JP5070570B2 - Thermal expansion coefficient measuring method and measuring apparatus - Google Patents

Thermal expansion coefficient measuring method and measuring apparatus Download PDF

Info

Publication number
JP5070570B2
JP5070570B2 JP2007300727A JP2007300727A JP5070570B2 JP 5070570 B2 JP5070570 B2 JP 5070570B2 JP 2007300727 A JP2007300727 A JP 2007300727A JP 2007300727 A JP2007300727 A JP 2007300727A JP 5070570 B2 JP5070570 B2 JP 5070570B2
Authority
JP
Japan
Prior art keywords
measuring
sample
thermal expansion
measurement
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007300727A
Other languages
Japanese (ja)
Other versions
JP2009128066A (en
Inventor
宇大 田中
修 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2007300727A priority Critical patent/JP5070570B2/en
Publication of JP2009128066A publication Critical patent/JP2009128066A/en
Application granted granted Critical
Publication of JP5070570B2 publication Critical patent/JP5070570B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、400℃を超える温度範囲における熱膨張率を測定するための熱膨張率測定方法及び測定装置に関するものである。   The present invention relates to a thermal expansion coefficient measuring method and a measuring apparatus for measuring a thermal expansion coefficient in a temperature range exceeding 400 ° C.

黒鉛をはじめとする炭素材料やセラミックスなどの材料においては、400℃を超える温度範囲で使用する場合があり、400℃を超える温度範囲における熱膨張率が基礎データとして必要とされている。   Materials such as carbon materials such as graphite and ceramics may be used in a temperature range exceeding 400 ° C., and a coefficient of thermal expansion in a temperature range exceeding 400 ° C. is required as basic data.

一般に、熱膨張率は、試料を高温炉内に入れて、試料を加熱することにより測定されている。この場合、試料温度の不均一による測定誤差が大きくなりやすいという問題がある。また、試料を加熱するための高温炉が必要であり、装置が大型化するという問題がある。   Generally, the coefficient of thermal expansion is measured by placing a sample in a high temperature furnace and heating the sample. In this case, there is a problem that the measurement error due to the non-uniformity of the sample temperature tends to increase. Moreover, there is a problem that a high-temperature furnace for heating the sample is necessary and the apparatus becomes large.

上記のような問題を解決することができる熱膨張率の測定方法として、特許文献1においては、試料の長さ方向にパルス的な電流を流して試料を通電加熱し、この加熱の間に、試料側面に間隔を置いて固定されて試料と共に移動する一対の可動電圧プローブ、及び一定の間隔に保たれて試料側面を摺動する一対の固定電圧プローブに生じる電位差の違いから、試料の熱膨張率を測定する方法が提案されている。   As a method for measuring the coefficient of thermal expansion that can solve the above-described problem, in Patent Document 1, a sample is energized and heated by passing a pulsed current in the length direction of the sample, and during this heating, Thermal expansion of the sample due to the difference in potential difference that occurs between the pair of movable voltage probes that are fixed on the side of the sample and move with the sample, and the pair of fixed voltage probes that slide on the side of the sample at a constant interval A method for measuring the rate has been proposed.

このような方法によれば、試料にパルス的な電流を流して試料を直接に通電加熱し、温度上昇させているので、高温炉などの設備が必要ではなく、装置を簡略化することができる。   According to such a method, since a pulse current is supplied to the sample and the sample is directly energized and heated to raise the temperature, equipment such as a high-temperature furnace is not necessary, and the apparatus can be simplified. .

しかしながら、このような方法は、特許文献1に記載されているように、黒鉛よりも電気伝導性が高い、金属などの材料の測定に適した方法である。またこの方法では、試料の長さ方向の膨張を測定しており試料全体あるいは少なくとも測定部分の温度が均一でなければならないという問題があった。測定部分における温度が不均一であると、精度良く測定することができない。   However, as described in Patent Document 1, such a method is a method suitable for measuring a material such as a metal having higher electrical conductivity than graphite. Further, this method has a problem that the expansion in the length direction of the sample is measured and the temperature of the entire sample or at least the measurement portion must be uniform. If the temperature in the measurement part is non-uniform, it cannot be measured accurately.

また、プローブ間における電位差、またはプローブもしくは可動電圧の移動量を測定して、熱膨張率を求めているので、固定電圧プローブ及び可動電圧プローブあるいは可動電極などを設ける必要があり、装置が複雑化するという問題があった。
特開平08−128977号公報
Also, since the coefficient of thermal expansion is obtained by measuring the potential difference between the probes or the amount of movement of the probe or movable voltage, it is necessary to provide a fixed voltage probe and a movable voltage probe or movable electrode, which complicates the device. There was a problem to do.
Japanese Patent Application Laid-Open No. 08-128977

本発明の目的は、400℃を超える温度範囲における黒鉛をはじめとする炭素材料やセラミックスなどの熱膨張率を、簡易にかつ精度良く測定することができる熱膨張率測定方法及び測定装置を提供することにある。   An object of the present invention is to provide a thermal expansion coefficient measuring method and a measuring apparatus capable of easily and accurately measuring the thermal expansion coefficient of carbon materials such as graphite and ceramics in a temperature range exceeding 400 ° C. There is.

本発明は、400℃を超える温度範囲における熱膨張率を測定する方法であって、試料に直流電流を通電して測定部の温度が400℃を超える温度範囲になるように加熱し、測定部の温度を上昇させる工程と、温度上昇の際の測定部の径方向の端縁の移動量を測定して熱膨張率を求める工程とを備え、前記試料が、等方性黒鉛であり、前記径方向が、前記直流電流の流れる方向と直交する方向であることを特徴としている。 The present invention is a method for measuring a coefficient of thermal expansion in a temperature range exceeding 400 ° C., wherein a direct current is passed through a sample and heated so that the temperature of the measuring portion exceeds 400 ° C. And a step of measuring the amount of movement of the edge in the radial direction of the measurement part at the time of temperature rise to obtain a coefficient of thermal expansion, wherein the sample is isotropic graphite , The radial direction is a direction perpendicular to the direction in which the direct current flows.

