JP5071402B2 - 光変調器 - Google Patents

光変調器 Download PDF

Info

Publication number
JP5071402B2
JP5071402B2 JP2009029002A JP2009029002A JP5071402B2 JP 5071402 B2 JP5071402 B2 JP 5071402B2 JP 2009029002 A JP2009029002 A JP 2009029002A JP 2009029002 A JP2009029002 A JP 2009029002A JP 5071402 B2 JP5071402 B2 JP 5071402B2
Authority
JP
Japan
Prior art keywords
optical
waveguide
polarization inversion
waveguides
inversion region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009029002A
Other languages
English (en)
Other versions
JP2010185977A (ja
Inventor
昌樹 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Optical Components Ltd
Original Assignee
Fujitsu Optical Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Optical Components Ltd filed Critical Fujitsu Optical Components Ltd
Priority to JP2009029002A priority Critical patent/JP5071402B2/ja
Priority to US12/634,793 priority patent/US8606053B2/en
Publication of JP2010185977A publication Critical patent/JP2010185977A/ja
Application granted granted Critical
Publication of JP5071402B2 publication Critical patent/JP5071402B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0316Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/127Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode travelling wave
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/16Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 series; tandem
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/07Materials and properties poled
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/20LiNbO3, LiTaO3
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/07Polarisation dependent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/20Intrinsic phase difference, i.e. optical bias, of an optical modulator; Methods for the pre-set thereof

