JPH04121650A - Method for measuring high coefficient of thermal expansion - Google Patents

Method for measuring high coefficient of thermal expansion

Info

Publication number
JPH04121650A
JPH04121650A JP24123690A JP24123690A JPH04121650A JP H04121650 A JPH04121650 A JP H04121650A JP 24123690 A JP24123690 A JP 24123690A JP 24123690 A JP24123690 A JP 24123690A JP H04121650 A JPH04121650 A JP H04121650A
Authority
JP
Japan
Prior art keywords
disc
thermal expansion
test piece
temperature
transient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24123690A
Other languages
Japanese (ja)
Inventor
Nagatoshi Arai
荒井 長利
Soukan Miki
相煥 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP24123690A priority Critical patent/JPH04121650A/en
Publication of JPH04121650A publication Critical patent/JPH04121650A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To determine heat conductivity and the coefficient of thermal expansion by heating a disc-shaped graphite test piece having a hollow hole by high frequency induction so as to impart a thermal shock thereto and measuring and analyzing the transient temp. distribution in the test piece and measuring the outer diameter of the test piece by a laser microgauge. CONSTITUTION:A graphite disc 11 having a hollow hole is heated by the eddy current generated in the outer peripheral part of said disc 11 using a high frequency induction heating method. The transient temp. change at a plurality of the places of the disc 11 in the radius direction thereof is recorded on a multi-pen transient recorder 3 and, at the same time, the displacement of the outer diameter of the graphite disc 11 is measured by a laser microgauge 2. The measurement of the transient temp. in the disc 11 at the time of a thermal shock test and the measurement of the displacement of the outer diameter of the disc 11 due to the laser microgauge at the same time are performed under various heating conditions and two measured data are analyzed according to a thermal elasticity relational expression to determine the coefficient of thermal expansion as the function of temp.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高熱膨張係数の測定法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for measuring high coefficients of thermal expansion.

(従来の技術) 黒鉛材料の熱衝撃及び熱疲労に対する強度の問題の解明
は、工業的黒鉛製品の性能向上のために重要な課題であ
る。高温ガス炉の黒鉛製燃料体や反射体の運転時に発生
する主要な応力も2次応力である熱応力や照射誘起応力
である。
(Prior Art) Elucidating the problem of the strength of graphite materials against thermal shock and thermal fatigue is an important issue for improving the performance of industrial graphite products. The main stresses that occur during the operation of graphite fuel bodies and reflectors in high-temperature gas reactors are secondary stresses such as thermal stress and irradiation-induced stress.

而して、従来熱膨張係数の主な測定法は、示差熱膨張計
を用いるものであるが、その常用温度は1000〜30
00℃までであり、また、標準試料の比較から熱膨張係
数を決定するものである。
Conventionally, the main method for measuring the coefficient of thermal expansion is to use a differential thermal dilatometer, but its normal temperature is 1,000 to 30
00°C, and the coefficient of thermal expansion is determined by comparing standard samples.

(発明が解決しようとする問題点) 本発明の目的は、より高熱における熱膨張係数を測定す
る方法を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a method for measuring the coefficient of thermal expansion at higher temperatures.

(問題点を解決するための手段) 本願発明者等は、鋭意研究の結果、加熱用電源の出力を
種々選定することにより、円板試験片の温度範囲を10
00℃以上3000℃(材料の融点近くまで)にするこ
とができ、且つ、温度及び外半径変位データの解析から
直接的に熱膨張係数を決定できることに想到し、この目
的を達成するに到った。
(Means for Solving the Problems) As a result of intensive research, the inventors of the present application have determined that the temperature range of the disk test piece can be increased to 10% by selecting various outputs of the heating power source.
We achieved this goal by coming up with the idea that it is possible to raise the temperature from 00°C to 3000°C (near the melting point of the material) and to determine the coefficient of thermal expansion directly from the analysis of temperature and outer radius displacement data. Ta.