本発明においては、試料に直流電流を通電して加熱することにより、測定部の温度を400℃を超える温度範囲とし、測定部の温度を上昇させている。このため、従来のような高温炉が必要でなく、簡易に熱膨張率を測定することができる。   In the present invention, the sample is heated by applying a direct current to the sample so that the temperature of the measurement unit exceeds 400 ° C. and the temperature of the measurement unit is increased. For this reason, the conventional high temperature furnace is not required, and the coefficient of thermal expansion can be measured easily.

また、直流電流を用いているので、関数波形発生装置を必要としない。特許文献1におけるパルス波をもたらすためには、これらの波形発生装置が直流電源の他に必要となる。   Moreover, since a direct current is used, a function waveform generator is not required. In order to produce the pulse wave in Patent Document 1, these waveform generators are required in addition to the DC power supply.

また、本発明においては、測定部を有する試料を用い、温度上昇の際の測定部の径方向の端縁の移動量を測定することにより、熱膨張率を求めている。測定部の径方向、すなわち幅方向の膨張を測定しているので、従来の長さ方向の膨張を測定する場合に比べ、温度分布が均一となる。また、測定部の温度不均一に伴うバラツキを低減することができ、精度良く熱膨張率を測定することができる。   Further, in the present invention, the coefficient of thermal expansion is obtained by measuring the amount of movement of the edge in the radial direction of the measurement part when the temperature rises using a sample having the measurement part. Since the expansion in the radial direction, that is, the width direction of the measurement unit is measured, the temperature distribution is uniform as compared with the conventional case of measuring the expansion in the length direction. Moreover, the variation accompanying the temperature nonuniformity of a measurement part can be reduced, and a thermal expansion coefficient can be measured accurately.

本発明においては、熱膨張率を上記のようにして測定するとともに、400℃を越える温度範囲における試料の電気抵抗率を測定することが好ましい。このような電気抵抗率の測定は、後述する電気抵抗率測定手段により行うことができる。   In the present invention, the coefficient of thermal expansion is preferably measured as described above, and the electrical resistivity of the sample in a temperature range exceeding 400 ° C. is preferably measured. Such measurement of electric resistivity can be performed by an electric resistivity measuring means described later.

本発明においては、測定部の径方向の端縁の移動量を、レーザ光の照射によって測定することが好ましい。例えば、レーザ変位計を用いて測定部の径方向の端縁の移動量を測定することができる。この移動量と、この移動量を生じさせた温度差から、熱膨張率を求めることができる。   In this invention, it is preferable to measure the moving amount | distance of the edge of the radial direction of a measurement part by irradiation of a laser beam. For example, it is possible to measure the amount of movement of the edge in the radial direction of the measurement unit using a laser displacement meter. The coefficient of thermal expansion can be obtained from the amount of movement and the temperature difference that caused the amount of movement.

本発明において熱膨張率を測定する試料は、特に限定されるものではないが、例えば、黒鉛をはじめとする炭素材料が挙げられる。また、試料に直流電流を通電することにより、加熱するものであるので、本発明に用いる試料は、電気伝導性を有するものであることが好ましい。   The sample for measuring the coefficient of thermal expansion in the present invention is not particularly limited, and examples thereof include carbon materials including graphite. Further, since the sample is heated by passing a direct current, it is preferable that the sample used in the present invention has electrical conductivity.

本発明の熱膨張率測定装置は、上記本発明の測定方法により、熱膨張率を測定するための装置であり、試料が設置される測定室と、測定室内の雰囲気を調整するための雰囲気調整手段と、測定室内で試料を保持するための保持部材と、保持部材に保持された試料に直流電流を通電するための直流電源と、試料の測定部の温度を測定するための温度測定手段と、測定部の径方向の端縁の移動量を測定するための移動量測定手段とを備え、前記試料は、等方性黒鉛であり、前記径方向は、前記直流電流の流れる方向と直交する方向であることを特徴としている。 The thermal expansion coefficient measuring apparatus of the present invention is an apparatus for measuring the thermal expansion coefficient by the measurement method of the present invention, and an atmosphere adjustment for adjusting the measurement chamber in which the sample is installed and the atmosphere in the measurement chamber. Means, a holding member for holding the sample in the measurement chamber, a direct current power source for supplying a direct current to the sample held by the holding member, and a temperature measuring means for measuring the temperature of the measurement part of the sample, And a moving amount measuring means for measuring the moving amount of the edge in the radial direction of the measuring part, the sample is isotropic graphite , and the radial direction is orthogonal to the direction in which the direct current flows. It is characterized by direction.

本発明の熱膨張率測定装置においては、試料に直流電源からの直流電流を通電し、試料を加熱することにより、試料の測定部の温度を上昇させている。従って、従来のように高温炉等が必要でなく、装置を簡易にかつ小型化することができる。   In the thermal expansion coefficient measuring apparatus of the present invention, the sample is heated by passing a DC current from a DC power source and heating the sample. Therefore, a high-temperature furnace or the like is not required as in the prior art, and the apparatus can be easily and miniaturized.

