクリーン印刷法により導電性ペーストをそれぞれの前記貫通孔4c及び小孔hの空間を埋め尽くすまで充填することによって複数の第1貫通電極4dが形成される。従って、前記第1貫通電極4dの一端面(小孔h側)が前記第1配線層4bの内面(下面)及び前記小孔h内壁に亘って比較的広面積をもって係合状態にて接続される。   In the step shown in FIG. 2E, a plurality of conductive pastes are filled in the first through holes 4c by screen printing until the spaces of the through holes 4c and the small holes h are filled. A first through electrode 4d is formed. Therefore, one end surface (small hole h side) of the first through electrode 4d is connected in an engaged state with a relatively wide area across the inner surface (lower surface) of the first wiring layer 4b and the inner wall of the small hole h. The

その後、前記樹脂フィルムFが剥離される。その結果、前記第1貫通電極4dの他端面(下面)の部分は、前記樹脂フィルムFの厚さ寸法分の高さをもって前記接着材層5cの下面側に突出した状態で露出される。前記樹脂フィルムFは、その厚さを種々選定することによって貫通電極の突出高さを調整することができる。以上の工程を経て前記第1配線基板4に係わる組立部材Aが形成される。   Thereafter, the resin film F is peeled off. As a result, the portion of the other end surface (lower surface) of the first through electrode 4d is exposed in a state of protruding to the lower surface side of the adhesive layer 5c with a height corresponding to the thickness dimension of the resin film F. The resin film F can adjust the protruding height of the through electrode by variously selecting the thickness thereof. The assembly member A related to the first wiring board 4 is formed through the above steps.

ところで、前記第1貫通電極4d用の導電ペーストは、ニッケル、銀及び銅の群から選択された少なくとも1種類の低電気抵抗の金属粒子と、錫、ビスマス、インジウム及び鉛の群から選択された少なくとも1種類の低融点金属粒子とを含み、エポキシ樹脂を主成分とするバインダ成分を混合したペーストで構成した。前記導電ペーストは熱伝導性にも優れているので、発生熱を外部へ熱伝導並びに放散させる効果を発揮できる。   By the way, the conductive paste for the first through electrode 4d was selected from the group of at least one low electrical resistance metal particle selected from the group of nickel, silver and copper, and the group of tin, bismuth, indium and lead. It comprised at least 1 type of low melting metal particle, and comprised with the paste which mixed the binder component which has an epoxy resin as a main component. Since the conductive paste is also excellent in thermal conductivity, it can exhibit the effect of conducting and dissipating generated heat to the outside.

次に、前記電子部品チップの製造方法を図3を参照して説明する。図3(a)に示す工程では、通常のIC製造技術によって、Si半導体ウエハ2Aに、所望数のICチップにそれぞれ対応する数のIC素子領域X、Y、Zが形成される。そして、各IC素子領域X、Y、Zの表面には、チップ内部配線層(図解せず)及びその一部を構成する多数の電極層2bが形成されている。   Next, a method for manufacturing the electronic component chip will be described with reference to FIG. In the step shown in FIG. 3A, a number of IC element regions X, Y, and Z respectively corresponding to a desired number of IC chips are formed on the Si semiconductor wafer 2A by a normal IC manufacturing technique. On the surface of each IC element region X, Y, Z, a chip internal wiring layer (not shown) and a large number of electrode layers 2b constituting a part thereof are formed.

図3(b)に示す工程では、前記電極層2bを含む前記ウエハ2Aの上表面全体に亘って例えば液状の感光性ポリイミド前駆体をスピンコートし、フォトリソグラフィーにより前記各電極層2bを露出させるためのコンタクトホールChを開けた絶縁保護層2cが形成される。   In the step shown in FIG. 3B, a liquid photosensitive polyimide precursor, for example, is spin-coated over the entire upper surface of the wafer 2A including the electrode layer 2b, and the electrode layers 2b are exposed by photolithography. An insulating protective layer 2c having a contact hole Ch for opening is formed.

前記絶縁保護層2cの形成に際しては、他の樹脂素材としてベンゾシクロブテン(BCB)やポリベンゾオキサゾール(PBO)などを用いてもよい。感光性樹脂は液状に限らずフィルム状の樹脂を用いて前記ウエハにラミネートしてもよい。また、感光性樹脂の被覆は、スピンコートによる塗布に限らず、カーテンコート、スクリーン印刷、スプレーコートなどのいずれかで行ってもよい。   In forming the insulating protective layer 2c, benzocyclobutene (BCB), polybenzoxazole (PBO), or the like may be used as another resin material. The photosensitive resin is not limited to liquid and may be laminated on the wafer using a film-like resin. The coating of the photosensitive resin is not limited to the application by spin coating, and may be performed by any one of curtain coating, screen printing, spray coating, and the like.

