WO2012039198A1 - Hot displacement measuring device, hot displacement measuring method, and electric resistance measuring device - Google Patents

Hot displacement measuring device, hot displacement measuring method, and electric resistance measuring device Download PDF

Info

Publication number
WO2012039198A1
WO2012039198A1 PCT/JP2011/067763 JP2011067763W WO2012039198A1 WO 2012039198 A1 WO2012039198 A1 WO 2012039198A1 JP 2011067763 W JP2011067763 W JP 2011067763W WO 2012039198 A1 WO2012039198 A1 WO 2012039198A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
measurement
measuring
measurement chamber
temperature
Prior art date
Application number
PCT/JP2011/067763
Other languages
French (fr)
Japanese (ja)
Inventor
吉本 修
岡田 雅樹
Original Assignee
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010212213A external-priority patent/JP5683187B2/en
Priority claimed from JP2010212212A external-priority patent/JP5597856B2/en
Application filed by 東洋炭素株式会社 filed Critical 東洋炭素株式会社
Publication of WO2012039198A1 publication Critical patent/WO2012039198A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/041Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/028Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring lateral position of a boundary of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/16Investigating or analyzing materials by the use of thermal means by investigating thermal coefficient of expansion

Definitions

  • the present invention measures a hot displacement measuring apparatus and a hot displacement measuring method capable of measuring a hot displacement for obtaining a coefficient of thermal expansion and the like, and measures an electrical resistivity of a sample that can be heated by energization.
  • the present invention relates to an electrical resistance measuring device.
  • Various methods such as a differential dilatometer method, a push rod dilatometer method, and a microscopic telescope method are known as methods for measuring the amount of hot displacement for obtaining the coefficient of thermal expansion.
  • Patent Document 6 and Patent Document 7 disclose a thermal expansion coefficient measuring device for measuring a thermal expansion coefficient at a high temperature.
  • a structure is employed in which the periphery of the sample is covered with a heat insulating material or a reflector serving as a sample container. The temperature in the measurement part of the sample is measured optically through an optical window formed in such a heat insulating material or reflector. Further, when a thermocouple is used for temperature measurement, a hole is formed in a heat insulating material or the like, a thermocouple is inserted into the hole, and the tip of the thermocouple is placed in the measurement part of the sample.
  • Such a structure was the same in a conventional electrical resistance measuring apparatus that measures electrical resistivity at high temperatures.
  • an inert gas such as argon is generally used as the atmosphere gas of the sample heated to a high temperature.
  • an inert gas such as argon gas is ionized and discharge occurs in a high temperature range, it is difficult to accurately measure the electrical resistivity. was there.
  • JP 60-39540 A Japanese Patent Laid-Open No. 61-7452 JP 61-172041 A Japanese Patent Laid-Open No. 06-167468 JP 2004-333154 A JP 2009-128066 A Japanese Patent Application Laid-Open No. 8-128977
  • a first object of the present invention is to provide a hot displacement measuring device and a hot displacement measuring method capable of measuring a hot displacement amount easily and accurately in a high temperature range.
  • a second object of the present invention is to provide an electrical resistance measuring apparatus capable of accurately measuring electrical resistivity in a high temperature range with a simple structure.
  • a hot displacement measuring apparatus includes a measurement chamber in which a sample is installed, a heating unit for heating the sample, a temperature measuring unit for measuring the temperature in the measurement unit of the sample, A projection lens for enlarging and projecting the measurement unit, and a pair of imaging means for imaging each of the images at both ends of the measurement unit of the sample magnified by the projection lens are provided.
  • each of the images at both ends of the measurement part of the sample magnified by the projection lens is picked up by different image pickup means, and the difference in displacement (displacement amount) between the both ends between the predetermined temperatures. ), The amount of hot displacement can be obtained. For this reason, since there is no part which contacts a sample directly, the amount of hot displacement can be easily measured even in a high temperature range.
  • the images at both ends of the measurement unit are enlarged and each of the images at both ends is captured by different imaging means, measurement can be performed even if the sample is small. That is, it is possible to measure not only the length direction of the sample but also a minute amount of displacement in the radial direction of the sample.
  • the S / N ratio is not lowered due to light emission from the sample in a high temperature range, and measurement can be performed with high accuracy.
  • the heating means is a direct current power source for passing a direct current through the sample.
  • a direct current power source for passing a direct current through the sample.
  • the ambient temperature can be made relatively low.
  • a projection lens, an imaging means, etc. can be installed near a sample, and an apparatus structure can be made small.
  • the wall portion constituting the outer peripheral portion of the measurement chamber is formed of a material that transmits heat rays due to radiation from the sample, and the heat rays from the sample are directly applied to the wall portion of the measurement chamber. It is preferable to be configured to be irradiated and radiated to the outside.
  • the wall of the measurement chamber By forming the wall of the measurement chamber from a material that transmits heat rays, for example, even if the temperature of the sample is increased to about 3000 ° C., the temperature around the sample in the measurement chamber can be suppressed to an increase to about 200 ° C. it can.
  • the temperature rise in the measurement chamber can be suppressed, it is possible to suppress the discharge of the ionized inert gas and the occurrence of discharge when an inert gas such as argon is used as the atmosphere gas in the measurement chamber. it can. For this reason, measurement with higher accuracy is possible without affecting imaging in a high temperature range.
  • the material of the wall portion of the measurement chamber has a light transmittance of 80% or more at a wavelength of 0.4 to 2.0 ⁇ m. That is, the light transmittance at each wavelength in the above range is preferably 80% or more.
  • Heat rays due to radiation from the sample are generated in a wide wavelength range, and the intensity increases as the temperature increases. However, the strength is not strong in the low temperature region, and it is considered that the contribution to the temperature rise for the object irradiated with heat rays is not so great. Further, the intensity of the heat rays due to radiation becomes shorter as the temperature becomes higher, and becomes a peak at a wavelength of 2.0 ⁇ m or less particularly at 1500 ° C.
  • the wall portion transmits more light in the wavelength region of 2.0 ⁇ m or less, thereby suppressing the temperature rise of the wall portion, and consequently, inside the measurement chamber. Temperature rise can also be suppressed.
  • the wall of the measurement chamber is not particularly limited, but preferred examples include quartz glass and alumina. Since these materials easily transmit the heat ray, the temperature does not increase, and the temperature in the wall of the measurement chamber and the temperature in the measurement chamber can be suppressed.
  • quartz glass is preferably used.
  • quartz glass is preferable because it is transparent and has high heat resistance, so that a heated sample can be directly observed. For this reason, it is not necessary to install a window etc. in the wall part of a measurement chamber, and it can measure a high temperature easily with a thermal radiation type thermometer. In addition, other physical characteristics that can be measured by observing the sample can be easily measured.
  • quartz glass has a small coefficient of friction, and the holding member can easily move freely when the holding member is placed directly in the measurement chamber.
  • the image of the measurement part of the sample is enlarged by the projection lens, and both ends in the radial direction are picked up by the image pickup means. Therefore, the wall part of the measurement chamber needs to be transparent. is there. Since quartz glass is transparent and has high heat resistance, it is particularly preferable as a material for forming the wall of the measurement chamber in the present invention. Further, by using one projection lens, it is possible to easily measure the amount of hot displacement by enlarging even a minute sample (for example, the radial direction of the sample).
  • the distance between the outer peripheral wall of the measurement chamber and the sample is preferably 50 mm or more. Since the heat rays due to the radiation from the sample are further attenuated according to the reach distance, the longer the distance from the sample, the harder the irradiated object is heated.
  • the wall portion of the outer peripheral portion of the measurement chamber is made of a material that is difficult to be heated by radiation heat rays, and the wall portion can be further prevented from being heated by separating the wall portion by 50 mm or more.
  • the wall portion of the outer peripheral portion of the measurement chamber is preferably cylindrical in terms of ease of taking a distance from the sample, and the diameter is preferably 100 mm or more. Further, in order to replace the measurement chamber with an inert gas, the volume is preferably not too large, and the diameter is preferably 200 mm or less.
  • an illumination device that irradiates light to both ends of the sample may be further provided.
  • an illumination device By providing such an illumination device, an image can be taken with sufficient contrast from a low temperature range to a high temperature range. Therefore, the position of the end portion in the sample can be detected more accurately.
  • the measurement can be performed by switching off the illumination device.
  • a diaphragm or a filter is further provided between the sample and the projection lens.
  • the diaphragm and / or filter can adjust the amount of light and remove light having an unnecessary wavelength, so that the position of the end of the sample can be detected more accurately.
  • one aperture or filter can be provided.
  • the projection lens and the imaging means it is necessary to provide a diaphragm and / or a filter for each of the pair of imaging means. Moreover, it becomes necessary to adjust each diaphragm and / or filter individually, which is complicated.
  • the method for measuring a hot displacement includes a step of installing a sample in a measurement chamber, an enlarged measurement unit of the sample installed in the measurement chamber, and projecting both ends in a radial direction in an image of the measurement unit. Heating the sample while imaging each of the parts, and increasing the temperature; and determining the hot displacement of the sample from the temperature difference in the temperature increase and the displacement at both ends due to the temperature increase. It is characterized by providing.
  • the amount of hot displacement can be measured easily and accurately at high temperatures.
  • a DC current is passed through the measurement chamber in which the sample is installed, a holding member for holding the sample in the measurement chamber, and the sample held in the holding member, and heating
  • An electrical resistance measuring device comprising: a direct current power source for measuring, a temperature measuring means for measuring a temperature in a measurement part of the sample; and an electrical resistivity measuring means for measuring the electrical resistivity of the sample.
  • the wall part constituting the outer peripheral part of the measurement chamber is formed of a material that transmits heat rays by radiation from the sample, and the heat ray from the sample is directly irradiated to the wall part of the measurement chamber. It is characterized by being radiated to the outside.
  • a heat insulating material is provided around the sample measurement part.
  • a cooling facility or the like has been provided in order to prevent a temperature rise in the outer peripheral portion of the measurement chamber and to reduce the danger particularly when the measurement person touches the hand.
  • the present inventors have formed the wall portion constituting the outer peripheral portion of the measurement chamber from a material that transmits heat rays due to radiation from the sample, so that the wall portion constituting the outer peripheral portion of the measurement chamber and the measurement chamber can be reduced. It has been found that the temperature rise can be suppressed, and the electrical resistivity in the high temperature range can be measured more accurately and accurately with a simple structure without requiring a heat insulating material or a cooling facility.
  • the temperature around the sample in the measurement chamber can be increased to about 200 ° C., for example. That is, conventionally, since the heat insulating material and the shielding material covering the periphery of the sample are materials that absorb the heat rays from the sample, the temperature rises as the sample is heated. Due to the temperature rise of the heat insulating material and the shielding material, the temperature around the sample also rises to a high temperature, and it is difficult to accurately measure the electrical resistivity at high temperature due to the influence of gas around the sample. Furthermore, since the temperature of the outer peripheral part of a measurement chamber becomes high, the cooling equipment was needed.
  • the present inventors changed such a conventional idea, and configured so that the heat rays from the sample were directly irradiated to the wall portion constituting the outer peripheral portion of the measurement chamber, and further absorbed the heat rays into the wall portion. It has been found that by using a difficult material, temperature rise in the wall portion and the measurement chamber constituting the outer peripheral portion of the measurement chamber can be suppressed.
  • the heat rays from the sample directly pass through the wall of the measurement chamber and are almost radiated to the outside.
  • the temperature in the outer circumference of the measurement chamber and the measurement chamber is not increased to a high temperature, with a simple structure and high accuracy, in the high temperature range. Electrical resistivity can be measured. Furthermore, since the wall part of the outer peripheral part of the measurement chamber is in contact with the external atmosphere, it also has an effect of releasing heat to the outside, and the temperature is hardly increased.
  • the material of the wall of the measurement chamber is preferably the same material as the wall of the measurement chamber in the first aspect.
  • the holding member is held in the measurement chamber so as to be movable in the length direction of the sample installed in the measurement chamber.
  • a direct current is applied to the sample and heated, the sample expands thermally.
  • the holding member moves accordingly.
  • the strain load on the sample due to the thermal expansion of the sample can be reduced, and deformation of the sample can be prevented. That is, the holding member is not fixed in the measurement chamber, but is directly placed in the measurement chamber. Thereby, the holding member can be moved on the measurement chamber.
  • the measurement chamber is preferably cylindrical, and the holding member is preferably semicircular and placed along the shape of the cylindrical measurement chamber. Thereby, stability of a holding member can be improved and a measurement can be made easy.
  • a reflector for reflecting the heat rays from the sample is provided between the sample measurement unit and the holding member.
  • the distance between the outer peripheral wall of the measurement chamber and the sample is preferably 50 mm or more, as in the first aspect.
  • the wall portion of the outer peripheral portion of the measurement chamber is preferably cylindrical in view of ease of distance from the sample, and the diameter is preferably 100 mm or more.
  • the volume is preferably not too large, and the diameter is preferably 200 mm or less.
  • the temperature measuring means used in the second aspect of the present invention includes a thermocouple that measures a low temperature region and a radiation thermometer that measures a high temperature region.
  • the temperature In the low temperature range (room temperature to about 1300 ° C.), the temperature can be measured with a thermocouple, and in the high temperature range (about 900 ° C. or higher), the temperature can be measured with a radiation thermometer. Thereby, more accurate temperature can be measured from a low temperature range to a high temperature range.
  • the electrical resistance measurement apparatus can use an inert gas such as argon gas as the atmospheric gas in the measurement chamber.
  • an inert gas such as argon gas
  • the atmospheric gas in the measurement chamber in the second aspect of the present invention is not limited to an inert gas, but the use of an inert gas as the atmospheric gas prevents the sample from being denatured due to oxidation or the like. Can do.
  • an inert gas used, as described above, the inert gas may be ionized at a high temperature range, thereby impairing the accuracy of electrical resistance measurement.
  • the second aspect of the present invention since the temperature rise in the measurement chamber can be suppressed, ionization of the inert gas can be suppressed. Accordingly, it is possible to reduce the adverse effect on the measurement of electric resistance due to the ionization of the inert gas, and it is possible to measure the electric resistivity more accurately.
  • a displacement amount measuring means for measuring the displacement amount of the edge in the radial direction of the measurement portion of the sample may be further provided.
  • the displacement measuring means is preferably an optical measuring means.
  • the wall of the measurement chamber is made of a transparent material, and the displacement of the edge of the sample measurement section in the radial direction can be easily measured by the optical measurement means provided outside the measurement chamber. can do.
  • the amount of hot displacement can be measured easily and accurately in a high temperature range.
  • the electrical resistivity in the high temperature range can be accurately measured with a simple structure.
  • FIG. 1 is a schematic diagram showing a hot displacement measuring device or an electric resistance measuring device according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing a measurement chamber of the hot displacement measuring device or the electrical resistance measuring device of one embodiment according to the present invention.
  • FIG. 3 is a perspective view showing a measuring unit of the hot displacement measuring device or the electric resistance measuring device shown in FIG.
  • FIG. 4 is a plan view showing a measuring section of the hot displacement measuring device or the electric resistance measuring device shown in FIG.
  • FIG. 5 is a sectional view taken along line AA shown in FIG.
  • FIG. 6 is a plan view showing a holding member used in the hot displacement measuring device or the electrical resistance measuring device shown in FIG.
  • FIG. 7 is a cross-sectional view taken along line AA shown in FIG. FIG.
  • FIG. 8 is a plan view showing a presser plate used in the hot displacement measuring device or the electric resistance measuring device shown in FIG.
  • FIG. 9 is a cross-sectional view taken along line AA shown in FIG.
  • FIG. 10 is a plan view showing a sample to be measured by the hot displacement measuring device or the electric resistance measuring device shown in FIG.
  • FIG. 11 is a side view of the sample shown in FIG.
  • FIG. 12 is a side view showing a reflector used in the hot displacement measuring device or the electrical resistance measuring device shown in FIG.