また、測定部の径方向の端縁の移動量を測定して熱膨張率を求めているので、均一に加熱することができる部分を測定対象の部分とすることができ、精度良く熱膨張率を測定することができる。   In addition, since the coefficient of thermal expansion is obtained by measuring the amount of movement of the edge in the radial direction of the measuring part, the part that can be heated uniformly can be the part to be measured, and the coefficient of thermal expansion can be accurately Can be measured.

本発明における移動量測定手段としては、光学式測定手段が挙げられ、具体的には、例えばレーザ変位計を挙げることができる。レーザ変位計を用い、レーザ光の照射で移動量を測定することにより、標準試料を用いることなく測定でき、簡易にかつ精度良く移動量を測定することができる。   Examples of the moving amount measuring means in the present invention include optical measuring means, and specific examples include a laser displacement meter. By using a laser displacement meter to measure the amount of movement by irradiation with laser light, it is possible to measure without using a standard sample, and it is possible to measure the amount of movement easily and accurately.

本発明の熱膨張率測定装置においては、400℃を超える温度範囲における試料の電気抵抗率を測定するための電気抵抗率測定手段がさらに備えられていてもよい。電気抵抗率測定手段としては、電圧降下を測定することができる一対の測定端子と、該一対の測定端子間の電圧を測定することができる電圧計が挙げられる。電気抵抗率は、均一に加熱されている試料の測定部の電気抵抗率を測定する。   The thermal expansion coefficient measuring apparatus of the present invention may further include an electrical resistivity measuring means for measuring the electrical resistivity of the sample in a temperature range exceeding 400 ° C. Examples of the electrical resistivity measuring means include a pair of measuring terminals capable of measuring a voltage drop and a voltmeter capable of measuring a voltage between the pair of measuring terminals. The electrical resistivity measures the electrical resistivity of the measurement part of the sample that is uniformly heated.

本発明における雰囲気調整手段は、測定室内の雰囲気を調整するためのものであり、測定室内の雰囲気としては、一般に、例えば、Ar,Ne,Krなどの不活性ガスや、窒素ガスなどの雰囲気、あるいは減圧雰囲気が選ばれる。従って、雰囲気調整手段としては、例えば、Ar,Ne,Krなどの不活性ガスや窒素ガスを供給する装置、及び/または真空ポンプもしくは減圧ポンプなどが挙げられる。   The atmosphere adjusting means in the present invention is for adjusting the atmosphere in the measurement chamber. As the atmosphere in the measurement chamber, generally, for example, an inert gas such as Ar, Ne, Kr, an atmosphere such as nitrogen gas, Alternatively, a reduced pressure atmosphere is selected. Accordingly, examples of the atmosphere adjusting means include a device for supplying an inert gas such as Ar, Ne, Kr, and nitrogen gas, and / or a vacuum pump or a decompression pump.

本発明における保持部材は、測定室内で試料を保持するための部材である。この保持部材を、直流電源から直流電流を通電するための一対の電極端子として用いてもよい。   The holding member in the present invention is a member for holding the sample in the measurement chamber. You may use this holding member as a pair of electrode terminal for supplying with a direct current from direct current power supply.

本発明における温度測定手段は、試料の測定部の温度を測定するためのものである。このような温度測定手段としては、赤外温度計や熱電対などが挙げられる。   The temperature measuring means in the present invention is for measuring the temperature of the measurement part of the sample. Examples of such temperature measuring means include an infrared thermometer and a thermocouple.

本発明の熱膨張率測定方法によれば、400℃を超える温度範囲における熱膨張率を、簡易にかつ精度良く測定することができる。   According to the thermal expansion coefficient measuring method of the present invention, the thermal expansion coefficient in a temperature range exceeding 400 ° C. can be measured easily and accurately.

本発明の熱膨張率測定装置によれば、本発明の熱膨張率測定方法に従い、400℃を超える温度範囲における熱膨張率を、簡易にかつ精度良く測定することができる。   According to the thermal expansion coefficient measuring apparatus of the present invention, the thermal expansion coefficient in a temperature range exceeding 400 ° C. can be measured easily and accurately according to the thermal expansion coefficient measuring method of the present invention.

以下、本発明を実施形態により説明するが、本発明は以下の実施形態に限定されるものではない。   Hereinafter, although this invention is demonstrated by embodiment, this invention is not limited to the following embodiment.

図1は、本発明に従う熱膨張率測定装置の一実施形態を示す模式図である。   FIG. 1 is a schematic diagram showing an embodiment of a thermal expansion coefficient measuring apparatus according to the present invention.

図1に示す熱膨張率測定装置20においては、熱膨張率を測定する測定対象である試料1が、測定室4内に設置されている。   In the thermal expansion coefficient measuring apparatus 20 shown in FIG. 1, a sample 1 that is a measurement target for measuring a thermal expansion coefficient is installed in a measurement chamber 4.

図2は、試料1を示す側面図である。図2に示すように、試料1は棒状の形状を有しており、中央部に径が小さくなった測定部1aを有している。測定部1aは、その直径が略同一である円柱形状を有している。   FIG. 2 is a side view showing the sample 1. As shown in FIG. 2, the sample 1 has a rod-like shape, and has a measurement part 1a having a reduced diameter at the center. The measurement part 1a has a cylindrical shape whose diameter is substantially the same.

図1に示すように、試料1の両端を保持部材2及び保持部材3で保持することにより、試料1が測定室4内に設置されている。   As shown in FIG. 1, the sample 1 is installed in the measurement chamber 4 by holding both ends of the sample 1 with the holding member 2 and the holding member 3.