図3(c)に示す工程では、前記各コンタクトホールChを通じて前記IC素子領域X、Y、Zの各電極層2bに接続された再配線層2Bが、前記絶縁保護層2c上にセミアディティブ法を用いて形成される。そして、ウエハプロセス段階において、プロービング検査を行い特性の良否判別を行う。図3(d)に示すように前記IC素子領域X、Y、Z相互の境界に沿ってダイシングして分離することによって個片化した複数のICチップ2を取り出す。   In the step shown in FIG. 3C, the rewiring layer 2B connected to the electrode layers 2b of the IC element regions X, Y, and Z through the contact holes Ch is formed on the insulating protective layer 2c by a semi-additive method. It is formed using. In the wafer process stage, probing inspection is performed to determine whether the characteristics are good or bad. As shown in FIG. 3D, a plurality of IC chips 2 separated by dicing and separating along the boundaries between the IC element regions X, Y, and Z are taken out.

また、一般的にICチップ2の母体となる半導体材料基板やチップ内部配線層がSi酸化膜や窒化膜などの無機絶縁被膜で保護されているので、前記絶縁保護層2cとしては、前記無機絶縁被膜を利用して、その上に前記再配線層2Bを直接形成することも可能である。   In general, the semiconductor material substrate or the chip internal wiring layer which is the base of the IC chip 2 is protected with an inorganic insulating film such as a Si oxide film or a nitride film. It is also possible to directly form the rewiring layer 2B thereon using a coating.

次に、前記電子部品内蔵型配線基板の組立てに係わる製造方法について図4を参照して説明する。   Next, a manufacturing method related to the assembly of the electronic component built-in wiring board will be described with reference to FIG.

まず、図4(a)に示す工程では、前述の図3(c)に示す工程で選別された良品に相当するICチップからなる電子部品チップ2が用意される。この良品チップ2は、前述の図2(e)に示す工程で製作された第1配線基板4に係わる組立部材Aに、ICチップ用マウンタで位置合わせして、前記接着材層5cの材料及び第1貫通電極4dの導電性ペーストの硬化温度以下で加熱することによって仮留め接着される。具体的には前記第1再配線層2Bが前記第1貫通電極4d及び前記接着材層5cの下面に仮留め接着される。   First, in the step shown in FIG. 4A, an electronic component chip 2 made of an IC chip corresponding to the non-defective product selected in the step shown in FIG. 3C is prepared. The non-defective chip 2 is aligned with the assembly member A related to the first wiring board 4 manufactured in the process shown in FIG. 2E by the IC chip mounter, and the material of the adhesive layer 5c and The first through electrode 4d is temporarily bonded by heating at a temperature lower than the curing temperature of the conductive paste. Specifically, the first rewiring layer 2B is temporarily bonded to the lower surfaces of the first through electrode 4d and the adhesive layer 5c.

そして、図4(b)に示す工程では、前記第2配線基板6に係わる組立部材Bが前記組立部材A上に位置合わせして積み重ねられる。前記組立部材Bは既に図1にも示された第2絶縁基板6a、第2配線層6b、第2貫通孔6c、第2貫通電極6d及び接着材層6eを有するものであり、各部材の形状やパターンなどについては前記組立部材Aと異なる部分があるが、図2に示された前記組立部材Aと同様な材料や工程を経て製作される。そして、複数の第2貫通電極6dの各下端面は、前記組立部材Aの各第1配線層4bにそれぞれ接する関係に配置される。   In the step shown in FIG. 4B, the assembly member B related to the second wiring board 6 is aligned and stacked on the assembly member A. The assembly member B has the second insulating substrate 6a, the second wiring layer 6b, the second through hole 6c, the second through electrode 6d, and the adhesive layer 6e already shown in FIG. The shape, pattern, and the like are different from those of the assembly member A, but are manufactured through the same materials and processes as those of the assembly member A shown in FIG. The lower end surfaces of the plurality of second through electrodes 6d are arranged in contact with the first wiring layers 4b of the assembly member A, respectively.

前記組立部材Aの下方には、支持基板としての役目を有する放熱基板1が重なり合う位置関係で配置される。前記放熱基板1は厚さ100μmの銅箔製のものであり、その上面には、ICチップ2の下面(裏面)に対向する位置に、例えばメタルマスクを用いたスクリーン印刷により前述の導電性ペーストを印刷して、一例として複数の突起状の導熱路ビアとしての導熱性接着層3が予め形成されている。また、前記放熱基板1には、前述のモリブデンやインバー合金を両側から銅で挟み込んだ金属板などの金属材料等を使用することもできる。   Below the assembly member A, the heat dissipating substrate 1 serving as a support substrate is disposed so as to overlap. The heat radiating substrate 1 is made of copper foil having a thickness of 100 μm, and the conductive paste described above is formed on the upper surface thereof at a position facing the lower surface (back surface) of the IC chip 2 by, for example, screen printing using a metal mask. As an example, the heat conductive adhesive layer 3 as a plurality of protruding heat conductive path vias is formed in advance. Further, the heat radiating substrate 1 may be made of a metal material such as a metal plate in which the aforementioned molybdenum or invar alloy is sandwiched between copper from both sides.