  • FIG. 13 is a plan view showing the reflector shown in FIG.
  • FIG. 14 is a side view showing a metal plate used for manufacturing the reflector shown in FIGS. 12 and 13.
  • FIG. 15 is a diagram schematically showing a hot displacement measuring device or an electric resistance measuring device according to an embodiment of the present invention.
  • FIG. 16 is a perspective view illustrating a measurement unit of the electrical resistance measurement apparatus.
  • FIG. 17 is a diagram showing the relationship between the measurement temperature and the resistance change rate in one sample measured using the electrical resistance measurement apparatus according to one embodiment of the present invention.
  • FIG. 18 is a diagram showing the relationship between the measurement temperature and the resistance change rate in another sample measured using the electrical resistance measurement device according to one embodiment of the present invention.
  • FIG. 19 is a diagram showing the relationship between the temperature and resistance of a sample measured by a conventional measuring apparatus.
  • FIG. 1 is a schematic diagram showing a hot displacement measuring apparatus according to an embodiment of the first aspect of the present invention.
  • the sample 10 is installed in a measurement chamber described later. In FIG. 1, the measurement chamber is not shown.
  • An optical filter (or diaphragm) 21 and a projection lens 22 are provided outside the measurement chamber.
  • the projection lens 22 is for enlarging and projecting both end portions 10 a and 10 b in the measurement unit of the sample 10.
  • An optical filter (or diaphragm) 21 is provided between the sample 10 and the projection lens 22.
  • the optical filter 21 adjusts the amount of light, removes light with an unnecessary wavelength, etc., and passes through the optical filter 21. Light enters the projection lens 22.
  • the image of the measurement part of the sample 10 is incident on one projection lens 22 and then projected onto one-dimensional CCDs 23 and 24 as a pair of imaging means.
  • the one-dimensional CCD 24 images one end portion 10a of the sample 10. Further, the other end portion 10 b of the sample 10 is imaged on the one-dimensional CCD 23.
  • the projection lens 22 images one end portion 10a in the radial direction in the image of the enlarged measurement portion of the sample 10 with the one-dimensional CCD 24 and the other end portion 10b with the one-dimensional CCD 23. Therefore, by appropriately adjusting the positions of the one-dimensional CCD 23 and the one-dimensional CCD 24, it is possible to correspond to the measurement of the sample 10 having various sizes.
  • the position of the other end 10b of the sample 10 can be detected by the inflection point 25a in the electric signal 25 from the one-dimensional CCD 23.
  • the position of the one end portion 10a of the sample 10 can be detected by the inflection point 26a of the electric signal 26 from the one-dimensional CCD 24.
  • the sample 10 When the sample 10 is heated and thermally expanded, the sample 10 also expands in the radial direction, so that the distance between the one end 10a and the other end 10b changes. Thereby, the amount of hot displacement of the sample at a predetermined temperature difference can be obtained, and the coefficient of thermal expansion can be calculated.
  • FIG. 2 is a perspective view showing a measurement chamber of the hot displacement measuring apparatus according to one embodiment of the first aspect of the present invention.
  • the measurement chamber 1 is configured by arranging O-rings between both ends of a wall portion 1a made of a quartz glass tube, and a cap 2 and a cap 3 and fixing them with clips.
  • the cap 2 and the cap 3 are made of bakelite, but are not particularly limited as long as they have heat resistance, and may be metal or resin.
  • a pipe serving as an inlet 18 for introducing an inert gas into the measurement chamber 1 is inserted into the cap 2.
  • An inert gas is introduced into the measurement chamber 1 through the introduction port 18.
  • argon (Ar) is used as the inert gas.
  • the inert gas other inert gases such as neon (Ne) and krypton (Kr) may be used. Further, nitrogen gas can be used instead of the inert gas.
  • an exhaust port 19 is formed in the cap 3 provided on the opposite side.
  • the exhaust port 19 is formed to exhaust the gas in the measurement chamber 1. Note that the exhaust port 19 is not shown in FIG.
  • An exhaust pump (not shown) as exhaust means for exhausting the gas in the measurement chamber 1 is connected to the exhaust port 19.
  • the atmosphere in the measurement chamber 1 can be changed to an argon gas atmosphere by introducing argon gas from the introduction port 18.
  • the sample 10 whose electrical resistivity is measured by the hot displacement measuring device of this embodiment is installed in the measurement chamber 1 by being held by the holding members 4 and 5 in the measurement chamber 1.
  • an electric wire 8 is connected to the holding member 4, and the electric wire 8 passes between the cap 2 and the wall portion 1a and is led to the outside.
  • an electric wire 9 is connected to the holding member 5, and the electric wire 9 is led to the outside through between the cap 3 and the wall portion 1 a.
  • the electric wires 8 and 9 are connected to a DC power source (not shown).
  • the quartz glass tube constituting the wall portion 1a is supported on a table 33 by support members 31 and 32.
  • a quartz glass tube having a diameter of 120 mm is used, and the transmittance of the quartz glass having a wavelength of 0.4 to 2.0 ⁇ m is 80% or more.
  • FIG. 3 is an enlarged perspective view showing the measurement unit of the hot displacement measuring apparatus shown in FIG.
  • the holding member 4 is configured by combining a pedestal portion 4a and a pressing plate 4e.
  • the holding member 5 is also configured by combining a pedestal portion 5a and a pressing plate 5e.
  • the pedestals 4a and 5a are made of graphite in the present embodiment.
  • the holding plates 4e and 5e are made of copper in this embodiment.
  • FIG. 4 is a plan view showing a measuring section of the hot displacement measuring apparatus shown in FIG. 2
  • FIG. 5 is a cross-sectional view taken along line AA shown in FIG.
  • FIG. 6 is a plan view showing the pedestal 5a
  • FIG. 7 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 8 is a plan view showing the pressing plate 5e
  • FIG. 9 is a cross-sectional view taken along the line AA shown in FIG.
  • the pedestal portion 4a has the same structure as the pedestal portion 5a, and the presser plate 4e has the same structure as the presser plate 5e.
  • one end portion of the sample 10 is disposed in a groove 5i (see FIGS. 6 and 7) formed in the pedestal portion 5a, and a holding plate 5e is disposed thereon.
  • the bolt of the fixing tool 5b composed of a bolt and a nut is passed through the hole 5f of the pedestal portion 5a and the hole 5j of the holding plate 5e, and tightened with the nut, so that the pedestal portion 5a and the holding plate 5e are sandwiched and fixed.
  • the other end portion of the sample 10 is sandwiched and fixed between the pedestal portion 4a and the pressing plate 4e by fixing the pedestal portion 4a and the pressing plate 4e with the fixture 4b.
  • FIG. 5 shows a state in which the sample 10 is sandwiched and fixed between the pedestal 5a and the holding plate 5e.
  • the bottom surface of the pedestal portion 5 a has a semicircular shape along the inner surface of the wall portion 1 a, and the pedestal portion 5 a is arranged by being inserted into the cylindrical wall portion 1 a, It is not fixed to the part 1a. Similarly, the pedestal part 4a is inserted into the wall part 1a and is not fixed to the wall part 1a. Accordingly, the holding members 4 and 5 are held in the measurement chamber 1 so as to be movable in the length direction of the sample 10 in the measurement chamber 1.
  • a reflector 6 is provided between the measurement member of the sample 10, that is, the portion of the sample 10 positioned between the holding member 4 and the holding member 5 and the holding member 4. Yes.
  • a reflector 7 is provided between the measurement unit of the sample 10 and the holding member 5.
  • the distance between the reflector 6 and the reflector 7 is not particularly limited, and may be changed according to the length of the sample 10. That is, the reflectors 6 and 7 are fixed to the holding members 4 and 5, and the distance is changed together with the holding members 4 and 5 depending on the length of the sample 10.
  • FIG. 12 is a side view showing the reflector 6, and FIG. 13 is a plan view showing the reflector 6.
  • the reflector 6 is manufactured by processing a metal plate made of stainless steel SUS304 having the shape shown in FIG. As shown in FIG. 14, a cutout portion 6a through which the sample 10 is passed is formed, and cutouts 6d and 6e are formed on both sides thereof. The hatched portions outside the cuts 6d and 6e are extracted by punching.
  • the flaps 6b and 6c shown in FIGS. 12 and 13 are formed by bending the notches 6d and 6e at the base portions thereof.
  • the flap portions 6b and 6c are formed with notches for allowing the attachment screws 4c to pass therethrough.
  • the reflector 7 has the same shape as the reflector 6.
  • the attachment screw 4c is passed through the flap portion of the reflector 6, and the reflector 6 is attached to the pedestal portion 4a.
  • the reflector 7 is attached to the pedestal 5a by passing the attachment screw 5c through the flap of the reflector 7.
  • the attachment screw 5 c is attached by being screwed into a hole 5 g formed in the pedestal portion 5 a.
  • the reflectors 6 and 7 are made of stainless steel as described above, the heat rays radiated from the sample 10 can be reflected.
  • the reflector 6 is provided between the measurement unit of the sample 10 and the holding member 4, and the reflector 7 is provided between the measurement unit of the sample 10 and the holding member 5. Therefore, at the time of measurement, the heat rays radiated from the sample 10 can be reflected so as not to be applied to the holding member 4 and the holding member 5. For this reason, it can suppress that the holding member 4 and the holding member 5 absorb a heat ray, and a temperature rise. For this reason, it can suppress that the temperature in the measurement chamber 1 rises. Further, the holding member 4 and the holding member 5 can be prevented from being deteriorated by the heat rays from the sample 10.
  • the reflectors 6 and 7 preferably reflect at least infrared rays.
  • a fixing tool 5d made of a bolt and a nut is attached to the hole 5h shown in FIG. 6, and the electric wire 9 is attached to the holding member 5 by the fixing tool 5d.
  • the fixture 4d is attached to a hole formed in the pedestal portion 4a, and the electric wire 8 is connected to the holding member 4 by the fixture 4d.
  • FIG. 15 is a diagram schematically showing the hot displacement measuring apparatus of the present embodiment.
  • the sample 10 is disposed in the measurement chamber 1 in which the wall portion 1 a is made of quartz glass.
  • the other end of each of the electric wire 8 and the electric wire 9 having one end connected to the DC power source 14 is connected to the sample 10.
  • the sample 10 can be heated and the temperature of the sample 10 can be raised.
  • An ammeter 15 is provided between the DC power supply 14 and the sample 10.
  • the DC power source 14 it is preferable to use a constant voltage constant current power source.
  • the temperature of the measurement part of the sample 10 is measured by the thermocouple 13 in the low temperature range.
  • the thermocouple 13 is attached to the sample 10 with an adhesive. Therefore, in the present embodiment, the thermocouple 13 is disposable.
  • Data measured by the thermocouple 13 is sent to a temperature measurement circuit / data logger 17. Further, the temperature of the measurement part of the sample 10 in the high temperature range is measured by a radiation type thermometer 16 provided outside the measurement chamber 1.
  • the temperature data measured by the radiation type thermometer 16 is sent to a temperature measurement circuit / data logger 17. Based on the temperature data measured in this way, a signal is sent from the temperature measurement circuit / data logger 17 to the DC power source 14 to control the current or voltage to be applied to the sample 10 and to control the temperature increase rate of the sample 10. Can do.
  • the displacement data measured by the optical displacement measuring device 20 is also sent to the temperature measurement circuit / data logger 17 to derive the displacement amount of the sample at each temperature with respect to the sample at a predetermined temperature.
  • An optical displacement measuring device 20 is provided outside the measurement chamber.
  • the optical displacement measuring device 20 is the device described with reference to FIG.
  • the wall portion 1a of the measurement chamber 1 is formed of quartz glass. Quartz glass is a material that transmits heat rays and transmits heat rays generated from the sample 10. For this reason, the temperature rise in the measurement chamber 1 can be suppressed, and the amount of hot displacement in the high temperature region can be accurately measured with a simple structure without requiring a heat insulating material or a cooling facility.
  • the temperature in the wall 1a above the sample 10 was measured and found to be 396 ° C. Moreover, it was 149 degreeC in the place about 100 mm away from the center of the measurement part of the sample 10, ie, above the reflectors 6 and 7.
  • the temperature rise around the measurement unit of the measurement chamber 1 can be suppressed. Therefore, the heat insulating material and the cooling equipment, which are conventionally required, are no longer necessary.
  • the both ends 10a and 10b in the image of the measurement unit of the sample 10 magnified by the projection lens 22 are imaged by the pair of imaging units 23 and 24, and the both ends 10a and 10b
  • the amount of hot displacement can be determined from the amount of displacement with respect to the sample having a predetermined temperature of 10b. For this reason, since there is no part which contacts the sample 10 directly, the amount of hot displacement can be easily measured even in a high temperature range.
  • the measurement chamber of the electrical resistance measurement device of one embodiment according to the second aspect of the present invention is the same as the measurement chamber of the hot displacement measurement device according to the first aspect of the present invention shown in FIG. Since the measurement chamber 1 is as described with reference to FIGS. 3 to 14, its description is omitted.
  • FIG. 16 is a perspective view showing a state in which the voltage drop detection terminals 11 and 12 are in contact with the measurement part of the sample 10.
  • the voltage drop detection terminals 11 and 12 are made of graphite.
  • the voltage drop detection terminals 11 and 12 are supported by support rods 11a and 12a made of stainless steel, respectively.
  • the distance between the tips of the voltage drop detection terminals 11 and 12 was set to 7 to 15 mm.
  • the tip of the voltage drop detection terminals 11 and 12 may be brought into contact with a location where the sample 10 is soaked, and is not limited to the above range.
  • thermocouple 13 is attached to the lower surface of the measurement unit of the sample 10.
  • the thermocouple 13 is attached to the sample 10 with an adhesive. Therefore, in the present embodiment, the thermocouple 13 is disposable.
  • the electrical resistance measuring device of this embodiment has the same structure as the hot displacement measuring device shown in FIG.
  • the sample 10 is disposed in the measurement chamber 1 in which the wall portion 1 a is made of quartz glass.
  • the other end of each of the electric wire 8 and the electric wire 9 having one end connected to the DC power source 14 is connected to the sample 10.
  • the sample 10 can be heated and the temperature of the sample 10 can be raised.
  • the DC power source 14 a constant voltage constant current power source is preferably used.
  • the sample 10 is provided so that the voltage drop detection terminals 11 and 12 are in contact with each other as described above.
  • An ammeter 15 is provided between the DC power supply 14 and the sample 10. By measuring the voltage drop between the voltage drop detection terminals 11 and 12 and measuring the current value with the ammeter 15, the electrical resistivity in the measurement part of the sample 10 can be obtained.
  • the current value in the ammeter 15 and the value of the voltage drop at the voltage drop detection terminals 11 and 12 are sent to the temperature measurement circuit / data logger 17 to calculate the electrical resistivity relative to the sample temperature.
  • the temperature of the measurement part of the sample 10 is measured by the thermocouple 13 in the low temperature range. Data measured by the thermocouple 13 is sent to a temperature measurement circuit / data logger 17. Further, the temperature of the measurement part of the sample 10 in the high temperature range is measured by a radiation type thermometer 16 provided outside the measurement chamber 1. The temperature data measured by the radiation type thermometer 16 is sent to a temperature measurement circuit / data logger 17. Based on the temperature data measured in this manner, a signal is sent from the temperature measurement circuit / data logger 17 to the DC power source 14 to control the amount of current or voltage to be supplied to the sample 10 and to control the rate of temperature increase of the sample 10. be able to.
  • the optical displacement measuring device 20 described with reference to FIG. 1 is provided outside the measuring chamber 1.
  • the optical displacement amount measuring device 20 is a device for measuring the displacement amount of both end edges in the radial direction of the measurement portion of the sample 10.
  • the wall portion 1a of the measurement chamber 1 is formed of quartz glass. Quartz glass is a material that transmits heat rays and transmits heat rays generated from the sample 10. For this reason, the temperature rise in the measurement chamber 1 can be suppressed, and the amount of hot displacement and electrical resistivity in the high temperature range can be accurately measured with a simple structure without requiring a heat insulating material or a cooling facility. .
  • FIGS. 17 and 18 are diagrams showing the relationship between the measurement temperature of the sample measured using the electrical resistance measurement apparatus of the present embodiment and the resistance change rate.
  • the sample 10 isotropic graphite (manufactured by Toyo Tanso Co., Ltd., grade name “IG-12”: FIG. 17) and isotropic graphite (manufactured by Toyo Tanso Co., Ltd., grade name “TTK-50”: FIG. 18). ) was used.
  • the resistance change rate can be accurately measured up to a high temperature of about 2800 ° C.
  • FIG. 19 shows the measurement results of the isotropic graphite (grade name “IG-110”) shown in FIG. 2 on page 35 of Non-Patent Document 1, which is the prior art.
  • IG-110 grade name “IG-110”
  • FIG. 18 shows the measurement results of the isotropic graphite (grade name “IG-110”) shown in FIG. 2 on page 35 of Non-Patent Document 1, which is the prior art.
  • the resistance value starts to decrease. This is presumably because the argon gas in the vicinity of the sample is ionized, so that the current flows not only through the sample but also through the argon gas, and the apparent electrical resistance of the sample decreases.
  • the temperature rise in the measurement chamber 1 can be suppressed as described above, it is possible to suppress the argon gas, which is the atmospheric gas, from being ionized, and the electricity can be accurately generated.
  • the resistivity can be measured.
  • graphite is used as the sample 10, but the sample that can be measured by the apparatus of the present invention is not particularly limited as long as the sample can be heated by energization, such as ceramics and metal. Can also be measured.
  • Electric wire 10 ... Sample 10a ... One end part 10b ... The other end part 13 ... Thermocouple 14 ... DC power supply 15 ... Ammeter 16 ... Radiation type thermometer 17 ... Temperature measurement circuit and data logger 18 ... Inlet 19 ... Exhaust outlet 20 ... Optical displacement measuring device 21 ... Optical filter 22 ... Projection lens 23 ... One-dimensional CCD 24 ... one-dimensional CCD 25 ... Electric signal 25a ... Inflection point 26 ... Electric signal 26a ... Inflection point 31, 32 ... Support member 33 ... Stand