図3は、試料1を保持部材2及び保持部材3で保持した状態を示す斜視図である。図3に示すように、試料1の両端部がそれぞれ保持部材2及び3で保持され、測定室内4内に設置されている。保持部材2及び3は、図1において図示しない直流電源に接続されており、保持部材2及び3を一対の電極として、直流電源からの直流電流が試料1に供給される。   FIG. 3 is a perspective view showing a state in which the sample 1 is held by the holding member 2 and the holding member 3. As shown in FIG. 3, both ends of the sample 1 are held by holding members 2 and 3, respectively, and are installed in a measurement chamber 4. The holding members 2 and 3 are connected to a DC power source (not shown in FIG. 1), and a DC current from the DC power source is supplied to the sample 1 with the holding members 2 and 3 as a pair of electrodes.

図1に示すように、試料1の測定部1aにレーザ光を照射することができるように、測定部1aの両側の測定室4の壁部に、それぞれ光学用窓8a及び8bが設けられており、光学用窓8aの外側には、レーザ光を照射する投光側のレーザ変位計7aが設けられている。   As shown in FIG. 1, optical windows 8a and 8b are respectively provided on the walls of the measurement chamber 4 on both sides of the measurement unit 1a so that the measurement unit 1a of the sample 1 can be irradiated with laser light. In addition, a laser displacement meter 7a on the light projecting side for irradiating laser light is provided outside the optical window 8a.

光学用窓8bの外側には、投光側のレーザ変位計7aから照射されたレーザ光を受光する受光側のレーザ変位計7bが設けられている。投光側のレーザ変位計7aからのレーザ光を、試料1の測定部1aに照射し、このレーザ光を受光側のレーザ変位計7bで受光することにより、図2に示す測定部1aの径方向の端縁1bの位置を検知することができる。従って、試料1に直流電流を通電して加熱し、測定部1aが熱膨張した際、熱膨張により端縁1bが移動したときの移動量を、レーザ変位計7a及び7bで測定することができる。   On the outside of the optical window 8b, a laser displacement meter 7b on the light receiving side for receiving the laser light emitted from the laser displacement meter 7a on the light projecting side is provided. The laser beam from the laser displacement meter 7a on the light projecting side is irradiated onto the measuring unit 1a of the sample 1, and the laser beam is received by the laser displacement meter 7b on the light receiving side, whereby the diameter of the measuring unit 1a shown in FIG. The position of the edge 1b in the direction can be detected. Therefore, when the sample 1 is heated by applying a direct current and the measurement part 1a is thermally expanded, the movement amount when the edge 1b is moved by the thermal expansion can be measured by the laser displacement meters 7a and 7b. .

図1に示すように、測定室4には、測定室4内の雰囲気を調整するための減圧ポンプ5がパイプ6を介して取り付けられている。減圧ポンプ5により、測定室4内を減圧することができる。本実施形態においては、雰囲気調整手段として減圧ポンプ5を設けているが、測定室4内を、例えば、Ar,Ne,Krなどの不活性ガスや窒素ガスなどにすることができるように、雰囲気調整手段として、減圧ポンプと、例えば、Ar,Ne,Krなどの不活性ガスまたは窒素ガス供給装置などを用いてもよい。   As shown in FIG. 1, a decompression pump 5 for adjusting the atmosphere in the measurement chamber 4 is attached to the measurement chamber 4 via a pipe 6. The inside of the measurement chamber 4 can be decompressed by the decompression pump 5. In the present embodiment, the decompression pump 5 is provided as an atmosphere adjusting means, but the atmosphere in the measurement chamber 4 can be changed to, for example, an inert gas such as Ar, Ne, or Kr or a nitrogen gas. As the adjusting means, a decompression pump and an inert gas or nitrogen gas supply device such as Ar, Ne, or Kr may be used.

測定部1aの近傍には、測定部1aの温度を測定するための熱電対11が設けられている。また、測定部1aが高温になった場合の温度を測定するため、光学用窓10が測定室4の壁部に取り付けられ、光学用窓10の外側に、赤外温度計9が設けられている。赤外温度計9により、測定部1aから出射される赤外線を検知し、その温度を測定することができる。   A thermocouple 11 for measuring the temperature of the measurement unit 1a is provided in the vicinity of the measurement unit 1a. Further, in order to measure the temperature when the measuring unit 1a becomes high temperature, the optical window 10 is attached to the wall portion of the measuring chamber 4, and the infrared thermometer 9 is provided outside the optical window 10. Yes. The infrared thermometer 9 can detect the infrared rays emitted from the measuring unit 1a and measure the temperature.

また、試料1の測定部1aには、試料1の測定部1aの電気抵抗率を測定するための電圧降下測定端子12a及び12bが取り付けられている。端子12a及び12b間の電圧降下を測定することにより、測定部1aの電気抵抗率を求めることができる。   In addition, voltage drop measurement terminals 12a and 12b for measuring the electrical resistivity of the measurement unit 1a of the sample 1 are attached to the measurement unit 1a of the sample 1. By measuring the voltage drop between the terminals 12a and 12b, the electrical resistivity of the measuring unit 1a can be obtained.

図4及び図5は、本発明に従うさらに具体的な実施形態の熱膨張率測定装置30を示す断面図である。   4 and 5 are cross-sectional views showing a thermal expansion coefficient measuring apparatus 30 of a more specific embodiment according to the present invention.

図4は、横方向断面図であり、図5は、縦方向断面図である。図4に示すように、試料1には、その両端部を保持部材2及び3で保持することにより、測定室4内において保持されている。保持部材2は、直流電源導入部31に接続されており、保持部材3は、直流電源導入部32に接続されている。直流電源導入部31及び32は、図示されない直流電源に接続されており、保持部材2及び3を介して、試料1の両端に直流電流が供給される。   4 is a cross-sectional view in the horizontal direction, and FIG. 5 is a cross-sectional view in the vertical direction. As shown in FIG. 4, the sample 1 is held in the measurement chamber 4 by holding both ends thereof with holding members 2 and 3. The holding member 2 is connected to a DC power supply introduction unit 31, and the holding member 3 is connected to a DC power supply introduction unit 32. The DC power supply introduction units 31 and 32 are connected to a DC power supply (not shown), and a DC current is supplied to both ends of the sample 1 through the holding members 2 and 3.