すなわち、本発明等は1.熱衝撃破壊及び熱疲労破壊の
研究のための円板試料の熱衝撃試験においで、その第1
段階として、黒鉛中空孔付き円板試験片を高周波誘導に
より熱衝撃的に加熱し、その際、試験片内の過渡的温度
分布を測定し解析すること、及び試験片の外径をレーザ
ーマイクロゲージにより測定することにより、温度の関
数として熱伝導率及び熱膨張係数を決定する測定法及び
その装置を開発した。
That is, the present invention etc. has 1. In the thermal shock test of disk samples for research on thermal shock fracture and thermal fatigue fracture, the first
As a step, a graphite disk test piece with a hollow hole is heated by thermal shock using high-frequency induction, and at that time, the transient temperature distribution inside the test piece is measured and analyzed, and the outer diameter of the test piece is measured using a laser microgauge. We have developed a measuring method and apparatus for determining thermal conductivity and thermal expansion coefficient as a function of temperature.

而して、本発明の方法は、特に、核融合炉用、超高温ガ
スタービン用及び宇宙ロケット用等の高温材料の熱膨張
係数の測定に有効である。
Therefore, the method of the present invention is particularly effective for measuring the coefficient of thermal expansion of high-temperature materials for use in nuclear fusion reactors, ultra-high temperature gas turbines, space rockets, and the like.

以下に、本発明の高熱膨張係数の測定法及びその装置に
ついての概要を説明するとともに、等方性黒鉛の熱膨張
係数を室温から約2000℃までの温度範囲について、
本発明の測定法によって測定した結果を、従来法による
測定値と比較して説明する。
Below, an overview of the high thermal expansion coefficient measuring method and apparatus of the present invention will be explained, and the thermal expansion coefficient of isotropic graphite will be measured in the temperature range from room temperature to about 2000°C.
The results measured by the measuring method of the present invention will be explained in comparison with the measured values by the conventional method.

本発明の測定法は、第1図に示すように、基本的に熱衝
撃試験法と熱膨張解析法とから構成されている。
As shown in FIG. 1, the measurement method of the present invention basically consists of a thermal shock test method and a thermal expansion analysis method.

熱衝撃試験法としては、高周波誘導加熱法を用いて、中
空孔付き黒鉛円板(外径=30〜100mm、厚さ=3
〜8mm)の外周部に発生する渦電流によって加熱する
。試験片の半径方向の複数箇所の位置における過渡的温
度変化は、低温域ではR型熱電対を使用し、更に160
0℃以上の高温域では1100℃〜3000℃まで測定
可能なSi素子のファイバー式放射温度計を使用して、
多ベントランジェントレコーダーに記録する。また、高
周波誘導電源装置の出力を最大約50に−まで種々変更
することにより、−形状の黒鉛試験片に対して、室温か
ら約3000℃を含む過渡的温度測定データを取得でき
る。その際、レーザーマイクロゲージ(東京光電子工業
@/穂鷹精器■製)によって黒鉛円板の外径変位を同時
に測定する。
As a thermal shock test method, a graphite disk with hollow holes (outer diameter = 30 to 100 mm, thickness = 3
It is heated by eddy currents generated on the outer circumference (~8 mm). Transient temperature changes at multiple locations in the radial direction of the specimen are measured using R-type thermocouples in the low temperature range, and
In the high temperature range above 0℃, we use a Si element fiber radiation thermometer that can measure up to 1100℃ to 3000℃.
Record on a multi-vent transient recorder. Furthermore, by varying the output of the high-frequency induction power supply device up to a maximum of about 50° C., it is possible to obtain transient temperature measurement data from room temperature to about 3000° C. for a negative-shaped graphite test piece. At this time, the outer diameter displacement of the graphite disk is simultaneously measured using a laser micro gauge (manufactured by Tokyo Photonics Industry @/Hotaka Seiki ■).