前記前記組立部材Aと前記放熱基板1との間にスペーサ5aが配置されている。前記スペーサ5aは、厚さ40μmの樹脂製フィルムに、前記ICチップ2の側周壁外形よりもやや大きめの開口Hを形成したものが用いられ、前記ICチップ2の側周を離隔して取り囲む関係に配置される。また、前記スペーサ5aは、他の部材との関係から熱歪みを発生し難くするためには、前記第1、第2絶縁基板と同一材料とするのが好ましい。   A spacer 5 a is disposed between the assembly member A and the heat dissipation substrate 1. As the spacer 5a, a resin film having a thickness of 40 μm, in which an opening H slightly larger than the outer peripheral wall shape of the IC chip 2 is used, and the side periphery of the IC chip 2 is separated and surrounded. Placed in. The spacer 5a is preferably made of the same material as the first and second insulating substrates in order to make it difficult for thermal distortion to occur due to the relationship with other members.

しかし、前記熱歪みの低減などが得られる他の樹脂や金属を、スペーサ5a材料に使用することもできる。そして、予め前記スペーサ5aの下面に貼り付けられている接着材層5bは、適宜その材料を選定できるが、前記接着材層5c、6eと同じ材料とすることが好ましい。   However, other resins or metals that can reduce the thermal strain can be used for the spacer 5a material. The material of the adhesive layer 5b previously attached to the lower surface of the spacer 5a can be selected as appropriate, but is preferably the same material as the adhesive layers 5c and 6e.

次に、図4(c)に示す工程では、図4(b)に示すように配置された前記放熱基板1、スペーサ5a、組立部材A、組立部材B及び電子部品チップ2等の各部材を相互に位置合わせして相互に近接させて重ね合わせられる。   Next, in the step shown in FIG. 4C, each member such as the heat dissipation substrate 1, the spacer 5a, the assembly member A, the assembly member B, and the electronic component chip 2 arranged as shown in FIG. They are superimposed on each other in close proximity to each other.

図4(d)に示す工程では、図4(c)に示された重ね合わせ体が真空キュアプレス機に装着され、1kPa以下の減圧雰囲気中で加熱圧着することによって、重ね合わせ方向に上下両面から一括熱プレスされる。前記一括熱プレスの際に、前記接着材層5b、5cを熱硬化すると同時に、第1、第2貫通電極4d、6d及び導熱性接着層3に使用された導電性ペーストが熱硬化される。   In the step shown in FIG. 4 (d), the superposed body shown in FIG. 4 (c) is mounted on a vacuum curing press and heat-pressed in a reduced pressure atmosphere of 1 kPa or less, so Is batch heat pressed. During the batch hot pressing, the adhesive layers 5b and 5c are thermally cured, and at the same time, the conductive paste used for the first and second through electrodes 4d and 6d and the heat conductive adhesive layer 3 is thermally cured.

前記一括熱プレスによって、第1配線基板4の第1貫通電極4dの下端面部分は、電子部品チップ2の再配線層2B表面に押し潰すようにして強固に接続され、前記第1配線基板4及びスペーサ5aが接着材層5cによって接着固定される。また、前記第2配線基板6の第2貫通電極6dの下端面部分は、第1配線基板4の第1配線層4b表面に押し潰すようにして強固に接続され、前記第1、第2配線基板4、6相互が接着材層6eによって接着固定され、前記スペーサ5aは接着材層6eによって放熱基板1表面に接着固定される。   By the batch heat pressing, the lower end surface portion of the first through electrode 4d of the first wiring board 4 is firmly connected to the surface of the rewiring layer 2B of the electronic component chip 2 so as to be crushed, and the first wiring board 4 The spacer 5a is bonded and fixed by the adhesive layer 5c. The lower end surface portion of the second through electrode 6d of the second wiring board 6 is firmly connected to the surface of the first wiring layer 4b of the first wiring board 4 so as to be crushed, and the first and second wirings The substrates 4 and 6 are bonded and fixed to each other by the adhesive layer 6e, and the spacer 5a is bonded and fixed to the surface of the heat dissipation substrate 1 by the adhesive layer 6e.