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、光通信に利用される光導波路デバイスであって、分極反転領域を含む結晶基板に光導波路および電極を形成して構成される光変調器に関する。
ニオブ酸リチウム(LiNbO)やタンタル酸リチウム(LiTaO)などの電気光学結晶を用いた光導波路デバイスは、結晶基板上の一部にチタン(Ti)等の金属膜を形成して熱拡散させるか、或いは、パターニング後に安息香酸中でプロトン交換するなどして光導波路を形成した後、その光導波路の近傍に電極を設けることで形成される。このような電気光学結晶を用いた光導波路デバイスとして、例えば、図1に示すような光変調器が知られている。
図1において、基板100上に形成された光導波路は、入力導波路101、一対の分岐導波路102,103および出力導波路104からなり、一対の分岐導波路102,103上に信号電極105、接地電極106が設けられてコプレーナ電極を形成する。Zカット基板を用いる場合には、Z方向の電界による屈折率変化を利用するため、光導波路の真上に信号電極105、接地電極106を配置する。具体的には、分岐導波路102上に信号電極105を、分岐導波路103の上に接地電極106をパターニングする。ここで、分岐導波路102,103中を伝搬する光が、信号電極105および接地電極106によって吸収されるのを防ぐために、基板100と信号電極105および接地電極106との間には図示しないバッファ層が設けられる。バッファ層としては、厚さ0.2〜2μmの酸化シリコン(SiO)等が用いられる。
このような光変調器を高速で駆動する場合には、信号電極105の出力端105OUTを図示しない抵抗を介して接地電極106に接続することで進行波電極とし、信号電極105の入力端105INからマイクロ波電気信号を印加する。このとき、信号電極105と接地電極106との間で発生する電界によって、分岐導波路102,103の屈折率がそれぞれ+na,−nbのように変化し、分岐導波路102,103を伝搬する光の位相差が変化するため、マッハツェンダ(Mach-Zehnder:MZ)干渉によって、強度変調された信号光が出力導波路104から出力される。なお、信号電極105の断面形状を変化させることでマイクロ波電気信号の実効屈折率を制御し、光とマイクロ波電気信号との速度を整合させることによって高速の光応答特性を得ることができる。
上記のような光変調器では、2本の分岐導波路のうち1本は信号電極の下にあるのに対し、もう1本は接地電極の下にある。接地電極下の電界は信号電極下の電界に比べて弱いので、両者の間における位相変調量には差異が生じる。このため、MZ干渉では完全なプッシュプルにならず、信号光がオンからオフまたはオフからオンに切り替わる瞬間に該信号光の波長が変動する。すなわち、波長チャープが発生する。
このような波長チャープを低減するための従来技術としては、例えば図2に示すように、光と電界が互いに作用する部分(以下、相互作用部と呼ぶ)INTの一部に、結晶の分極方向を反転させた分極反転領域Piを形成する構成が提案されている(例えば、特許文献1参照)。この分極反転領域Piでは、信号電極105に電界を印加した際の屈折率の変化の向きが、相互作用部INTの残り領域(非分極反転領域)Pnとは反対になる。分極反転領域Piと非分極反転領域Pnとの境界部分では、一対の分岐導波路102,103に対する信号電極105および接地電極106の配置関係が入れ替えられている。このような構成により、分極反転領域Piおよび非分極反転領域Pnでそれぞれ発生する上記位相変調量の差異が打ち消し合うようになるため、変調光の波長チャープを低減することが可能になる。
国際公開第04/053574号パンフレット
ところで、近年の光変調方式の多様化(例えば、多値変調方式、偏波多重方式など)により、上記図1または図2に示したような従来の光変調器を複数台組み合わせることで所望の光変調方式に対応した信号光を生成する場合が多くなっている。この場合、光変調器全体のサイズを小さくするために、複数台の光変調器を一つのチップに集積することが行われる。なお、以下の説明では、一つのチップ上に集積化された個々の光変調器のことを「光変調部」と呼ぶことにする。
一つのチップ上で複数の光変調部が並列に配置されている場合、隣り合う光変調部における電極間のクロストークが発生しないように注意する必要がある。また、各光変調部の間に位置する接地電極が狭くなると接地が不十分になるので、隣り合う光変調部の間隔を十分にあける必要がある。特に、各光変調部が上記図2に示したような分極反転領域を含む場合には、分極反転領域と非分極反転領域の境界部分で信号電極がシフトすることで、隣り合う光変調部における信号電極の間隔が狭くなる場合があるため、該各光変調部の間隔をさらにあける必要がある。
具体的には、例えば図3に示すように同一基板上に二つの光変調部100A,100Bが並列に配置されており、分極反転領域Piと非分極反転領域Pnの境界部分の位置が、基板の長手方向について、各光変調部100A,100Bでずれているような構成が想定される。この構成では、光変調部100Aの信号電極105Aと光変調部100Bの信号電極105Bとの間隔Sが、図中の点線で囲んだ境界部分においてS’と狭くなる。このため、光変調部100Aの分岐導波路103Aと、該分岐導波路103Aに隣り合う光変調部100Bの分岐導波路102Bとの間隔を広げて、上記境界部分での接地が十分にとられるようにすることが必要になる。この具体例からも明らかなように、複数台の光変調器を一つのチップに集積することによる光変調器全体の小型化には一定の限界がある。
また、一つのチップ上に並列配置された各光変調部に対して入力光を与えるための光導波路の構成に注目すると、上記図3の構成例に示したように、1本の光導波路111が光分岐部112により2本の光導波路113A,113Bに分岐されて各光変調部の入力導波路101A,101Bに接続されている場合、図示しない1台の光源から出力される光を各光変調部100A,100Bに与えることができる。この場合、光源および光変調器を含めた光送信装置の構成を簡略化することが可能になる。
しかし、上記のような光変調器の構成において、各光変調部100A,100Bの間隔が広くなると、光分岐部112と各光変調部の入力導波路101A,101Bとの間を接続する略S字形状の曲線導波路113A,113Bの曲率半径を小さくすることが必要になるため、各々の曲線導波路113A,113Bにおける曲げ損失(放射損失)の増加が問題になる。該曲げ損失の増加を抑えるために曲率半径を大きくすれば、各曲線導波路113A,113Bの長さ(光分岐部112と各光変調部100A,100Bとの間の距離)が長くなり、光変調器の長手方向のサイズが大きくなってしまう。通常、一つのチップの長手方向の全長は、該チップが切り出されるウェハ等のサイズに制約されるので、各曲線導波路113A,113Bの伸長分に応じてチップの全長を伸ばすことができなければ、各光変調部100A,100Bの相互作用部INTを短くせざるを得なくなる。相互作用部INTを短くした場合、駆動電圧が上昇するため、高出力のドライバアンプが必要となる。その結果、光変調器のコストおよび消費電力が増加してしまう。
本発明は上記の点に着目してなされたもので、分極反転領域を含む基板上に複数の光変調部を並列に配置し、該各光変調部に入力光を低損失で与えることのできる小型で低コストの光変調器を提供することを目的とする。
上記の目的を達成するため、本発明はその一態様として、電気光学効果を有する基板にマッハツェンダ型光導波路を形成し、該マッハツェンダ型光導波路の光分岐部および光合波部の間に位置する一対の分岐導波路に沿って信号電極および接地電極を設け、進行波電極とした前記信号電極に、変調データに対応した電気信号を印加することにより、前記マッハツェンダ型光導波路を伝搬する光の変調を行う少なくとも2つの光変調部が、同一の前記基板上に並列に配置された光変調器を提供する。この光変調器の前記基板は、前記各光変調部における、前記一対の分岐導波路を伝搬する光と前記信号電極を伝搬する電気信号とが相互に作用する相互作用部について、一部の領域の分極方向を他の領域の分極方向に対して反転させた分極反転領域を有する。また、前記各光変調部は、それぞれに共通な一つの入力ポートに入力される光を複数に分岐した各分岐光が、各々に対応した曲線導波路を介して前記マッハツェンダ型光導波路の入力端に導かれる。また、前記各光変調部の信号電極は、それぞれ、前記相互作用部の分極反転領域内では前記一対の分岐導波路のうちの一方の分岐導波路上に配置され、前記相互作用部の分極反転されていない非分極反転領域内では他方の分岐導波路上に配置されている。また、前記各光変調部の一対の分岐導波路は、それぞれ、前記基板上で隣り合う他の前記光変調部の一対の分岐導波路との間隔について、前記相互作用部の始点近傍における間隔よりも、前記分極反転領域と前記非分極反転領域との入力側の境界近傍における間隔が広くなっている。
上記のような本光変調器では、分極反転領域を含んだ同一基板上に並列に配置された少なくとも2つの光変調器のマッハツェンダ型光導波路に対して、一つの入力ポートより与えられる入力光を分岐した各光が曲線導波路を介してそれぞれ入力される。各光変調部のマッハツェンダ型光導波路は、隣り合う光変調部の一対の分岐導波路同士の間隔が、相互作用部の始点近傍よりも分極反転領域と非分極反転領域との入力側の境界近傍で広くなるように形成されている。これにより、分極反転領域と非分極反転領域との境界部分で信号電極がシフト(屈曲)しても、該境界近傍において隣り合う光変調部の信号電極の間隔が狭くなることが避けられる。このため、相互作用部の始点近傍での隣り合う光変調部の間隔を、基板が分極反転領域を含まない場合と同様に狭くできるようになり、入力光を各光変調部に導くための曲線導波路を基板の長手方向に伸長することなく曲率半径を大きくすることが可能になる。よって、分極反転領域を含む基板上に複数の光変調部を並列に配置する場合でも、小型の構成により各光変調部に対して共通の入力光を低損失で与えることができ、波長チャープの低減された信号光を低コストで生成することが可能になる。
一般的なマッハツェンダ型光変調器の構成例を示す平面図である。 従来の分極反転領域を含む光変調器の構成例を示す平面図である。 一つの基板上に従来構成の光変調部を二つ並列に配置した場合の構成例を示す平面図である。 本発明の第1実施形態による光変調器の構成を示す平面図である。 第1実施形態に関する変形例の構成を示す平面図である。 本発明の第2実施形態による光変調器の構成を示す平面図である。 第2実施形態について一つのウェハより複数のチップを切り出す場合の配置例を示す図である。 本発明の第3実施形態による光変調器の構成を示す平面図である。 本発明の第4実施形態による光変調器の構成を示す平面図である。 第4実施形態に関する変形例の構成を示す平面図である。 本発明の第5実施形態による光変調器の構成を示す平面図である。 第1〜第5実施形態に関する光導波路パターンの応用例を示す図である。 第1〜第5実施形態に関する光導波路パターンの他の応用例を示す図である。
以下、本発明の実施形態を図面を参照しながら詳細に説明する。
図4は、本発明の第1実施形態による光変調器の構成を示す平面図である。