熱膨張解析法では、円板の軸対称平面熱弾性問題におけ
る変位の微分方程式の一般解を用いて求める。
The thermal expansion analysis method uses a general solution of the differential equation of displacement in an axisymmetric planar thermoelastic problem of a disk.

すなわち、平均熱膨張係数が温度の関数である場合、半
径方向変位Uは次式で与えられる。
That is, when the average coefficient of thermal expansion is a function of temperature, the radial displacement U is given by the following equation.

ここに、 シ:ポアソン比 α:室温から温度T T :温度 :半径位置 R,コ内半径 C,、Ct:積分定数 までの平均熱膨張係数 次に、CI、Cff1を、半径方向応力σrの内表面(
r=R+)及び外表面(r=Ro)に関する次式の境界
条件により定める。
Here, C: Poisson's ratio α: Temperature from room temperature T T: Temperature: Radial position R, inner radius C, Ct: Average coefficient of thermal expansion up to constant of integration Next, CI, Cff1 are expressed as the radial stress σr. Inner surface (
r=R+) and the outer surface (r=Ro) according to the following boundary conditions.

(r= = σ r (r= =0 依って、 半径方向変位は次式で与えられる。(r= = σ r (r= =0 Therefore, The radial displacement is given by the following equation.

式に於いてr= R。In the formula, r= R.

として外径変位が次式で 表される。The outer diameter displacement is given by the following formula. expressed.

ここで、 黒鉛の平均熱膨張係数冴は、従来の研究及び本研究での
測定結果も参考として、次のよう に温度の線形関数で表されるものとする。
Here, the average coefficient of thermal expansion of graphite is expressed as a linear function of temperature as follows, with reference to the measurement results from previous studies and this study.

α=a、  +22 ”f (5)式を(4)式に代入すると、黒鉛円板の外径変位
は、温度分布Tと平均熱膨張係数のパラメータa I 
、azに依存するものとして表すことができる。
α=a, +22 ”f Substituting equation (5) into equation (4), the outer diameter displacement of the graphite disk is determined by the temperature distribution T and the average coefficient of thermal expansion parameter a I
, az.

すなわち、熱衝撃試験時の円板内の過渡的温度測定及び
レーザーマイクロゲージによる同時刻の外径変位測定を
、種々の加熱条件において行う。
That is, the transient temperature measurement inside the disk during the thermal shock test and the simultaneous outer diameter displacement measurement using a laser microgauge are performed under various heating conditions.

このことによって、円板の種々の温度範囲に対して(4
)式を数値積分し、それぞれ上記のパラメータal 、
azを算出することができる。さらに、それぞれのa、
、azに基づいて、必要な温度範囲に対して最適なal
、azを適切な方法で決定することができる。
This allows (4
) is numerically integrated, and the above parameters al,
az can be calculated. Furthermore, each a,
, az, the optimal al for the required temperature range
, az can be determined in any suitable manner.

(実施例) 本発明の測定法を実施例について具体的に説明する。(Example) The measurement method of the present invention will be specifically explained with reference to Examples.

供試材として、高温工学試験研究炉(HTTR)燃料体
黒鉛ブロック用材料である石油コークス系、静水圧成形
微粒等方性黒鉛lG410の非高純度化処理材IG−1
1(東洋戻素■製)を使用した。
The test material was IG-1, a non-purified processed material of petroleum coke-based, isostatically pressed fine-grained isotropic graphite IG410, which is a material for the fuel body graphite block of the High Temperature Engineering Test and Research Reactor (HTTR).
1 (manufactured by Toyo Gokuso ■) was used.

円板試験片は、素材ブロックの長平方向に垂直(T方向
)となるように製作した。本実施例において使用した試
験片形状及び代表的な温度測定位置を第2図に示す。
The disk test piece was manufactured so as to be perpendicular to the longitudinal direction of the material block (T direction). FIG. 2 shows the shape of the test piece and typical temperature measurement positions used in this example.

なお、測定はすべて、10−’Torr以下の真空中で
行った。
Note that all measurements were performed in a vacuum of 10-' Torr or less.