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

In order to obtain a hot displacement measuring device, a hot displacement measuring method, and an electric resistance measuring device which are capable of measuring the hot displacement amount and/or the electric resistivity easily and accurately in a high-temperature range, an electric resistance measuring device is characterized by being provided with a measuring chamber (1) in which a sample (10) is placed, holding members (4, 5) for holding the sample (10) in the measuring chamber (1), a direct-current power source (14) for passing a direct current through the sample (10) held by the holding members (4, 5) to heat the sample, a temperature measuring means for measuring the temperature of a measurement portion of the sample (10), and an electric resistivity measuring means for measuring the electric resistivity of the sample (10), and by being configured such that a wall portion (1a) constituting the outer peripheral portion of the measuring chamber (1) is formed from a material through which heat rays due to radiation from the sample (10) are transmitted, and the heat rays from the sample (10) are applied directly to the wall portion (1a) of the measuring chamber (1), pass therethrough, and are emitted to the outside.

Description

熱間変位測定装置及び熱間変位測定方法並びに電気抵抗測定装置Hot displacement measuring device, hot displacement measuring method, and electrical resistance measuring device
 本発明は、熱膨張率などを求めるための熱間変位量を測定することができる熱間変位測定装置及び熱間変位測定方法、並びに通電により加熱することができる試料の電気抵抗率を測定する電気抵抗測定装置に関するものである。 The present invention measures a hot displacement measuring apparatus and a hot displacement measuring method capable of measuring a hot displacement for obtaining a coefficient of thermal expansion and the like, and measures an electrical resistivity of a sample that can be heated by energization. The present invention relates to an electrical resistance measuring device.
 熱膨張率などを求めるための熱間変位量を測定する方法としては、示差式膨張計法、押し棒式膨張計法、測微望遠鏡法などの種々の方法が知られている。 Various methods such as a differential dilatometer method, a push rod dilatometer method, and a microscopic telescope method are known as methods for measuring the amount of hot displacement for obtaining the coefficient of thermal expansion.
 示差式及び押し棒式の熱膨張測定方法では、構成する機器類の耐熱性に限界があり、高温域での測定ができないという問題がある。また、高温域においては、精度の高い標準物質がなく、高い測定精度が得られないという問題がある。 In the differential type and push rod type thermal expansion measurement methods, there is a problem that there is a limit to the heat resistance of the constituent devices, and measurement in a high temperature range is not possible. Further, there is a problem that there is no highly accurate standard substance in the high temperature range, and high measurement accuracy cannot be obtained.
 特許文献1~4に記載された測微望遠鏡法では、高温域において、試料自らが放射する光により、撮像が困難であり、測定できたとしても高い測定精度が得られなかった。また、カメラを並べて試料の両端を撮像するため、小さな試料を測定することができないという問題がある。 In the microscopic telescope methods described in Patent Documents 1 to 4, imaging is difficult due to light emitted by the sample itself in a high temperature range, and even if measurement is possible, high measurement accuracy cannot be obtained. In addition, there is a problem that a small sample cannot be measured because the cameras are arranged side by side to image both ends of the sample.
 特許文献5及び6に記載された測微望遠鏡法においては、レーザーを使用している。高温域(1500℃以上)においては、試料が発光するため、測定波長領域以上の熱放射を生じることがあり、S/N比が悪くなり、高い測定精度が得られないという問題がある。 In the microscopic telescope method described in Patent Documents 5 and 6, a laser is used. In the high temperature range (1500 ° C. or higher), the sample emits light, so that heat radiation beyond the measurement wavelength range may occur, resulting in a problem that the S / N ratio deteriorates and high measurement accuracy cannot be obtained.
 また、特許文献1~5に記載された測微望遠鏡法においては、試料を間接的に加熱するので、断熱材や冷却設備が必要である。また、特許文献6においては、試料を通電により加熱しているが、試料から熱の輻射が生じ、輻射熱により、周囲の物質が加熱され高温になる。このため、断熱材や冷却設備が必要となる。 In addition, in the microscopic telescope method described in Patent Documents 1 to 5, the sample is indirectly heated, so that a heat insulating material and a cooling facility are required. In Patent Document 6, the sample is heated by energization. However, heat radiation is generated from the sample, and the surrounding material is heated to a high temperature by the radiant heat. For this reason, a heat insulating material and cooling equipment are needed.
 特許文献6及び特許文献7においては、高温での熱膨張率を測定する熱膨張率測定装置が開示されている。これらの熱膨張率測定装置においては、試料の周囲を断熱材や試料容器となる反射板などで覆う構造が採用されている。試料の測定部における温度は、このような断熱材や反射板に、光学窓を形成し、この光学窓を通して光学的に温度を測定している。また、温度測定に熱電対を用いる場合には、断熱材等に孔を形成し、この孔内に熱電対を挿入し試料の測定部に熱電対の先端を配置して測定している。このような構造は、高温での電気抵抗率を測定する従来の電気抵抗測定装置においても同様であった。 Patent Document 6 and Patent Document 7 disclose a thermal expansion coefficient measuring device for measuring a thermal expansion coefficient at a high temperature. In these thermal expansion coefficient measuring apparatuses, a structure is employed in which the periphery of the sample is covered with a heat insulating material or a reflector serving as a sample container. The temperature in the measurement part of the sample is measured optically through an optical window formed in such a heat insulating material or reflector. Further, when a thermocouple is used for temperature measurement, a hole is formed in a heat insulating material or the like, a thermocouple is inserted into the hole, and the tip of the thermocouple is placed in the measurement part of the sample. Such a structure was the same in a conventional electrical resistance measuring apparatus that measures electrical resistivity at high temperatures.
 従って、上記従来技術のように、試料の測定部の周辺を断熱材や反射板などで覆う場合、温度等の測定のため、断熱材や反射板に光学窓や孔などを形成する必要があり、測定装置の構造が複雑になるという問題があった。 Therefore, when the periphery of the sample measurement part is covered with a heat insulating material or a reflecting plate as in the above prior art, it is necessary to form an optical window or a hole in the heat insulating material or the reflecting plate in order to measure the temperature or the like. There is a problem that the structure of the measuring apparatus becomes complicated.
 また、高温域での電気抵抗率の測定においては、高温に加熱する試料の雰囲気ガスとして、アルゴンなどの不活性ガスが一般に用いられている。しかしながら、非特許文献1に開示されているように、高温域においては、アルゴンガスなどの不活性ガスがイオン化し、放電が生じるため、電気抵抗率を正確に測定することが困難であるという問題があった。 In the measurement of electrical resistivity in a high temperature range, an inert gas such as argon is generally used as the atmosphere gas of the sample heated to a high temperature. However, as disclosed in Non-Patent Document 1, since an inert gas such as argon gas is ionized and discharge occurs in a high temperature range, it is difficult to accurately measure the electrical resistivity. was there.
特開昭60-39540号公報JP 60-39540 A 特開昭61-7452号公報Japanese Patent Laid-Open No. 61-7452 特開昭61-172041号公報JP 61-172041 A 特開平06-167468号公報Japanese Patent Laid-Open No. 06-167468 特開2004-333154号公報JP 2004-333154 A 特開2009-128066号公報JP 2009-128066 A 特開平8-128977号公報Japanese Patent Application Laid-Open No. 8-128977
 本発明の第1の目的は、高温域において、簡易にかつ精度良く熱間変位量を測定することができる熱間変位測定装置及び熱間変位測定方法を提供することにある。 A first object of the present invention is to provide a hot displacement measuring device and a hot displacement measuring method capable of measuring a hot displacement amount easily and accurately in a high temperature range.
 本発明の第2の目的は、高温域における電気抵抗率を簡易な構造で精度良く測定することができる電気抵抗測定装置を提供することにある。 A second object of the present invention is to provide an electrical resistance measuring apparatus capable of accurately measuring electrical resistivity in a high temperature range with a simple structure.
 <第1の局面>
 本発明の第1の局面の熱間変位測定装置は、試料が設置される測定室と、試料を加熱する加熱手段と、試料の測定部における温度を測定するための温度測定手段と、試料の測定部を拡大して投射する投射レンズと、投射レンズにより拡大された試料の測定部の両端部における像のそれぞれを撮像する一対の撮像手段とを備えることを特徴としている。
<First aspect>
A hot displacement measuring apparatus according to a first aspect of the present invention includes a measurement chamber in which a sample is installed, a heating unit for heating the sample, a temperature measuring unit for measuring the temperature in the measurement unit of the sample, A projection lens for enlarging and projecting the measurement unit, and a pair of imaging means for imaging each of the images at both ends of the measurement unit of the sample magnified by the projection lens are provided.
 本発明の第1の局面によれば、投射レンズにより拡大された試料の測定部の両端部における像のそれぞれを、異なる撮像手段で撮像し、所定温度間における両端部の変位の差(変位量)から、熱間変位量を求めることができる。このため、試料に直接接触する部分がないので、高温域においても、熱間変位量を容易に測定することができる。 According to the first aspect of the present invention, each of the images at both ends of the measurement part of the sample magnified by the projection lens is picked up by different image pickup means, and the difference in displacement (displacement amount) between the both ends between the predetermined temperatures. ), The amount of hot displacement can be obtained. For this reason, since there is no part which contacts a sample directly, the amount of hot displacement can be easily measured even in a high temperature range.
 また、測定部の両端部における像を拡大して、両端部の像のそれぞれを異なる撮像手段によって撮像しているので、試料が小さくとも測定することができる。つまり、試料の長さ方向だけでなく、試料の径方向の微小な変位量も測定することができる。また、レーザー等を使用しないので、高温域での試料からの発光によるS/N比の低下を生じることがなく、精度良く測定することができる。 In addition, since the images at both ends of the measurement unit are enlarged and each of the images at both ends is captured by different imaging means, measurement can be performed even if the sample is small. That is, it is possible to measure not only the length direction of the sample but also a minute amount of displacement in the radial direction of the sample. In addition, since no laser or the like is used, the S / N ratio is not lowered due to light emission from the sample in a high temperature range, and measurement can be performed with high accuracy.
 また、投射レンズと撮像手段によって測定することできるので、簡易な構造で測定することができる。 Moreover, since it can be measured by the projection lens and the imaging means, it can be measured with a simple structure.
 本発明の第1の局面においては、加熱手段が、試料に直流電流を通電するための直流電源であることが好ましい。直流電源からの直流電流を通電することにより、直接試料を加熱することができるため、間接的加熱に必要なヒーターなどの設備が必要なく、簡易な構造で測定することができる。また、測定室内全体の温度を上げる必要がないので、経済的である。 In the first aspect of the present invention, it is preferable that the heating means is a direct current power source for passing a direct current through the sample. By directing a direct current from a direct current power source, the sample can be directly heated, and thus a facility such as a heater necessary for indirect heating is not necessary, and measurement can be performed with a simple structure. In addition, it is economical because it is not necessary to raise the temperature of the entire measurement chamber.
 また、ヒーターなどによる加熱方式とは異なり、周囲の温度を比較的低くすることができる。このため、投射レンズ及び撮像手段等を試料の近くに設置することができ、装置構成を小さくすることができる。 Also, unlike the heating method using a heater, the ambient temperature can be made relatively low. For this reason, a projection lens, an imaging means, etc. can be installed near a sample, and an apparatus structure can be made small.
 本発明の第1の局面においては、測定室の外周部を構成する壁部が、試料からの輻射による熱線を透過する材質から形成されており、試料からの熱線が測定室の壁部に直接照射されて外部に放射されるように構成されていることが好ましい。測定室の壁部を、熱線を透過する材質から形成することにより、測定室壁部の温度上昇を抑制することができる。このため、断熱材や冷却設備が不要となる。熱線を透過する材質から測定室の壁部を形成することにより、例えば、3000℃程度まで試料を昇温しても、測定室における試料の周囲の温度を200℃程度までの上昇に抑えることができる。 In the first aspect of the present invention, the wall portion constituting the outer peripheral portion of the measurement chamber is formed of a material that transmits heat rays due to radiation from the sample, and the heat rays from the sample are directly applied to the wall portion of the measurement chamber. It is preferable to be configured to be irradiated and radiated to the outside. By forming the wall portion of the measurement chamber from a material that transmits heat rays, the temperature rise of the measurement chamber wall portion can be suppressed. For this reason, a heat insulating material and cooling equipment become unnecessary. By forming the wall of the measurement chamber from a material that transmits heat rays, for example, even if the temperature of the sample is increased to about 3000 ° C., the temperature around the sample in the measurement chamber can be suppressed to an increase to about 200 ° C. it can.
 また、測定室内の温度上昇を抑制することができるので、アルゴンなどの不活性ガスを測定室内の雰囲気のガスとして用いた場合に、不活性ガスがイオン化し、放電が生じるのを抑制することができる。このため、高温域における撮像に影響を与えることなく、より精度の高い測定が可能となる。 Moreover, since the temperature rise in the measurement chamber can be suppressed, it is possible to suppress the discharge of the ionized inert gas and the occurrence of discharge when an inert gas such as argon is used as the atmosphere gas in the measurement chamber. it can. For this reason, measurement with higher accuracy is possible without affecting imaging in a high temperature range.
 本発明の第1の局面において、測定室の壁部の材質は、波長0.4~2.0μmの光の透過率が80%以上であることが好ましい。すなわち、上記範囲における各波長での光の透過率が80%以上であることが好ましい。試料からの輻射による熱線は、広い範囲の波長域で発生し、温度が高いほど強度が強くなる。しかしながら、低温領域では強度が強くなく、熱線が照射される物体に対する温度上昇への寄与はそれほど大きくはないと考えられる。また、輻射による熱線の強度は、高温になるほどピークが短波長側になり、特に1500℃以上では2.0μm以下の波長でピークとなるとともに、輻射による加熱の影響も無視できなくなる。従って、特に試料の温度が1500℃以上となる場合には、壁部において2.0μm以下の波長域の光をより多く透過させることにより、壁部の温度上昇を抑制し、ひいては測定室内部の温度上昇も抑制することができる。 In the first aspect of the present invention, it is preferable that the material of the wall portion of the measurement chamber has a light transmittance of 80% or more at a wavelength of 0.4 to 2.0 μm. That is, the light transmittance at each wavelength in the above range is preferably 80% or more. Heat rays due to radiation from the sample are generated in a wide wavelength range, and the intensity increases as the temperature increases. However, the strength is not strong in the low temperature region, and it is considered that the contribution to the temperature rise for the object irradiated with heat rays is not so great. Further, the intensity of the heat rays due to radiation becomes shorter as the temperature becomes higher, and becomes a peak at a wavelength of 2.0 μm or less particularly at 1500 ° C. or higher, and the influence of heating due to radiation cannot be ignored. Therefore, particularly when the temperature of the sample is 1500 ° C. or higher, the wall portion transmits more light in the wavelength region of 2.0 μm or less, thereby suppressing the temperature rise of the wall portion, and consequently, inside the measurement chamber. Temperature rise can also be suppressed.
 本発明の第1の局面において、測定室の壁部としては、特に限定されるものではないが、好ましいものとして石英ガラス、アルミナ等が挙げられる。これらの材質は、上記熱線を透過しやすいために温度が上昇せず、測定室の壁部及び測定室内の温度の上昇を抑制することができる。特に石英ガラスが好ましく用いられる。特に、石英ガラスは透明であり、耐熱性が高いため、加熱された試料を直接観察することができ好ましい。このため、測定室の壁部に窓等を設置する必要はなく、熱放射型温度計などにより、容易に高い温度の測定を行うことができる。また、試料の観察により測定できる他の物理的特性を容易に測定することができる。また、石英ガラスは、摩擦係数が小さく、保持部材を直接測定室に置いた場合に保持部材が自由に移動しやすくなる。 In the first aspect of the present invention, the wall of the measurement chamber is not particularly limited, but preferred examples include quartz glass and alumina. Since these materials easily transmit the heat ray, the temperature does not increase, and the temperature in the wall of the measurement chamber and the temperature in the measurement chamber can be suppressed. In particular, quartz glass is preferably used. In particular, quartz glass is preferable because it is transparent and has high heat resistance, so that a heated sample can be directly observed. For this reason, it is not necessary to install a window etc. in the wall part of a measurement chamber, and it can measure a high temperature easily with a thermal radiation type thermometer. In addition, other physical characteristics that can be measured by observing the sample can be easily measured. In addition, quartz glass has a small coefficient of friction, and the holding member can easily move freely when the holding member is placed directly in the measurement chamber.
 本発明の第1の局面においては、投射レンズにより、試料の測定部の像を拡大し、径方向の両端部を撮像手段によって撮像するので、測定室の壁部は透明であることが必要である。石英ガラスは透明であり、耐熱性が高いため、本発明における測定室の壁部を形成する材料として特に好ましい。また、1つの投射レンズを用いることにより、微小な試料(例えば試料の径方向)であっても拡大することにより熱間変位量を容易に測定することができる。 In the first aspect of the present invention, the image of the measurement part of the sample is enlarged by the projection lens, and both ends in the radial direction are picked up by the image pickup means. Therefore, the wall part of the measurement chamber needs to be transparent. is there. Since quartz glass is transparent and has high heat resistance, it is particularly preferable as a material for forming the wall of the measurement chamber in the present invention. Further, by using one projection lens, it is possible to easily measure the amount of hot displacement by enlarging even a minute sample (for example, the radial direction of the sample).