図4において、本実施形態の光変調器は、例えば、LiNbOやLiTaOなど電気光学効果を有する一つの結晶基板10上に、二つの光変調部20A,20Bが並列に配置されている。基板10は、ここでは矩形に切り出したZ−カットの結晶を用い、その長手方向の中央部分には、分極反転領域Piが形成されている。この光変調器は、一つの入力ポートINおよび一つの出力ポートOUTを備えており、入力ポートINには1本の入力導波路11の一端が接続されている。入力導波路11の他端は、光分岐部12の入力端に接続しており、光分岐部12の二つ出力端には、曲線導波路13A,13Bを介して、各光変調部20A,20Bの入力端がそれぞれ接続されている。光分岐部12は、入力光を所要の強度比で二つに分岐して出力する。
光変調部20Aは、基板10の図で上側に位置する表面部分に分極反転領域Piおよび非分極反転領域Pnに跨って形成された、入力導波路21A、光分岐部22A、一対の分岐導波路23A,24A、光合波部25Aおよび出力導波路26Aからなるマッハツェンダ(MZ)型の光導波路と、一対の分岐導波路23A,24Aに沿ってパターニングされた信号電極31Aおよび接地電極32Aとを具備する。
入力導波路21Aは、一端が曲線導波路13Aに接続しており、他端には光分岐部22Aの入力端が接続されている。
光分岐部22Aは、入力導波路21Aを伝搬した光を1:1の強度比で二つに分岐する。光分岐部22Aの二つの出力端には、一対の分岐導波路23A,24Aの各一端がそれぞれ接続されている。
一対の分岐導波路23A,24Aは、図で上側に位置する分岐導波路23Aと、図で下側に位置する分岐導波路24Aとが、基板10の長手方向に並行している。各分岐導波路23A,24Aは、光分岐部22Aに接続する一端から入力側の非分極反転領域Pnと分極反転領域Piとの境界までの間に位置する部分が、分極反転領域Piに近づくにつれて、並行する光変調部20Bの分岐導波路23B,24Bから離れていく緩やかな略S字形状の曲線導波路となっている。また、分極反転領域Pi内に位置する部分は、基板10の長手方向に平行な直線導波路となっている。さらに、分極反転領域Piと出力側の非分極反転領域Pnとの境界から光合波部25Aに接続する他端までの間に位置する部分は、光合波部25Aに近づくにつれて、並行する光変調部20Bの分岐導波路23B,24Bに接近していく緩やかな略S字形状の曲線導波路となっている。上記一対の分岐導波路23A,24Aの間隔は、ここでは、光分岐部22Aに接続する一端から光合波部25Aに接続する他端まで一定である。
光合波部25Aは、二つの入力端が上記各分岐導波路23A,24Aの他端にそれぞれ接続しており、各分岐導波路23A,24Aを伝搬した光を一つに合波する。光合波部25Aの一つの出力端には、出力導波路26Aの一端が接続されている。
信号電極31Aは、入力側の非分極反転領域Pn内において分岐導波路23Aの真上に沿って形成されており、入力側の非分極反転領域Pnと分極反転領域Piとの境界部分において分岐導波路23A側から分岐導波路24A側にシフトし、分極反転領域Pi内において分岐導波路24Aの真上に沿って形成されている。また、信号電極31Aは、分極反転領域Piと出力側の非分極反転領域Pnとの境界部分において分岐導波路24A側から分岐導波路23A側にシフトし、出力側の非分極反転領域Pn内において分岐導波路23Aの真上に沿って形成されている。
接地電極32Aは、信号電極31Aから隔離されると共に、分極反転領域Pi内において分岐導波路23Aの真上に沿う部分と、入力側および出力側の各非分極反転領域Pn内において分岐導波路24Aの真上に沿う部分とを含んで形成されている。なお、ここでは分岐導波路24Aと光変調部20Bの後述する分岐導波路23Bとの間に形成される接地電極32Aが、光変調部20Bの後述する接地電極32Bと共有されている。
上記信号電極31Aは、基板10の長手方向に平行な対向側面のうちの一方の側面(図で上側の側面)に引き出した出力端が図示しない抵抗を介して接地電極32Aに接続されることで進行波電極を構成し、基板10の他方の側面(図で下側の側面)に引き出した入力端からマイクロ波電気信号(変調データに対応した電気信号)が印加されるようになっている。なお、信号電極31Aおよび接地電極32Aについては、図示されていないSiO等を用いたバッファ層を介して基板10(光導波路)の上に形成するのがよい。バッファ層を設けることにより、各分岐導波路23A,24A中を伝搬する光が、信号電極31Aおよび接地電極32Aによって吸収されるのを防ぐことができる。
光変調部20Bは、基板10の図で下側に位置する表面部分に分極反転領域Piおよび非分極反転領域Pnに跨って形成された、入力導波路21B、光分岐部22B、一対の分岐導波路23B,24B、光合波部25Bおよび出力導波路26Bからなるマッハツェンダ(MZ)型の光導波路と、一対の分岐導波路23B,24Bに沿ってパターニングされた信号電極31Bおよび接地電極32Bとを具備する。
なお、本実施形態では、光変調部20AのMZ型光導波路と光変調部20BのMZ型光導波路とが、基板10の長手方向に平行な軸を挟んで対称の関係にある。また、光変調部20Aの信号電極31Aおよび接地電極32Aに対して、光変調部20Bの信号電極31Bおよび接地電極32Bは、分極反転領域Piと非分極反転領域Pnの境界部分の位置が基板10の長手方向についてずれている(分極反転領域Piの形状が平行四辺形である)ため、基板10の長手方向にシフトしたパターンとなっている。
入力導波路21Bは、一端が曲線導波路13Bに接続しており、他端には光分岐部22Bの入力端が接続されている。
光分岐部22Bは、入力導波路21Bを伝搬した光を1:1の強度比で二つに分岐する。光分岐部22Bの二つの出力端には、一対の分岐導波路23B,24Bの各一端がそれぞれ接続されている。
一対の分岐導波路23B,24Bは、図で上側に位置する分岐導波路23Bと、図で下側に位置する分岐導波路24Bとが、基板10の長手方向に並行している。各分岐導波路23B,24Bは、光分岐部22Bに接続する一端から入力側の非分極反転領域Pnと分極反転領域Piとの境界までの間に位置する部分が、分極反転領域Piに近づくにつれて、並行する光変調部20Aの分岐導波路23A,24Aから離れていく緩やかな略S字形状の曲線導波路となっている。また、分極反転領域Pi内に位置する部分は、基板10の長手方向に平行な直線導波路となっている。さらに、分極反転領域Piと出力側の非分極反転領域Pnとの境界から光合波部25Bに接続する他端までの間に位置する部分は、光合波部25Bに近づくにつれて、並行する光変調部20Aの分岐導波路23A,24Aに接近していく緩やかな略S字形状の曲線導波路となっている。上記一対の分岐導波路23B,24Bの間隔は、ここでは、光分岐部22Bに接続する一端から光合波部25Bに接続する他端まで一定である。
光合波部25Bは、二つの入力端が上記各分岐導波路23B,24Bの他端にそれぞれ接続しており、各分岐導波路23B,24Bを伝搬した光を一つに合波する。光合波部25Bの一つの出力端には、出力導波路26Bの一端が接続されている。
信号電極31Bは、入力側の非分極反転領域Pn内において分岐導波路23Bの真上に沿って形成されており、入力側の非分極反転領域Pnと分極反転領域Piとの境界部分において分岐導波路23B側から分岐導波路24B側にシフトし、分極反転領域Pi内において分岐導波路24Bの真上に沿って形成されている。また、信号電極31Bは、分極反転領域Piと出力側の非分極反転領域Pnとの境界部分において分岐導波路24B側から分岐導波路23B側にシフトし、出力側の非分極反転領域Pn内において分岐導波路23Bの真上に沿って形成されている。
接地電極32Bは、信号電極31Bから隔離されると共に、分極反転領域Pi内において分岐導波路23Bの真上に沿う部分と、入力側および出力側の各非分極反転領域Pn内において分岐導波路24Bの真上に沿う部分とを含んで形成されている。なお、ここでは分岐導波路23Bと光変調部20Aの分岐導波路24Aとの間に形成される接地電極32Bが、光変調部20Aの接地電極32Aと共有されている。
上記信号電極31Bは、基板10の長手方向に平行な対向側面のうちの一方の側面(図で上側の側面)に引き出した出力端が図示しない抵抗を介して接地電極32Bに接続されることで進行波電極を構成し、基板10の他方の側面(図で下側の側面)に引き出した入力端からマイクロ波電気信号(変調データに対応した電気信号)が印加されるようになっている。なお、信号電極31Bおよび接地電極32Bについても、前述した場合と同様にしてバッファ層を介して基板10(光導波路)の上に形成するのがよい。
上記各光変調部20A,20Bにおける出力導波路26A,26Bの他端は、曲線導波路14A,14Bを介して、光合波部15の二つの入力端に接続している。光合波部15は、各光変調部20A,20Bで変調された各々の信号光を一つに合波する。光合波部15の出力端は、1本の出力導波路16の一端に接続しており、出力導波路16の他端には、出力ポートOUTが接続されている。なお、本光変調器が偏波多重方式に対応している場合には、各光変調部20A,20Bの出力光を偏波面を直交させて光合波部15に入力し、該光合波部15で偏波合成を行って偏波多重光を出力導波路16に出力する。
上記のように構成された各光変調部20A,20Bでは、各々の間隔(互いの隣接する分岐導波路の間の、基板10の長手方向に垂直な方向についての距離)が、各々の相互作用部INTの始点近傍および終点近傍よりも、入力側の非分極反転領域Pnと分極反転領域Piとの境界近傍で広くなる。
具体的に、各光変調部20A,20Bの間隔に関して、クロストークの抑圧という観点より、基板10の長手方向の各位置における、光変調部20Aの信号電極31Aと光変調部20Bの信号電極31Bとの間隔に注目してみる。ここでは、各光変調部20A,20Bの相互作用部INTの始点近傍(図中の点線で囲んだ部分A)における各信号電極31A,31Bの間隔をS1とする。また、入力側の非分極反転領域Pnと分極反転領域Piとの境界近傍(図中の点線で囲んだ部分B)において、光変調部20Aの分岐導波路23A側から分岐導波路24A側にシフトした後の信号電極31Aと、光変調部20Bの分岐導波路23B側から分岐導波路24B側にシフトする前の信号電極31Bとの間隔をS2とする。さらに、各光変調部20A,20Bの相互作用部INTの終点近傍(図中の点線で囲んだ部分C)における各信号電極31A,31Bの間隔をS3とする。
このとき、分極反転の境界近傍Bでの各信号電極31A,31Bの間隔S2は、相互作用部INTの始点近傍Aでの各信号電極31A,31Bの間隔S1以上となる(S2≧S1)。つまり、光変調部20Aの分岐導波路23A,24Aと光変調部20Bの分岐導波路23B,24Bとが、相互作用部INTの始点近傍Aから分極反転の境界近傍Bに近づくにつれて互いに離れていくことにより、分極反転の境界近傍Bでの間隔S2は、上述の図3に示した従来構成のように狭くはならずに、相互作用部INTの始点近傍Aでの間隔S1と等しくなるか、または、間隔S1よりも広くなる。言い換えれば、各光変調部の一対の分岐導波路の間隔をSwとした場合、従来構成では、分極反転の境界近傍において各光変調部の信号電極の間隔がSwだけ狭くなるので、この分を考慮して本発明では、分極反転の境界近傍における各光変調部20A,20Bの間隔が相互作用部INTの始点近傍よりもSw以上広がるように、各光変調部20A,20Bの分岐導波路23A,24A,23B,24Bのパターンに工夫を施している。
また、分極反転の境界近傍Bでの各信号電極31A,31Bの間隔S2は、相互作用部INTの終点近傍Cでの各信号電極31A,31Bの間隔S3以上にもなる(S2≧S3)。つまり、光変調部20Aの分岐導波路23A,24Aと光変調部20Bの分岐導波路23B,24Bとが、分極反転の出力側の境界近傍から相互作用部INTの終点近傍Cに近づくにつれて互いに接近していくことにより、分極反転の境界近傍Bでの間隔S2は、相互作用部INTの終点近傍Cでの間隔S3と等しくなるか、または、間隔S3よりも広くなる。