前記一括プレスの結果、前記スペーサ5a及びその両面の接着材層5b、5cが一体化されることによって、絶縁性封止層5が形成される。そして、プレス時に前記接着材層5bと5cが、前記放熱基板1、電子部品チップ2及び第1配線基板4相互間の空間/隙間を埋め尽くすように塑性流動するので、電子部品チップ2は、前記絶縁性封止層5に埋め込まれた状態になる。   As a result of the collective pressing, the insulating sealing layer 5 is formed by integrating the spacer 5a and the adhesive layers 5b and 5c on both sides thereof. Since the adhesive layers 5b and 5c are plastically flowed so as to fill the space / gap between the heat dissipation substrate 1, the electronic component chip 2 and the first wiring substrate 4 during pressing, the electronic component chip 2 is It is in a state of being embedded in the insulating sealing layer 5.

言い換えると、前記絶縁性封止層5は、電子部品チップ収納用の凹部を予め格別に形成しておく必要がなく、流動変形により電子部品チップ2を包み込むことによって簡単にパッケージの主要な一部を構成することができる。   In other words, the insulating sealing layer 5 does not need to be specially formed with a concave portion for storing an electronic component chip in advance, and it is easy to enclose the electronic component chip 2 by flow deformation so that it is a major part of the package. Can be configured.

ところで、前記導熱性接着層3は、電子部品チップ2下面の全面に亘って接着された単一層形状であってもよい。また、前記導熱性接着層3を前述のように複数の突起状の導熱ビアとして構成する場合は、前記導熱性接着層3は、放熱基板1上に複数アイランドの分布パターンをもって形成される。前記導熱性接着層3の前記分布パターンは、導電性ペーストのスクリーン印刷により例えば碁盤目状、格子状パターンとしたり、前記個々のアイランド形状を円形状、矩形状など種々の形状に簡単に形成することができる。   By the way, the heat conductive adhesive layer 3 may have a single layer shape bonded over the entire lower surface of the electronic component chip 2. When the heat conductive adhesive layer 3 is configured as a plurality of protruding heat conductive vias as described above, the heat conductive adhesive layer 3 is formed on the heat dissipation substrate 1 with a distribution pattern of a plurality of islands. The distribution pattern of the heat conductive adhesive layer 3 is, for example, a grid pattern or a lattice pattern by screen printing of a conductive paste, or the individual island shapes are easily formed into various shapes such as a circular shape and a rectangular shape. be able to.

前記図4(d)に示された工程の後、図1に示すように、第2配線基板6の上表面に、ソルダーレジスト層7が形成される。前記レジスト層7は、液状の感光性樹脂をスクリーン印刷し、前記各第2貫通電極6dに対応する第2配線層6bの各一部表面を露出させるようなマスクパターンをもって露光し現像して形成される。その後、はんだペーストを第2配線基板6上表面にパターン印刷し、リフローさせることによって、ボール状のはんだバンプからなる複数の外部端子電極8が形成され、前記各第2配線層6b及び第2貫通電極6dに接続される。   After the step shown in FIG. 4D, a solder resist layer 7 is formed on the upper surface of the second wiring substrate 6 as shown in FIG. The resist layer 7 is formed by screen-printing a liquid photosensitive resin, exposing and developing with a mask pattern that exposes a part of the surface of each second wiring layer 6b corresponding to each second through electrode 6d. Is done. Thereafter, a pattern of solder paste is printed on the surface of the second wiring substrate 6 and reflowed to form a plurality of external terminal electrodes 8 made of ball-shaped solder bumps. Each of the second wiring layers 6b and the second through-holes are formed. Connected to the electrode 6d.

以上のようにして製作された本発明の前記一実施形態に係る電子部品内蔵型配線基板及び製造方法によれば、電子部品チップ2からの熱は導熱性接着層3及び放熱基板1を通じて外部に放熱されるために、電子部品チップ2の電気的動作を安定化させることができる。そのために、従来技術では内蔵することが不可能であった発熱量の大きい電子部品チップでも実装可能となり、電子部品チップの適用範囲を拡げることができる。   According to the electronic component built-in wiring board and the manufacturing method according to the embodiment of the present invention manufactured as described above, the heat from the electronic component chip 2 is transmitted to the outside through the heat conductive adhesive layer 3 and the heat dissipation substrate 1. Since the heat is radiated, the electrical operation of the electronic component chip 2 can be stabilized. For this reason, it is possible to mount even an electronic component chip having a large calorific value that could not be incorporated in the prior art, and the application range of the electronic component chip can be expanded.

また、前記各貫通電極4d、6dが導熱性接着層3と同一の前記導電性ペーストで構成されている場合は、前記各貫通電極4d、6dから前記外部端子電極8側への熱放散も得られる。   Further, when each of the through electrodes 4d and 6d is made of the same conductive paste as that of the heat conductive adhesive layer 3, heat dissipation from the through electrodes 4d and 6d to the external terminal electrode 8 side is also obtained. It is done.