 本発明の第1の局面においては、測定室の外周部の壁部と試料との間の距離は、50mm以上であることが好ましい。試料からの輻射による熱線は、その到達距離に応じてより減衰されるため、試料からの距離が長いほど照射された物体は加熱されにくくなる。本発明では測定室の外周部の壁部に輻射の熱線により加熱されにくい材質を用いており、壁部を試料から50mm以上離すことにより、壁部の加熱をさらに抑制することができる。なお、測定室の外周部の壁部は、試料からの距離のとりやすさ等から円柱状であることが好ましく、その直径は100mm以上が好ましい。また、測定室を不活性ガスで置換するためには容積が大きくなりすぎないことが好ましく、直径が200mm以下であることが好ましい。 In the first aspect of the present invention, the distance between the outer peripheral wall of the measurement chamber and the sample is preferably 50 mm or more. Since the heat rays due to the radiation from the sample are further attenuated according to the reach distance, the longer the distance from the sample, the harder the irradiated object is heated. In the present invention, the wall portion of the outer peripheral portion of the measurement chamber is made of a material that is difficult to be heated by radiation heat rays, and the wall portion can be further prevented from being heated by separating the wall portion by 50 mm or more. Note that the wall portion of the outer peripheral portion of the measurement chamber is preferably cylindrical in terms of ease of taking a distance from the sample, and the diameter is preferably 100 mm or more. Further, in order to replace the measurement chamber with an inert gas, the volume is preferably not too large, and the diameter is preferably 200 mm or less.
 本発明の第1の局面においては、試料の両端部に光を照射する照明装置をさらに備えていてもよい。このような照明装置を備えることにより、低温域から高温域まで十分なコントラストで像を撮像することができる。従って、試料における端部の位置をより正確に検出することができる。高温域において、試料の自己発光により撮像が可能となった場合には、照明装置のスイッチを切って測定することができる。 In the first aspect of the present invention, an illumination device that irradiates light to both ends of the sample may be further provided. By providing such an illumination device, an image can be taken with sufficient contrast from a low temperature range to a high temperature range. Therefore, the position of the end portion in the sample can be detected more accurately. When imaging is possible due to self-emission of the sample in a high temperature range, the measurement can be performed by switching off the illumination device.
 本発明の第1の局面においては、試料と投射レンズの間に、絞りまたはフィルタをさらに備えることが好ましい。絞り及び/またはフィルタにより、光量の調整、不要な波長の光の除去を行うことができ、試料における端部の位置をより正確に検出することができる。 In the first aspect of the present invention, it is preferable that a diaphragm or a filter is further provided between the sample and the projection lens. The diaphragm and / or filter can adjust the amount of light and remove light having an unnecessary wavelength, so that the position of the end of the sample can be detected more accurately.
 また、試料と投射レンズの間に設けることにより、絞りまたはフィルタを1つにすることができる。投射レンズと撮像手段の間に設けると、一対の撮像手段に対し、それぞれ絞り及び/またはフィルタを設ける必要がある。また、それぞれの絞り及び/またはフィルタを個別に調整する必要が生じ、煩雑となる。 In addition, by providing it between the sample and the projection lens, one aperture or filter can be provided. When provided between the projection lens and the imaging means, it is necessary to provide a diaphragm and / or a filter for each of the pair of imaging means. Moreover, it becomes necessary to adjust each diaphragm and / or filter individually, which is complicated.
 本発明の第1の局面の熱間変位測定方法は、試料を測定室に設置する工程と、測定室に設置した試料の測定部を拡大して投射し、測定部の像における径方向の両端部のそれぞれを撮像しながら、試料を加熱し、その温度を上昇させる工程と、温度上昇における温度差と、温度上昇による両端部の変位量とから、試料の熱間変位量を求める工程とを備えることを特徴としている。 The method for measuring a hot displacement according to the first aspect of the present invention includes a step of installing a sample in a measurement chamber, an enlarged measurement unit of the sample installed in the measurement chamber, and projecting both ends in a radial direction in an image of the measurement unit. Heating the sample while imaging each of the parts, and increasing the temperature; and determining the hot displacement of the sample from the temperature difference in the temperature increase and the displacement at both ends due to the temperature increase. It is characterized by providing.
 本発明の第1の局面の熱間変位測定方法によれば、高温域において、簡易にかつ精度良く熱間変位量を測定することができる。 According to the hot displacement measuring method of the first aspect of the present invention, the amount of hot displacement can be measured easily and accurately at high temperatures.
 <第2の局面>
 本発明の第2の局面は、試料が設置される測定室と、前記測定室内で前記試料を保持するための保持部材と、前記保持部材に保持された前記試料に直流電流を通電し、加熱するための直流電源と、前記試料の測定部における温度を測定するための温度測定手段と、前記試料の電気抵抗率を測定するための電気抵抗率測定手段とを備える電気抵抗測定装置であって、前記測定室の外周部を構成する壁部が、前記試料からの輻射による熱線を透過する材質から形成されており、前記試料からの前記熱線が、前記測定室の前記壁部に直接照射されて外部に放射されるように構成されていることを特徴としている。
<Second aspect>
According to a second aspect of the present invention, a DC current is passed through the measurement chamber in which the sample is installed, a holding member for holding the sample in the measurement chamber, and the sample held in the holding member, and heating An electrical resistance measuring device comprising: a direct current power source for measuring, a temperature measuring means for measuring a temperature in a measurement part of the sample; and an electrical resistivity measuring means for measuring the electrical resistivity of the sample. And the wall part constituting the outer peripheral part of the measurement chamber is formed of a material that transmits heat rays by radiation from the sample, and the heat ray from the sample is directly irradiated to the wall part of the measurement chamber. It is characterized by being radiated to the outside.
 通電により加熱することができる試料の高温域での電気抵抗率の測定において、従来は、熱の拡散を防止して試料の温度を高くするために、試料の測定部の周囲に断熱材を設け、さらに測定室の外周部の温度上昇を防止し、特に測定人が手を触れた際の危険性を低減するために冷却設備等を設けていた。しかしながら、本発明者らは、測定室の外周部を構成する壁部を、試料からの輻射による熱線を透過する材質から形成することにより、測定室内及び測定室の外周部を構成する壁部の温度上昇を抑えることができ、断熱材や冷却設備等を必要とせず、簡易な構造で精度良く高温域における電気抵抗率をより正確に測定できることを見出した。 In the measurement of electrical resistivity in the high temperature range of a sample that can be heated by energization, conventionally, in order to prevent the diffusion of heat and raise the temperature of the sample, a heat insulating material is provided around the sample measurement part. In addition, a cooling facility or the like has been provided in order to prevent a temperature rise in the outer peripheral portion of the measurement chamber and to reduce the danger particularly when the measurement person touches the hand. However, the present inventors have formed the wall portion constituting the outer peripheral portion of the measurement chamber from a material that transmits heat rays due to radiation from the sample, so that the wall portion constituting the outer peripheral portion of the measurement chamber and the measurement chamber can be reduced. It has been found that the temperature rise can be suppressed, and the electrical resistivity in the high temperature range can be measured more accurately and accurately with a simple structure without requiring a heat insulating material or a cooling facility.
 例えば、試料温度が3000℃まで昇温したとしても、本発明によれば、測定室における試料の周囲の温度を、例えば200℃程度までにすることができる。すなわち、従来は、試料の周囲を覆っていた断熱材や遮蔽材が、試料からの熱線を吸収する材質であるので、試料の昇温と共に温度上昇していた。この断熱材や遮蔽材の温度上昇により試料の周囲の温度も上昇して高温になるため、試料周囲のガス等の影響によって高温における電気抵抗率の正確な測定が難しかった。さらに測定室の外周部の温度が高くなるため、冷却設備が必要となっていた。本発明者らは、このような従来の発想を転換し、試料からの熱線が測定室の外周部を構成する壁部に直接照射されるように構成し、さらに壁部に前記熱線を吸収しにくい材質を用いることにより、測定室の外周部を構成する壁部及び測定室内の温度上昇を抑制できることを見出した。本発明の第2の局面においては、試料からの熱線が直接測定室の壁部を通り、外部にほぼ放射される。このため、測定室内に試料からの熱線を吸収する部材がほぼ設けられていないので、測定室の外周部及び測定室内の温度を高温に上昇させることなく、簡易な構造で精度良く、高温域における電気抵抗率を測定することができる。さらに、測定室の外周部の壁部は、外部雰囲気と接しているため、熱を外部に放出する効果も有し、温度が上がりにくくなっている。 For example, even if the sample temperature is raised to 3000 ° C., according to the present invention, the temperature around the sample in the measurement chamber can be increased to about 200 ° C., for example. That is, conventionally, since the heat insulating material and the shielding material covering the periphery of the sample are materials that absorb the heat rays from the sample, the temperature rises as the sample is heated. Due to the temperature rise of the heat insulating material and the shielding material, the temperature around the sample also rises to a high temperature, and it is difficult to accurately measure the electrical resistivity at high temperature due to the influence of gas around the sample. Furthermore, since the temperature of the outer peripheral part of a measurement chamber becomes high, the cooling equipment was needed. The present inventors changed such a conventional idea, and configured so that the heat rays from the sample were directly irradiated to the wall portion constituting the outer peripheral portion of the measurement chamber, and further absorbed the heat rays into the wall portion. It has been found that by using a difficult material, temperature rise in the wall portion and the measurement chamber constituting the outer peripheral portion of the measurement chamber can be suppressed. In the second aspect of the present invention, the heat rays from the sample directly pass through the wall of the measurement chamber and are almost radiated to the outside. For this reason, since there is almost no member that absorbs the heat rays from the sample in the measurement chamber, the temperature in the outer circumference of the measurement chamber and the measurement chamber is not increased to a high temperature, with a simple structure and high accuracy, in the high temperature range. Electrical resistivity can be measured. Furthermore, since the wall part of the outer peripheral part of the measurement chamber is in contact with the external atmosphere, it also has an effect of releasing heat to the outside, and the temperature is hardly increased.
 また、測定室内の雰囲気ガスとして、アルゴンなどの不活性ガスを用いた場合においても、通電により加熱された試料の周囲の温度が高くなり過ぎないため、不活性ガスがイオン化し、放電が生じるのを防止することができる。このため、放電による電気抵抗率測定への影響を低減することができ、より正確な電気抵抗率を測定することができる。 In addition, even when an inert gas such as argon is used as the atmospheric gas in the measurement chamber, the temperature around the sample heated by energization does not become too high, so that the inert gas is ionized and discharge occurs. Can be prevented. For this reason, the influence on the electrical resistivity measurement by discharge can be reduced, and a more accurate electrical resistivity can be measured.
 本発明の第2の局面において、前記測定室の壁部の材質は、第1の局面における測定室の壁部と同様の材質であることが好ましい。 In the second aspect of the present invention, the material of the wall of the measurement chamber is preferably the same material as the wall of the measurement chamber in the first aspect.
 本発明の第2の局面においては、測定室に設置された試料の長さ方向に移動可能なように保持部材が、測定室内に保持されていることが好ましい。試料に直流電流を通電し、加熱することにより、試料は熱膨張する。試料の長さ方向に移動可能なように保持部材を測定室内に保持することにより、このような試料の熱膨張で、試料が長さ方向に膨張しても、それに伴い保持部材が移動するので、試料の熱膨張による試料への歪みの負荷を軽減することができ、試料の変形等を防止することができる。つまり、前記保持部材は、測定室において固定されておらず、直接測定室に置かれている構成となっている。これにより、保持部材は測定室上で移動可能になる。また、上記測定室は円筒状であることが好ましく、保持部材は円筒状の測定室の形状に沿って置く、半円形状であることが好ましい。これにより、保持部材の安定性を向上させ、測定を容易にすることができる。 In the second aspect of the present invention, it is preferable that the holding member is held in the measurement chamber so as to be movable in the length direction of the sample installed in the measurement chamber. When a direct current is applied to the sample and heated, the sample expands thermally. By holding the holding member in the measurement chamber so that it can move in the length direction of the sample, even if the sample expands in the length direction due to the thermal expansion of the sample, the holding member moves accordingly. The strain load on the sample due to the thermal expansion of the sample can be reduced, and deformation of the sample can be prevented. That is, the holding member is not fixed in the measurement chamber, but is directly placed in the measurement chamber. Thereby, the holding member can be moved on the measurement chamber. The measurement chamber is preferably cylindrical, and the holding member is preferably semicircular and placed along the shape of the cylindrical measurement chamber. Thereby, stability of a holding member can be improved and a measurement can be made easy.
 また、本発明の第2の局面においては、試料の測定部と保持部材との間に、試料からの熱線を反射するためのリフレクターが設けられていることが好ましい。このようなリフレクターを設けることにより、試料からの熱線で保持部材が温度上昇するのを低減することができる。そのため、測定室の外周部の壁部及び測定室内の温度上昇をさらに抑制することができる。また、熱による保持部材の劣化を防止することができる。 Also, in the second aspect of the present invention, it is preferable that a reflector for reflecting the heat rays from the sample is provided between the sample measurement unit and the holding member. By providing such a reflector, it is possible to reduce the temperature rise of the holding member due to the heat rays from the sample. Therefore, the temperature rise in the wall part of the outer peripheral part of the measurement chamber and the measurement chamber can be further suppressed. Moreover, deterioration of the holding member due to heat can be prevented.
 また、本発明の第2の局面においては、前記測定室の外周部の壁部と試料との間の距離は、第1の局面と同様に、50mm以上であることが好ましい。測定室の外周部の壁部は、試料からの距離のとりやすさ等から円柱状であることが好ましく、その直径は100mm以上が好ましい。また、測定室を不活性ガスで置換するためには容積が大きくなりすぎないことが好ましく、直径が200mm以下であることが好ましい。 In the second aspect of the present invention, the distance between the outer peripheral wall of the measurement chamber and the sample is preferably 50 mm or more, as in the first aspect. The wall portion of the outer peripheral portion of the measurement chamber is preferably cylindrical in view of ease of distance from the sample, and the diameter is preferably 100 mm or more. Further, in order to replace the measurement chamber with an inert gas, the volume is preferably not too large, and the diameter is preferably 200 mm or less.
 本発明の第2の局面において用いる温度測定手段としては、低温域を測定する熱電対と、高温域を測定する放射型温度計が挙げられる。低温域(室温~約1300℃程度)は、熱電対で温度を測定し、高温域(約900℃以上)は、放射型温度計で温度を測定することができる。これにより、低温域から高温域までより正確な温度を測定することができる。 The temperature measuring means used in the second aspect of the present invention includes a thermocouple that measures a low temperature region and a radiation thermometer that measures a high temperature region. In the low temperature range (room temperature to about 1300 ° C.), the temperature can be measured with a thermocouple, and in the high temperature range (about 900 ° C. or higher), the temperature can be measured with a radiation thermometer. Thereby, more accurate temperature can be measured from a low temperature range to a high temperature range.
 本発明の第2の局面の電気抵抗測定装置は、上述のように、測定室内の雰囲気ガスとして、アルゴンガスなどの不活性ガスを用いることができる。この場合、測定室内に不活性ガスを導入するための導入口と、測定室からガスを排出するための排出口と、排出口からガスを排気する排気手段とをさらに備えることが好ましい。 As described above, the electrical resistance measurement apparatus according to the second aspect of the present invention can use an inert gas such as argon gas as the atmospheric gas in the measurement chamber. In this case, it is preferable to further include an inlet for introducing an inert gas into the measurement chamber, an outlet for discharging the gas from the measurement chamber, and an exhaust means for exhausting the gas from the outlet.
 本発明の第2の局面における測定室内の雰囲気ガスは、不活性ガスに限定されるものではないが、不活性ガスを雰囲気ガスとして用いることにより、酸化等により試料が変性するのを防止することができる。不活性ガスを用いた場合、上述のように、高温域において、不活性ガスがイオン化し、電気抵抗測定の正確性を損ねる場合がある。本発明の第2の局面によれば、上述のように、測定室内の温度上昇を抑制することができるので、不活性ガスのイオン化を抑制することができる。従って、不活性ガスのイオン化による電気抵抗測定への悪影響を低減することができ、より精度良く電気抵抗率を測定することができる。 The atmospheric gas in the measurement chamber in the second aspect of the present invention is not limited to an inert gas, but the use of an inert gas as the atmospheric gas prevents the sample from being denatured due to oxidation or the like. Can do. When an inert gas is used, as described above, the inert gas may be ionized at a high temperature range, thereby impairing the accuracy of electrical resistance measurement. According to the second aspect of the present invention, as described above, since the temperature rise in the measurement chamber can be suppressed, ionization of the inert gas can be suppressed. Accordingly, it is possible to reduce the adverse effect on the measurement of electric resistance due to the ionization of the inert gas, and it is possible to measure the electric resistivity more accurately.
 本発明の第2の局面においては、試料の測定部の径方向の端縁の変位量を測定するための変位量測定手段をさらに備えていてもよい。このような変位量測定手段を用いることにより、試料の熱膨張率を測定することができる。 In the second aspect of the present invention, a displacement amount measuring means for measuring the displacement amount of the edge in the radial direction of the measurement portion of the sample may be further provided. By using such a displacement amount measuring means, the coefficient of thermal expansion of the sample can be measured.
 変位量測定手段としては、光学式測定手段であることが好ましい。上述のように、測定室の壁部を透明な材質から形成することにより、測定室の外部に設けた光学的測定手段により、試料の測定部の径方向の端縁の変位量を容易に測定することができる。 The displacement measuring means is preferably an optical measuring means. As described above, the wall of the measurement chamber is made of a transparent material, and the displacement of the edge of the sample measurement section in the radial direction can be easily measured by the optical measurement means provided outside the measurement chamber. can do.
 本発明の第1の局面によれば、高温域において、簡易にかつ精度良く熱間変位量を測定することができる。 According to the first aspect of the present invention, the amount of hot displacement can be measured easily and accurately in a high temperature range.
 本発明の第2の局面によれば、高温域における電気抵抗率を簡易な構造で精度良く測定することができる。 According to the second aspect of the present invention, the electrical resistivity in the high temperature range can be accurately measured with a simple structure.