したがって、各信号電極31A,31Bが分極反転の境界近傍で屈曲したとしても、各々の間隔が相互作用部INTの始点近傍および終点近傍より狭くなることは避けられる。このため、各光変調部20A,20Bが分極反転領域Piを含むことにより、従来構成のように各光変調部20A,20Bの間隔を広げる必要はなくなる。言い換えれば、各光変調部20A,20Bが分極反転領域Piを含んでいても、各光変調部20A,20Bの間隔は、分極反転領域Piを含まない場合と同様とすることができる。
これにより、本光変調器への入力光を各光変調部20A,20Bに導くための曲線導波路13A,13Bについて、曲率半径を小さくすることで曲げ損失が増加するような事態を回避できる。或いは、曲線導波路13A,13Bの長さを基板10の長手方向に伸ばすことによって、光変調器が大型化したり、相互作用部INTを短くして駆動電圧の上昇を招いたりする事態を回避できる。つまり、本光変調器では、一つの入力光を各光変調部20A,20Bまで導くための光導波路(入力導波路11,光分岐部12および曲線導波路13A,13B)の長さL1(図4参照)が短くなる。このことは、各光変調部20A,20Bで変調された信号光を光合波部15に導くための曲線導波路14A,14Bについても同様であり、曲線導波路14A,14B、光合波部15および出力導波路16の長さL2が短くなる。
また、上記各信号電極31A,31Bの間隔S1〜S3について、S1=S2=S3の関係が成り立つように各光変調部20A,20Bの光導波路パターンを設計することによって、基板10の長手方向に垂直な方向のサイズを最小にすることも可能になる。必要とされる各信号電極31A,31Bの間隔は、接地を実質的にとることのできる接地電極の最小幅、およびマイクロ波電気信号のクロストークが抑圧される信号電極間の距離に応じて決まり、これらはマイクロ波電気信号の周波数スペクトルに対応させて適宜決めることができる。具体的には、例えば30GHz以上の変調帯域を有する光変調器の場合、接地電極の最小幅を信号電極の幅と等しくし、各光変調部20A,20Bの間に位置する接地電極を各々で共有する形で、各信号電極31A,31Bの間隔を設定することが可能である。
次に、第1実施形態による光変調器の動作について説明する。
まず、1台の光源等からの出力光が本光変調器の入力ポートINから入力導波路11に入力される。該入力光は入力導波路11を通って光分岐部12に入力され、所要の強度比に従って二分岐される。光分岐部12から出力される一方の分岐光は曲線導波路13Aを通って光変調部20Aの入力導波路21Aに入力され、他方の分岐光は曲線導波路13Bを通って光変調部20Bの入力導波路21Bに入力される。このとき、各光変調部20A,20Bに入力される光は、各曲線導波路13A,13Bでの曲げ損失により減衰することになる。しかし、本光変調器の構成では、各光変調部20A,20Bの間隔がクロストークを抑圧可能な範囲で狭く設定されており、各曲線導波路13A,13Bの曲率半径は比較的大きな値になっているので、曲げ損失による入力光の減衰は僅か、若しくは殆ど生じない。
光変調部20A(20B)では、入力導波路21A(21B)に入力された光が光分岐部22A(22B)で1:1の強度比に従って二分岐されて分岐導波路23A,24A(23B,24B)にそれぞれ送られる。ここで、信号電極31A(31B)の入力端からマイクロ波電気信号が印加されることにより、該マイクロ波電気信号のレベルに応じて変調された光が出力導波路26A(26B)から出力される。この変調光は、分極反転領域Piおよび非分極反転領域Pnでそれぞれ発生する位相変調量の差異が打ち消し合うため、波長チャープの低減された光となっている。
各光変調部20A,20Bからの出力光は、曲線導波路14A,14Bを通って光合波部16に入力され、一つの信号光に合波される。このときも、光合波部16に入力される各光が、各曲線導波路14A,14Bでの曲げ損失により減衰することになる。しかし、前述した曲線導波路13A,13Bの場合と同様に、曲げ損失による各光の減衰は僅か、若しくは殆ど生じない。光合波部16で合波された信号光は、出力導波路16を通って出力ポートOUTから外部に出力される。
上記のように本実施形態の光変調器によれば、分極反転領域Piを含む基板10上に2つの光変調部20A,20Bを並列に配置する場合でも、小型の構成により各光変調部20A,20Bに対して共通の入力光を低損失で与えることができ、波長チャープの低減された信号光を低コストで生成することが可能になる。
なお、上記第1実施形態では、各光変調部20A,20Bで変調された光を曲線導波路14A,14Bを介して光合波部15に与えて一つに合波する構成例を示したが、各光変調部20A,20Bの変調光を合波せずに別々に出力するような構成であってもよい。
また、上記第1実施形態では、各光変調部20A,20Bの信号電極31A,31Bが、入力側の非分極反転領域Pnと分極反転領域Piとの境界部分において、分岐導波路23A,23B側から分岐導波路24A,24B側へと同じ方向にシフトする一例を示したが、本発明はこれに限定されるものではない。例えば図5に示すように、光変調部20Aの信号電極31Aが分岐導波路23A側から分岐導波路24A側にシフトする一方、光変調部20Bの信号電極31B’は分岐導波路24B側から分岐導波路23B側へと逆方向にシフトする場合についても本発明の構成は有効である。
この図5の構成においては、各信号電極31A,31B’が逆方向にシフトした後の間隔S2’が狭くなるが、相互作用部INTの始点近傍Aから分極反転の境界近傍Bに近づくにつれて分岐導波路24A,23Bが互いに離れていくことにより、シフト後の各信号電極31A,31B’の間隔S2’は、相互作用部INTの始点近傍Aでの間隔S1’以上となる(S2’≧S1’)。この関係は相互作用部INTの終点近傍Cでの間隔S3’についても同様である(S2’≧S3’)。
さらに、上記図5の構成では、各光変調部の一対の分岐導波路の間隔をSwとすると、相互作用部INTの始点近傍Aにおける各光変調部20A,20Bの間隔(分岐導波路24Aと分岐導波路23Bの間の距離)がS1’−2×Swとなる。これに対して、前述の図4に示した第1実施形態では、相互作用部INTの始点近傍Aにおける各光変調部20A,20Bの間隔がS1−Swである。よって、前述した必要とされる各信号電極の間隔が図4および図5の各構成で同じである(S1=S1’)とすると、図5の構成を適用することにより、入力導波路11,光分岐部12および曲線導波路13A,13Bの長さL1をより短くすることができる。これと同様に、相互作用部INTの終点近傍Cにおける各光変調部20A,20Bの間隔もS3’−2×Swとなるので、曲線導波路14A,14B、光合波部15および出力導波路16の長さL2をより短くすることができる。
次に、本発明の第2実施形態について説明する。
図6は、第2実施形態による光変調器の構成を示す平面図である。なお、前述の図4に示した第1実施形態の構成と同一若しくは対応する部分には同じ符号を付して説明を省略するものとし、以降の他の実施形態についても同様とする。
図6において、本実施形態の光変調器の構成が前述した第1実施形態の場合と異なる点は、基板10に代えて、入力ポートINおよび出力ポートOUTがそれぞれ位置する各端面を斜めにカットした基板10’を適用している点である。該基板10’の各端面のカットの向きは、分極反転領域Piの平行四辺形の向きと同じになっている。ここでは、各端面のカットの方向と、分極反転領域Piの平行四辺形における各端面に対向する二辺の方向とが平行になるようにしている。なお、上記基板10’以外の構成は、第1実施形態の場合と同様である。
上記のような構成の光変調器によれば、基板10’の各端面を斜めにカットしたことで、本光変調器に対して入出力される光の反射戻り光を抑制することが可能になる。また、該各端面のカットの方向が、分極反転領域Piの平行四辺形の対辺の方向と平行にされているので、例えば図7に示すように一つのウェハ10Aより複数の基板(チップ)10’を切り出す場合を想定すると、該ウェハ10A上で隣接する各チップの連続性が良くなる。このため、複数の光変調器を容易に製造することができ、光変調器の量産および製造コストの削減が可能になる。
次に、本発明の第3実施形態について説明する。
上述した第1および第2実施形態では、各光変調部20A,20Bの一対の分岐導波路について、入力側および出力側の各非分極反転領域Pn内に位置する部分に緩やかな略S字形状の曲線導波路を適用することにより、各光変調部20A,20Bの間隔が分極反転の境界近傍で狭くならないようにした。このような構成では、各非分極反転領域Pnの基板10の長手方向についての長さが短い場合、当該部分の曲線導波路の曲率半径が小さくなって曲げ損失が増加してしまう可能性がある。そこで、第3実施形態では、上記のような場合に対応した応用例について説明する。
図8は、第3実施形態による光変調器の構成を示す平面図である。
図8において、本実施形態の光変調器は、各光変調部20A,20Bの一対の分岐導波路23A’,24A’,23B’,24B’について、分極反転領域Pi内に位置する部分にも曲線導波路を適用することにより、入力側および出力側の各非分極反転領域Pn内に位置する部分の曲率半径が小さくなるのを回避している。なお、本実施形態は、前述の図5に示した第1実施形態の変形例と同様なパターンの信号電極31A,31B’が各光変調部20A,20Bに適用されると共に、前述の図6に示した第2実施形態と同様な斜めカットの基板10’が適用される構成を例示している。
具体的に、光変調部20Aの各分岐導波路23A’,24A’は、光分岐部22Aに接続する一端から入力側の分極反転の境界までの間に位置する部分、および、出力側の分極反転の境界から光合波部25Aに接続する他端までの間に位置する部分が、上述した第1および第2実施形態の場合と同様な緩やかな略S字形状の曲線導波路となっている。また、分極反転領域Pi内に位置する部分は、入力側の分極反転の境界の前後で導波路のカーブの向きが変わると共に、出力側の分極反転の境界の前後でも導波路のカーブの向きが変わる、図で上側に緩やかに湾曲した曲線導波路となっている。
光変調部20Bの各分岐導波路23B’,24B’は、光分岐部22Bに接続する一端から入力側の分極反転の境界までの間に位置する部分、および、出力側の分極反転の境界から光合波部25Bに接続する他端までの間に位置する部分が、上述した第1および第2実施形態の場合と同様な緩やかな略S字形状の曲線導波路となっている。また、分極反転領域Pi内に位置する部分は、入力側の分極反転の境界の前後で導波路のカーブの向きが変わると共に、出力側の分極反転の境界の前後でも導波路のカーブの向きが変わる、図で下側に緩やかに湾曲した曲線導波路となっている。
上記のような構成の光変調器によれば、入力側および出力側の各非分極反転領域Pnの長さが短い場合でも、各分岐導波路23A’,24A’,23B’,24B’の分極反転領域Pi内に位置する部分を上下に湾曲した曲線導波路としたことで、各非分極反転領域Pn内に位置する略S字形状の曲線導波路の曲率半径を大きくすることができるため、各々の分岐導波路における曲げ損失(放射損失)を減らすことが可能になる。
次に、本発明の第4実施形態について説明する。
図9は、第4実施形態による光変調器の構成を示す平面図である。