更に、パッケージの主要な一部を構成する前記絶縁性封止層5はシンプルな構造で電子部品チップ2を封止することができ、電子部品チップ2を収納させるための特別なスペース形成加工をする必要がない。   Further, the insulating sealing layer 5 constituting the main part of the package can seal the electronic component chip 2 with a simple structure, and a special space forming process for accommodating the electronic component chip 2 can be performed. There is no need to do.

前記各配線基板4、6のような各配線基板は、片面CCLのような片面金属箔張り配線基板材を用い、層間接続のための前記第1、第2貫通電極4d、6dは導電ペーストの印刷充填で形成することができる。従って、前述した、従来のビルトアップ方式(特許文献1参照)に比べて、全ての工程において、メッキ工程を排除し、生産時間及び生産コストを大幅に低減できる。   Each wiring board such as each of the wiring boards 4 and 6 uses a single-sided metal foil-clad wiring board material such as a single-sided CCL, and the first and second through electrodes 4d and 6d for interlayer connection are made of a conductive paste. It can be formed by printing filling. Therefore, compared to the above-described conventional built-up method (see Patent Document 1), the plating process can be eliminated in all processes, and the production time and production cost can be greatly reduced.

また、一括熱プレス工程によって、放熱基板1、電子部品チップ2及び第1、第2配線基板が各接着材層5b、5c、6eにより相互に接着固定されてパッケージ基板積層構造が1回のプレスで得られるために、前記ビルトアップ方式に比較して、これら積層部材にかかる熱履歴並びに同部材の劣化を著しく低減できる。   In addition, the heat dissipation substrate 1, the electronic component chip 2, and the first and second wiring substrates are bonded and fixed to each other by the adhesive layers 5b, 5c, and 6e by the batch heat pressing process, and the package substrate laminated structure is pressed once. Therefore, as compared with the built-up method, the heat history applied to these laminated members and the deterioration of the members can be significantly reduced.

更に、第1、第2配線基板4、6の製造工程、電子部品チップ2製造工程及び導熱性接着層3付きの放熱基板1の製造工程毎にそれぞれ不良品が発生しても、その都度不良品を排除することができ、歩留まり悪化の累積を避けることができる。従って、前記図4(a)〜(d)の組立て工程を経て、各良品部材を用いた品質の良い電子部品内蔵型配線基板を無駄なく確実に製造することができる。   Furthermore, even if a defective product is generated in each of the manufacturing process of the first and second wiring boards 4 and 6, the manufacturing process of the electronic component chip 2 and the manufacturing process of the heat dissipation board 1 with the heat conductive adhesive layer 3, it is not in each case. Non-defective products can be excluded, and accumulation of yield deterioration can be avoided. Therefore, through the assembly steps shown in FIGS. 4A to 4D, a high-quality electronic component built-in wiring board using each non-defective member can be reliably manufactured without waste.

なお、一実施形態として前記電子部品チップ2に再配線層2B付の半導体素子チップを用いた例を示したが、半導体素子チップに設けられた電極層の配列と前記第1配線基板4の貫通電極の配列とを整合させておけば、前記貫通電極を前記電極層に直接接続することも可能であり、この場合は半導体素子チップは再配線層2Bが設けられていないベアチップであってもよい。   In addition, although the example which used the semiconductor element chip | tip with the rewiring layer 2B for the said electronic component chip 2 was shown as one Embodiment, the arrangement | positioning of the electrode layer provided in the semiconductor element chip | tip, and penetration of the said 1st wiring board 4 were shown. If the arrangement of the electrodes is matched, the through electrode can be directly connected to the electrode layer. In this case, the semiconductor element chip may be a bare chip not provided with the rewiring layer 2B. .

次に、本発明の他の実施形態に係る電子部品内蔵型配線基板について、図5を参照して説明する。図5(a)に示された実施形態の電子部品内蔵型配線基板は、前記一実施形態において形成された絶縁性封止層5中のスペーサ5aを省略した例である。即ち、例えば図4に示されている第1絶縁基板4a下面に接着した接着材層5cの厚さが、図4(d)の一括加熱プレス工程において、電子部品チップ2を充分に埋め込める程度の厚さである場合は、スペーサ5aを省略し、絶縁性封止層5を前記厚めの接着材層5cのみで構成することができる。この例では、電子部品内蔵型配線基板の総厚を前記一実施形態の場合よりも薄くできる。   Next, an electronic component built-in wiring board according to another embodiment of the present invention will be described with reference to FIG. The electronic component built-in wiring board of the embodiment shown in FIG. 5A is an example in which the spacer 5a in the insulating sealing layer 5 formed in the one embodiment is omitted. That is, for example, the thickness of the adhesive layer 5c bonded to the lower surface of the first insulating substrate 4a shown in FIG. 4 is such that the electronic component chip 2 can be sufficiently embedded in the batch heating press process of FIG. In the case of the thickness, the spacer 5a can be omitted, and the insulating sealing layer 5 can be constituted only by the thick adhesive layer 5c. In this example, the total thickness of the electronic component built-in wiring board can be made thinner than in the case of the one embodiment.