測定の結果及び考察 高周波誘導加熱電源の出力レベル450に対して得られ
た測定温度の過渡変化を第3図に、またその時の3つの
時刻における径方向温度分布を第5図に示す。黒鉛円板
試験片の渦電流密度分布から予想されたとおり、両図に
おいて、試験片の半径方向の温度差、特に、外周部近傍
の温度差が大きくなっていることがわかる。更に、試験
片の内周部に近づく程、温度上昇の開始点が遅れている
ことがわかる。
Measurement Results and Discussion FIG. 3 shows the transient changes in the measured temperature obtained with respect to the output level 450 of the high-frequency induction heating power source, and FIG. 5 shows the radial temperature distribution at three times. As expected from the eddy current density distribution of the graphite disk test piece, both figures show that the temperature difference in the radial direction of the test piece, especially the temperature difference near the outer periphery, is large. Furthermore, it can be seen that the closer to the inner periphery of the test piece, the later the temperature rise starts.

また、上記の高周波出力レベル450での試験において
、同時にレーザーマイクロゲージにより測定した黒鉛円
板試験片の外径変位を第4図に示す。この図により、温
度の上昇に伴って外径変位が増加していることがわがる
。この外径変位のデク及び過渡的温度測定のデータを用
いて 訂〜1900℃の測定温度範囲に対して(5)式
の係数a、、a、を求めた。さらに、高周波出力レベル
を200.275に変えて測定したものに関しても同様
に、RT −1300℃、RT〜1500”Cの測定温
度範囲に対して係数a、、a2をそれぞれ求めた。
Furthermore, in the above-mentioned test at the high frequency output level 450, the outer diameter displacement of the graphite disk test piece measured simultaneously with a laser microgauge is shown in FIG. This figure shows that the outer diameter displacement increases as the temperature rises. Using this external diameter displacement data and transient temperature measurement data, the coefficients a, , a, of equation (5) were determined for the measurement temperature range from 1900°C to 1900°C. Furthermore, for measurements made with the high frequency output level changed to 200.275, coefficients a and a2 were similarly determined for the measurement temperature ranges of RT -1300°C and RT~1500''C, respectively.

以上の出力レベルで求めたIG−11黒鉛のT方向の熱
膨張を、第6図に各々プロットした。
The T-direction thermal expansion of IG-11 graphite determined at the above output levels is plotted in FIG. 6.

この結果から、RTから1900’Cまでの測定温度範
囲に対する最適平均熱膨張係数αは、次式で表される。
From this result, the optimal average coefficient of thermal expansion α for the measurement temperature range from RT to 1900'C is expressed by the following equation.

α=4.8 x 10−b+6.7 x 10−” T
 (1/’C)    (61この黒鉛の平均熱膨張係
数αは、別途、示差式熱膨張計を用いて、21〜800
℃、RT〜1200℃の温度範囲で測定しているが、そ
の結果(平均±標準偏差)は、各々4.70±0.10
 x 10−”/ ”C15,06±0.11 x 1
0−6/ ’cである。
α=4.8 x 10-b+6.7 x 10-”T
(1/'C) (61 The average coefficient of thermal expansion α of this graphite was determined separately from 21 to 800 using a differential thermal dilatometer.
℃, RT to 1200℃, the results (average ± standard deviation) are 4.70 ± 0.10, respectively.
x 10-”/”C15,06±0.11 x 1
0-6/'c.

一方、本発明の測定法、すなわち、(6)式にょるαは
、各々5.3 x 10−’/ ”C15,6X 10
−6/ ”Cと10%程度高い値となっている。
On the other hand, in the measurement method of the present invention, that is, α in equation (6) is 5.3 x 10-'/''C15,6X 10
-6/''C, which is about 10% higher.