図1は、本発明に従う一実施形態の熱間変位測定装置または電気抵抗測定装置を示す模式図である。FIG. 1 is a schematic diagram showing a hot displacement measuring device or an electric resistance measuring device according to an embodiment of the present invention. 図2は、本発明に従う一実施形態の熱間変位測定装置または電気抵抗測定装置の測定室を示す斜視図である。FIG. 2 is a perspective view showing a measurement chamber of the hot displacement measuring device or the electrical resistance measuring device of one embodiment according to the present invention. 図3は、図2に示す熱間変位測定装置または電気抵抗測定装置の測定部を示す斜視図である。FIG. 3 is a perspective view showing a measuring unit of the hot displacement measuring device or the electric resistance measuring device shown in FIG. 図4は、図2に示す熱間変位測定装置または電気抵抗測定装置の測定部を示す平面図である。FIG. 4 is a plan view showing a measuring section of the hot displacement measuring device or the electric resistance measuring device shown in FIG. 図5は、図4に示すA-A線に沿う断面図である。FIG. 5 is a sectional view taken along line AA shown in FIG. 図6は、図2に示す熱間変位測定装置または電気抵抗測定装置に用いる保持部材を示す平面図である。FIG. 6 is a plan view showing a holding member used in the hot displacement measuring device or the electrical resistance measuring device shown in FIG. 図7は、図6に示すA-A線に沿う断面図である。FIG. 7 is a cross-sectional view taken along line AA shown in FIG. 図8は、図2に示す熱間変位測定装置または電気抵抗測定装置に用いる押え板を示す平面図である。FIG. 8 is a plan view showing a presser plate used in the hot displacement measuring device or the electric resistance measuring device shown in FIG. 図9は、図8に示すA-A線に沿う断面図である。FIG. 9 is a cross-sectional view taken along line AA shown in FIG. 図10は、図2に示す熱間変位測定装置または電気抵抗測定装置により測定する試料を示す平面図である。FIG. 10 is a plan view showing a sample to be measured by the hot displacement measuring device or the electric resistance measuring device shown in FIG. 図11は、図10に示す試料の側面図である。FIG. 11 is a side view of the sample shown in FIG. 図12は、図2に示す熱間変位測定装置または電気抵抗測定装置に用いるリフレクターを示す側面図である。FIG. 12 is a side view showing a reflector used in the hot displacement measuring device or the electrical resistance measuring device shown in FIG. 図13は、図12に示すリフレクターを示す平面図である。FIG. 13 is a plan view showing the reflector shown in FIG. 図14は、図12及び図13に示すリフレクターの作製に用いる金属板を示す側面図である。FIG. 14 is a side view showing a metal plate used for manufacturing the reflector shown in FIGS. 12 and 13. 図15は、本発明に従う一実施形態の熱間変位測定装置または電気抵抗測定装置を模式的に示す図である。FIG. 15 is a diagram schematically showing a hot displacement measuring device or an electric resistance measuring device according to an embodiment of the present invention. 図16は、電気抵抗測定装置の測定部を示す斜視図である。FIG. 16 is a perspective view illustrating a measurement unit of the electrical resistance measurement apparatus. 図17は、本発明に従う一実施形態の電気抵抗測定装置を用いて測定した1つの試料における測定温度と抵抗変化率との関係を示す図である。FIG. 17 is a diagram showing the relationship between the measurement temperature and the resistance change rate in one sample measured using the electrical resistance measurement apparatus according to one embodiment of the present invention. 図18は、本発明に従う一実施形態の電気抵抗測定装置を用いて測定した別の試料における測定温度と抵抗変化率との関係を示す図である。FIG. 18 is a diagram showing the relationship between the measurement temperature and the resistance change rate in another sample measured using the electrical resistance measurement device according to one embodiment of the present invention. 図19は、従来の測定装置により測定された試料の温度と抵抗との関係を示す図である。FIG. 19 is a diagram showing the relationship between the temperature and resistance of a sample measured by a conventional measuring apparatus.
 以下、本発明を具体的な実施形態により説明するが、本発明は以下の実施形態に限定されるものではない。 Hereinafter, the present invention will be described with reference to specific embodiments, but the present invention is not limited to the following embodiments.
 <第1の局面>
 図1は、本発明の第1の局面に従う一実施形態の熱間変位測定装置を示す模式図である。
<First aspect>
FIG. 1 is a schematic diagram showing a hot displacement measuring apparatus according to an embodiment of the first aspect of the present invention.
 試料10は、後述する測定室内に設置されている。なお、図1において、測定室は図示していない。測定室の外部には、光学フィルタ(または絞り)21及び投射レンズ22が設けられている。投射レンズ22は、試料10の測定部における両端部10a及び10bを拡大して投影するためのものである。試料10と投射レンズ22との間に、光学フィルタ(または絞り)21が設けられており、光学フィルタ21により、光量の調整、不要な波長の光の除去等がなされ、光学フィルタ21を通過した光が、投射レンズ22に入射する。試料10の測定部の像は、1つの投射レンズ22に入射した後、一対の撮像手段としての一次元CCD23及び24に投射される。一次元CCD24には、試料10の一方端部10aが撮像される。また、一次元CCD23には、試料10の他方端部10bが撮像される。本発明においては、投射レンズ22により、拡大された試料10の測定部の像における径方向の一方端部10aを一次元CCD24により、他方端部10bを一次元CCD23により、それぞれ撮像する。従って、一次元CCD23及び一次元CCD24のそれぞれの位置を適宜調整することにより、種々の大きさの試料10の測定に対応させることができる。 The sample 10 is installed in a measurement chamber described later. In FIG. 1, the measurement chamber is not shown. An optical filter (or diaphragm) 21 and a projection lens 22 are provided outside the measurement chamber. The projection lens 22 is for enlarging and projecting both end portions 10 a and 10 b in the measurement unit of the sample 10. An optical filter (or diaphragm) 21 is provided between the sample 10 and the projection lens 22. The optical filter 21 adjusts the amount of light, removes light with an unnecessary wavelength, etc., and passes through the optical filter 21. Light enters the projection lens 22. The image of the measurement part of the sample 10 is incident on one projection lens 22 and then projected onto one- dimensional CCDs 23 and 24 as a pair of imaging means. The one-dimensional CCD 24 images one end portion 10a of the sample 10. Further, the other end portion 10 b of the sample 10 is imaged on the one-dimensional CCD 23. In the present invention, the projection lens 22 images one end portion 10a in the radial direction in the image of the enlarged measurement portion of the sample 10 with the one-dimensional CCD 24 and the other end portion 10b with the one-dimensional CCD 23. Therefore, by appropriately adjusting the positions of the one-dimensional CCD 23 and the one-dimensional CCD 24, it is possible to correspond to the measurement of the sample 10 having various sizes.
 一次元CCD23からの電気信号25における変曲点25aにより、試料10の他方端部10bの位置を検出することができる。同様に、一次元CCD24からの電気信号26の変曲点26aにより、試料10の一方端部10aの位置を検出することができる。これにより、一方端部10a及び他方端部10bの所定の温度の試料に対する変位量を測定することができ、試料10の一方端部10aから他方端部10bまでの距離を測定することができる。 The position of the other end 10b of the sample 10 can be detected by the inflection point 25a in the electric signal 25 from the one-dimensional CCD 23. Similarly, the position of the one end portion 10a of the sample 10 can be detected by the inflection point 26a of the electric signal 26 from the one-dimensional CCD 24. Thereby, the displacement amount with respect to the sample of the predetermined | prescribed temperature of the one end part 10a and the other end part 10b can be measured, and the distance from the one end part 10a of the sample 10 to the other end part 10b can be measured.
 試料10が、加熱され熱膨張すると、径方向においても膨張するので、一方端部10aと他方端部10bの間の距離が変化する。これにより、所定の温度差における試料の熱間変位量を求めることができ、熱膨張率を算出することができる。 When the sample 10 is heated and thermally expanded, the sample 10 also expands in the radial direction, so that the distance between the one end 10a and the other end 10b changes. Thereby, the amount of hot displacement of the sample at a predetermined temperature difference can be obtained, and the coefficient of thermal expansion can be calculated.
 図2は、本発明の第1の局面に従う一実施形態の熱間変位測定装置の測定室を示す斜視図である。図2に示すように、測定室1は、石英ガラス管からなる壁部1aの両端と、キャップ2及びキャップ3との間にO-リングを配置してクリップで固定することにより構成されている。本実施形態においてキャップ2及びキャップ3は、ベークライトより形成されているが、耐熱性のあるものであれば特に限定されるものではなく、金属や樹脂であってもよい。キャップ2には、測定室1内に不活性ガスを導入するための導入口18となるパイプが挿入されている。導入口18を通り、不活性ガスが測定室1内に導入される。本実施形態においては、不活性ガスとしてアルゴン(Ar)を用いている。不活性ガスとしては、ネオン(Ne)、クリプトン(Kr)など他の不活性ガスを用いてもよい。また、不活性ガスに代えて、窒素ガスを用いることも可能である。 FIG. 2 is a perspective view showing a measurement chamber of the hot displacement measuring apparatus according to one embodiment of the first aspect of the present invention. As shown in FIG. 2, the measurement chamber 1 is configured by arranging O-rings between both ends of a wall portion 1a made of a quartz glass tube, and a cap 2 and a cap 3 and fixing them with clips. . In the present embodiment, the cap 2 and the cap 3 are made of bakelite, but are not particularly limited as long as they have heat resistance, and may be metal or resin. A pipe serving as an inlet 18 for introducing an inert gas into the measurement chamber 1 is inserted into the cap 2. An inert gas is introduced into the measurement chamber 1 through the introduction port 18. In this embodiment, argon (Ar) is used as the inert gas. As the inert gas, other inert gases such as neon (Ne) and krypton (Kr) may be used. Further, nitrogen gas can be used instead of the inert gas.
 また、反対側に設けられたキャップ3には、排気口19が形成されている。排気口19は、測定室1内のガスを排気するため形成されている。なお、図2においては、排気口19を図示していない。排気口19には、測定室1内のガスを排気するための排気手段としての排気ポンプ(図示せず)が接続されている。 Further, an exhaust port 19 is formed in the cap 3 provided on the opposite side. The exhaust port 19 is formed to exhaust the gas in the measurement chamber 1. Note that the exhaust port 19 is not shown in FIG. An exhaust pump (not shown) as exhaust means for exhausting the gas in the measurement chamber 1 is connected to the exhaust port 19.
 排気口19から測定室1内のガスを排気した後、導入口18からアルゴンガスを導入することにより、測定室1内の雰囲気をアルゴンガスの雰囲気にすることができる。 After exhausting the gas in the measurement chamber 1 from the exhaust port 19, the atmosphere in the measurement chamber 1 can be changed to an argon gas atmosphere by introducing argon gas from the introduction port 18.
 本実施形態の熱間変位測定装置によって電気抵抗率が測定される試料10は、測定室1内において、保持部材4及び5によって保持されることにより、測定室1内に設置されている。 The sample 10 whose electrical resistivity is measured by the hot displacement measuring device of this embodiment is installed in the measurement chamber 1 by being held by the holding members 4 and 5 in the measurement chamber 1.
 図2に示すように、保持部材4には、電線8が接続されており、電線8は、キャップ2と壁部1aとの間を通り、外部に導き出されている。同様に、保持部材5には電線9が接続されており、電線9はキャップ3と壁部1aとの間を通り外部に導き出されている。電線8及び電線9は、図示されない直流電源に接続されている。電線8に接続された保持部材4と、電線9に接続された保持部材5の間に試料10が保持されることにより、試料10に、直流電源からの直流電流が通電され、試料10が加熱される。 As shown in FIG. 2, an electric wire 8 is connected to the holding member 4, and the electric wire 8 passes between the cap 2 and the wall portion 1a and is led to the outside. Similarly, an electric wire 9 is connected to the holding member 5, and the electric wire 9 is led to the outside through between the cap 3 and the wall portion 1 a. The electric wires 8 and 9 are connected to a DC power source (not shown). By holding the sample 10 between the holding member 4 connected to the electric wire 8 and the holding member 5 connected to the electric wire 9, the sample 10 is supplied with a direct current from a DC power source, and the sample 10 is heated. Is done.
 壁部1aを構成する石英ガラス管は、支持部材31及び32により、台33の上に支持されている。なお、本実施形態では、石英ガラス管として、直径120mmのものを使用し、石英ガラスの0.4~2.0μmの波長の光の透過率は、80%以上であった。 The quartz glass tube constituting the wall portion 1a is supported on a table 33 by support members 31 and 32. In the present embodiment, a quartz glass tube having a diameter of 120 mm is used, and the transmittance of the quartz glass having a wavelength of 0.4 to 2.0 μm is 80% or more.
 図3は、図2に示す熱間変位測定装置の測定部を拡大して示す斜視図である。 FIG. 3 is an enlarged perspective view showing the measurement unit of the hot displacement measuring apparatus shown in FIG.
 図3に示すように、保持部材4は、台座部4aと、押え板4eとを組み合わせることにより構成されている。同様に、保持部材5も、台座部5aと、押え板5eを組み合わせることにより構成されている。台座部4a及び5aは、本実施形態において、黒鉛から形成されている。押え板4e及び5eは、本実施形態において銅から形成されている。 As shown in FIG. 3, the holding member 4 is configured by combining a pedestal portion 4a and a pressing plate 4e. Similarly, the holding member 5 is also configured by combining a pedestal portion 5a and a pressing plate 5e. The pedestals 4a and 5a are made of graphite in the present embodiment. The holding plates 4e and 5e are made of copper in this embodiment.
 図4は、図2に示す熱間変位測定装置の測定部を示す平面図であり、図5は、図4に示すA-A線に沿う断面図である。 4 is a plan view showing a measuring section of the hot displacement measuring apparatus shown in FIG. 2, and FIG. 5 is a cross-sectional view taken along line AA shown in FIG.
 図6は、台座部5aを示す平面図であり、図7は図6のA-A線に沿う断面図である。図8は、押え板5eを示す平面図であり、図9は、図8に示すA-A線に沿う断面図である。 FIG. 6 is a plan view showing the pedestal 5a, and FIG. 7 is a cross-sectional view taken along the line AA in FIG. FIG. 8 is a plan view showing the pressing plate 5e, and FIG. 9 is a cross-sectional view taken along the line AA shown in FIG.
 台座部4aも、台座部5aと同様の構造を有しており、押え板4eも、押え板5eと同様の構造を有している。 The pedestal portion 4a has the same structure as the pedestal portion 5a, and the presser plate 4e has the same structure as the presser plate 5e.
 図3及び図4に示すように、試料10の一方端部は、台座部5aに形成された溝5i(図6及び図7を参照)内に配置され、その上に、押え板5eを配置し、ボルト及びナットからなる固定具5bのボルトを、台座部5aの孔5f及び押え板5eの孔5jに通し、ナットで締め付けることにより、台座部5aと押え板5eの間に挟み固定されている。 As shown in FIGS. 3 and 4, one end portion of the sample 10 is disposed in a groove 5i (see FIGS. 6 and 7) formed in the pedestal portion 5a, and a holding plate 5e is disposed thereon. Then, the bolt of the fixing tool 5b composed of a bolt and a nut is passed through the hole 5f of the pedestal portion 5a and the hole 5j of the holding plate 5e, and tightened with the nut, so that the pedestal portion 5a and the holding plate 5e are sandwiched and fixed. Yes.
 試料10の他方端部も、同様に、台座部4aと押え板4eを、固定具4bで固定することにより、台座部4aと押え板4eに挟み固定している。 Similarly, the other end portion of the sample 10 is sandwiched and fixed between the pedestal portion 4a and the pressing plate 4e by fixing the pedestal portion 4a and the pressing plate 4e with the fixture 4b.
 図5には、台座部5aと押え板5eの間に試料10を挟み固定した状態が示されている。 FIG. 5 shows a state in which the sample 10 is sandwiched and fixed between the pedestal 5a and the holding plate 5e.
 図5に示すように、台座部5aの底面は、壁部1aの内面に沿う半円形状を有しており、台座部5aは、筒状の壁部1a内に挿入して配置され、壁部1aには固定されていない。台座部4aも同様に、壁部1a内に挿入して配置され、壁部1aには固定されていない。従って、保持部材4及び5は、測定室1内において、試料10の長さ方向に移動可能な状態で、測定室1内に保持されている。 As shown in FIG. 5, the bottom surface of the pedestal portion 5 a has a semicircular shape along the inner surface of the wall portion 1 a, and the pedestal portion 5 a is arranged by being inserted into the cylindrical wall portion 1 a, It is not fixed to the part 1a. Similarly, the pedestal part 4a is inserted into the wall part 1a and is not fixed to the wall part 1a. Accordingly, the holding members 4 and 5 are held in the measurement chamber 1 so as to be movable in the length direction of the sample 10 in the measurement chamber 1.
 図3及び図4に示すように、試料10の測定部、すなわち保持部材4と保持部材5の間に位置する試料10の部分と、保持部材4との間には、リフレクター6が設けられている。同様に、試料10の測定部と保持部材5との間には、リフレクター7が設けられている。リフレクター6とリフレクター7の間の距離は、特に限定されるものではなく、試料10の長さによって変化させればよい。つまり、リフレクター6及び7を保持部材4及び5に固定し、試料10の長さにより保持部材4及び5とともに距離を変化させるようになっている。 As shown in FIGS. 3 and 4, a reflector 6 is provided between the measurement member of the sample 10, that is, the portion of the sample 10 positioned between the holding member 4 and the holding member 5 and the holding member 4. Yes. Similarly, a reflector 7 is provided between the measurement unit of the sample 10 and the holding member 5. The distance between the reflector 6 and the reflector 7 is not particularly limited, and may be changed according to the length of the sample 10. That is, the reflectors 6 and 7 are fixed to the holding members 4 and 5, and the distance is changed together with the holding members 4 and 5 depending on the length of the sample 10.
 図12は、リフレクター6を示す側面図であり、図13は、リフレクター6を示す平面図である。リフレクター6は、図14に示す形状のステンレスSUS304からなる金属板を加工することにより作製される。図14に示すように、試料10を通す切抜き部6aが形成されており、その両側に切込6d及び6eが形成されている。切込6d及び6eの外側のハッチングで示す部分は打ち抜きにより抜き取られる。切込6d及び6eをその根元部分で折り曲げることにより、図12及び図13に示すフラップ部6b及び6cが形成されている。フラップ部6b及び6cには、取り付けねじ4cを通すための切欠が形成されている。リフレクター7も、リフレクター6と同様の形状を有している。 FIG. 12 is a side view showing the reflector 6, and FIG. 13 is a plan view showing the reflector 6. The reflector 6 is manufactured by processing a metal plate made of stainless steel SUS304 having the shape shown in FIG. As shown in FIG. 14, a cutout portion 6a through which the sample 10 is passed is formed, and cutouts 6d and 6e are formed on both sides thereof. The hatched portions outside the cuts 6d and 6e are extracted by punching. The flaps 6b and 6c shown in FIGS. 12 and 13 are formed by bending the notches 6d and 6e at the base portions thereof. The flap portions 6b and 6c are formed with notches for allowing the attachment screws 4c to pass therethrough. The reflector 7 has the same shape as the reflector 6.
 図4に示すように、リフレクター6のフラップ部に取り付けねじ4cが通され、リフレクター6が台座部4aに取り付けられている。同様に、リフレクター7のフラップ部に取り付けねじ5cを通すことにより、台座部5aにリフレクター7が取り付けられている。図5、図6及び図7に示すように、取り付けねじ5cは、台座部5aに形成された孔5gにねじ込むことにより取り付けられている。 As shown in FIG. 4, the attachment screw 4c is passed through the flap portion of the reflector 6, and the reflector 6 is attached to the pedestal portion 4a. Similarly, the reflector 7 is attached to the pedestal 5a by passing the attachment screw 5c through the flap of the reflector 7. As shown in FIGS. 5, 6, and 7, the attachment screw 5 c is attached by being screwed into a hole 5 g formed in the pedestal portion 5 a.
 リフレクター6及び7は、上述のように、ステンレスから形成されているので、試料10から放射される熱線を反射することができる。リフレクター6は、試料10の測定部と保持部材4との間に設けられ、リフレクター7は、試料10の測定部と保持部材5との間に設けられている。従って、測定の際、試料10から放射された熱線が、保持部材4及び保持部材5に照射されないように反射することができる。このため、保持部材4及び保持部材5が熱線を吸収して温度上昇するのを抑制することができる。このため、測定室1内の温度が上昇するのを抑制することができる。また、保持部材4及び保持部材5が、試料10からの熱線により劣化するのを防止することができる。前記リフレクター6及び7は、少なくとも赤外線を反射するものが好ましい。 Since the reflectors 6 and 7 are made of stainless steel as described above, the heat rays radiated from the sample 10 can be reflected. The reflector 6 is provided between the measurement unit of the sample 10 and the holding member 4, and the reflector 7 is provided between the measurement unit of the sample 10 and the holding member 5. Therefore, at the time of measurement, the heat rays radiated from the sample 10 can be reflected so as not to be applied to the holding member 4 and the holding member 5. For this reason, it can suppress that the holding member 4 and the holding member 5 absorb a heat ray, and a temperature rise. For this reason, it can suppress that the temperature in the measurement chamber 1 rises. Further, the holding member 4 and the holding member 5 can be prevented from being deteriorated by the heat rays from the sample 10. The reflectors 6 and 7 preferably reflect at least infrared rays.