図5(b)に示された実施形態の電子部品内蔵型配線基板は、前記一実施形態において使用されたスペーサ5a及び第2配線基板6を共に省略した例である。即ち、前記電子部品(IC)チップ2が機能数が少なく、外部端子電極8の数を少なくできる場合などにおいては、前述の第1配線基板4のみの使用で充分である。この場合、前記第1配線層4bの平面パターン周縁を電子部品チップ2の外側方へあまり拡げる必要もないので、放熱基板1や第1配線基板4の外形寸法(面積)を前記一実施形態の場合に比して小さくすることができ、前記スペーサ5aの省略も可能である。   The electronic component built-in wiring board of the embodiment shown in FIG. 5B is an example in which both the spacer 5a and the second wiring board 6 used in the embodiment are omitted. In other words, when the electronic component (IC) chip 2 has a small number of functions and the number of external terminal electrodes 8 can be reduced, it is sufficient to use only the first wiring board 4 described above. In this case, since it is not necessary to widen the periphery of the planar pattern of the first wiring layer 4b to the outside of the electronic component chip 2, the outer dimensions (areas) of the heat dissipation board 1 and the first wiring board 4 can be set as in the embodiment. It can be made smaller than the case, and the spacer 5a can be omitted.

図5(c)に示された実施形態の電子部品内蔵型配線基板は、前記一実施形態において使用されたICチップからなる電子部品チップ2の代わりに、コンデンサや抵抗などの他の機能素子からなる電子部品チップ21を用いた例である。前記電子部品チップ21は機能素子部分21aの両端に設けられた電極層21bを有し、前記各電極層21bは各第1貫通電極4dに接続されている。   The electronic component built-in wiring board of the embodiment shown in FIG. 5C is made of another functional element such as a capacitor or a resistor instead of the electronic component chip 2 made of the IC chip used in the embodiment. This is an example using an electronic component chip 21. The electronic component chip 21 has electrode layers 21b provided at both ends of the functional element portion 21a, and the electrode layers 21b are connected to the first through electrodes 4d.

本発明においては、前述のように種々の電子部品チップを使用することができると共に、このような電子部品チップは、ベアチップ形態であってもパッケージ付チップ形態であっても本発明の目的を達成することができる。   In the present invention, various electronic component chips can be used as described above, and such an electronic component chip achieves the object of the present invention regardless of whether it is a bare chip form or a packaged chip form. can do.

なお、前記配線基板は、電子部品チップの機能数に応じて1層或いは2層以上の多層積層体とすることができ、また、前記配線基板に設けられた配線層は電子部品チップに対する再配線層と称することもできる。   The wiring board may be a multi-layered laminate of one layer or two or more layers depending on the number of functions of the electronic component chip, and the wiring layer provided on the wiring board is a rewiring for the electronic component chip. It can also be called a layer.

次に、本発明に係る前記電子部品内蔵型配線基板及び製造方法と前記特許文献2〜4との差異について補足的に説明する。これら特許文献によれば、電子部品収納用のパッケージ空洞部を形成するためには、特許文献2の技術では枠体6を使用し、特許文献3の技術ではダム形成材30を使用し、特許文献4の技術ではその図4、図5に示されているように開口部有する複数のグリーンシートを開口部の無い複数のグリーンシートを重ね合わせて凹部14を設けることを開示している。即ち、前記パッケージ空洞部を確立するためのの格別な部品加工を必要としている。これに対して、本発明に係る前記電子部品内蔵型配線基板では、絶縁性封止層5が接着材層を含んで構成することができ、一括熱プレスにより、電子部品を絶縁性封止層5の接着材層に埋め込ませるだけの構造でパッケージを構成できるために、その構造がシンプルでありパッケージ形成工程が著しく簡素化されるという利点がある。   Next, the difference between the electronic component built-in wiring board and manufacturing method according to the present invention and the Patent Documents 2 to 4 will be supplementarily described. According to these patent documents, in order to form a package cavity for storing electronic components, the frame 6 is used in the technique of Patent Document 2, and the dam forming material 30 is used in the technique of Patent Document 3. The technique of document 4 discloses that a plurality of green sheets having openings are overlapped with a plurality of green sheets having no openings to provide a recess 14 as shown in FIGS. In other words, special part processing is required to establish the package cavity. On the other hand, in the electronic component built-in wiring board according to the present invention, the insulating sealing layer 5 can be configured to include an adhesive layer, and the electronic component can be formed by batch hot pressing. Since the package can be configured with a structure that can be embedded in the adhesive material layer 5, there is an advantage that the structure is simple and the package forming process is remarkably simplified.