図9において、本実施形態の光変調器は、例えば上述の図5に示した第1実施形態の変形例について、各光変調部20A,20Bの信号電極31A,31B’とは別にDC電極33A,33Bを設け、該DC電極33A,33Bに印加するバイアス電圧を調整することで、各光変調部20A,20Bの光出力をオフにする電圧が一定に保たれるようにしている。
各光変調部20A,20Bの分岐導波路23A,24A,23B,24Bは、上記各DC電極33A,33Bを相互作用部INTの終点と光合波部25A,25Bとの間に配置するために、出力側にそれぞれ伸長されている。なお、各分岐導波路23A,24A,23B,24Bの分極反転領域Pi内に位置する部分には、前述の図8に示した第3実施形態の場合と同様な曲線導波路が適用されているが、当該部分は直線導波路としてもよい。
各DC電極33A,33Bは、分岐導波路23A,24Bの伸長部分の真上に沿って形成され、各々の一端が基板10の側面まで引き出されている。各接地電極32A,32Bは、各DC電極33A,33Bに対応して出力側に伸長されており、各DC電極33A,33Bから隔離されると共、各分岐導波路24A,23Bの真上に沿う部分を含んでいる。
上記のような構成の光変調器では、例えば、各光変調部20A,20Bでそれぞれ変調された信号光の強度が図示しない出力モニタ等を用いてモニタされ、該モニタ結果に応じて各DC電極33A,33Bに印加するバイアス電圧がフィードバック制御されることにより、各光変調部20A,20Bの光出力をオフにする電圧が一定に保たれる。
このとき、各DC電極33A,33Bが各光変調部20A,20Bの相互作用部INTの出力側に配置されていても、分岐導波路23A,24Bに沿って各DC電極33A,33Bが湾曲形成されているので、相互作用部INTの終点近傍Cにおける各信号電極31A,31B’の間隔S3’は、各DC電極33A,33Bの間隔よりも広くなっている。該間隔S3’が上述した必要とされる信号電極の間隔の条件を満たしていればクロストークを防ぐことができるので、各光合波部25A,25B近傍における光変調部20A,20Bの間隔は、上述した第1実施形態の変形例の場合よりも狭くなる。
よって、各光変調部20A,20Bの出力光を光合波部15に導くための曲線導波路14A,14Bの曲率半径を大きくすることが可能である。曲線導波路14A,14Bの曲率半径を最大にするには、分岐導波路32A,24Bの信号電極31A,31B’下に位置する部分(出力側の分極反転の境界から相互作用部INTの終点までの範囲)の曲率半径と、分岐導波路32A,24BのDC電極33A,33B下に位置する部分の曲率半径とが等しくなるようにすればよい。
なお、上記第4実施形態では、DC電極33A,33Bを相互作用部INTの終点と光合波部25A,25Bとの間に配置する一例を示したが、各光変調部20A,20Bの光分岐部22A,22Bと相互作用部INTの始点との間にDC電極33A,33Bを配置するようにしてもよい。このような構成は、例えば図10に示すように、各光変調部20A,20Bの出力光を一つに合波する必要がない場合に好適である。各DC電極33A,33Bを入力側に配置する場合、各光変調部20A,20Bの分岐導波路23A,24A,23B,24Bは入力側にそれぞれ伸長される。各DC電極33A,33Bは、各分岐導波路23A,24Bの伸長部分の真上に沿って形成される。この場合、相互作用部INTの始点近傍Aにおける各信号電極31A,31B’の間隔S1’が、各DC電極33A,33Bの間隔よりも広くなるので、光分岐部12で二分岐された入力光を各光変調部20A,20Bに導くための曲線導波路13A,13Bの曲率半径を大きくすることが可能できる。
また、上記第4実施形態では、図5に示した第1実施形態の変形例についてDC電極を設ける一例を説明したが、上述した他の実施形態および変形例についても同様にしてDC電極を設けることが可能である。
次に、本発明の第5実施形態について説明する。
上述した第1〜第4実施形態では、一つの基板上に2つの光変調部が並列に配置される光変調器について説明してきたが、本発明は、Nを1以上の整数として、2×N個の光変調部の並列配置にも応用可能である。そこで、第5実施形態では、例えば4つ(N=2)の光変調部を同一基板上に並列配置した応用例を説明する。
図11は、第5実施形態による光変調器の構成を示す平面図である。
図11において、本実施形態の光変調器は、電気光学効果を有する一つの結晶基板10上に、4つの光変調部20A,20B,20C,20Dが並列に配置されている。基板10は、上述した第1実施形態の場合と同様に矩形に切り出したZ−カットの結晶を用い、その長手方向の中央部分には、平行四辺形の形状を持つ分極反転領域Piが形成されている。
上記光変調器は、一つの入力ポートINおよび一つの出力ポートOUTを備えており、入力ポートINには1本の入力導波路11の一端が接続されている。入力導波路11の他端は、光分岐部12の入力端に接続しており、光分岐部12の二つ出力端には、曲線導波路13AB,13CDを介して、各光分岐部12AB,12CDの入力端がそれぞれ接続されている。光分岐部12ABの二つ出力端には、曲線導波路13A,13Bを介して、各光変調部20A,20Bの入力端がそれぞれ接続されている。光分岐部12CDの二つ出力端には、曲線導波路13C,13Dを介して、各光変調部20C,20Dの入力端がそれぞれ接続されている。各光分岐部12,12AB,12CDは、入力光を所要の強度比で二つに分岐して出力する。
図で最上段に位置する光変調部20Aは、上述の図4に示した第1実施形態における光変調部20Aと同様の構成である。2段目の光変調部20Bは、上述の図2に示した従来の光変調器と同様の構成であり、一対の分岐導波路23B,24Bが分極反転領域Piおよび非分極反転領域Pnの全体に亘って直線導波路となっている。
各光変調部20A,20Bの信号電極31A,31Bは、入力側の非分極反転領域Pn内において分岐導波路23A,23Bの真上に沿って形成されており、入力側の非分極反転領域Pnと分極反転領域Piとの境界部分において分岐導波路23A,23B側から分岐導波路24A,24B側にシフトし、分極反転領域Pi内において分岐導波路24A,24Bの真上に沿って形成されている。また、信号電極31A,31Bは、分極反転領域Piと出力側の非分極反転領域Pnとの境界部分において分岐導波路24A,24B側から分岐導波路23A,23B側にシフトし、出力側の非分極反転領域Pn内において分岐導波路23A,23Bの真上に沿って形成されている。
各光変調部20A,20Bの接地電極32A,32Bは、信号電極31A,31Bから隔離されると共に、分極反転領域Pi内において分岐導波路23A,23Bの真上に沿う部分と、入力側および出力側の各非分極反転領域Pn内において分岐導波路24A,24Bの真上に沿う部分とを含んで形成されている。なお、ここでは光変調部20Aの分岐導波路24Aと光変調部20Bの分岐導波路23Bとの間に形成される各接地電極32A,32Bが共有されている。
上記各光変調部20A,20Bの出力端は、曲線導波路14A,14Bを介して、光合波部15ABの二つの入力端に接続している。光合波部15ABは、各光変調部20A,20Bで変調された各々の信号光を一つに合波する。光合波部15ABの出力端には、出力ポートOUT_ABが接続されている。
3,4段目の光変調部20C,20Dは、上述の図5に示した第1実施形態の変形例における光変調部20Bと同様の構成である。ただし、光変調部20Cにおける各分岐導波路23C,24Cの略S字形状をした曲線部分の曲率半径よりも、光変調部20Dにおける各分岐導波路23D,24Dの略S字形状をした曲線部分の曲率半径が大きくなっている。
各光変調部20C,20Dの信号電極31C,31Dは、入力側の非分極反転領域Pn内において分岐導波路24C,24Dの真上に沿って形成されており、入力側の非分極反転領域Pnと分極反転領域Piとの境界部分において分岐導波路24C,24D側から分岐導波路23C,23D側にシフトし、分極反転領域Pi内において分岐導波路23C,23Dの真上に沿って形成されている。また、信号電極31C,31Dは、分極反転領域Piと出力側の非分極反転領域Pnとの境界部分において分岐導波路23C,23D側から分岐導波路24C,24D側にシフトし、出力側の非分極反転領域Pn内において分岐導波路24C,24Dの真上に沿って形成されている。
各光変調部20C,20Dの接地電極32C,32Dは、信号電極31C,31Dから隔離されると共に、分極反転領域Pi内において分岐導波路24C,24Dの真上に沿う部分と、入力側および出力側の各非分極反転領域Pn内において分岐導波路23C,23Dの真上に沿う部分とを含んで形成されている。なお、ここでは前述した光変調部20Bの分岐導波路24Bと光変調部20Cの分岐導波路23Cとの間に形成される接地電極32Cが、光変調部20Bの接地電極32Bと共有されている。また、光変調部20Cの分岐導波路24Cと光変調部20Dの分岐導波路23Dとの間に形成される各接地電極32C,32Dが共有されている。
上記各光変調部20C,20Dの出力端は、曲線導波路14C,14Dを介して、光合波部15CDの二つの入力端に接続している。光合波部15CDは、各光変調部20C,20Dで変調された各々の信号光を一つに合波する。光合波部15CDの出力端には、出力ポートOUT_CDが接続されている。
上記のような構成の光変調器では、光変調部20Aの分岐導波路23A,24Aが、相互作用部INTの始点近傍から入力側の分極反転の境界近傍に近づくにつれて、光変調部20Bの分岐導波路23B,24Bより離れていくことにより、入力側の分極反転の境界近傍での各信号電極31A,31Bの間隔は、相互作用部INTの始点近傍での間隔以上となる。また、光変調部20Aの分岐導波路23A,24Aが、出力側の分極反転の境界近傍から相互作用部INTの終点近傍に近づくにつれて、光変調部20Bの分岐導波路23B,24Bに接近していくことにより、出力側の分極反転の境界近傍での各信号電極31A,31Bの間隔は、相互作用部INTの終点近傍での間隔以上となる。よって、入力側の曲線導波路13A,13Bおよび出力側の曲線導波路14A,14Bの各々の曲率半径を大きくすることができる。
さらに、光変調部20Dの分岐導波路23D,24Dが、相互作用部INTの始点近傍から入力側の分極反転の境界近傍に近づくにつれて、光変調部20Cの分岐導波路23C,24Cより離れていくことにより、入力側の分極反転の境界近傍での各信号電極31C,31Dの間隔は、相互作用部INTの始点近傍での間隔以上となる。また、光変調部20Dの分岐導波路23D,24Dが、出力側の分極反転の境界近傍から相互作用部INTの終点近傍に近づくにつれて、光変調部20Cの分岐導波路23C,24Cに接近していくことにより、出力側の分極反転の境界近傍での各信号電極31C,31Dの間隔は、相互作用部INTの終点近傍での間隔以上となる。よって、入力側の曲線導波路13C,13Dおよび出力側の曲線導波路14C,14Dの各々の曲率半径を大きくすることができる。
加えて、光変調部20Cの分岐導波路23C,24Cが、相互作用部INTの始点近傍から入力側の分極反転の境界近傍に近づくにつれて、光変調部20Bの分岐導波路23B,24Bより離れていくことにより、入力側の分極反転の境界近傍での各信号電極31B,31Cの間隔は、相互作用部INTの始点近傍での間隔以上となる。よって、入力側の曲線導波路13AB,13CDの各曲率半径を大きくすることもできる。