以上から、本発明の測定法は、従来法との比較からみて
も妥当であり、室温から約2000℃までの平均熱膨張
係数を適切な精度で測定できることが検証できた。
From the above, it has been verified that the measuring method of the present invention is valid when compared with the conventional method, and that the average coefficient of thermal expansion from room temperature to about 2000° C. can be measured with appropriate accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の測定法の概要の説明図である。 図において、 (1)は熱衝撃装置で、 1 高周波誘導電源装置、 2 レーザーマイクロゲージ、 3 レコーダー(温度)、 4 レコーダー(出力、外径)、 (n)は熱膨張解析系で、 5 熱歪解析、 6 半径方向プロファフィル、 7 外径変位 である。さらに、 11 試料片、  12 真空容器、  13 電圧、
I4 電流、   15 パイロメータである。 第2図は、実施例に使用した試験片形状及び代表的な温
度測定位置を示す図である。 第3図は、高周波誘導加熱電源の出力レベルが450に
おいて得られた測定温度の分布(過渡変化)を示す。 図において、横軸は時間(秒)を示し、縦軸は温度(”
c)を示す。 第4図は、第3図における測定と同時にレーザーマイク
ロゲージにより測定した黒鉛円板試験片の外径変位を示
す。 図において、横軸は時間(秒)を示し、縦軸は外径変位
(μm)を示す。 第5図は、高周波誘導加熱電源の出力レベルが450に
おいて、3つの時刻における径方向の温度分布を示す。 図において、横軸は半径(mm)を示し、縦軸は温度(
’C)を示す。 第6図は、出力レベルで求めたIG−11黒鉛のT方向
の熱膨張と温度の関係をプロットした図である。 図において、横軸は温度(”C)を示し、縦軸は熱膨張
係(%)を示す。
FIG. 1 is an explanatory diagram outlining the measurement method of the present invention. In the figure, (1) is a thermal shock device, 1 is a high-frequency induction power supply, 2 is a laser microgauge, 3 is a recorder (temperature), 4 is a recorder (output, outer diameter), (n) is a thermal expansion analysis system, and 5 is a thermal Strain analysis, 6 radial profile, and 7 outer diameter displacement. Furthermore, 11 sample piece, 12 vacuum container, 13 voltage,
I4 current, 15 pyrometer. FIG. 2 is a diagram showing the shape of the test piece used in Examples and typical temperature measurement positions. FIG. 3 shows the distribution (transient change) of measured temperatures obtained when the output level of the high-frequency induction heating power source was 450. In the figure, the horizontal axis shows time (seconds), and the vertical axis shows temperature ("
c). FIG. 4 shows the outer diameter displacement of the graphite disk test piece measured by a laser microgauge at the same time as the measurement in FIG. In the figure, the horizontal axis indicates time (seconds), and the vertical axis indicates outer diameter displacement (μm). FIG. 5 shows the temperature distribution in the radial direction at three times when the output level of the high-frequency induction heating power source is 450. In the figure, the horizontal axis shows the radius (mm), and the vertical axis shows the temperature (mm).
'C) is shown. FIG. 6 is a diagram plotting the relationship between the T-direction thermal expansion of IG-11 graphite and temperature, determined based on the output level. In the figure, the horizontal axis indicates temperature ("C), and the vertical axis indicates coefficient of thermal expansion (%).

Claims (1)

【特許請求の範囲】[Claims] 円板試験片を高周波誘導又はアーク放電により衝撃的に
加熱し、該試験片の径方向の複数箇所の位置における過
渡的温度を測定し、同時に、その際の円板外半径をレー
ザー式変位計(レーザーマイクロゲージ)によって測定
し、この2つの測定データを熱弾性関係式により解析し
て、熱膨張係数を温度の関数として決定することから成
る高熱膨張係数の測定法。
A disk test piece is impulsively heated by high-frequency induction or arc discharge, transient temperatures are measured at multiple positions in the radial direction of the test piece, and at the same time, the outer radius of the disk at that time is measured using a laser displacement meter. A method of measuring a high coefficient of thermal expansion, which consists of measuring the coefficient of thermal expansion as a function of temperature by measuring with a laser micro gauge and analyzing the two measured data using a thermoelastic relational equation.
JP24123690A 1990-09-13 1990-09-13 Method for measuring high coefficient of thermal expansion Pending JPH04121650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24123690A JPH04121650A (en) 1990-09-13 1990-09-13 Method for measuring high coefficient of thermal expansion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24123690A JPH04121650A (en) 1990-09-13 1990-09-13 Method for measuring high coefficient of thermal expansion