本発明の一実施形態に係る電子部品内蔵型配線基板を示す断面図である。It is sectional drawing which shows the electronic component built-in type wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第1配線基板関連の製造方法を説明するための図であり、(a)〜(e)はその工程別断面図である。、It is a figure for demonstrating the manufacturing method relevant to the 1st wiring board which concerns on one Embodiment of this invention, (a)-(e) is sectional drawing according to the process. , 本発明の一実施形態に係る電子部品チップ(ICチップ)の製造方法を説明するための図であり、(a)〜(d)はその個片化工程別断面図である。It is a figure for demonstrating the manufacturing method of the electronic component chip | tip (IC chip) which concerns on one Embodiment of this invention, (a)-(d) is sectional drawing according to the individualization process. 本発明の一実施形態に係る電子部品内蔵型配線基板の製造方法を説明するための図であり、(a)〜(d)はその組立て工程別断面図である。It is a figure for demonstrating the manufacturing method of the electronic component built-in type wiring board which concerns on one Embodiment of this invention, (a)-(d) is sectional drawing according to the assembly process. 本発明の他の実施形態に係る電子部品内蔵型配線基板に関する(a)〜(c)の3種類の例を示す断面図である。It is sectional drawing which shows three types of examples (a)-(c) regarding the electronic component built-in type wiring board which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1 放熱基板
2、21 電子部品チップ
2a 半導体基板
2b 電極層
2c 絶縁保護層
2B 再配線層
3 導熱接着層
4、6 第1配線基板、第2配線基板
4a、6a 第1絶縁基板、第2絶縁基板
4b、6b 第1配線層、第2配線層
4c、6c 第1貫通孔、第2貫通孔
4d、6d 第1貫通電極、第2貫通電極
5 絶縁性封止層
5a スペーサ
5b、5c、6e 接着層
7 保護マスク
8 外部端子
h 小孔
H スペーサ開口部
X、Y、Z IC素子領域
1 heat radiation substrate 2, 21 an electronic component chip 2a semiconductor substrate 2b electrode layer 2c insulating protection layer 2B rewiring layer 3 heat-conducting adhesive layer 4 and 6 the first wiring board, the second wiring board 4a, 6a first insulating substrate, the second Insulating substrate 4b, 6b 1st wiring layer, 2nd wiring layer 4c, 6c 1st through-hole, 2nd through-hole 4d, 6d 1st through-electrode, 2nd through-electrode 5 Insulating sealing layer 5a Spacer 5b, 5c, 6e Adhesive layer 7 Protective mask 8 External terminal h Small hole H Spacer opening X, Y, Z IC element region

Claims (2)

絶縁基板の一方の面に配線層をパターンニング形成して配線基板を形成する工程と、
前記絶縁基板に、前記配線層の一部分に対応する貫通孔を形成する工程と、
前記貫通孔に充填され一端面が前記配線層に接続され他端面が前記絶縁基板の他方の面に露出された貫通電極を形成する工程と、
一方の面に電極層を有する電子部品チップを用意し、前記貫通電極の前記他端面を前記電極層に電気的に接続し、前記電子部品チップを前記絶縁基板の前記他方の面に接着して相互に一体化する工程と、
放熱基板の電子部品チップ搭載予定面に熱放散用の導熱性接着層を複数の突起状に形成する工程と、
前記電子部品チップ及び前記導熱接着層相互を位置合わせして前記配線基板、電子部品チップ及び放熱基板を重ね合わせる工程と、
前記電子部品チップを囲む絶縁性封止材料を前記放熱基板及び前記配線基板相互間に介在させて前記重ね合わせ方向に一括熱プレスを行う工程と、
を備えることを特徴とする電子部品内蔵型配線基板の製造方法。
Forming a wiring board by patterning a wiring layer on one surface of the insulating substrate;
Forming a through hole corresponding to a part of the wiring layer in the insulating substrate;
Forming a through electrode that is filled in the through hole and has one end surface connected to the wiring layer and the other end surface exposed on the other surface of the insulating substrate;
An electronic component chip having an electrode layer on one surface is prepared, the other end surface of the through electrode is electrically connected to the electrode layer, and the electronic component chip is bonded to the other surface of the insulating substrate. Integrating them with each other;
Forming a heat conductive adhesive layer for heat dissipation in a plurality of protrusions on the surface on which the electronic component chip is to be mounted on the heat dissipation substrate;
The electronic component chip and said heat conducting adhesive layers mutually aligned to the wiring substrate, a step of superimposing the electronic component chip and the heat dissipation substrate,
Interposing an insulating sealing material surrounding the electronic component chip between the heat dissipation board and the wiring board and performing a batch hot press in the overlapping direction;
A method of manufacturing a wiring board with a built-in electronic component, comprising:
前記貫通孔に対応する配線層の中央の部分に、前記貫通孔と連通し、前記貫通孔より小径の小孔を形成する工程を有し、
前記貫通電極を形成する工程は、前記貫通孔及び前記小孔に導電性ペーストを充填して前記貫通電極を形成することを特徴とする請求項に記載の電子部品内蔵型配線基板の製造方法。
In the central portion of the wiring layer corresponding to the through hole, the step of communicating with the through hole and forming a small hole having a smaller diameter than the through hole,
Step, the through hole and the method of manufacturing the electronic component built-in wiring board according to claim 1, characterized by forming the through electrode by filling a conductive paste into the small hole to form the through electrode .
JP2007038385A 2007-02-19 2007-02-19 Manufacturing method of wiring board with built-in electronic components Active JP5075424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007038385A JP5075424B2 (en) 2007-02-19 2007-02-19 Manufacturing method of wiring board with built-in electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007038385A JP5075424B2 (en) 2007-02-19 2007-02-19 Manufacturing method of wiring board with built-in electronic components