試料1の周囲には、円筒状の断熱材33が設けられている。断熱材33としては、例えば、C,Fe,W等の材料で出来た反射板(リフレクター)又はC/Cによるフェルト状断熱材などが挙げられる。また、試料1の測定部1a近傍には、熱電対11の先端が配置されている。   A cylindrical heat insulating material 33 is provided around the sample 1. Examples of the heat insulating material 33 include a reflector (reflector) made of a material such as C, Fe, or W, or a felt-like heat insulating material made of C / C. In addition, the tip of the thermocouple 11 is disposed in the vicinity of the measurement unit 1 a of the sample 1.

測定室4には、例えば、Ar,Ne,Krなどの不活性ガスを導入するためのガス導入口6a及び測定室4内のガスを排出するためのガス排出口6bが設けられている。ガス排出口6bから測定室4内の空気を排気し、減圧状態として測定してもよいし、減圧後、ガス導入口6aから、例えば、Ar,Ne,Krなどの不活性ガスを導入して、測定室4内の雰囲気を例えば、Ar,Ne,Krなどの不活性ガスにして測定することができる。   In the measurement chamber 4, for example, a gas inlet 6 a for introducing an inert gas such as Ar, Ne, Kr and a gas outlet 6 b for discharging the gas in the measurement chamber 4 are provided. The air in the measurement chamber 4 may be exhausted from the gas exhaust port 6b and measured in a reduced pressure state, or after decompression, an inert gas such as Ar, Ne, Kr, for example, may be introduced from the gas inlet port 6a. The atmosphere in the measurement chamber 4 can be measured using, for example, an inert gas such as Ar, Ne, or Kr.

また、測定室4の周りを冷却水によって冷却するため、冷却水導入口34及び冷却水出口35が設けられている。冷却水導入口34から導入した冷却水を、測定室4の周囲に流通させ、測定室4を冷却した後、冷却水出口35から冷却水を排出することができる。   Further, a cooling water inlet 34 and a cooling water outlet 35 are provided to cool the periphery of the measurement chamber 4 with cooling water. The cooling water introduced from the cooling water inlet 34 is circulated around the measurement chamber 4, and after cooling the measurement chamber 4, the cooling water can be discharged from the cooling water outlet 35.

図5に示すように、測定室4の横方向の対向する壁部には、光学用窓8a及び8bが設けられており、光学用窓8aの外側に設けられている投光側レーザ変位計(図示せず)から照射されたレーザ光を、試料1の測定部1aに照射し、照射後のレーザ光を光学用窓8bの外側に設けられた受光側レーザ変位計(図示せず)により受光し、測定部1aの径方向の端縁1bの位置を検出することができる。   As shown in FIG. 5, optical windows 8 a and 8 b are provided on the walls facing each other in the horizontal direction of the measurement chamber 4, and the light projecting side laser displacement meter provided outside the optical window 8 a. The laser beam irradiated from (not shown) is irradiated to the measuring part 1a of the sample 1, and the irradiated laser beam is received by a light receiving side laser displacement meter (not shown) provided outside the optical window 8b. The position of the edge 1b in the radial direction of the measurement unit 1a can be detected by receiving light.

測定室4の上方には、熱電対11を設置するための熱電対設置部36、図1に示す電圧降下測定端子12a及び12bを設置するための電圧降下測定端子設置部37及び、図1に示す赤外温度計9を取り付けるための赤外温度計設置部38が設けられている。   Above the measurement chamber 4, a thermocouple installation section 36 for installing the thermocouple 11, a voltage drop measurement terminal installation section 37 for installing the voltage drop measurement terminals 12a and 12b shown in FIG. 1, and FIG. An infrared thermometer installation part 38 for attaching the infrared thermometer 9 shown is provided.

図4を参照して、試料1の熱膨張率を測定するには、図示しない直流電源からの直流電流を、直流電源導入部31及び32を介し、保持部材2及び3を電極として、試料1の両端部に供給する。試料1の両端部に直流電流を供給することにより、試料1が通電加熱され、測定部1aが温度上昇する。測定部1aの温度を熱電対11または赤外温度計9(図1に図示)を用いて測定すると共に、図1に示すレーザ変位計7a及び7bを用いて、測定部1aの径方向の端縁1bの位置を検出し、温度上昇によって径方向の端縁1bが移動した移動量を求める。この移動量と温度上昇の値を用いて、試料1の熱膨張率を算出する。   Referring to FIG. 4, in order to measure the coefficient of thermal expansion of sample 1, a direct current from a direct current power source (not shown) is passed through direct current power supply introduction portions 31 and 32, and holding members 2 and 3 are used as electrodes. To both ends. By supplying a direct current to both ends of the sample 1, the sample 1 is energized and heated, and the temperature of the measurement unit 1a rises. While measuring the temperature of the measurement part 1a using the thermocouple 11 or the infrared thermometer 9 (illustrated in FIG. 1), and using the laser displacement meters 7a and 7b shown in FIG. The position of the edge 1b is detected, and the amount of movement of the radial edge 1b due to the temperature rise is obtained. The coefficient of thermal expansion of sample 1 is calculated using the amount of movement and the value of temperature rise.