 図6に示す孔5hには、ボルト及びナットからなる固定具5dが取り付けられ、この固定具5dにより、電線9が保持部材5に取り付けられている。同様に、固定具4dが、台座部4aに形成された孔に取り付けられ、電線8がこの固定具4dにより保持部材4に接続されている。 A fixing tool 5d made of a bolt and a nut is attached to the hole 5h shown in FIG. 6, and the electric wire 9 is attached to the holding member 5 by the fixing tool 5d. Similarly, the fixture 4d is attached to a hole formed in the pedestal portion 4a, and the electric wire 8 is connected to the holding member 4 by the fixture 4d.
 図15は、本実施形態の熱間変位測定装置を模式的に示す図である。 FIG. 15 is a diagram schematically showing the hot displacement measuring apparatus of the present embodiment.
 図15に示すように、試料10は、壁部1aが石英ガラスからなる測定室1内に配置されている。試料10には、直流電源14に一方端が接続された電線8及び電線9のそれぞれの他方端が接続されている。試料10に直流電流を通電することにより、試料10を加熱し、試料10の温度を上昇させることができる。直流電源14と試料10の間には、電流計15が設けられている。直流電源14としては、定電圧定電流電源を用いることが好ましい。 As shown in FIG. 15, the sample 10 is disposed in the measurement chamber 1 in which the wall portion 1 a is made of quartz glass. The other end of each of the electric wire 8 and the electric wire 9 having one end connected to the DC power source 14 is connected to the sample 10. By applying a direct current to the sample 10, the sample 10 can be heated and the temperature of the sample 10 can be raised. An ammeter 15 is provided between the DC power supply 14 and the sample 10. As the DC power source 14, it is preferable to use a constant voltage constant current power source.
 試料10の測定部の温度は、低温域においては、熱電対13により測定される。熱電対13は、接着剤により試料10に取り付けられている。従って、本実施形態において、熱電対13は、使い捨て可能なものを用いている。熱電対13で測定されたデータは、温度計測回路・データロガ17に送られる。また、高温域における試料10の測定部の温度は、測定室1の外部に設けられた放射型温度計16により測定される。放射型温度計16で測定された温度データは、温度計測回路・データロガ17に送られる。このようにして測定された温度データに基づき、温度計測回路・データロガ17から直流電源14に信号が送られ、試料10に通電させる電流または電圧を制御し、試料10の昇温速度を制御することができる。また、光学式変位量測定装置20で測定された変位データも温度計測回路・データロガ17に送られ、所定温度の試料に対する各温度における試料の変位量が導き出される。 The temperature of the measurement part of the sample 10 is measured by the thermocouple 13 in the low temperature range. The thermocouple 13 is attached to the sample 10 with an adhesive. Therefore, in the present embodiment, the thermocouple 13 is disposable. Data measured by the thermocouple 13 is sent to a temperature measurement circuit / data logger 17. Further, the temperature of the measurement part of the sample 10 in the high temperature range is measured by a radiation type thermometer 16 provided outside the measurement chamber 1. The temperature data measured by the radiation type thermometer 16 is sent to a temperature measurement circuit / data logger 17. Based on the temperature data measured in this way, a signal is sent from the temperature measurement circuit / data logger 17 to the DC power source 14 to control the current or voltage to be applied to the sample 10 and to control the temperature increase rate of the sample 10. Can do. The displacement data measured by the optical displacement measuring device 20 is also sent to the temperature measurement circuit / data logger 17 to derive the displacement amount of the sample at each temperature with respect to the sample at a predetermined temperature.
 測定室の外部には、光学式変位量測定装置20が設けられている。光学式変位量測定装置20は、図1を参照して説明した装置である。 An optical displacement measuring device 20 is provided outside the measurement chamber. The optical displacement measuring device 20 is the device described with reference to FIG.
 上述のように、本実施形態においては、測定室1の壁部1aが石英ガラスから形成されている。石英ガラスは、熱線を透過する材質であり、試料10から発生する熱線を透過する。このため、測定室1内の温度上昇を抑えることができ、断熱材や冷却設備等を必要とせず、簡易な構造で精度良く高温域における熱間変位量を測定することができる。 As described above, in the present embodiment, the wall portion 1a of the measurement chamber 1 is formed of quartz glass. Quartz glass is a material that transmits heat rays and transmits heat rays generated from the sample 10. For this reason, the temperature rise in the measurement chamber 1 can be suppressed, and the amount of hot displacement in the high temperature region can be accurately measured with a simple structure without requiring a heat insulating material or a cooling facility.
 放射型温度計16で、試料10の測定部の温度が3000℃程度に昇温している際に、試料10の上方の壁部1aにおける温度を測定したところ、396℃であった。また、試料10の測定部の中央から100mm程度離れた場所、すなわちリフレクター6及び7の上方では149℃であった。また、測定室1の端部、すなわちキャップ2及び3の近傍における温度を測定したところ、約100℃であり、測定室1内の温度が極めて低く抑えられていることがわかる。 When the temperature of the measurement part of the sample 10 was raised to about 3000 ° C. with the radiation thermometer 16, the temperature in the wall 1a above the sample 10 was measured and found to be 396 ° C. Moreover, it was 149 degreeC in the place about 100 mm away from the center of the measurement part of the sample 10, ie, above the reflectors 6 and 7. FIG. Moreover, when the temperature in the end part of the measurement chamber 1, that is, in the vicinity of the caps 2 and 3, is measured, it is about 100 ° C., and it can be seen that the temperature in the measurement chamber 1 is extremely low.
 従って、本実施形態においては、測定室1の測定部周辺の温度上昇を抑制することができる。従って、従来必要であった、断熱材や冷却設備が不要となる。 Therefore, in this embodiment, the temperature rise around the measurement unit of the measurement chamber 1 can be suppressed. Therefore, the heat insulating material and the cooling equipment, which are conventionally required, are no longer necessary.
 また、測定室の1の温度上昇を抑制することができるので、アルゴンなどの不活性ガスを測定室1内の雰囲気ガスとして用いた場合、不活性ガスがイオン化し、放電が生じるのを抑制することができる。このため、高温域における撮像に悪影響を与えることなく、より精度の高い測定が可能となる。 Moreover, since the temperature rise of 1 of a measurement chamber can be suppressed, when inert gas, such as argon, is used as atmospheric gas in the measurement chamber 1, it suppresses that an inert gas ionizes and discharge arises. be able to. For this reason, more accurate measurement is possible without adversely affecting imaging in a high temperature range.
 以上のように、本実施形態においては、投射レンズ22により拡大された試料10の測定部の像における両端部10a及び10bのそれぞれを、一対の撮像手段23及び24で撮像し、両端部10a及び10bの所定温度の試料に対する変位量から、熱間変位量を求めることができる。このため、試料10に直接接触する部分がないので、高温域においても、熱間変位量を容易に測定することができる。 As described above, in the present embodiment, the both ends 10a and 10b in the image of the measurement unit of the sample 10 magnified by the projection lens 22 are imaged by the pair of imaging units 23 and 24, and the both ends 10a and 10b The amount of hot displacement can be determined from the amount of displacement with respect to the sample having a predetermined temperature of 10b. For this reason, since there is no part which contacts the sample 10 directly, the amount of hot displacement can be easily measured even in a high temperature range.
 また、レーザー等を使用していないので、高温域での試料からの発光により、S/N比の低下を生じることなく、精度良く測定することができる。 Further, since no laser or the like is used, it is possible to measure with high accuracy without causing a decrease in the S / N ratio due to light emission from the sample in a high temperature range.
 また、投射レンズ22と撮像手段23及び24によって測定することができるので、簡易な構造で測定することができる。
 <第2の局面>
 本発明の第2の局面に従う一実施形態の電気抵抗測定装置の測定室は、図2に示す本発明の第1の局面に従う熱間変位測定装置の測定室と同様である。この測定室1は、図3~図14を参照して説明した通りであるので、その説明を省略する。
Moreover, since it can measure with the projection lens 22 and the imaging means 23 and 24, it can measure with a simple structure.
<Second aspect>
The measurement chamber of the electrical resistance measurement device of one embodiment according to the second aspect of the present invention is the same as the measurement chamber of the hot displacement measurement device according to the first aspect of the present invention shown in FIG. Since the measurement chamber 1 is as described with reference to FIGS. 3 to 14, its description is omitted.
 図16は、試料10の測定部に、電圧降下検出端子11及び12を接触させた状態を示す斜視図である。図16に示すように、試料10の測定部に、一対の電圧降下検出端子11及び12の先端を接触させている。電圧降下検出端子11及び12は、黒鉛から形成されている。電圧降下検出端子11及び12は、それぞれステンレスからなる支持棒11a及び12aにより支持されている。なお、電圧降下検出端子11及び12の先端間は、7~15mmとなるように設定した。しかしながら、電圧降下検出端子11及び12の先端間は、試料10において均熱となる箇所に接触させればよく、上記範囲に限定されるものではない。 FIG. 16 is a perspective view showing a state in which the voltage drop detection terminals 11 and 12 are in contact with the measurement part of the sample 10. As shown in FIG. 16, the tips of the pair of voltage drop detection terminals 11 and 12 are brought into contact with the measurement part of the sample 10. The voltage drop detection terminals 11 and 12 are made of graphite. The voltage drop detection terminals 11 and 12 are supported by support rods 11a and 12a made of stainless steel, respectively. The distance between the tips of the voltage drop detection terminals 11 and 12 was set to 7 to 15 mm. However, the tip of the voltage drop detection terminals 11 and 12 may be brought into contact with a location where the sample 10 is soaked, and is not limited to the above range.
 また、試料10の測定部の下方面には、熱電対13が取り付けられている。熱電対13は、接着剤により試料10に取り付けられている。従って、本実施形態において、熱電対13は、使い捨て可能なものを用いている。
 本実施形態の電気抵抗測定装置は、図15に示す熱間変位測定装置と同様の構造を有している。
A thermocouple 13 is attached to the lower surface of the measurement unit of the sample 10. The thermocouple 13 is attached to the sample 10 with an adhesive. Therefore, in the present embodiment, the thermocouple 13 is disposable.
The electrical resistance measuring device of this embodiment has the same structure as the hot displacement measuring device shown in FIG.
 図15に示すように、試料10は、壁部1aが石英ガラスからなる測定室1内に配置されている。試料10には、直流電源14に一方端が接続された電線8及び電線9のそれぞれの他方端が接続されている。試料10に直流電流を通電することにより、試料10を加熱し、試料10の温度を上昇させることができる。上記直流電源14としては、定電圧定電流電源を用いることが好ましい。 As shown in FIG. 15, the sample 10 is disposed in the measurement chamber 1 in which the wall portion 1 a is made of quartz glass. The other end of each of the electric wire 8 and the electric wire 9 having one end connected to the DC power source 14 is connected to the sample 10. By applying a direct current to the sample 10, the sample 10 can be heated and the temperature of the sample 10 can be raised. As the DC power source 14, a constant voltage constant current power source is preferably used.
 試料10には、上述のように、電圧降下検出端子11及び12が接触するように設けられている。直流電源14と試料10の間には電流計15が設けられている。電圧降下検出端子11及び12の間における電圧降下を測定し、電流計15で電流値を測定することにより、試料10の測定部における電気抵抗率を求めることができる。電流計15における電流値及び電圧降下検出端子11及び12における電圧降下の値は、温度計測回路・データロガ17に送られ、試料温度に対する電気抵抗率が算出される。 The sample 10 is provided so that the voltage drop detection terminals 11 and 12 are in contact with each other as described above. An ammeter 15 is provided between the DC power supply 14 and the sample 10. By measuring the voltage drop between the voltage drop detection terminals 11 and 12 and measuring the current value with the ammeter 15, the electrical resistivity in the measurement part of the sample 10 can be obtained. The current value in the ammeter 15 and the value of the voltage drop at the voltage drop detection terminals 11 and 12 are sent to the temperature measurement circuit / data logger 17 to calculate the electrical resistivity relative to the sample temperature.
 試料10の測定部の温度は、低温域においては、熱電対13により測定される。熱電対13で測定されたデータは、温度計測回路・データロガ17に送られる。また、高温域における試料10の測定部の温度は、測定室1の外部に設けられた放射型温度計16により測定される。放射型温度計16で測定された温度データは、温度計測回路・データロガ17に送られる。このようにして測定された温度データに基づき、温度計測回路・データロガ17から直流電源14に信号が送られ、試料10に通電させる電流量または電圧を制御し、試料10の昇温速度を制御することができる。 The temperature of the measurement part of the sample 10 is measured by the thermocouple 13 in the low temperature range. Data measured by the thermocouple 13 is sent to a temperature measurement circuit / data logger 17. Further, the temperature of the measurement part of the sample 10 in the high temperature range is measured by a radiation type thermometer 16 provided outside the measurement chamber 1. The temperature data measured by the radiation type thermometer 16 is sent to a temperature measurement circuit / data logger 17. Based on the temperature data measured in this manner, a signal is sent from the temperature measurement circuit / data logger 17 to the DC power source 14 to control the amount of current or voltage to be supplied to the sample 10 and to control the rate of temperature increase of the sample 10. be able to.
 また、測定室1の外部には、図1を参照して説明した光学式変位量測定装置20が設けられている。光学式変位量測定装置20は、試料10の測定部の径方向の両端縁の変位量を測定するための装置である。 Further, the optical displacement measuring device 20 described with reference to FIG. 1 is provided outside the measuring chamber 1. The optical displacement amount measuring device 20 is a device for measuring the displacement amount of both end edges in the radial direction of the measurement portion of the sample 10.
 上述のように、本実施形態においては、測定室1の壁部1aが石英ガラスから形成されている。石英ガラスは、熱線を透過する材質であり、試料10から発生する熱線を透過する。このため、測定室1内の温度上昇を抑えることができ、断熱材や冷却設備等を必要とせず、簡易な構造で精度良く高温域における熱間変位量及び電気抵抗率を測定することができる。 As described above, in the present embodiment, the wall portion 1a of the measurement chamber 1 is formed of quartz glass. Quartz glass is a material that transmits heat rays and transmits heat rays generated from the sample 10. For this reason, the temperature rise in the measurement chamber 1 can be suppressed, and the amount of hot displacement and electrical resistivity in the high temperature range can be accurately measured with a simple structure without requiring a heat insulating material or a cooling facility. .
 図17及び18は、本実施形態の電気抵抗測定装置を用いて測定した試料の測定温度と抵抗変化率との関係を示す図である。ここで、試料10としては、等方性黒鉛(東洋炭素社製、グレード名「IG-12」:図17)及び等方性黒鉛(東洋炭素社製、グレード名「TTK-50」:図18)を用いた。図17及び18に示すように、2800℃程度の高温まで抵抗変化率を精度良く測定することができる。 17 and 18 are diagrams showing the relationship between the measurement temperature of the sample measured using the electrical resistance measurement apparatus of the present embodiment and the resistance change rate. Here, as the sample 10, isotropic graphite (manufactured by Toyo Tanso Co., Ltd., grade name “IG-12”: FIG. 17) and isotropic graphite (manufactured by Toyo Tanso Co., Ltd., grade name “TTK-50”: FIG. 18). ) Was used. As shown in FIGS. 17 and 18, the resistance change rate can be accurately measured up to a high temperature of about 2800 ° C.
 図19は、従来技術である非特許文献1の35ページの図2に示された等方性黒鉛(グレード名「IG-110」)の測定結果を示している。図18に示すように、温度が2400K以上になると、抵抗値が低下し始めている。これは、試料近傍のアルゴンガスがイオン化するため、電流が試料内部だけでなく、アルゴンガスを通じても流れるようになり、試料の見かけの電気抵抗が減少するものと考えられる。 FIG. 19 shows the measurement results of the isotropic graphite (grade name “IG-110”) shown in FIG. 2 on page 35 of Non-Patent Document 1, which is the prior art. As shown in FIG. 18, when the temperature is 2400K or higher, the resistance value starts to decrease. This is presumably because the argon gas in the vicinity of the sample is ionized, so that the current flows not only through the sample but also through the argon gas, and the apparent electrical resistance of the sample decreases.
 これに対し、本実施形態では、上述のように、測定室1内での温度上昇を抑制することができるので、雰囲気ガスであるアルゴンガスがイオン化するのを抑制することができ、精度良く電気抵抗率を測定することができる。 On the other hand, in this embodiment, since the temperature rise in the measurement chamber 1 can be suppressed as described above, it is possible to suppress the argon gas, which is the atmospheric gas, from being ionized, and the electricity can be accurately generated. The resistivity can be measured.
 本実施形態においては、試料10として黒鉛を用いているが、本発明の装置により測定できる試料は、通電により加熱することができる試料であれば、特に限定されるものではなく、セラミックスや金属なども測定することができる。 In this embodiment, graphite is used as the sample 10, but the sample that can be measured by the apparatus of the present invention is not particularly limited as long as the sample can be heated by energization, such as ceramics and metal. Can also be measured.
 1…測定室
 1a…壁部
 2…キャップ
 3…キャップ
 4…保持部材
 4a…台座部
 4b…固定具
 4c…取り付けねじ
 4d…固定具
 4e…板
 5…保持部材
 5a…台座部
 5b…固定具
 5c…取り付けねじ
 5d…固定具
 5e…板
 5f…孔
 5g…孔
 5h…孔
 5i…溝
 5j…孔
 6…リフレクター
 6a…切抜き部
 6b,6c…フラップ部
 6d,6e…切込
 7…リフレクター
 8…電線
 9…電線
 10…試料
 10a…一方端部
 10b…他方端部
 13…熱電対
 14…直流電源
 15…電流計
 16…放射型温度計
 17…温度計測回路・データロガ
 18…導入口
 19…排気口
 20…光学式変位量測定装置
 21…光学フィルタ
 22…投射レンズ
 23…一次元CCD
 24…一次元CCD
 25…電気信号
 25a…変曲点
 26…電気信号
 26a…変曲点
 31,32…支持部材
 33…台
DESCRIPTION OF SYMBOLS 1 ... Measurement chamber 1a ... Wall part 2 ... Cap 3 ... Cap 4 ... Holding member 4a ... Base part 4b ... Fixing tool 4c ... Mounting screw 4d ... Fixing tool 4e ... Plate 5 ... Holding member 5a ... Base part 5b ... Fixing part 5c ... Mounting screw 5d ... Fixing tool 5e ... Plate 5f ... Hole 5g ... Hole 5h ... Hole 5i ... Groove 5j ... Hole 6 ... Reflector 6a ... Cut out part 6b, 6c ... Flap part 6d, 6e ... Cut 7 ... Reflector 8 ... Electric wire DESCRIPTION OF SYMBOLS 9 ... Electric wire 10 ... Sample 10a ... One end part 10b ... The other end part 13 ... Thermocouple 14 ... DC power supply 15 ... Ammeter 16 ... Radiation type thermometer 17 ... Temperature measurement circuit and data logger 18 ... Inlet 19 ... Exhaust outlet 20 ... Optical displacement measuring device 21 ... Optical filter 22 ... Projection lens 23 ... One-dimensional CCD
24 ... one-dimensional CCD
25 ... Electric signal 25a ... Inflection point 26 ... Electric signal 26a ... Inflection point 31, 32 ... Support member 33 ... Stand