Publications (2)

Publication Number Publication Date
JP2008205124A JP2008205124A (en) 2008-09-04
JP5075424B2 true JP5075424B2 (en) 2012-11-21

Family

ID=39782329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007038385A Active JP5075424B2 (en) 2007-02-19 2007-02-19 Manufacturing method of wiring board with built-in electronic components

Country Status (1)

Country Link
JP (1) JP5075424B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063882A1 (en) * 2005-12-01 2007-06-07 Japan Medical Materials Corporation Bone connection mechanism

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5100878B1 (en) 2011-09-30 2012-12-19 株式会社フジクラ Component built-in board mounting body, manufacturing method thereof, and component built-in board
JP5167516B1 (en) * 2011-11-30 2013-03-21 株式会社フジクラ Component-embedded substrate, manufacturing method thereof, and component-embedded substrate mounting body

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233678A (en) * 1998-02-16 1999-08-27 Sumitomo Metal Electronics Devices Inc Manufacture of ic package
JP2001085804A (en) * 1999-09-17 2001-03-30 Sony Corp Printed wiring board and manufacturing method thereof
JP4869488B2 (en) * 2000-12-15 2012-02-08 イビデン株式会社 Manufacturing method of multilayer printed wiring board
JP4103549B2 (en) * 2002-10-31 2008-06-18 株式会社デンソー Multilayer wiring board manufacturing method and multilayer wiring board
JP2004158545A (en) * 2002-11-05 2004-06-03 Denso Corp Multilayer substrate and its manufacturing method
JP4638657B2 (en) * 2003-03-19 2011-02-23 太陽誘電株式会社 Electronic component built-in multilayer board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063882A1 (en) * 2005-12-01 2007-06-07 Japan Medical Materials Corporation Bone connection mechanism

Also Published As

Publication number Publication date
JP2008205124A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4950693B2 (en) Electronic component built-in wiring board and its mounting parts
JP4592751B2 (en) Method for manufacturing printed wiring board
JP3813402B2 (en) Manufacturing method of semiconductor device
US8063490B2 (en) Semiconductor device including semiconductor constituent
JP4840373B2 (en) Semiconductor device and manufacturing method thereof
US8410614B2 (en) Semiconductor device having a semiconductor element buried in an insulating layer and method of manufacturing the same
JP2005217225A (en) Semiconductor device and method for manufacturing the same
TWI390696B (en) Semiconductor device and manufacturing method thereof
JP4950743B2 (en) Multilayer wiring board and manufacturing method thereof
US8143099B2 (en) Method of manufacturing semiconductor package by etching a metal layer to form a rearrangement wiring layer
JP5238182B2 (en) Manufacturing method of multilayer wiring board
US7843071B2 (en) Semiconductor device including wiring and manufacturing method thereof
JP5075424B2 (en) Manufacturing method of wiring board with built-in electronic components
US20040256715A1 (en) Wiring board, semiconductor device and process of fabricating wiring board
JP2009146940A (en) Laminated wiring board and manufacturing method therefor
TWI590397B (en) Thermally enhanced semiconductor assembly with heat spreader and integrated dual build-up circuitries and method of making the same
JP5285385B2 (en) Manufacturing method of multilayer wiring board
JP5137320B2 (en) Semiconductor device and manufacturing method thereof
TWI392071B (en) Package substrate and fabrication method thereof
JP2018088505A (en) Semiconductor device and manufacturing method for the same
US20110221066A1 (en) Method for manufacturing a semiconductor device and a semiconductor device
JP6062884B2 (en) Component-embedded substrate, manufacturing method thereof, and mounting body
JP3979404B2 (en) Semiconductor device
JP2005235881A (en) Semiconductor device and its manufacturing method
JP2010278477A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

R151 Written notification of patent or utility model registration

Ref document number: 5075424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250