Publications (1)

Publication Number Publication Date
JPH04121650A true JPH04121650A (en) 1992-04-22

Family

ID=17071231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24123690A Pending JPH04121650A (en) 1990-09-13 1990-09-13 Method for measuring high coefficient of thermal expansion

Country Status (1)

Country Link
JP (1) JPH04121650A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128066A (en) * 2007-11-20 2009-06-11 Toyo Tanso Kk Thermal expansion coefficient measuring method and measuring device
JP2013036980A (en) * 2011-07-05 2013-02-21 Baehr Thermoanalyse Gmbh Dilatometer for measuring metallic sample

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128066A (en) * 2007-11-20 2009-06-11 Toyo Tanso Kk Thermal expansion coefficient measuring method and measuring device
JP2013036980A (en) * 2011-07-05 2013-02-21 Baehr Thermoanalyse Gmbh Dilatometer for measuring metallic sample

Similar Documents

Publication Publication Date Title
Kollie Measurement of the thermal-expansion coefficient of nickel from 300 to 1000 K and determination of the power-law constants near the Curie temperature
Perkins et al. A high-temperature transient hot-wire thermal conductivity apparatus for fluids
Bachheimer An anomaly in the β phase near the α-β transition of quartz
Fu et al. Experimental research on the influence of surface conditions on the total hemispherical emissivity of iron-based alloys
Zhang et al. Investigation of the normal spectral band emissivity characteristic within 7.5 to 13 μm for Molybdenum between 100 and 500° C
Gray et al. Free-standing CVD diamond wafers for thermal management by dc arc jet technology
JPH04121650A (en) Method for measuring high coefficient of thermal expansion
Thomas et al. A CODE OF PRACTICE FOR CONSTANT‐AMPLITUDE LOW CYCLE FATIGUE TESTING AT ELEVATED TEMPERATURES
Manahan The development of a miniaturized disk bend test for the determination of post-irradiation mechanical behavior
US3498133A (en) Apparatus for measuring high temperatures
Baroody et al. Effect of shape on thermal fracture
US4379118A (en) Process for measuring a continuous neutron flux and measuring apparatus for carrying out this process
JPH03176653A (en) Method and instrument for measuring heat conductivity
Valeinis et al. Development and Testing of Slug Calorimeter and Total Pressure Probes for a Miniaturized Arc-jet
Ulanovskiy et al. Tungsten–Rhenium Thermocouples Calibration in Ultra-High Temperature Range
Luo et al. Inverse heat transfer solution of the heat flux due to induction heating
Carden Thermal fatigue evaluation
Zeng et al. Development of Ni Cr∕ Ni Si Thin-Film Thermocouple Sensor for Workpiece Temperature Measurement in Chemical Explosive Material Machining
Brown et al. Young's Modulus Measurements Above 2000 C
Cheng et al. Development of metal embedded microsensors by diffusion bonding and testing in milling process
Krause et al. Structural Benchmark Creep Testing for Microcast MarM-247 Advanced Stirling Convertor E2 Heater Head Test Article SN18
US3106085A (en) Measurement of thermal conductivity
Wilding et al. Benchmark Analysis for the Optical Dilatometry Method Using Silicon Carbide Temperature Monitors
Wilding Status of the Optical Dilatometer Method of Evaluating the Peak Irradiation Temperatures of SiC Passive Monitors
JPH0381642A (en) Method and device for thermal shock test