上記のように本実施形態の光変調器によれば、分極反転領域Piを含む基板10上に4つの光変調部20A〜20Dを並列に配置する場合でも、小型の構成により各光変調部20A〜20Dに対して共通の入力光を低損失で与えることができ、波長チャープの低減された信号光を低コストで生成することが可能になる。
なお、上記第5実施形態では、各光合波部15AB,15CDで合波した信号光が二つの出力ポートOUT_AB,OUT_CDより別々に出力される一例を示したが、各光合波部15AB,15CDの出力光を、別途設けた曲線導波路を介して光合波器に与えて合波し、一つの出力ポートより出力するようにしてもよい。また、光変調部20Bの一対の分岐導波路23B,24Bを直線導波路とする構成を示したが、該各分岐導波路23B,24Bの入力側および出力側に略S字形状の曲線導波路を適用してもよい。この場合、光変調部20Bの各分岐導波路23B,24における曲線部分の曲率半径よりも、光変調部20Aの各分岐導波路23A,24Aにおける曲線部分の曲率半径が大きくなるようにする。
また、上述したような各実施形態の光変調器に関しては、各光変調部の信号電極の入力端付近のパターン形状(例えば、電極パッドや電極の曲がりなど)に制約されて、各光変調部のMZ型光導波路すべてについての基板の長手方向に平行な中心軸を、該基板の長手方向の中心軸付近に配置することが難しくなる場合がある。このような場合には、例えば、上述した各実施形態と同様にして入力側の非分極反転領域内において隣り合う光変調部の分岐導波路の間隔を広げつつ、各光変調部の分岐導波路の中心軸を長手方向に垂直な方向にシフトさせるようにすればよい。しかし、このとき各光変調部の分岐導波路の長さを同じにすることが一つの課題となる。
上記課題に対しては、例えば図12の光導波路パターンに示すように、相互作用部INTの始点から入力側の分極反転の境界までの領域を基板の長手方向について二つに分け、前半の領域A1において各光変調部20A,20Bの分岐導波路の間隔を広げ、後半の領域A2において各光変調部20A,20Bの分岐導波路を緩やかな略S字形状の曲線導波路によって同じ方向にシフトさせるのがよい。この光導波路パターンでは、領域A1内の曲線導波路の曲率半径R1と、領域A2内の曲線導波路の曲率半径R2とが等しくなる(R1=R2)ようにすると、該曲率半径を最も大きくすることができる。このようにして各光変調部20A,20Bの分岐導波路の長さを同じにすることにより、高い消光比を実現することが可能になる。
また、各光変調部20A,20Bの分岐導波路の長さを同じにする別の手法として、例えば図13の光導波路パターンに示すように、相互作用部INTの始点から入力側の分極反転の境界までの領域において、各光変調部20Aの分岐導波路23A,24Aの曲率半径をR3とし、各光変調部20Bの分岐導波路23B,24Bの曲率半径をR3とは異なるR4とする。一方、出力側の分極反転の境界から相互作用部INTの終点までの領域においては、各光変調部20Aの分岐導波路23A,24Aの曲率半径をR4とし、各光変調部20Bの分岐導波路23B,24Bの曲率半径をR3とする。このような光導波路パターンを適用しても、各光変調部20A,20BのMZ型光導波路の中心軸を同じ方向にシフトさせながら、各々の分岐導波路の長さを同じにすることができる。
さらに、上述した各実施形態では、分極反転領域Piの形状を平行四辺形として、各光変調部の長手方向の略中央に分極反転領域Piが配置されるようにしたが、本発明はこれに限らない。例えば、隣り合う光変調部の長手方向のずれが大きく、分極反転領域Piを平行四辺形にするだけでは各光変調部の長手方向の略中央に分極反転領域Piを配置できない場合、光変調器の製造性は劣ることになるが、分極反転領域Piの形状を5角以上の多角形とする、曲線で囲まれた形状とする、或いは、分極反転領域Piを光変調部の数に応じて分割するなどの応用も可能である。
以上の各実施形態に関して、さらに以下の付記を開示する。
(付記1) 電気光学効果を有する基板にマッハツェンダ型光導波路を形成し、該マッハツェンダ型光導波路の光分岐部および光合波部の間に位置する一対の分岐導波路に沿って信号電極および接地電極を設け、進行波電極とした前記信号電極に、変調データに対応した電気信号を印加することにより、前記マッハツェンダ型光導波路を伝搬する光の変調を行う少なくとも2つの光変調部が、同一の前記基板上に並列に配置された光変調器であって、
前記基板は、前記各光変調部における、前記一対の分岐導波路を伝搬する光と前記信号電極を伝搬する電気信号とが相互に作用する相互作用部について、一部の領域の分極方向を他の領域の分極方向に対して反転させた分極反転領域を有し、
前記各光変調部は、それぞれに共通な一つの入力ポートに入力される光を複数に分岐した各分岐光が、各々に対応した曲線導波路を介して前記マッハツェンダ型光導波路の入力端に導かれ、
前記各光変調部の信号電極は、それぞれ、前記相互作用部の分極反転領域内では前記一対の分岐導波路のうちの一方の分岐導波路上に配置され、前記相互作用部の分極反転されていない非分極反転領域内では他方の分岐導波路上に配置されており、
前記各光変調部の一対の分岐導波路は、それぞれ、前記基板上で隣り合う他の前記光変調部の一対の分岐導波路との間隔について、前記相互作用部の始点近傍における間隔よりも、前記分極反転領域と前記非分極反転領域との入力側の境界近傍における間隔が広くなっていることを特徴とする光変調器。
(付記2) 付記1に記載の光変調器であって、
前記各光変調部の信号電極は、それぞれ、前記基板上で隣り合う他の前記光変調部の信号電極との間隔について、前記分極反転領域と前記非分極反転領域との入力側の境界近傍における間隔が、前記相互作用部の始点近傍における間隔以上であることを特徴とする光変調器。
(付記3) 付記1または2に記載の光変調器であって、
前記各光変調部の一対の分岐導波路は、それぞれ、前記基板上で隣り合う他の前記光変調部の一対の分岐導波路との間隔について、前記相互作用部の終点近傍における間隔よりも、前記分極反転領域と前記非分極反転領域との出力側の境界近傍における間隔が広くなっていることを特徴とする光変調器。
(付記4) 付記3に記載の光変調器であって、
前記各光変調部の信号電極は、それぞれ、前記基板上で隣り合う他の前記光変調部の信号電極との間隔について、前記分極反転領域と前記非分極反転領域との出力側の境界近傍における間隔が、前記相互作用部の終点近傍における間隔以上であることを特徴とする光変調器。
(付記5) 付記1〜4のいずれか1つに記載の光変調器であって、
前記分極反転領域は、前記基板上で隣り合う前記光変調部における前記非分極反転領域との境界の位置が、入力側および出力側の双方ともに、前記基板の長手方向にずれる形状を有することを特徴とする光変調器。
(付記6) 付記5に記載の光変調器であって、
前記分極反転領域は、平行四辺形であることを特徴とする光変調器。
(付記7) 付記1〜6のいずれか1つに記載の光変調器であって、
前記各光変調部の一対の分岐導波路は、それぞれ、第1分岐導波路および該第1分岐導波路の一方の側に並行する第2分岐導波路からなり、
少なくとも1つの前記光変調部の信号電極は、前記分極反転領域内では前記第1分岐導波路上に配置され、前記非分極反転領域内では前記第2分岐導波路上に配置されており、
残りの前記光変調部の信号電極は、前記分極反転領域内では前記第2分岐導波路上に配置され、前記非分極反転領域内では前記第1分岐導波路上に配置されていることを特徴とする光変調器。
(付記8) 付記1〜7のいずれか1つに記載の光変調器であって、
前記基板は、光が入出力される端面が斜めにカットされていることを特徴とする光変調器。
(付記9) 付記8に記載の光変調器であって、
前記分極反転領域は、平行四辺形であり、
前記基板は、前記端面のカットの向きが前記分極反転領域の平行四辺形の向きと同じであることを特徴とする光変調器。
(付記10) 付記1〜9のいずれか1つに記載の光変調器であって、
前記各光変調部の一対の分岐導波路は、前記非分極反転領域内に位置する部分が、略S字形状の曲線導波路であり、前記分極反転領域内に位置する部分が、直線導波路であることを特徴とする光変調器。
(付記11) 付記1〜9のいずれか1つに記載の光変調器であって、
前記各光変調部の一対の分岐導波路は、前記非分極反転領域内に位置する部分が、略S字形状の曲線導波路であり、前記分極反転領域内に位置する部分が、前記前記非分極反転領域との境界の前後でカーブの向きが変わる曲線導波路であることを特徴とする光変調器。
(付記12) 付記1〜11のいずれか1つに記載の光変調器であって、
前記各光変調部は、それぞれ、前記一対の分岐導波路上で前記信号電極が配置されていない部分に、バイアス電圧を印加するDC電極を備えたことを特徴とする光変調器。
(付記13) 付記12に記載の光変調器であって、
前記各光変調部のDC電極は、それぞれ、前記相互作用部の終点から前記マッハツェンダ型光導波路の光合波部との接続点までの間に位置する、前記一対の分岐導波路のうちの一方の分岐導波路に沿って配置されていることを特徴とする光変調器。
(付記14) 付記12に記載の光変調器であって、
前記各光変調部のDC電極は、それぞれ、前記マッハツェンダ型光導波路の光分波部との接続点から前記相互作用部の始点までの間に位置する、前記一対の分岐導波路のうちの一方の分岐導波路に沿って配置されていることを特徴とする光変調器。
(付記15) 付記1〜14のいずれか1つに記載の光変調器であって、
前記各光変調部の一対の分岐導波路は、それぞれ、前記相互作用部の始点から前記分極反転領域と前記非分極反転領域との入力側の境界までの間に位置する部分が、当該部分を二つの領域に分けたときの前半の領域において、前記基板上で隣り合う他の前記光変調部の一対の分岐導波路との間隔を広げ、後半の領域において、前記マッハツェンダ型光導波路の中心軸を一方向にシフトさせる、曲線導波路となっていることを特徴とする光変調器。
(付記16) 付記1〜14のいずれか1つに記載の光変調器であって、
少なくとも1つの前記光変調部の一対の分岐導波路は、前記相互作用部の始点から前記分極反転領域と前記非分極反転領域との入力側の境界までの間に位置する部分が、第1の曲率半径を持つ略S字形状の曲線導波路であり、前記分極反転領域と前記非分極反転領域との出力側の境界から前記相互作用部の終点までの間に位置する部分が、前記第1の曲率半径とは異なる第2の曲率半径を持つ略S字形状の曲線導波路であり、
残りの前記光変調部の一対の分岐導波路は、前記相互作用部の始点から前記分極反転領域と前記非分極反転領域との入力側の境界までの間に位置する部分が、前記第2の曲率半径を持つ略S字形状の曲線導波路であり、前記分極反転領域と前記非分極反転領域との出力側の境界から前記相互作用部の終点までの間に位置する部分が、前記第1の曲率半径を持つ略S字形状の曲線導波路であることを特徴とする光変調器
(付記17) 付記1〜16のいずれか1つに記載の光変調器と、単一の光源と、を備え、該光源の出力光が前記光変調器の入力ポートに入力されることを特徴とする光送信装置。
10,10’…基板
11,21A〜21D…入力導波路
12,22A〜22D…光分岐部
13A,13B,14A,14B…曲線導波路
15,25A〜25D…光合波部
16,26A,26B…出力導波路
20A〜20D…光変調部
23A〜23D,24A〜24D…分岐導波路
31A〜31D…信号電極
32A〜32D…接地電極
33A,33B…DC電極
IN…入力ポート
INT…相互作用部
OUT…出力ポート
Pi…分極反転領域
Pn…非分極反転領域
S1〜S3…信号電極の間隔
Sw…一対の分岐導波路の間隔