Claims (19)

  1.  試料が設置される測定室と、
     前記試料を加熱する加熱手段と、
     前記試料の測定部における温度を測定するための温度測定手段と、
     前記試料の前記測定部を拡大して投射する投射レンズと、
     前記投射レンズにより拡大された前記試料の前記測定部の両端部における像のそれぞれを撮像する一対の撮像手段とを備える熱間変位測定装置。
    A measurement room where the sample is installed;
    Heating means for heating the sample;
    Temperature measuring means for measuring the temperature in the measurement part of the sample;
    A projection lens for enlarging and projecting the measurement part of the sample;
    A hot displacement measuring device comprising: a pair of imaging means for capturing images of both ends of the measurement unit of the sample magnified by the projection lens.
  2.  前記加熱手段は、前記試料に直流電流を通電するための直流電源であることを特徴とする請求項1に記載の熱間変位測定装置。 2. The hot displacement measuring apparatus according to claim 1, wherein the heating means is a DC power source for supplying a DC current to the sample.
  3.  前記測定室の外周部を構成する壁部が、前記試料からの輻射による熱線を透過する材質から形成されており、前記試料からの前記熱線が前記測定室の前記壁部に直接照射されて外部に放射されることを特徴とする請求項1または2に記載の熱間変位測定装置。 A wall portion constituting the outer peripheral portion of the measurement chamber is formed of a material that transmits heat rays due to radiation from the sample, and the heat rays from the sample are directly irradiated on the wall portion of the measurement chamber to be external. The hot displacement measuring device according to claim 1 or 2, wherein
  4.  前記測定室の前記壁部の材質は、波長0.4~2.0μmの光の透過率が80%以上であることを特徴とする請求項3に記載の熱間変位測定装置。 4. The hot displacement measuring apparatus according to claim 3, wherein the material of the wall portion of the measuring chamber has a light transmittance of a wavelength of 0.4 to 2.0 μm of 80% or more.
  5.  前記測定室の前記壁部が、石英ガラスから形成されていることを特徴とする請求項3または4に記載の熱間変位測定装置。 The hot displacement measuring device according to claim 3 or 4, wherein the wall portion of the measuring chamber is made of quartz glass.
  6.  前記測定室の壁部と前記試料との間の距離が、50mm以上であることを特徴とする請求項3~5のいずれか1項に記載の熱間変位測定装置。 The hot displacement measuring apparatus according to any one of claims 3 to 5, wherein a distance between a wall portion of the measuring chamber and the sample is 50 mm or more.
  7.  前記試料の前記両端部に光を照射する照明装置をさらに備えることを特徴とする請求項1~6のいずれか1項に記載の熱間変位測定装置。 The hot displacement measuring apparatus according to any one of claims 1 to 6, further comprising an illuminating device that irradiates light to both ends of the sample.
  8.  前記試料と前記投射レンズとの間に、絞り及び/またはフィルタをさらに備えることを特徴とする請求項1~7のいずれか1項に記載の熱間変位測定装置。 The hot displacement measuring apparatus according to any one of claims 1 to 7, further comprising a diaphragm and / or a filter between the sample and the projection lens.
  9.  試料を測定室に設置する工程と、
     前記測定室に設置した前記試料の測定部を拡大して投射し、前記測定部の両端部における像のそれぞれを一対の撮像手段で撮像しながら、前記試料を加熱し、その温度を上昇させる工程と、
     前記温度上昇における温度差と、前記温度上昇による前記両端部の変位量とから、前記試料の熱間変位量を求める工程とを備える熱間変位測定方法。
    Installing the sample in the measurement chamber;
    A process of enlarging and projecting the measurement part of the sample installed in the measurement chamber, heating the sample and raising the temperature while imaging each of the images at both ends of the measurement part with a pair of imaging means When,
    A hot displacement measuring method comprising: obtaining a hot displacement amount of the sample from a temperature difference in the temperature rise and a displacement amount of the both end portions due to the temperature rise.
  10.  試料が設置される測定室と、
     前記測定室内で前記試料を保持するための保持部材と、
     前記保持部材に保持された前記試料に直流電流を通電し加熱するための直流電源と、
     前記試料の測定部における温度を測定するための温度測定手段と、
     前記試料の電気抵抗率を測定するための電気抵抗率測定手段とを備える電気抵抗測定装置であって、
     前記測定室の外周部を構成する壁部が、前記試料からの輻射による熱線を透過する材質から形成されており、前記試料からの前記熱線が、前記測定室の前記壁部に直接照射されて外部に放射されるように構成されていることを特徴とする電気抵抗測定装置。
    A measurement room where the sample is installed;
    A holding member for holding the sample in the measurement chamber;
    A DC power supply for heating the sample held by the holding member by applying a direct current to the sample;
    Temperature measuring means for measuring the temperature in the measurement part of the sample;
    An electrical resistance measuring device comprising electrical resistivity measuring means for measuring the electrical resistivity of the sample,
    The wall part which comprises the outer peripheral part of the said measurement chamber is formed from the material which permeate | transmits the heat ray by the radiation from the said sample, and the said heat ray from the said sample is directly irradiated to the said wall part of the said measurement chamber. An electrical resistance measuring device configured to be radiated to the outside.
  11.  前記測定室の前記壁部の材質は、波長0.4~2.0μmの光の透過率が80%以上であることを特徴とする請求項10に記載の電気抵抗測定装置。 The electrical resistance measurement apparatus according to claim 10, wherein the material of the wall portion of the measurement chamber has a light transmittance of 80% or more at a wavelength of 0.4 to 2.0 µm.
  12.  前記測定室に設置された前記試料の長さ方向に移動可能なように、前記保持部材が前記測定室内に保持されていることを特徴とする請求項10または11に記載の電気抵抗測定装置。 The electrical resistance measurement apparatus according to claim 10 or 11, wherein the holding member is held in the measurement chamber so as to be movable in a length direction of the sample installed in the measurement chamber.
  13.  前記試料の前記測定部と前記保持部材との間に、前記試料からの前記熱線を反射するためのリフレクターが設けられていることを特徴とする請求項10~12のいずれか1項に記載の電気抵抗測定装置。 The reflector according to any one of claims 10 to 12, wherein a reflector for reflecting the heat rays from the sample is provided between the measurement unit of the sample and the holding member. Electrical resistance measuring device.
  14.  前記測定室の壁部と前記試料との間の距離が、50mm以上であることを特徴とする請求項10~13のいずれか1項に記載の電気抵抗測定装置。 The electrical resistance measurement apparatus according to any one of claims 10 to 13, wherein a distance between a wall portion of the measurement chamber and the sample is 50 mm or more.
  15.  前記温度測定手段が、低温域を測定する熱電対と、高温域を測定する放射型温度計であることを特徴とする請求項10~14のいずれか1項に記載の電気抵抗測定装置。 The electrical resistance measuring device according to any one of claims 10 to 14, wherein the temperature measuring means is a thermocouple that measures a low temperature region and a radiation thermometer that measures a high temperature region.
  16.  前記測定室内に不活性ガスを導入するための導入口と、
     前記測定室からガスを排気するための排出口と、
     前記排出口からガスを排気する排気手段とをさらに備えることを特徴とする請求項10~15のいずれか1項に記載の電気抵抗測定装置。
    An inlet for introducing an inert gas into the measurement chamber;
    An outlet for exhausting gas from the measurement chamber;
    The electrical resistance measurement apparatus according to any one of claims 10 to 15, further comprising exhaust means for exhausting gas from the exhaust port.
  17.  前記測定室の前記壁部が、石英ガラスから形成されていることを特徴とする請求項10~16のいずれか1項に記載の電気抵抗測定装置。 The electrical resistance measurement apparatus according to any one of claims 10 to 16, wherein the wall portion of the measurement chamber is made of quartz glass.
  18.  前記試料の前記測定部の径方向の端縁の変位量を測定するための変位量測定手段をさらに備えることを特徴とする請求項10~17のいずれか1項に記載の電気抵抗測定装置。 The electrical resistance measurement apparatus according to any one of claims 10 to 17, further comprising a displacement amount measuring means for measuring a displacement amount of an edge in a radial direction of the measurement portion of the sample.
  19.  前記変位量測定手段が、光学式測定手段であることを特徴とする請求項18に記載の電気抵抗測定装置。 The electrical resistance measuring device according to claim 18, wherein the displacement measuring means is an optical measuring means.
PCT/JP2011/067763 2010-09-22 2011-08-03 Hot displacement measuring device, hot displacement measuring method, and electric resistance measuring device WO2012039198A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010212213A JP5683187B2 (en) 2010-09-22 2010-09-22 Hot displacement measuring device and hot displacement measuring method
JP2010-212212 2010-09-22
JP2010-212213 2010-09-22
JP2010212212A JP5597856B2 (en) 2010-09-22 2010-09-22 Electrical resistance measuring device