熱膨張率測定の間、測定室4内は、減圧雰囲気としてもよいし、例えば、Ar,Ne,Krなどの不活性ガスまたは窒素ガスの雰囲気としてもよい。   During the measurement of the coefficient of thermal expansion, the inside of the measurement chamber 4 may be a reduced pressure atmosphere, for example, an inert gas such as Ar, Ne, Kr, or an atmosphere of nitrogen gas.

また、図1に示した電圧降下測定端子12a及び12bを、測定部1aに接触させ、端子間における電圧降下を測定することにより、測定温度における測定部1aの電気抵抗率を求めることができる。   Moreover, the electrical resistivity of the measurement part 1a in measurement temperature can be calculated | required by making the voltage drop measurement terminals 12a and 12b shown in FIG. 1 contact the measurement part 1a, and measuring the voltage drop between terminals.

図6は、上記実施形態における出力信号及び電流の流れを示すフロー図である。   FIG. 6 is a flowchart showing the output signal and current flow in the embodiment.

図6に示すように、試料1の測定部1aの温度を赤外温度計9で計測し、変換器43によりデータロガー41に測定部の出力信号を与える。また、低温域においては、熱電対11により測定部1aの温度を測定し、変換器44を通して、温度の信号をデータロガー41に与える。   As shown in FIG. 6, the temperature of the measurement unit 1 a of the sample 1 is measured by the infrared thermometer 9, and an output signal of the measurement unit is given to the data logger 41 by the converter 43. In the low temperature range, the temperature of the measuring unit 1 a is measured by the thermocouple 11, and a temperature signal is given to the data logger 41 through the converter 44.

また、測定部1aの径方向の端縁の移動量をレーザ変位計7a及び7bにより測定し、測定データをデータロガー41に与える。   Further, the moving amount of the edge in the radial direction of the measuring unit 1 a is measured by the laser displacement meters 7 a and 7 b, and the measurement data is given to the data logger 41.

また、測定部1aの測定端子12a及び12b間の電圧降下を電圧計12で測定し、測定部1aの電気抵抗率の出力信号をデータロガー41に与える。   Further, the voltage drop between the measurement terminals 12 a and 12 b of the measurement unit 1 a is measured by the voltmeter 12, and an output signal of the electrical resistivity of the measurement unit 1 a is given to the data logger 41.

また、直流電源40からの電流は、電圧計47及び電流計46を通り、試料1の両端部に供給され、測定部1aが加熱され、所定の温度とされる。   The current from the DC power supply 40 passes through the voltmeter 47 and the ammeter 46 and is supplied to both ends of the sample 1 to heat the measuring unit 1a to a predetermined temperature.

電流計46により測定した電流値は、変換器45を通り、データロガー41に与えられる。   The current value measured by the ammeter 46 passes through the converter 45 and is given to the data logger 41.

上記のような出力信号及び電流の流れは、デジタルプログラムコントローラ42により制御される。   The output signal and current flow as described above are controlled by the digital program controller 42.

直流電源40の電圧及び電流は、特に限定されるものではないが、例えば、電流500Aの直流電源を用いることができる。   The voltage and current of the DC power supply 40 are not particularly limited. For example, a DC power supply with a current of 500 A can be used.

以上のように、本発明に従う上記実施形態においては、試料に直流電流を供給し、通電加熱することにより、試料を温度上昇させている。このため、従来のような高温炉を設ける必要がなく、測定装置を簡易にかつ小型化することができる。   As described above, in the above-described embodiment according to the present invention, the sample is heated by supplying a direct current to the sample and conducting heating. For this reason, there is no need to provide a conventional high-temperature furnace, and the measuring apparatus can be easily and miniaturized.

また、上記実施形態においては、試料1の測定部1aの径方向の端縁の移動量を測定することにより、熱膨張率を求めている。測定部1aの測定領域は限定された径方向の領域であり、温度分布がほぼ均一であるので、温度のバラツキが少ない。このため、精度良く熱膨張率を測定することができる。   Moreover, in the said embodiment, the thermal expansion coefficient is calculated | required by measuring the moving amount | distance of the edge of the radial direction of the measurement part 1a of the sample 1. FIG. The measurement region of the measurement unit 1a is a limited radial region, and the temperature distribution is substantially uniform, so that there is little variation in temperature. For this reason, the coefficient of thermal expansion can be accurately measured.

また、本実施形態においては、レーザ変位計を用いて測定部の径方向の端縁の移動量を測定しているので、標準物質等が必要なく、簡易に熱膨張率を測定することができる。   In this embodiment, since the moving amount of the edge of the measuring unit in the radial direction is measured using a laser displacement meter, it is possible to easily measure the thermal expansion coefficient without using a standard substance or the like. .

熱膨張率を測定する試料は、特に限定されるものではないが、好適なものとして例えば、黒鉛をはじめとする炭素材料が挙げられ、その中でも熱膨張率が等方性である等方性黒鉛が挙げられる。   A sample for measuring the coefficient of thermal expansion is not particularly limited, but suitable examples include carbon materials such as graphite, among which isotropic graphite having an isotropic coefficient of thermal expansion. Is mentioned.

本発明に従う一実施形態の熱膨張率測定装置を示す模式図。The schematic diagram which shows the thermal expansion coefficient measuring apparatus of one Embodiment according to this invention. 本発明に従う一実施形態で用いた試料を示す側面図。The side view which shows the sample used by one Embodiment according to this invention. 本発明に従う一実施形態における試料及び試料を保持する保持部材を示す斜視図。The perspective view which shows the holding member holding the sample and sample in one Embodiment according to this invention. 本発明に従うさらに具体的な実施形態の熱膨張率測定装置を示す横方向断面図。The transverse direction sectional view showing the coefficient of thermal expansion measuring device of the more concrete embodiment according to the present invention. 本発明に従うさらに具体的な実施形態の熱膨張率測定装置を示す縦方向断面図。The longitudinal direction sectional view showing the coefficient of thermal expansion measuring device of the more concrete embodiment according to the present invention. 図4及び図5に示す実施形態における出力信号と電流の流れを示すフロー図。FIG. 6 is a flowchart showing an output signal and current flow in the embodiment shown in FIGS. 4 and 5.