Claims (10)

  1. 電気光学効果を有する基板にマッハツェンダ型光導波路を形成し、該マッハツェンダ型光導波路の光分岐部および光合波部の間に位置する一対の分岐導波路に沿って信号電極および接地電極を設け、進行波電極とした前記信号電極に、変調データに対応した電気信号を印加することにより、前記マッハツェンダ型光導波路を伝搬する光の変調を行う少なくとも2つの光変調部が、同一の前記基板上に並列に配置された光変調器であって、
    前記基板は、前記各光変調部における、前記一対の分岐導波路を伝搬する光と前記信号電極を伝搬する電気信号とが相互に作用する相互作用部について、一部の領域の分極方向を他の領域の分極方向に対して反転させた分極反転領域を有し、
    前記各光変調部は、それぞれに共通な一つの入力ポートに入力される光を複数に分岐した各分岐光が、各々に対応した曲線導波路を介して前記マッハツェンダ型光導波路の入力端に導かれ、
    前記各光変調部の信号電極は、それぞれ、前記相互作用部の分極反転領域内では前記一対の分岐導波路のうちの一方の分岐導波路上に配置され、前記相互作用部の分極反転されていない非分極反転領域内では他方の分岐導波路上に配置されており、
    前記各光変調部の一対の分岐導波路は、それぞれ、前記基板上で隣り合う他の前記光変調部の一対の分岐導波路との間隔について、前記相互作用部の始点近傍における間隔よりも、前記分極反転領域と前記非分極反転領域との入力側の境界近傍における間隔が広くなっていることを特徴とする光変調器。
  2. 請求項1に記載の光変調器であって、
    前記各光変調部の信号電極は、それぞれ、前記基板上で隣り合う他の前記光変調部の信号電極との間隔について、前記分極反転領域と前記非分極反転領域との入力側の境界近傍における間隔が、前記相互作用部の始点近傍における間隔以上であることを特徴とする光変調器。
  3. 請求項1または2に記載の光変調器であって、
    前記各光変調部の一対の分岐導波路は、それぞれ、前記基板上で隣り合う他の前記光変調部の一対の分岐導波路との間隔について、前記相互作用部の終点近傍における間隔よりも、前記分極反転領域と前記非分極反転領域との出力側の境界近傍における間隔が広くなっていることを特徴とする光変調器。
  4. 請求項3に記載の光変調器であって、
    前記各光変調部の信号電極は、それぞれ、前記基板上で隣り合う他の前記光変調部の信号電極との間隔について、前記分極反転領域と前記非分極反転領域との出力側の境界近傍における間隔が、前記相互作用部の終点近傍における間隔以上であることを特徴とする光変調器。
  5. 請求項1〜4のいずれか1つに記載の光変調器であって、
    前記分極反転領域は、前記基板上で隣り合う前記光変調部における前記非分極反転領域との境界の位置が、入力側および出力側の双方ともに、前記基板の長手方向にずれる形状を有することを特徴とする光変調器。
  6. 請求項1〜5のいずれか1つに記載の光変調器であって、
    前記各光変調部の一対の分岐導波路は、それぞれ、第1分岐導波路および該第1分岐導波路の一方の側に並行する第2分岐導波路からなり、
    少なくとも1つの前記光変調部の信号電極は、前記分極反転領域内では前記第1分岐導波路上に配置され、前記非分極反転領域内では前記第2分岐導波路上に配置されており、
    残りの前記光変調部の信号電極は、前記分極反転領域内では前記第2分岐導波路上に配置され、前記非分極反転領域内では前記第1分岐導波路上に配置されていることを特徴とする光変調器。
  7. 請求項1〜6のいずれか1つに記載の光変調器であって、
    前記基板は、光が入出力される端面が斜めにカットされていることを特徴とする光変調器。
  8. 請求項1〜7のいずれか1つに記載の光変調器であって、
    前記各光変調部の一対の分岐導波路は、前記非分極反転領域内に位置する部分が、略S字形状の曲線導波路であり、前記分極反転領域内に位置する部分が、直線導波路であることを特徴とする光変調器。
  9. 請求項1〜7のいずれか1つに記載の光変調器であって、
    前記各光変調部の一対の分岐導波路は、前記非分極反転領域内に位置する部分が、略S字形状の曲線導波路であり、前記分極反転領域内に位置する部分が、前記前記非分極反転領域との境界の前後でカーブの向きが変わる曲線導波路であることを特徴とする光変調器。
  10. 請求項1〜9のいずれか1つに記載の光変調器であって、
    前記各光変調部は、それぞれ、前記一対の分岐導波路上で前記信号電極が配置されていない部分に、バイアス電圧を印加するDC電極を備えたことを特徴とする光変調器。
JP2009029002A 2009-02-10 2009-02-10 光変調器 Active JP5071402B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009029002A JP5071402B2 (ja) 2009-02-10 2009-02-10 光変調器
US12/634,793 US8606053B2 (en) 2009-02-10 2009-12-10 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009029002A JP5071402B2 (ja) 2009-02-10 2009-02-10 光変調器