Publications (1)

Publication Number Publication Date
WO2012039198A1 true WO2012039198A1 (en) 2012-03-29

Family

ID=45873693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067763 WO2012039198A1 (en) 2010-09-22 2011-08-03 Hot displacement measuring device, hot displacement measuring method, and electric resistance measuring device

Country Status (1)

Country Link
WO (1) WO2012039198A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108490260A (en) * 2018-03-22 2018-09-04 佛山市熙华科技有限公司 A kind of resistivity detecting device of graphite product

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039540A (en) * 1983-08-15 1985-03-01 Shinagawa Refract Co Ltd Measuring device of coefficient of thermal expansion
JPS617452A (en) * 1984-06-22 1986-01-14 Shinagawa Refract Co Ltd Apparatus for measurement of displacement of ceramic in hot processing
JPS61172041A (en) * 1985-01-28 1986-08-02 Shinagawa Refract Co Ltd Apparatus for measuring hot displacement of ceramic
JPH06167468A (en) * 1992-11-30 1994-06-14 Nippon Steel Corp Noncontact type measuring method for thermal expansion of refractory material
JPH09257374A (en) * 1996-03-22 1997-10-03 Sumitomo Kinzoku Technol Kk Infrared heating furnace and thermodilatometer
JPH1030996A (en) * 1996-07-17 1998-02-03 Shinagawa Refract Co Ltd Light quantity adjusting method for lighting system for measuring thermal expansion coefficient
JP2009128066A (en) * 2007-11-20 2009-06-11 Toyo Tanso Kk Thermal expansion coefficient measuring method and measuring device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039540A (en) * 1983-08-15 1985-03-01 Shinagawa Refract Co Ltd Measuring device of coefficient of thermal expansion
JPS617452A (en) * 1984-06-22 1986-01-14 Shinagawa Refract Co Ltd Apparatus for measurement of displacement of ceramic in hot processing
JPS61172041A (en) * 1985-01-28 1986-08-02 Shinagawa Refract Co Ltd Apparatus for measuring hot displacement of ceramic
JPH06167468A (en) * 1992-11-30 1994-06-14 Nippon Steel Corp Noncontact type measuring method for thermal expansion of refractory material
JPH09257374A (en) * 1996-03-22 1997-10-03 Sumitomo Kinzoku Technol Kk Infrared heating furnace and thermodilatometer
JPH1030996A (en) * 1996-07-17 1998-02-03 Shinagawa Refract Co Ltd Light quantity adjusting method for lighting system for measuring thermal expansion coefficient
JP2009128066A (en) * 2007-11-20 2009-06-11 Toyo Tanso Kk Thermal expansion coefficient measuring method and measuring device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TEIICHI FUJIWARA ET AL.: "Automation of the apparatus for measurement of thermal linear change of ceramics", CERAMICS, vol. 20, no. 5, 1 May 1985 (1985-05-01), pages 393 - 396 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108490260A (en) * 2018-03-22 2018-09-04 佛山市熙华科技有限公司 A kind of resistivity detecting device of graphite product

Similar Documents

Publication Publication Date Title
JP5414058B2 (en) Thermal diffusivity measuring device
KR101991975B1 (en) Fluorescent x-ray analyzer
WO2009081748A1 (en) Radiometric temperature measuring method and radiometric temperature measuring system
JP2017502529A (en) Low temperature RTP control using an infrared camera
JP5597856B2 (en) Electrical resistance measuring device
JP2019075434A (en) Prober device and wafer chuck
JP2006184177A (en) Infrared inspection device and method
WO2012039198A1 (en) Hot displacement measuring device, hot displacement measuring method, and electric resistance measuring device
US8173986B2 (en) Laser-heated infrared source
JP5683187B2 (en) Hot displacement measuring device and hot displacement measuring method
JP6804882B2 (en) UV irradiation device and vacuum container device
JP2020536740A (en) Equipment for laser machining systems, laser machining systems using it, and methods for adjusting the focal position of optics
JP2010286323A (en) Sample holder for x-ray diffraction measurement and method of measuring x-ray diffraction
US20130010282A1 (en) Illuminance distribution detection method in extreme ultraviolet light source apparatus and positioning method of light focusing optical means
US20100155596A1 (en) Method and system for heating substrate in vacuum environment and method and system for identifying defects on substrate
JP5894049B2 (en) Optical sensing device unit and optical sensing device
JP6576823B2 (en) Method for cleaning solid-state imaging device and radiation detection apparatus
JP4863177B2 (en) Image conversion device having heatable conversion layer
CN113957406A (en) Heating device for preparing oxide film
JP7464827B2 (en) Heating device and test specimen for X-ray CT device
EP3966545B1 (en) Holding device for a sample and a system for heating a sample using such a holding device
JP2015076303A (en) Electron microscope
Menaka et al. Thermal Transient Measurements of Optical Periscope Lamp Assembly for Different Flow Rates using Thermal Imaging
JP3360560B2 (en) Infrared thickness gauge infrared light source
JP2009236631A (en) Temperature measurement apparatus, mounting platform structure having the same, and heat treatment apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826644

Country of ref document: EP

Kind code of ref document: A1