符号の説明Explanation of symbols

1…試料
1a…試料測定部
1b…試料の測定部の径方向の端縁
2,3…保持部材
4…測定室
5…減圧ポンプ
6…パイプ
6a…ガス導入口
6b…ガス排出口
7a…投光側レーザ変位計
7b…受光側レーザ変位計
8a,8b,10…光学用窓
9…赤外温度計
11…熱電対
12…電圧計
12a,12b…電圧降下測定端子
20…熱膨張率測定装置
30…熱膨張率測定装置
31,32…直流電源導入部
33…断熱材
34…冷却水導入口
35…冷却水排出口
36…熱電対設置部
37…電圧降下測定端子設置部
38…赤外温度計設置部
40…直流電源
41…データロガー
42…デジタルプログラムコントローラ
43,44,45…変換器
46…電流計
47…電圧計
DESCRIPTION OF SYMBOLS 1 ... Sample 1a ... Sample measuring part 1b ... Radial edge of sample measuring part 2, 3 ... Holding member 4 ... Measuring chamber 5 ... Decompression pump 6 ... Pipe 6a ... Gas inlet 6b ... Gas outlet 7a ... Throw Optical side laser displacement meter 7b ... Light-receiving side laser displacement meter 8a, 8b, 10 ... Optical window 9 ... Infrared thermometer 11 ... Thermocouple 12 ... Voltmeter 12a, 12b ... Voltage drop measurement terminal 20 ... Thermal expansion coefficient measuring device DESCRIPTION OF SYMBOLS 30 ... Thermal expansion coefficient measuring device 31, 32 ... DC power supply introduction part 33 ... Insulation material 34 ... Cooling water introduction port 35 ... Cooling water discharge port 36 ... Thermocouple installation part 37 ... Voltage drop measurement terminal installation part 38 ... Infrared temperature Meter installation unit 40 ... DC power supply 41 ... data logger 42 ... digital program controller 43, 44, 45 ... converter 46 ... ammeter 47 ... voltmeter

Claims (6)

400℃を超える温度範囲における熱膨張率を測定する方法であって、
試料に直流電流を通電して測定部の温度が400℃を超える温度範囲になるように加熱し、測定部の温度を上昇させる工程と、
前記温度上昇の際の測定部の径方向の端縁の移動量を測定して熱膨張率を求める工程とを備え、
前記試料が、等方性黒鉛であり、
前記径方向が、前記直流電流の流れる方向と直交する方向であることを特徴とする熱膨張率測定方法。
A method for measuring a coefficient of thermal expansion in a temperature range exceeding 400 ° C.,
Applying a direct current to the sample and heating the temperature of the measurement unit to a temperature range exceeding 400 ° C., and increasing the temperature of the measurement unit;
Measuring the amount of movement of the edge in the radial direction of the measurement part at the time of the temperature rise and obtaining a coefficient of thermal expansion,
The sample is isotropic graphite ;
The method of measuring a coefficient of thermal expansion, wherein the radial direction is a direction orthogonal to a direction in which the direct current flows.
400℃を越える温度範囲における前記試料の電気抵抗率を測定する工程をさらに備えることを特徴とする請求項1に記載の熱膨張率測定方法。   The thermal expansion coefficient measuring method according to claim 1, further comprising a step of measuring an electrical resistivity of the sample in a temperature range exceeding 400 ° C. 前記測定部の径方向の端縁の移動量を、光学式測定手段によって測定することを特徴とする請求項1または2に記載の熱膨張率測定方法。   The thermal expansion coefficient measuring method according to claim 1, wherein an amount of movement of the edge in the radial direction of the measuring unit is measured by an optical measuring unit. 請求項1〜のいずれか1項に記載の方法により、熱膨張率を測定するための装置であって、
前記試料が設置される測定室と、
前記測定室内の雰囲気を調整するための雰囲気調整手段と、
前記測定室内で前記試料を保持するための保持部材と、
前記保持部材に保持された前記試料に直流電流を通電するための直流電源と、
前記試料の前記測定部の温度を測定するための温度測定手段と、
前記測定部の径方向の端縁の移動量を測定するための移動量測定手段とを備え、
前記試料は、等方性黒鉛であり、
前記径方向は、前記直流電流の流れる方向と直交する方向であることを特徴とする熱膨張率測定装置。
An apparatus for measuring a coefficient of thermal expansion by the method according to any one of claims 1 to 3 ,
A measurement chamber in which the sample is installed;
Atmosphere adjustment means for adjusting the atmosphere in the measurement chamber;
A holding member for holding the sample in the measurement chamber;
A direct current power source for passing a direct current through the sample held by the holding member;
Temperature measuring means for measuring the temperature of the measurement part of the sample;
A moving amount measuring means for measuring the moving amount of the radial edge of the measuring unit;
The sample is isotropic graphite ,
The thermal expansion coefficient measuring apparatus according to claim 1, wherein the radial direction is a direction orthogonal to a direction in which the direct current flows.
400℃を超える温度範囲における前記試料の電気抵抗率を測定するための電気抵抗率測定手段が、さらに備えられていることを特徴とする請求項に記載の熱膨張率測定装置。 5. The thermal expansion coefficient measuring apparatus according to claim 4 , further comprising electrical resistivity measuring means for measuring electrical resistivity of the sample in a temperature range exceeding 400 ° C. 前記移動量測定手段が、光学式測定手段であることを特徴とする請求項またはに記載の熱膨張率測定装置。 The thermal expansion coefficient measuring apparatus according to claim 4 or 5 , wherein the moving amount measuring means is an optical measuring means.
JP2007300727A 2007-11-20 2007-11-20 Thermal expansion coefficient measuring method and measuring apparatus Expired - Fee Related JP5070570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007300727A JP5070570B2 (en) 2007-11-20 2007-11-20 Thermal expansion coefficient measuring method and measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007300727A JP5070570B2 (en) 2007-11-20 2007-11-20 Thermal expansion coefficient measuring method and measuring apparatus