Publications (2)

Publication Number Publication Date
JP2010185977A JP2010185977A (ja) 2010-08-26
JP5071402B2 true JP5071402B2 (ja) 2012-11-14

Family

ID=42540481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009029002A Active JP5071402B2 (ja) 2009-02-10 2009-02-10 光変調器

Country Status (2)

Country Link
US (1) US8606053B2 (ja)
JP (1) JP5071402B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6264064B2 (ja) * 2014-01-31 2018-01-24 住友大阪セメント株式会社 光変調素子
JP6220836B2 (ja) 2015-10-23 2017-10-25 富士通オプティカルコンポーネンツ株式会社 光変調器モジュール
CN110824731A (zh) * 2019-11-29 2020-02-21 苏州极刻光核科技有限公司 分布式光强调制器
CN111240052B (zh) * 2020-03-10 2023-03-21 Nano科技(北京)有限公司 一种共面波导传输线及带有该共面波导传输线的硅基电光调制器
CN116560119B (zh) * 2023-06-25 2023-09-19 华中科技大学 基于行波电极结构的硅基薄膜铌酸锂宽带电光调制器芯片

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053574A1 (ja) * 2002-12-06 2004-06-24 Fujitsu Limited 光変調器
JP2004317949A (ja) * 2003-04-18 2004-11-11 Hitachi Cable Ltd 分岐光導波路装置
JP4899730B2 (ja) * 2006-09-06 2012-03-21 富士通株式会社 光変調器
WO2008117460A1 (ja) * 2007-03-27 2008-10-02 Fujitsu Limited 多値光強度変調器

Also Published As

Publication number Publication date
US8606053B2 (en) 2013-12-10
US20100202722A1 (en) 2010-08-12
JP2010185977A (ja) 2010-08-26

Similar Documents

Publication Publication Date Title
JP5439838B2 (ja) 光変調器
JP5326624B2 (ja) 光変調器
JP5120341B2 (ja) 光デバイス
JP4899730B2 (ja) 光変調器
JP5233765B2 (ja) 光デバイス
JP5092573B2 (ja) 光導波路デバイス
JP4842987B2 (ja) 光デバイス
US9568801B2 (en) Optical modulator
JP5243334B2 (ja) 光変調器
JP6506169B2 (ja) 光変調器
US6600843B2 (en) Optical modulator
WO2014157456A1 (ja) 光変調器
JP2011007972A (ja) 光導波路デバイス
JP5071402B2 (ja) 光変調器
JP6315041B2 (ja) 光変調器
JP2017211504A (ja) 光変調器
JP2014112171A (ja) 光変調器
JP3558529B2 (ja) 光変調器および光変調装置
US11892743B2 (en) Optical modulation element and optical modulation module
JP2015102686A (ja) 光変調器
US20070217729A1 (en) Optical modulator
JP2013238785A (ja) 光変調器
CN116569099A (zh) 光波导元件、光调制器、光调制模块、及光发送装置
JP4138760B2 (ja) 光変調器
JP5001310B2 (ja) 光変調器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R150 Certificate of patent or registration of utility model

Ref document number: 5071402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3