Publications (2)

Publication Number Publication Date
JP2009128066A JP2009128066A (en) 2009-06-11
JP5070570B2 true JP5070570B2 (en) 2012-11-14

Family

ID=40819165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007300727A Expired - Fee Related JP5070570B2 (en) 2007-11-20 2007-11-20 Thermal expansion coefficient measuring method and measuring apparatus

Country Status (1)

Country Link
JP (1) JP5070570B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5597856B2 (en) * 2010-09-22 2014-10-01 東洋炭素株式会社 Electrical resistance measuring device
WO2012039198A1 (en) * 2010-09-22 2012-03-29 東洋炭素株式会社 Hot displacement measuring device, hot displacement measuring method, and electric resistance measuring device
JP5683187B2 (en) * 2010-09-22 2015-03-11 東洋炭素株式会社 Hot displacement measuring device and hot displacement measuring method
DE102011051561A1 (en) * 2011-07-05 2013-01-10 BÄHR-Thermoanalyse GmbH Dilatometer for the measurement of metallic samples
JP5510835B2 (en) * 2011-03-01 2014-06-04 独立行政法人産業技術総合研究所 Ultra-high temperature thermal expansion test equipment
JP6146851B2 (en) * 2011-10-11 2017-06-14 国立研究開発法人物質・材料研究機構 High temperature friction wear measuring device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152944A (en) * 1984-01-22 1985-08-12 Fuji Denshi Kogyo Kk Inspection of high frequency hardening
JPH0641900B2 (en) * 1987-12-22 1994-06-01 工業技術院長 Measuring device for hot elastic modulus of ceramics
JPH01223332A (en) * 1988-03-02 1989-09-06 Inoue Japax Res Inc Current supply thermal analyzer
JPH01307649A (en) * 1988-06-06 1989-12-12 Matsushita Electric Ind Co Ltd Measuring method for absorption coefficient of infrared optical crystal
JPH02183143A (en) * 1989-01-10 1990-07-17 Matsushita Electric Ind Co Ltd Measurement of absorption coefficient for infrared optical crystal
JPH04121650A (en) * 1990-09-13 1992-04-22 Japan Atom Energy Res Inst Method for measuring high coefficient of thermal expansion
JPH0552783A (en) * 1991-08-28 1993-03-02 Tokuyama Soda Co Ltd Thermoelectric characteristic measuring device
JP2674684B2 (en) * 1994-10-28 1997-11-12 工業技術院長 Thermal expansion coefficient measurement method
JP3844332B2 (en) * 2000-09-07 2006-11-08 品川白煉瓦株式会社 Hot displacement measuring device and measuring method

Also Published As

Publication number Publication date
JP2009128066A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5070570B2 (en) Thermal expansion coefficient measuring method and measuring apparatus
JP4195935B2 (en) Thermophysical property measuring method and apparatus
Naidis Positive and negative streamers in air: Velocity-diameter relation
CN103499603B (en) Contactless high-temperature hot physical function parameter measurement mechanism and method
JP4227571B2 (en) Calibration method for temperature sensor of environmental exposure equipment using non-contact temperature measurement
KR101898037B1 (en) High temperature structure for measuring of properties of curved thermoelectric device, system for measuring of properties of curved thermoelectric device using the same and method thereof
McWilliams et al. A flash heating method for measuring thermal conductivity at high pressure and temperature: Application to Pt
US20170122810A1 (en) Method and device for the photothermic investigation of a sample
JP2012154777A (en) Thermal radiation light source
CN103558247A (en) Automatic thermal conductivity coefficient measurement equipment based on thermoelectric semiconductor
JP2007218591A (en) Hybrid-type surface thermometer, apparatus, and method for measuring temperature distribution
CN109613054B (en) Direct-electrifying longitudinal heat conductivity coefficient testing method
KR100499351B1 (en) a measurement system for Seebeck coefficient and electrical conductivity
JPH0552783A (en) Thermoelectric characteristic measuring device
RU2510491C2 (en) Method of measuring emissivity factor
JP3849295B2 (en) Thermal diffusion coefficient measuring device
JP2018049001A (en) Temperature control calibration method during thermal analysis of sample
Wenzel et al. Cars temperature studies of the gas phase in a massmann-type graphite tube furnace
KR101713443B1 (en) Apparatus and method for evaluating heating element
JP2000206022A (en) Method for heating sample for temperature-rise desorption method
RU2611080C1 (en) Apparatus for determining critical value of radiant heat flux for different materials and substances
Lander et al. Continuous-wave carbon dioxide laser system producing output power up to 135 kilowatts
Zharova et al. Technique of measuring the emissivity coefficient of solid materials surface
JP7323108B2 (en) Thermoelectric property evaluation unit, thermoelectric property evaluation device, and thermoelectric property evaluation method
JP3670757B2 (en) Sample temperature control method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

R150 Certificate of patent or registration of utility model

Ref document number: 5070570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees