JP5068656B2 - 燃料電池及び当該燃料電池を備えた電子機器 - Google Patents

燃料電池及び当該燃料電池を備えた電子機器 Download PDF

Info

Publication number
JP5068656B2
JP5068656B2 JP2007537731A JP2007537731A JP5068656B2 JP 5068656 B2 JP5068656 B2 JP 5068656B2 JP 2007537731 A JP2007537731 A JP 2007537731A JP 2007537731 A JP2007537731 A JP 2007537731A JP 5068656 B2 JP5068656 B2 JP 5068656B2
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
flow path
insulating layer
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007537731A
Other languages
English (en)
Other versions
JPWO2007037420A1 (ja
Inventor
秀和 乙丸
貴幸 宮尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007537731A priority Critical patent/JP5068656B2/ja
Publication of JPWO2007037420A1 publication Critical patent/JPWO2007037420A1/ja
Application granted granted Critical
Publication of JP5068656B2 publication Critical patent/JP5068656B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2418Grouping by arranging unit cells in a plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

燃料電池及び当該燃料電池を備えた電子機器に関する。
燃料電池では、電解質部材に燃料又は酸化ガスを供給する流路を形成しなければならない。特許文献1では、電解質部材を挟み込む蓋体及び基体を備える燃料電池において、電解質部材に対向する基体表面に溝部を設けて燃料の流路を形成する技術が開示されている。
特開2004−146080号公報
しかし、基体の表面に溝部を設けて複数の流路を形成し、流路同士を連結しようとすると、複数の基体を積み重ね、各基体に設けられている流路同士を基体の外部に引き回されるパイプにより流路を形成しなければならず、部品点数の増加や外装の複雑化を招く。
本発明は、電解質部材に接続される流路の配置の自由度を向上できる燃料電池及び当該燃料電池を備えた電子機器を提供することにある。
本発明の第1の観点の燃料電池は、複数の絶縁層を積層して成る積層体により形成された基体と、異なる前記絶縁層に設けた溝同士を相互に連結して成る流路と、前記流路の一部と接するようにして配置される電解質部材と、を備える。
好適には、前記電解質部材は複数の前記絶縁層に挟まれている。
好適には、前記絶縁層がセラミック材料から成る。
好適には、前記流路が、前記基体の内部で循環経路を形成している。
好適には、前記流路は、前記電解質部材と接する部位が複数の経路に分岐している。
好適には、前記溝が前記絶縁層を厚み方向に貫通している。
好適には、前記基体の表面に出力端子が設けられ、前記基体の内部に、前記出力端子と電解質部材とを電気的に接続する導電路が設けられている。
好適には、前記流路は、前記電解質部材と接する部位よりも燃料の流動方向の下流側に位置する排出部が、前記電解質部材と接する部位よりも燃料の流動方向の上流側に位置する供給部に比し前記基体の表面に近づけて配置されている。
好適には、前記流路は、前記電解質部材と接する部位よりも燃料の流動方向の下流側に位置する前記排出部の少なくとも一部が、前記電解質部材と接する部位よりも燃料の流動方向の上流側に位置する供給部に沿って配置されている。
好適には、前記排出部の前記供給部に沿って配置された部分を流れる流体の向きが前記供給部を流れる流体の向きと逆方向である。
好適には、前記循環経路を流れる燃料の濃度を調整する濃度調整装置を更に備える。
好適には、前記電解質部材と電気的に接続される出力端子が前記基体の一主面に、前記電解質部材が前記基体の他主面寄りに配置されている。
好適には、前記基体に設けられたアンテナを備える。
好適には、前記基体を平面透視して前記アンテナが前記流路と重なるように設けられている。
好適には、前記アンテナは前記基体に形成された配線導体の一部から成る。
好適には、前記基体を平面透視して前記アンテナと重なるように設けられた前記流路が、前記電解質部材の上流側および下流側の流路であり、前記上流側の流路と前記アンテナとの距離が前記下流側の流路と前記アンテナとの距離よりも短い。
好適には、前記基体を平面透視して前記アンテナと重なるように設けられた前記流路が、燃料を貯蔵する燃料貯蔵部の少なくとも一部である。
本発明の第2の観点の燃料電池は、基体と、該基体の内部に設けられた中空部同士を前記基体の厚み方向に連結して成る流路と、前記流路の一部と接するようにして配置される電解質部材と、を備える。
本発明の第3の観点の電子機器は、筐体に設けられた操作部及び表示部と、前記操作部からの入力情報に基づいて前記表示部の表示内容を制御する動作制御部と、前記筐体内に収容され、前記操作部、前記表示部及び前記動作制御部に電力を供給する上記本発明の第1の観点の燃料電池とを備える。
好適には、前記表示部、前記操作部及び前記動作制御部のうち少なくともいずれか一つの稼動状況に応じて前記燃料電池の前記電解質部材への燃料若しくは酸化ガスの供給を制御する反応制御部を更に備える。
本発明によれば、電解質部材に接続される流路の配置の自由度を向上できる。
本発明の実施形態の燃料電池を示す外観斜視図。 図1のII−II線矢視方向における断面図。 図1の燃料電池の基体の分解斜視図。 図1の燃料電池の基体の分解斜視図。 図1の燃料電池の燃料流路及び導電路の概要を示す斜視図。 図1の燃料電池の電池本体付近の燃料流路を示す図。 図1の燃料電池の電気系の構成を示すブロック図。 図1の燃料電池の燃料貯蔵部の変形例を示す図。 図1の燃料電池が着脱される携帯電話機の概観斜視図。 図9のX−X線矢視方向における断面図。 図9の携帯電話機の電気系の構成を示すブロック図。 電気浸透流型流動制御部の原理を説明する図。 流動制御部の配置位置の例を示す図。 振動体を含む流動制御部の例を示す図。 電気浸透流型流動制御部の例を示す図。 図15の電気浸透流型流動制御部の連通部材を示す図。 電気浸透流型流動制御部の連通部材の他の例を示す図。 電気浸透流型流動制御部の連通部材の他の例を示す図。 電気浸透流型流動制御部の電極の配置の例を示す図。 電気浸透流型流動制御部の電極の配置の例を示す図。 電気浸透流型流動制御部を配列した流動制御部アレイを示す図。 電気浸透流型流動制御部をシールドするシールド導体を示す図。 電子部品の配置例を概念的に示す燃料電池の平面透視図。 電子部品の配置例を概念的に示す燃料電池の断面図。 電子部品の一例としてのインダクタの例を示す図。 電子部品の一例としてのコンデンサの例を示す図。 電子部品の一例としてのアンテナ素子の例を示す図。
符号の説明
1…燃料電池、2…基体、3…絶縁層、17…燃料流路、21…電解質部材、321…アンテナ素子。
図1は、本発明の実施形態に係る燃料電池1の外観を示す斜視図であり、図1(a)は、燃料電池1の第1の面(一主面)S1側から見た図、図1(b)は、第1の面S1の背面となる第2の面(他主面)S2側から見た図である。なお、図1は燃料電池1を概念的に示すものであり、後述する空気流路12の開口を大きく示すなどしている。
燃料電池1は、略直方体状に形成された基体2を備えている。基体2は、例えばセラミック多層基板により構成されている。すなわち、基体2は、略薄型直方体状に形成され、互いに同等の広さ、厚さ、形状を有する複数の第1絶縁層3A〜第7絶縁層3G(以下、絶縁層3A〜3Gを区別せずに「絶縁層3」ということがある)を積層してなる積層体により形成されている。絶縁層3は、例えば、アルミナセラミックスであり、例えば、SiO、Al、MgO、ZnO、Bなどから成るガラス成分とアルミナ粒子とを含んで形成される。積層後の絶縁層3は、例えば900°C〜1600°Cの大気雰囲気で焼成される。
なお、基体2を構成する絶縁層3を7枚としたのは例示であり、絶縁層3の枚数は適宜に設定してよい。また、複数の絶縁層3は、互いに同一の広さ、厚さ、形状でなくてもよい。ただし、複数の絶縁層3を互いに同一の広さ、厚さ、形状とすれば、製造コストが縮小される。
第1の面S1には、燃料電池1から電子機器へ電力を供給するためのプラス端子5P、マイナス端子5N(以下、両者を区別せずに「端子5」ということがある)が設けられている。端子5は、例えば第1の面S1に重ねて配置される金属製の板状部材により構成されている。
また、第1の面S1には、凹部2aが形成されており、凹部2aには、各種電子部品が配置されている。各種電子部品は、例えば、電源装置6、制御装置7、キャパシタ8、流動制御部用電源装置9であり、これらについては後述する。
第2の面S2には、後述する電池本体15(図1では不図示)を収容する凹部2bが形成されており、凹部2bは蓋体11により塞がれている。凹部2b及び蓋体11は、電池本体15の数に対応して第2の面S2に複数、例えば4つ配列されている。蓋体11は、例えば絶縁層3と同様の材料により形成され、絶縁性を有している。従って、蓋体11は、基体2を構成する絶縁層3の一つと捉えることもできる。
図2は、図1のII−II線矢視方向における断面図である。ただし、図2は、基体2の構成を概念的に示すものであり、後述する、同一断面にない供給部17a、排出部17c、導電路18を全て示している。また、図3及び図4は、基体2の分解斜視図である。ただし、図3及び図4は、基体2の構成を概念的に示すものであり、燃料流路17を図2よりも大きく示すなどしている。このため、図2や後述する図5に対して燃料流路17と導電路18との相対位置が若干ずれている。また、導電路18の細部は省略している。
図2に示すように、基体2の内部には、燃料と酸素との化学反応により発電を行う電池本体15と、電池本体15に供給する燃料を貯蔵する燃料貯蔵部16と、燃料貯蔵部16に貯蔵されている燃料を電池本体15に導くための燃料流路17と、電池本体15からの電力を導くための導電路18とが設けられている。
電池本体15は、いわゆる単位セルであり、同一平面状に4つ配置され、互いに導電路18により接続されている。ただし、単位セルは、積層されていてもよいし、平面視及び側面視の双方において互いに異なる位置に配置されていてもよいし、一つのみ設けられていてもよい。また、配置される数も適宜に設定してよい。複数の単位セルを平面視において互いに異なる位置に配置すると、各セルのカソード極側をすべて大気中に近づけることができるので、空気を導入しやすくなるとともに、薄型化も可能となる。さらに各単位セルを直列または並列に連結するのが容易であり、高電流または高電圧を容易に得ることができる。
電池本体15は、電解質部材21と、電解質部材21を挟んで配置されるアノード極22及びカソード極23とを備えている。電池本体15は、例えば、ダイレクトメタノール燃料電池により構成されており、電解質部材21は、イオン導電膜により構成されている。アノード極22及びカソード極23は、白金などの触媒を担持した多孔質部材により構成されており、触媒層とガス拡散層の両方の機能を兼ね備えるものである。
電池本体15は、例えば絶縁層3と同等の厚さに形成されており、第6絶縁層3Fに設けられた孔部101(図4(b)も参照)に嵌合挿入され、第5絶縁層3Eと蓋体11とに挟まれることにより、基体2内部に固定されている。換言すれば、基体2の第2の面S2に設けられた凹部2bに収納されて、凹部2bの開口部が蓋体11により塞がれている。
電池本体15は、第6絶縁層3Fの孔部101に配置されているから、第1の面S1までの距離は絶縁層3の5枚の厚さ相当であり、第2の面S2までの距離は絶縁層3の1枚の厚さ相当である。すなわち、電池本体15は、第1の面S1までの距離よりも第2の面S2までの距離が短く、第2の面S2寄りに配置されている。これにより、燃料流路の配置自由度の向上が可能と成るとともに、大気中の酸素を取り入れやすくなり、高効率な発電が可能となる。
電池本体15を収納する凹部2bは、第6絶縁層3Fの孔部101と、第7絶縁層3Gに設けられた孔部102(図4(c)も参照)とにより形成されており、孔部101は孔部102よりも径が小さく、蓋体11は孔部101の周縁において第6絶縁層3Fに当接して固定されている。蓋体11の固定は、例えば、半田、樹脂、接着剤、ねじ等の適宜な固定部材を用いて行われる。蓋体11は、絶縁層3と同等の厚さを有しており、蓋体11は第2の面S2から突出しないように配置されている。これにより、電池本体15に突起がなくなり、小型化が可能となる。
ただし、電池本体15の厚さ及び蓋体11の厚さは、絶縁層3の厚さと同等に限られず、適宜に設定してよい。絶縁層3よりも薄くてもよいし、厚くてもよいし、絶縁層3の複数枚分の厚さにしてもよい。特に電池本体15を絶縁層3よりも厚く、あるいは絶縁層3の複数枚分よりも厚くしておき、蓋体11で電池本体15を圧縮して電池本体15を絶縁層3と同じ厚さ、あるいは絶縁層3の複数枚分と同じ厚さにするのがよい。これにより、電池本体15の電極と導電路18との電気的接続をより信頼性の高いものとすることができる。
図5は、燃料貯蔵部16、燃料流路17及び導電路18を示す斜視図である。ただし、図5は、燃料貯蔵部16、燃料流路17及び導電路18の概要を示すものであり、導電路18から各種電子部品6〜9への配線等、細部については省略している。
燃料貯蔵部16は、図2及び図5に示すように、例えば、第2絶縁層3B〜第6絶縁層3Fにそれぞれ設けられた孔部104A〜108A、孔部104B〜108B(図3(b)〜図4(b)も参照。付加記号A、Bを省略して両者を区別しないことがある。)が連通することにより形成された収納空間25A、25B(図5も参照。付加記号A、Bを省略して両者を区別しないことがある。)を有している。孔部104〜孔部108は、例えば、同一の大きさの同一形状に形成されるとともに、第2絶縁層3B〜第6絶縁層3F間において互いに対向する位置に設けられており、柱状(例えば四角柱)に形成されている。収納空間25Aと収納空間25Bとは、隔壁16aにより仕切られ、隔壁16aには、収納空間25Aと25Bとを連通する孔部16bが設けられている。収納空間25には、不図示の開口を介してメタノールや水素ガス等の燃料が充填される。
燃料流路17は、絶縁層3に設けられた溝部(中空部)が相互に連結されて成る。なお、本願において溝部は、絶縁層3を厚み方向に貫通するもの(孔部)も含むものとする。燃料流路17を構成する溝部は、積層前の絶縁層3を切削等することにより形成される。
燃料流路17は、燃料貯蔵部16の燃料を電池本体15に(矢印y1の方向へ)導く供給部17aと、供給部17aに連通し、電池本体15のアノード極22に接する接触部17bと、接触部17bに連通し、電池本体15に接した燃料を燃料貯蔵部16に(矢印y2の方向へ)還流する排出部17cとを備えている。燃料流路17は、各部17a〜17cを備えることにより、燃料貯蔵部16から燃料を導くとともに、その燃料を燃料貯蔵部16に還流する循環経路を形成している。
燃料流路17は、3次元的に配置されている。具体的には以下の通りである。
図5及び図2に示すように、供給部17aは、例えば、第5絶縁層3Eと第6絶縁層3Fとの間において燃料貯蔵部16の収納空間25Aに連通する。さらに燃料貯蔵部16から第5絶縁層3Eと第6絶縁層3Fとの間で絶縁層3に平行に若干延びる(図4(b)の溝部110も参照)。次に、第5絶縁層3E及び第4絶縁層3Dを貫通するように第1の面S1側に延びる(図4(a)の孔部111及び図3(d)の孔部112も参照)。その後、第4絶縁層3D及び第3絶縁層3Cの間を絶縁層3に平行に延びる(図3(c)の溝部113も参照)。その途中では、図5に示すように、紙面奥手側の2個の電池本体15及び紙面手前側の2個の電池本体15に対応して、同一平面内で(同一の絶縁層間において)図5の紙面奥手側と紙面手前側とに分岐する。その後、図2に示すように、紙面右側の電池本体15に対応する流路が、絶縁層3に平行な流路から絶縁層3に直交する方向に分岐し、電池本体15に到達する(図3(d)の孔部114及び図4(a)の孔部115も参照)。また、分岐後の絶縁層3に平行な流路は、紙面左側の電池本体15に対応する位置で、絶縁層3に直交する方向へ屈曲し、電池本体15に到達する(図3(d)の孔部116及び図4(a)の孔部117も参照)。このように絶縁層3に直交する方向に分岐することにより、直交方向への分岐点で乱流を効率よく発生させることができ、燃料(例えばメタノールと水との混合液)の混合を良好に行なうことができる。
排出部17cは、例えば、第2絶縁層3Bと第3絶縁層3Cとの間において燃料貯蔵部16の収納空間25Bに連通し、燃料貯蔵部16から第2絶縁層3Bと第3絶縁層3Cとの間で絶縁層3に平行に延びる(図3(b)の溝部119も参照)。その途中では、図5に示すように、紙面奥手側の2個の電池本体15及び紙面手前側の2個の電池本体15に対応して、同一の絶縁層間において、図5の紙面奥手側と紙面手前側とに分岐する。その後、図2に示すように、紙面右側の電池本体15に対応する流路が、絶縁層3に平行な流路から絶縁層3に直交する方向に分岐し、電池本体15に到達する(図3(c)の孔部120、図3(d)の孔部121及び図4(a)の孔部122も参照)。また、分岐後の絶縁層3に平行な流路は、紙面左側の電池本体15に対応する位置で、絶縁層3に直交する方向へ屈曲し、電池本体15に到達する(図3(c)の孔部123、図3(d)の孔部124及び図4(a)の孔部125も参照)。なお、排出部17cにおける燃料の流れる方向は上記の排出部17cの各部の説明順と逆である。
供給部17aの絶縁層3に平行に延びる部分(第3絶縁層3Cと第4絶縁層3Dとの間)と、排出部17cの絶縁層3に平行に延びる部分(第2絶縁層3Bと第3絶縁層3Cとの間)とは、側面視(絶縁層3に平行な方向に見て)互いに平行である。また、平面視(絶縁層3に直交する方向に見て)において比較的近い距離で互いに平行に延びている。従って、排出部17cの一部は、供給部17aに沿って配置されていることになる。
また、図5に示すように、供給部17aにおける燃料の流れる方向を示す矢印y1及び排出部17cにおける燃料の流れる方向を示す矢印y2から明らかなように、排出部17cの供給部17aに沿う部分においては、両者を流れる燃料の向きは互いに反対方向である。
排出部17cが供給部17aに沿う部分では、両者間の距離は、側面視において絶縁層3の1枚の厚さと同じであり、比較的近接している。なお、図5等では、供給部17aと排出部17cとが絶縁層3を貫通する部分において合流しないように、平面視において排出部17cを供給部17aの若干外側に配置した場合を例示しているが、大部分においては平面視において互いに一致するように配置するとともに、絶縁層3を貫通する部分付近のみにおいて平面視において互いにずれるように配置し、排出部17cと供給部17aとの距離を絶縁層3の1枚の厚さに等しくしてもよい。また、図5等のように平面視において排出部17cと供給部17aとの間に距離をおく場合には、当該平面視における距離を例えば絶縁層3の1枚の厚さと同程度あるいはそれ以下にしてもよい。
図2に示すように、排出部17cは、第1の面S1との距離が絶縁層3の2枚の厚さ相当未満であるのに対し、供給部17aは、第1の面S1との距離が絶縁層3の1枚の厚さだけ排出部17cよりも長い。また、供給部17aは、第1の面S2との距離も絶縁層3の4枚の厚さ相当以上であり、排出部17cと第1の面S1との距離よりも長い。すなわち、排出部17cは、供給部17aに比し基体2の表面に近づけて配置されている。これにより、電池本体15で発生した熱により温度が上昇した、排出部を流れる流体を外気に近づけることができ、良好に放熱することができる。
なお、図では、供給部17a又は排出部17cの分岐前の断面積と分岐後の各流路の断面積とが同等に示されているが、分岐前の断面積と、分岐後の各流路の断面積の総和とが同等になるようにしてもよい。これにより、分岐前と分岐後とで流速(圧力)が一定に保たれる。
供給部17aは、4つの電池本体15に対応して4つに分岐し、それぞれ電池本体15に対して接続されている。しかし、4つに分岐した後に更に分岐して、一つの電池本体15に対して複数個所で接続されてもよい。排出部17cも同様である。これにより、各電池本体15に同じ濃度の燃料を供給でき、各電池本体15の発電をむらなく効率よく行なうことができる。また、逆に、供給部17a及び排出部17cを燃料貯蔵部16から一切分岐させずに、一の電池本体15に接した後の排出部が、他の電池本体15に接続される供給部を兼ねるように、すなわち、流路が複数の電池本体15に対して直列に接続されるようにしてもよい。これにより、各流路の構造が容易になり、生産性を向上できる。
図6(a)は、接触部17bの上面図(絶縁層3に直交する方向から見た図)であり、図6(b)は、図6(a)のVIb−VIb線矢視方向における断面図である。
図6(a)に示すように、供給部17a及び排出部17cは、電池本体15に対して互いに反対側の縁部寄りの位置において電池本体15に到達し、それぞれ接触部17bの端部に連通している。接触部17bは、供給部17aとの連通位置から排出部17cとの連通位置まで蛇行するように延び、電池本体15の全面に亘って広がっている。
図6(b)に示すように、接触部17bは、第5絶縁層3Eの電池本体15側の面に溝部が設けられることにより形成されており、電池本体15のアノード極22に接している。アノード極22は、多孔質部材により形成されており、接触部17bを流れる燃料はアノード極22を介して電解質部材21へ流れる。換言すれば、接触部17bは電解質部材21に接している。
なお、蓋体11には、電池本体に空気(酸化ガス)を導くための空気流路12が形成されている(図1も参照)。蓋体11の空気流路12は、第1の面S1側から電池本体15側に蓋体11を貫通するように設けられる部分と、蓋体11のカソード極23側に設けられた溝により形成され、接触部17bと同様に蛇行するように延びてカソード極23の全面に広がる部分とを有している。
図2に示す導電路18は、例えば従来のセラミック多層基板における導電路と同様の製造方法により基体2に設けられる。具体的には、銀系や銅系、タングステン系、モリブデン系、白金系等の導電材料を含む導電性ペーストを、積層前の絶縁層3の表面に塗布又は絶縁層3に形成した貫通孔に充填し、その後、絶縁層3を積層して焼成することにより、導電路18が設けられた基体2が得られる。
従って、導電路18は、絶縁層3と絶縁層3との間において絶縁層3に平行に延びる部分と、絶縁層3を貫通する部分とを有し、基体2の内部に3次元的に配置されている。例えば、導電路18は4つの電池本体を直列に接続するように配置される。具体的には以下の通りである。
図2及び図5に示すように、導電路18は、マイナス端子5Nから第1絶縁層3A〜第5絶縁層3Eを貫通し(図3(a)の導体201、図3(b)の導体202、図3(c)の導体203、図3(d)の導体204、図4(a)の導体205も参照)、電池本体15のアノード極22に面するアノード側導電膜18aに達する。なお、実際には導電路18は、途中で凹部2a(図1参照)に設けられた電源装置6に接続され、電源装置6から電池本体15に延びるから、図2及び図5の概念図よりも複雑な形状をしている。
アノード側導電膜18aは、図6(a)及び図6(b)にも示すように、第5絶縁層3Eのアノード極22側に形成され、接触部17bの配置領域を除いてアノード極22と接する全面に設けられている。一方、蓋体11のカソード極23側には、空気流路12の配置領域を除いてカソード極23と接する全面にカソード側導電膜18bが形成されている(図4(d)も参照)。アノード側導電膜18a及びカソード側導電膜18bは、集電体としての機能を果たす。
図2及び図5に示すように、カソード側導電膜18bから延びる導電路18は、第6絶縁層3F及び第5絶縁層3Eを貫通した後、絶縁層3に平行になるように屈曲し、第5絶縁層3Eと第4絶縁層3Dとの間を延びる(図4(b)の導体206、図4(a)の導体207も参照)。その後、第5絶縁層3Eを貫通して(図4(a)の導体207も参照)、紙面右側の電池本体10に対応するアノード側導電膜18aに接続される。以後、同様にして、カソード極23と、隣接する電池本体15のアノード極22とを接続するように導電路18は延びる。
そして、プラス端子5P直下の電池本体15のカソード極23から延びる導電路18は、第6絶縁層3F〜第1絶縁層3Aまで貫通し(図4(b)の導体208、図4(a)の導体209、図3(d)の導体210、図3(c)の導体211、図3(b)の導体212、図3(a)の導体213も参照)、プラス端子5Pに接続される。なお、実際には、途中で凹部2a(図1参照)に設けられた電源装置6に接続され、電源装置6からプラス端子5Pに延びるから、図2及び図5の概念図よりも複雑な形状をしている。
図7は、燃料電池1の電気系の構成を示すブロック図である。図中、実線で示す矢印は信号の経路を示し、点線で示す矢印は電力供給の経路を示している。
電源装置6、制御装置7、キャパシタ8、流動制御部用電源装置9は、図1に示すように、凹部2aに収納されている。凹部2aは、各種電子部品6〜9が第1の面S1から突出しないように、各種電子部品6〜9の厚さ(高さ)よりも深く形成されている。例えば、凹部2aは、第1の絶縁層3Aに孔部131(図3(a)も参照)を設けることにより形成されている。
なお、図1では、凹部2aに被せる蓋体等が設けられておらず、安価、放熱性がよい等のメリットがある。ただし、蓋体を凹部2aに被せてもよい。この場合、防水、防塵等のメリットがある。なお、蓋体を凹部2aに被せる場合には、電池本体15の収納と同様に、凹部2aを絶縁層3の1枚の厚さよりも深くし、絶縁層3と同様の厚さの蓋体を第2絶縁層3Bに当接させて固定してもよい。
図7に示すように、電池本体15からの電力は、電源装置6へ供給される。電源装置6は、例えばDC/DCコンバータであり、電池本体15において発生した直流電流は、電源装置6により適宜な電圧に変換されて、端子5、制御装置7、キャパシタ8、流動制御部用電源装置9等の各種電子部品に出力される。
キャパシタ8は、電源装置6から供給される電力の圧力を安定にするためのものである。すなわち、電池本体15から供給される電力は電池本体15の状態によって変動し、また、消費される電力も燃料電池1に設けられた各種電子部品等の稼動状態や端子5に接続される電子機器の稼動状態によって変動する。従って、例えば消費電力が大きい場合には、需要に対して電力不足となる場合がある。また、逆に、余剰電力が発生する場合がある。
そこで、電源装置6は、電池本体15から供給される電力が消費電力を上回る場合にはキャパシタ8に電力を蓄え、電池本体15から供給される電力が消費電力を下回る場合にはキャパシタ8に蓄えられた電力を各種電子部品等に供給する。これにより、電子機器を安定に作動させることができる。
なお、図1では、独立した部品として構成されたコンデンサ素子によりキャパシタ8を構成し、凹部2aに取り付けた場合を例示している。しかし、絶縁層3が誘電体として機能することから、絶縁層3を挟むように配置される導電膜を絶縁層3間又は基体2の表面に設け、基体2の一部又は全部をキャパシタとして機能させるようにしてもよい。
図7に示す制御装置7は、燃料電池1に設けられる各種の電子部品の動作を制御するものであり、例えば、CPU、ROM、RAM等を含むICにより構成されている。具体的には、流速センサ31の検出する燃料の流速に基づいて、燃料の流動を制御する流動制御部32は、一例としてポンプにより構成されている。そして、制御装置7は、流動制御部の動作を制御し、また、濃度センサ33の検出する燃料の濃度に基づいて、燃料の濃度を制御する濃度調整装置34の動作を制御する。なお、燃料の流動の制御は、燃料の流速や流量の制御である。
流速センサ31は、例えば、流路に接する抵抗体と、抵抗体の抵抗値を測定する抵抗計とを含んで構成し(いずれも不図示)、流速変化により抵抗体が温度変化し、抵抗値が変化することを利用して計測する。この場合、抵抗体や、抵抗体と抵抗計とを結ぶ導電路18、抵抗計と制御装置7とを結ぶ導電路18は、例えば積層前において絶縁層3に設けられ、計測器は基体2の焼成後に凹部2a等に設けられる。
なお、流速センサ31は、上記の構成に限らず、ピトー管を利用するものなど、適宜なセンサにより構成してよい。電池本体15のように、基体2の一部に燃料流路17に連通する凹部を設けてセンサを配置し、凹部に蓋体を被せるようにしてもよい。また、燃料流路17の断面積は一定であるから、流速の計測と流量の計測とは等価である。
流動制御部32は、例えば、燃料がメタノール水溶液である場合、電気浸透流型流動制御部(一般に、電気浸透流型ポンプと呼ばれる場合もある。)により構成され、流動制御部32は、流動制御部用電源装置9と、流動制御部用電源装置9により電圧が印加されるプラス電極36P、マイナス電極36N(以下、両者を区別せずに「電極36」ということがある)とを備えている。
流動制御部用電源装置9は、例えばDC/DCコンバータである。電極36は、例えば、供給部17aに露出するように設けられており、プラス電極36Pがマイナス電極36Nの上流側に配置されている。電極36と、電極36と流動制御部用電源装置9とを接続する導電路18とは、例えば積層前おいて絶縁層3に設けられ、流動制御部用電源装置9は基体2の焼成後に凹部2aに設けられる。
図12は、電気浸透流型流動制御部の原理を説明する図である。燃料流路17を形成する壁面3wは、メタノール水溶液に接したときに負に帯電し、その負電荷により燃料流路17の壁面3wに溶液中の正電荷が引き付けられ局在化する。そして、流動制御部用電源装置9により電極36間に電圧を印加すると、正電荷がマイナス電極36N方向に移動し、その際、周囲の溶液を引きずるために溶液全体がマイナス電極36N方向に流動する。
制御装置7は、例えば、流速センサ31の検出結果に基づいて、予め定められた流速になるように、流動制御部用電源装置9により電極36間に印加される電圧の大きさを制御する。なお、流速センサ31は省略してもよい。この場合、制御装置7は、例えば予め設定された電圧を印加するように流動制御部用電源装置9の動作を制御したり、電源装置6等において検出される電池本体15の発電量が、予め設定された値になるように流動制御部用電源装置9の動作を制御する。
濃度センサ33は、例えば、燃料流路17内に設けられ、絶縁膜により被覆された一対の電極(不図示)と、当該一対の電極間における静電容量(誘電率)を測定する測定器(不図示)とを含んで構成される。そして、濃度センサ33は、測定器が測定した静電容量と、電極間の燃料の濃度と電極間の静電容量との相関関係に基づいて燃料の濃度を特定する。この場合、絶縁膜により被覆された電極と、電極と測定器とを接続する導電路18は、例えば積層前において絶縁層3に設けられ、測定器は基体2の焼成後に凹部2a等に設ける。なお、絶縁層3自体が電極を燃料から絶縁する絶縁体になり得るから、例えば、供給部17aを挟む第3絶縁層3C及び第4絶縁層3D(図2参照)にそれぞれ電極を埋設することにより、濃度測定用のコンデンサを構成してもよい。また、濃度センサ33は、静電容量を測定するものに限定されず、例えば、燃料の沸点を測定するもの等、適宜なものにより構成してよい。
濃度調整装置34は、例えば、燃料が水素ガスやメタノールガス等の気体である場合、気液分離器によって構成される。すなわち、気液分離器は、燃料を冷却して所定の温度まで低下させ、飽和水蒸気量を小さくし、水分を結露させることにより、燃料から余剰水分を除去して燃料の濃度を調整する。この場合、気液分離室、結露した水分の排水路、冷媒を通過させるための流路(いずれも不図示)は、燃料流路17等と同様に、絶縁層3に設けられた溝を互いに連結することにより構成することができる。また、気液分離器に温度センサを設ける場合には、例えば抵抗体の抵抗値の変化により温度を検出するセンサにより構成し、上述の抵抗体を設ける流速センサと同様にして基体2に設けることができる。
制御装置7は、濃度センサ33の検出結果に基づいて、気液分離室の温度が目標の濃度に対応する温度になるように濃度調整装置34の動作を制御する。なお、濃度センサ33は省略してもよい。この場合、制御装置7は、例えば予め設定された温度に気液分離室の温度を調整したり、電源装置6等において検出される電池本体15の発電量が、予め設定された値になるように濃度調整装置34の動作を制御する。
図8は、燃料貯蔵部の変形例を示しており、図8(a)は斜視図、図8(b)は図8(a)のVIIIb−VIIIb線矢視方向における断面図、図8(c)は図8(b)の一部拡大図である。
燃料貯蔵部16′は、燃料供給用のカートリッジ71を挿脱可能に構成されている。具体的には以下の通りである。
燃料貯蔵部16′の収納空間25′は、第2絶縁層3B′〜第6絶縁層3F′に設けられた切り欠き部が互いに連結されて形成されている。切り欠き部は、例えば矩形状に形成されており、収納空間25′は直方体状に形成されている。
カートリッジ71は、収納空間25′に嵌合する形状に形成されており、例えば直方体状である。カートリッジ71は、基体2′と同様に、セラミックが積層されて形成されていてもよいし、金属や樹脂等により形成されていてもよい。カートリッジ71の内部空間71sには水素やメタノール等の燃料が充填されている。
カートリッジ71が収納空間25′に挿入されると、図8(b)に示すように、燃料貯蔵部16′に設けられたパイプ(接続部)72がカートリッジ71に設けられた開口71aに嵌合挿入される。この際、図8(c)に示すように、スプリング74に付勢されて開口71aを塞いでいた弁73が、パイプ72により押し開けられて、燃料流路17′と内部空間71sとが連通する。パイプ72は、例えば金属又は樹脂により形成され、カートリッジ71からの燃料供給用と、カートリッジ71への還流用の2つが設けられる(図8では一つのみ示す)。
カートリッジ71の燃料貯蔵部16′からの脱落防止は、例えば、互いに係合する係合部がカートリッジ71及び燃料貯蔵部16′に設けられることにより、あるいは、カートリッジ71を挿入した後に収納空間25′を蓋体で塞ぐことなどにより行われる。
図9は、上述の燃料電池1が装着される電子機器としての携帯電話機(携帯電子機器)501を示している。携帯電話機501は、いわゆる折り畳み式の携帯電話機として構成されており、送話筐体502と、受話筐体503とが回動可能に連結されている。
送話筐体502には、携帯電話機501への入力操作を受け付ける操作部504が設けられている。操作部504には、ダイヤルキー505、カーソルキー506等の各種押しボタンが配置されている。受話筐体503には、各種情報を表示する表示部507が設けられている。表示部507は、例えば液晶ディスプレイにより構成されている。
図10は、図9のX−X線矢視方向における断面図である。送話筐体502は、操作部504側の上部カバー502aと、その背面側(紙面下方側)の下部カバー502bと、下部カバー502bに被せられる蓋体502cとを備えている。燃料電池1は、下部カバー502b及び蓋体502cにより形成されたバッテリ収納部502dに収納されている。
燃料電池1は、第1の面S1側を送話筐体502の内部側に向けてバッテリ収納部502dに収納され、第2の面S2側に蓋体502cが被せられている。下部カバー502bには、端子5と対向する位置に端子511が設けられており、端子5と端子511とが接触して接続されることにより、燃料電池1の電力は携帯電話機501の各種電子部品に供給される。
なお、下部カバー502bのバッテリ収納部502dとは反対側、すなわち、上部カバー502aと下部カバー502bとの間には、例えば、高周波回路等が設けられる回路基板510が配置されている。
図11は、携帯電話機501の電気系の構成を示すブロック図である。図中、実線の矢印は信号の経路を示しており、点線の矢印は電力の経路を示している。
燃料電池1の電力は、端子5及び端子511を介して携帯電話機501の電源装置512に供給される。電源装置512は、供給された電力を所定の電圧に変換して表示部507等の各種電子部品に供給する。
携帯電話機501は、各種の制御を行うための制御装置(動作制御部及び反応制御部)513を備えている。制御装置513は、例えばCPU、ROM、RAM等を含んだICにより構成されている。操作部504は、押し込まれたキーに対応する信号を制御装置513に出力する。制御装置513は、操作部504からの信号に対応する処理をROM等に記憶されたプログラムに従って実行する。制御装置513の実行する処理には、例えば、表示部507の制御が含まれ、表示内容に応じた画像データを表示部507に出力するなど、各種信号を表示部507に出力する。すなわち、制御装置513は、操作部504からの入力情報に基づいて表示部507の表示内容を制御する。
なお、携帯電話機501は、この他にも、例えば、無線通信を行うための高周波回路、送話用のマイクロフォン、受話用のスピーカ、着信の報知や音楽再生に利用されるスピーカ、カメラモジュール等の電子部品を備える。
携帯電話機501における消費電力は表示部507等の各種電子部品の稼働状況により変動する。例えば、携帯電話機501を折り畳んでいる間には、表示部507は画像を表示せず、携帯電話機501を開いている場合に比較して消費電力は少ない。音楽再生をしている場合には音量を大きくするためにスピーカのアンプによる消費電力が増加する。従って、燃料電池1から一定の電力を供給されていても、需要に対して供給される電力が不足する場合がある。また、逆に、余剰な電力が発生する場合がある。
そこで、携帯電話機501では、表示部507等の各種電子部品の稼働状況に応じて燃料電池1の発電量を変化させるように、燃料電池1による発電を制御する。例えば、以下のように行う。
制御装置513は、表示部507等の各種電子部品における各種動作それぞれについて消費電力をROM等に記憶している。一方で、制御装置513は、各種電子部品の動作を制御しているから、各種電子部品がいずれの動作を行っているかを把握できる。従って、制御装置513は、各種電子部品における現在の消費電力を積算して携帯電話機501において必要な電力を算出することができる。なお、積算される消費電力には、携帯電話機501の電源投入時から各種電子部品の動作に関係なく消費される一定量の消費電力も含まれる。
次に制御装置513は、算出した必要な電力を燃料電池1の制御装置7に出力する。なお、制御装置513から制御装置7への制御信号の出力は、携帯電話機501の筐体内部に設けられた接続部515と、燃料電池1の基体2に設けられ、接続部515に接続される被接続部516とを介して行われる。
そして、燃料電池1の制御装置7は、電池本体15に供給される燃料の流速(流量)が、必要な電力に応じた値になるように、流動制御部32の動作を制御する。これにより、燃料電池1の発電量は、携帯電話機501の稼働状況に応じた値となる。
以上の実施形態によれば、基体2を複数の絶縁層3を積層して成る積層体により形成し、異なる絶縁層3に設けた溝同士を相互に連結して燃料流路17を形成していることから、燃料流路17を3次元的に配置することがきる。すなわち、燃料流路17の配置の自由度を向上できる。しかも、基体2内部に形成することから、基体2の周囲にパイプを引き回す必要が無く、燃料電池1の外装を簡素化できる。
電解質部材21は基体2を構成する絶縁層3に挟まれていることから、電解質部材21を基体2に配置するとともに電解質部材21を絶縁することができる。すなわち、基体2が絶縁体を兼ねるから、従来のように燃料電池の基体とは別個に絶縁体を設ける必要が無く、燃料電池の小型化を図ることができる。
絶縁層3がセラミック材料から成ることから、従来から研究されている、セラミック多層基板の技術を利用することができる。また、アルミナセラミックスを用いることにより、耐熱性、絶縁性が良好な基体2を形成することができる。
燃料流路17が、循環経路を形成していることから、電解質部材に接する流路を通過したにも関らず発電に利用されなかった燃料を、再度電解質部材21へ送ることにより、再利用することができる。そして、このような再利用を可能とする循環経路が、多層基板により構成された基体2の内部に設けられることから、燃料の循環系を含む燃料電池システム全体のモジュール化及びシステム全体の小型化が容易である。発電反応はある温度範囲(例えば60〜80℃)で反応が起こりやすいので、効率よい発電をするためにはこの温度範囲にするのがよい。従来のように外部の供給部から燃料を基体の流路に供給した場合、外部の供給部と基体との温度差があり、燃料の温度がばらつきやすくなって、効率が落ちる。本実施形態では基体2の内部で循環経路を形成することにより、燃料の温度変化を小さくすることができる。
なお、供給部17aに燃料を供給する収納空間25Aと、排出部17cから燃料が還流される収納空間25Bとは、隔壁16aにより仕切られる。これにより排出部17cからの比較的希釈な燃料が供給部17aに直接的に供給されることが防止される。隔壁16aの形状や、収納空間25Aと収納空間25Bとを連通する孔部16bの位置、形状は、適宜に設定してよい。
燃料流路17と接続された燃料貯蔵部16が配置されていることから、燃料電池1の外部から燃料流路17へ燃料を追加することなく長時間発電することができ、燃料電池1の携帯性が向上する。そして、このような燃料貯蔵部16が、多層基板により構成された基体2の内部に設けられることから、燃料の供給系を含む燃料電池システム全体のモジュール化及びシステム全体の小型化が容易である。
さらに、燃料供給用のカートリッジ71が挿脱可能となるように燃料貯蔵部16を構成した場合には、カートリッジ71の交換により更に長時間の使用が可能になり、携帯性が一層向上する。そして、互いに平行に積層された絶縁層3のうち、一部(第2絶縁層3B′〜第6絶縁層3F′)を切り欠いてカートリッジ71の収納凹部を形成していることから、その両側の絶縁層3(第1絶縁層3A′及び第7絶縁層3G′)の互いに平行な面をそのままカートリッジ71の摺動面として利用することができる。
燃料流路17は、電解質部材21と接する部位が複数の経路に分岐していることから、複数の流路を並列に形成して効率的に電解質部材21に燃料を供給することができる。パイプを引き回して燃料の流路を形成する場合には、流路の分岐、すなわち、流路の増加は部品点数の増加、外装の複雑化を招くが、そのような問題も生じない。また、複数の電解質部材21に対応して流路を分岐させる場合には、複数の電解質部材に効率的に燃料を供給できるから、電解質部材を増加させることが容易になり、比較的多くの単位セルを含む燃料電池のモジュール化及び小型化が容易になる。好ましくは、各々の分岐経路に流動制御部が設けられているのがよく、このような構成により、分岐経路の各流量に差が生じるのを抑制でき、安定した燃料の供給を行うことができる。
燃料流路17を形成する溝が絶縁層3を厚み方向に貫通していることから、一の絶縁層間(例えば第3絶縁層3Cと第4絶縁層3Dとの間)の流路と、他の絶縁層間(例えば第5絶縁層3Eと第6絶縁層3Fとの間)の流路とを連通することができ、立体的な燃料流路17を容易に形成できる。
基体2の表面に電力を出力するための端子5が設けられ、基体2の内部に、端子5と電解質部材21とを電気的に接続する導電路18が設けられていることから、導線を燃料電池の周囲に引き回す必要がなく、外装を簡素化できる。また、電解質部材から導電路を経由して出力端子に至るまでの燃料電池の出力系をモジュール化及び小型化することが容易である。
電解質部材21と接した後の排出部17cが、電解質部材21と接する前の供給部17aに比し基体2の表面に近づけて配置されていることから、排出部17cを流れる燃料の熱を基体2の表面から効率的に排出できる。なお、例えば、排出部を基体表面に沿って蛇行させることにより、基体表面への投影面積を大きくし、排熱性を高めてもよい。
また、排出部17cの少なくとも一部が供給部17aに沿って配置されていることから、排出部17cと供給部17aとの間で熱交換を行い、電解質部材21における化学反応により生じた熱を効率的に分散させることができる。
さらに、排出部17cの供給部17aに沿って配置された部分を流れる燃料の向きが供給部17aを流れる燃料の向きと逆方向であることから、供給部17aと排出部17cとの間の熱交換を効率的に行うことができる。これは、排出部17cを流れる燃料は、流れの方向と熱の伝播方向とが一致する前方側(下流側)が後方側(上流側)よりも熱がこもりやすく、その前方から供給部17aにより比較的低温の燃料を流すことによるものである。
燃料流路17内の燃料の流動を制御する流動制御部32が設けられていることから、燃料電池内外の電子部品の稼働状況等の種々の条件に応じて発電量を制御することができる。そして、流動制御部32が多層基板により形成された基体2の内部に設けられていることから、流動制御による発電量の制御系のモジュール化及び小型化が容易である。
流動制御部32を電気浸透流型流動制御部により形成したことから、流動制御部32を小型化することが可能である。また、他の流動制御部に比較して一様な流れで燃料を制御することができるから、安定した発電量を得ることができる。また、多層基板内部に流動制御部32を設けた場合には、絶縁層3に形成した溝を利用して流動制御部32を形成することができる。
燃料流路17を流れる燃料から水分を除去して燃料の濃度を調整する濃度調整装置34を設けたことから、余剰水分により燃料が希釈されることが防止される。例えば、ダイレクトメタノールでは、メタノールのクロスオーバーを防止するために、アノード側からカソード側へのメタノールの流れが生じないようにすることから、電解質部材21において生成された水がメタノール水溶液に過剰に混ざるおそれがあり、このようなおそれを排除できる。
電解質部材21と電気的に接続される端子5が基体2の第1の面S1に設けられ、電解質部材21が基体2の第2の面S2寄りに配置されていることから、電解質部材21において生成した水などが端子5側に接続された電子機器あるいは電子機器内部の電子部品に侵入することが防止される。
基体2の第2の面S2に電解質部材21を収容する凹部2bが設けられ、凹部2bの開口部が空気流路12を有した蓋体11で塞がれていることから、絶縁層3の積層後に電解質部材21を配置することができ、燃料電池のモジュール化及び小型化が容易である。しかも、電解質部材21と外気とは蓋体11により隔てられているだけであり、当該蓋体11に貫通孔を設けることから、効率的に電解質部材21に空気を導くことができ、また、効率的に電解質部材21で生成された水の排出が行われる。
多層基板からなる基体2内部に、電解質部材21を設けるとともに、電解質部材21から供給される電力により駆動される、制御装置7等の各種電子部品を配置したことから、燃料電池のモジュール化及び小型化が容易になる。
燃料電池1は、多層基板からなる基体2によりモジュール化及び小型化がなされているから、携帯性、持続性、着脱の容易性等が高く、燃料電池1を携帯電話機501等の携帯電子機器に備えることにより、携帯電子機器の携帯性や取り扱い性等も向上する。
また、携帯電話機501では、表示部507等の電子部品の稼動状況に応じて燃料電池1の電解質部材21への燃料の供給を制御することから、必要電力に応じた発電をすることができ、電力不足や余剰電力の発生を抑制できる。しかも、燃料電池1は、多層基板からなる基体2により形成されており、制御装置7等を含んでモジュール化されているから、燃料供給の制御の一部又は全部を燃料電池に負担させることができる。
本発明は以上の実施形態に限定されず、種々の態様で実施してよい。
電解質部材は、固体高分子型のもの、リン酸型のもの、アルカリ型のもの、溶融炭酸塩型のもの、固体酸化物型のもの等、あらゆるものを含む。酸化ガスは、少なくとも酸素を含むガスであればよく、空気に限定されない。
積層されて基体を形成する絶縁層は、セラミック材料からなるものに限定されない。例えば、耐熱性の樹脂により絶縁層を形成してもよい。また、互いに異なる材料からなる絶縁層同士を積層してもよい。セラミック材料はアルミナセラミックスに限定されず、例えば、ガラスセラミックスでもよく、アルミナ成分を含まないジルコニアセラミックス、炭化ケイ素セラミックスでもよい。特にアルミナセラミックスやガラスセラミックスは、基体に電子回路を容易に、かつ良好な電気特性で形成することができ、好ましい。また、メタノールや水のような燃料に対して耐食性に優れるとともに、燃料の浸透も有効に防止でき、燃料の浸透によって配線導体が腐食するのを有効に防止できる。
絶縁層に設けられる溝部(孔部を含む)や溝部により形成される流路の大きさ、形状は適宜に設定してよい。従って、溝が絶縁層を厚み方向に貫通していなくてもよいし、排出部が供給部に比し基体の表面に近づけて配置されていなくてもよいし、排出部の少なくとも一部が供給部に沿って配置されていなくてもよいし、排出部の流体の向きが供給部の流体の向きと同一方向であってもよい。いずれにせよ、積層前の絶縁層に溝部を形成することにより、基体内部の任意の位置に流路を形成することができるから、配置の自由度向上という効果を奏する。
燃料貯蔵部の形状及び大きさも流路と同様に適宜に設定してよい。例えば、実施形態では、第1の面S1及び第1の面S2側の一枚の絶縁層を残して燃料の収納空間を形成したが、何枚分の絶縁層により収納空間又は収納空間の壁部を形成するかは適宜である。
基体内部又は基体表面に設けられ、燃料電池から供給される電力により駆動される電子部品は、種々のものを選択することができる。例えば、電子部品は、燃料電池としての機能に必要なものでもよいし、燃料電池としての機能とは全く別の機能を果たすものでもよい。
前者としては、例えば、実施形態における、制御装置7、キャパシタ8、流動制御部32等である。また、実施形態に記載されたもの以外にも、例えば、基体や基体内部の燃料等が何らかの原因により高温になり、燃料電池が破損することを防止するために、温度センサを基体の内部又は表面の複数位置に配置し、基準温度以上の温度が検出されたときに、発電を停止したりする等の処理を実行するようにしてもよい。これにより、燃料電池を長期にわたり安定して使用できる。
また、後者としては、例えば、外部からの信号を増幅して音声信号に変換するアンプ内蔵型スピーカや、コンピュータ等を介して入力された情報を保持する揮発性の記録媒体である。なお、燃料電池としての機能とは全く別の機能を果たす電子部品を基体内部又は気体表面に有する場合、本発明の燃料電池を、燃料電池を含んだ電子機器として捉えることもできる。
いずれにせよ、基体内部及び基体表面に電子部品を設ける場合、基体が多層基板により形成されていることからモジュール化及び小型化が容易である。
流動制御部や濃度調整装置は、本発明の必須の要件ではなく、また、流動制御部や濃度調整装置は、燃料が存在する場所であれば、供給部、接触部、排出部、燃料貯蔵部のいずれに設けられていてもよい。流動制御部は、電気浸透流型流動制御部に限定されず、例えば、ダイヤフラムを振動させて流体を送り込む逆止弁型流動制御部でもよい。流動制御部は、燃料を送出するものに限定されない。例えば、酸化ガスを送出するものであってもよいし。燃料に混合される水を送出するものであってもよい。
図13(a)〜図13(c)は、流動制御部の配置位置の例を示す図である。
図13(a)では、燃料流路17の供給部17aが複数の電池本体15に対応して複数に分岐しており、その分岐点の上流側に流動制御部32−1が設けられている。なお、分岐方向(紙面下方への方向)は、例えば、図2等に示したように、積層基板の厚み方向である。
また、図13(a)では、温度センサ(温度検出素子)79が設けられている。温度センサ79は、例えば、抵抗体と、抵抗体の抵抗値を測定する抵抗計とを含んで構成され(いずれも不図示)、抵抗体の温度変化に応じた抵抗値の変化を検出することにより、温度を検出する。抵抗体は、導電路18等と同様に、焼成前のセラミックグリーンシート(絶縁層3)に金属ペーストが印刷されることにより形成されてもよいし、サーミスタ等の汎用部品により構成されてもよい。温度センサ79(抵抗体)は適宜な位置に適宜な数だけ設けられる。例えば、温度センサ79は、電池本体15に接する位置、燃料流路17に接する位置、電池本体15や燃料流路17に接しない基体表面や基体内部に配置される。このような温度検出素子を設けることにより、安定した発電を行うことができる。
温度センサ79の検出信号は、図7の流速センサ31等と同様に制御装置7に出力され、制御装置7は温度センサ79からの温度情報に基づいて流動制御部32−1の動作を制御する。例えば、制御装置7は、温度センサ79により検出された温度が所定の閾値よりも高くなる場合には、燃料の供給量を減らす、あるいは、停止するように流動制御部32−1の動作を制御する。あるいは、制御装置7は、電池本体15における、温度と、燃料の供給量と、発電量との相関関係を特定できるデータを保持しており、当該データを参照して、検出された温度と、現在の必要発電量とから燃料供給量を算出し、算出した燃料供給量になるように、流動制御部32−1の動作を制御する。
図13(a)の例では、供給部17aが複数に分岐することにより、効率的に複数の電池本体15に燃料を供給することができるとともに、流動制御部32−1を複数の分岐流路に対して共通に設けることにより、流動制御部32−1の数を少なくしてコスト削減を図ることができる。
また、温度センサ79による温度情報に基づいて燃料の流動を制御することから、燃料電池の過度の昇温を防止できる。また、電池本体15の発電量は温度により変化するところ、温度変化に応じて燃料供給量を制御することにより、安定した発電を行うことができる。
図13(b)では、燃料流路17の供給部17aが複数の電池本体15に対応して複数に分岐しており、その分岐点の下流側において、複数の分岐流路それぞれに流動制御部32−2が設けられている。なお、複数の流動制御部32−2は、互いに同一の構成、能力であってもよいし、異なっていてもよい。複数の流動制御部32−2は、それぞれ独立に制御されてもよいし、共通に(同一の制御量で)制御されてもよい。また、分岐方向(紙面下方への方向)は、例えば、図2等に示したように、積層基板の厚み方向である。
図13(b)においても、温度センサ79(抵抗体)は適宜な位置に適宜な数だけ設けられてよい。例えば、温度センサ79は、複数の電池本体15それぞれの温度を検出できる位置(電池本体15に隣接する位置)に設けられている。
図13(b)の例では、供給部17aが複数に分岐することにより、効率的に複数の電池本体15に燃料を供給することができるとともに、流動制御部32−2を複数の分岐流路それぞれに設けることにより、各分岐流路に適切な流量で燃料を送り込むことができる。例えば、流動制御部から遠い位置にある電池本体15に送り込まれる燃料が減少することが防止される。複数の電池本体15は、配置位置が異なることから、供給される酸化ガスの量、放熱する際の熱流束等がことなり、適切な燃料供給量が異なる。しかしながら、流動制御部により配置位置に応じて燃料を適切に供給できる。互いに能力の異なる電池本体15を設けたり、複数の電池本体15毎に電力の供給先(電子部品)が異なることにより、電池本体15毎に適切な燃料供給量が異なる場合がありうるが、そのような場合にも対応できる。複数の電池本体15毎に温度センサ79が設けられ、各温度センサ79の検出結果に応じて複数の電池本体15毎に燃料供給量が制御される場合には、各電池本体15の温度に適した燃料供給量とすることができる。
図13(c)では、燃料流路17の供給部17aが一の電池本体15に対応して複数に分岐しており、その分岐点の下流側において、複数の分岐流路それぞれに流動制御部32−3が設けられている。複数の分岐流路は、例えば、図5及び図6に示した燃料流路17の接触部17bの複数の適宜な位置へそれぞれ接続されている。また、燃料流路17の排出部17cも、接触部17bの複数の適宜な位置から複数延び、合流している。なお、分岐方向(紙面下方への方向)は、例えば、図2等に示したように、積層基板の厚み方向である。
図13(c)の例では、供給部17aが複数に分岐することにより、効率的に一の電池本体15に燃料を供給することができるとともに、流動制御部32−3を複数の分岐流路に対してそれぞれ設けることにより、各分岐流路に適切な流量で燃料を送り込むことができる。
図14(a)及び図14(b)はそれぞれ、流動制御部として、燃料流路17を形成する壁面を振動させる振動体を設けた例を示している。振動体は、例えば、印加した電圧の大きさに応じて伸縮する圧電体である。
図14(a)の流動制御部32−4は、圧電体81と、圧電体81に電圧を印加する一対の電極82P、82N(単に「電極82」といい、両者を区別しないことがある)とを備えている。
圧電体81は、例えば、圧電セラミックスである。圧電セラミックスは、例えば、Pb(Zr,Ti)O3系などの焼結体を分極処理して形成されている。圧電体81は、例えば、一枚の絶縁層3と同等の厚さを有し、一枚の絶縁層に形成された孔部にはめ込まれている。
電極82P、82Nは、燃料流路17に直交する方向において圧電体81を挟み込むように配置されている。電極82Nは、燃料流路17のうち、絶縁層に平行に形成された部分に面している。換言すれば、圧電体81は電極82Nを介して燃料流路17に面している。
流動制御部32−4を含む燃料電池の電気系の構成は、図7と同様である。ただし、電極82は流動制御部電源装置9′(電圧制御部、図7の流動制御部電源装置9に相当)に接続されている。このように電圧制御部を設けることにより、安定した燃料の供給を行うことができ、発電の安定性を向上できる。電極82と流動制御部電源装置9′とは、導電路18により接続されている。流動制御部電源装置9′は電極82に電圧を印加する。圧電体81は、電極82を介して印加される電圧の変動に応じて伸縮し、燃料流路17を形成する壁面の一部である電極82Nを振動させ、燃料流路17内の燃料に圧力を付与する。
流動制御部32−4は、燃料の流入側の流体抵抗を流出側の流体抵抗よりも大きくすることにより、燃料の流入側への逆流を防止するバルブレス型流動制御部として構成されている。例えば、圧電体81が面する領域へ接続される流入通路83は、流出通路84よりも断面積が小さく形成されている。このため、圧電体81が燃料に与える圧力が大きくなると、流入通路83では流出通路84よりも容易に乱流が形成され、流体抵抗が増すことになる。これにより、流入通路83へ逆流する流量は、流出通路84へ流れる流量よりも少なくなる。
流動制御部32−4は、例えば、以下のように製造される。まず、焼成前のセラミックグリーンシート(絶縁層3)にレーザ加工や打ち抜き加工により、圧電体81を埋め込むための孔部を形成する。次に、その孔部に焼成前の圧電セラミックス(圧電体81)を埋め込むとともに、圧電セラミックスの両面に金属ペースト(電極82)を設ける。そして、溝部(燃料流路17、流入通路83、流出通路84)が形成された複数のセラミックグリーンシートを積層し、焼成する。
流動制御部32−4の動作は、図7の流動制御部32と同様に、制御装置7により制御される。また、流動制御部32−4は、図13の流動制御部32−1〜32−3の一例でもあり、温度センサ79の検出結果に基づいて制御される。具体的には、制御装置7は、流動制御部用電源装置9′により、電極82に電圧を印加するとともに、その印加する電圧を変動させる。例えば、制御装置7は、電極82Nの電位を基準電位に設定するとともに、電極82Pの電位を基準電位と基準電位よりも高い電位との間で振動させる。これにより、圧電体81が伸縮して燃料に圧力が付与される。制御装置7は、印加される電圧の振幅や周波数を、温度センサ79の検出結果等に応じて変化させる。
図14(b)の流動制御部32−5は、流動制御部32−4と同様に、圧電体81と、圧電体81に電圧を印加する一対の電極82とを備えている。ただし、流動制御部32−5は、圧電体81及び電極82の組み合わせを、燃料流路17に沿って複数備えており、進行波型流動制御部として構成されている。すなわち、流動制御部32−5は、複数の圧電体81を互いに異なるタイミングで伸縮させることにより燃料の逆流を防止するバルブレス型流動制御部として構成されている。
図14(a)の流動制御部32−4及び流動制御部32−5によっても、実施形態の流動制御部32と同様の効果が得られる。すなわち、燃料電池内外の電子部品の稼働状況等の種々の条件に応じて発電量を制御することができ、流動制御部32が多層基板により形成された基体2の内部に設けられていることから、流動制御による発電量の制御系のモジュール化及び小型化が容易である。
なお、振動体を含む流動制御部は、種々の態様で実施してよい。
振動体は、燃料流路を形成する壁面を振動させることができるものであればよく、圧電体(圧電素子)に限定されない。換言すれば、振動体のアクチュエータは、適宜なものにより構成してよい。例えば、静電引力を利用する静電型、磁力を利用する電磁型、加熱による部材の膨張を利用する熱型、形状記憶合金の温度変化に応じた変形を利用するSMA型(形状記憶合金型)のアクチュエータにより振動体のアクチュエータを構成してよい。流路を形成する壁面は、振動体自体の表面であってもよい。
圧電体は、圧電セラミックス以外にも、水晶、LiNbO3、LiTaO3、KNbO3などの単結晶、ZnO、AlNなどの薄膜、ポリフッ化ビニリデン(PVDF)などの圧電高分子膜など、適宜な材料の圧電体を用いてよい。
圧電体は、モノモルフ、バイモルフ、積層型等のいずれの構造のものでもよい。また、圧電体は、伸縮作用により燃料流路の壁面を振動させるものだけでなく、すべり変形により壁面を振動させるものでもよい。
圧電体は、一枚の絶縁層と同等の厚さでなくてもよく、一枚の絶縁層よりも薄くてもよいし、厚くてもよい。また、圧電体の配置位置は、燃料流路のうち絶縁層に平行に延びる部分に面する位置でなくてもよく、燃料流路のうち絶縁層に直交する部分、屈曲部、分岐部等、適宜な位置に面するように配置されてよい。
電極は、圧電体に燃料流路を形成する壁面を振動させるように、圧電体に電圧を印加できればよく、燃料流路に直交する方向に圧電体を挟み込むものに限定されない。例えば、燃料流路に沿う方向において圧電体を挟み込むように電極を配置してもよい。流動制御部はバルブレス型流動制御部でなくてもよく、逆止弁を設けてもよい。
図15〜図22は、電気浸透流型流動制御部の好適な例を示している。図12において示したように、電気浸透流型流動制御部では、燃料流路17の壁面に帯電した負電荷により燃料中の正電荷が燃料流路17の壁面に引き付けられており、その正電荷を電極36により移動させることにより、燃料を流動させる。従って、燃料と、燃料に接触する壁面との接触面積を大きくすれば、より効率的に燃料の正電荷を壁面に引き付けて燃料を流動させることができる。以下では、燃料と壁面との接触面積を大きくした具体的な例を示す。
図15の流動制御部32−11は、図7に示した流動制御部32と同様に、一対の電極36−1P、36−1N(以下、単に「電極36−1」といい、両者を区別しないことがある。)を備え、電極36−1に電圧を印加することにより燃料を流動させるものである。ただし、流動制御部32−11は、電極36−1間に連通部材91−1(以下、「−1」を省略して、後述の連通部材91−2、91−3と区別しないことがある)を備えている。
図16(a)は連通部材91−1の斜視図、図16(b)は連通部材91−1を燃料流路17の流路方向に見た図(平面図)、図16(c)は図16(b)のXVIc−XVIc線矢視方向の断面図である。
連通部材91−1は、例えばセラミックスからなる多孔質体により構成されている。多孔質体は、内部に形成された複数の孔部92が互いに3次元的に結合することにより、液体(燃料)を透過させることができるものである。
多孔質体の気孔率は、燃料の圧力損失を小さくして燃料の流動性を良好にするという観点からは20%以上とするのがよい。また、燃料の電化の局在化を効率的に行うという観点からは80%以下がよい。よって、多孔質体の気孔率は好ましくは20〜80%である。より好ましくは基体の強度を高く維持するという観点からは40〜60%である。気孔率は、複数の切断面の画像から孔部92の平均面積率Srを算出し、算出した平均面積率Srの3/2乗を計算することにより求められる。また、切断面の画像より算出した孔部92の平均断面積Sは、好ましくは25〜40000平方マイクロメートル、より好ましくは3000〜10000平方マイクロメートルである。
連通部材91−1は、例えば略円柱状に形成されている。連通部材91−1の円柱の高さは、図15に示すように、例えば一枚の絶縁層3の厚みと同等である。そして、連通部材91−1は、燃料流路17のうち絶縁層3を貫通する部分において、一枚の絶縁層3に保持されている。すなわち、燃料流路17は、異なる絶縁層3に平行に設けた溝同士を、間に配置される絶縁層3等を貫通する孔部により相互に連結して構成され、連通部材91−1は、その溝同士を連結する孔部(連結部)に設けられている。
電極36−1P、36−1Nは、例えば、平板状に形成されており、燃料流路17を形成する壁面のうち、連通部材91−1の端面が対向する位置に配置されている。換言すれば、燃料の流向に直交するように配置されている。電極36−1P及び36−1Nは、例えば連通部材91−1の断面積と同等の広さを有している。
流動制御部32−11は、例えば、以下のように製造される。まず、焼成前のセラミックグリーンシート(絶縁層3)にレーザ加工や打ち抜き加工により、連通部材91−1を埋め込むための孔部を形成する。次に、その孔部にセラミックグリーンシートよりも樹脂成分の多いセラミックペーストを充填する。例えば、基体2を構成するセラミックグリーンシートの樹脂含有率に対してセラミックペーストの樹脂含有率を2〜10倍とする。そして、そのセラミックグリーンシートに、金属ペースト(電極36−1)等が設けられたセラミックグリーンシートを積層し、焼成する。セラミックペーストは、樹脂成分が揮発することにより、多孔質の連通部材91−1になる。すなわち、連通部材91−1は、絶縁層3と同一材料により一体的に形成される。このように連通部材91−1を基体2を構成する絶縁層3と同一材料により形成すると熱膨張差による応力を抑制でき、連通部材91−1の破損を有効に抑制できる。なお、多孔質体の部材を焼成前のセラミックグリーンシートに埋め込んで連通部材91−1を構成してもよい。
流動制御部32−11によれば、燃料流路17内に配置された連通部材91−1は多孔質体により形成されており、連通部材91−1が配置されない場合に比較して、燃料と、燃料に接触する壁面との接触面積が大きくなるから、燃料の電荷の局在化を促して効率的に燃料を流動させることができる。
連通部材91−1は、基体2と同一の材料で形成されていることから、基体2と連通部材91−1との間に、熱膨張によるずれが生じにくく、耐久性が向上する。
連通部材91−1が、燃料流路17のうち絶縁層3を貫通する部分に配置されていることから、絶縁層3に孔部を設けて、当該孔部へ連通部材91−1を配置することができ、連通部材91−1の形成が容易である。特に、樹脂成分を含む材料を焼成前の絶縁層3に配置して焼成し、多孔質体を形成する場合には、孔部に樹脂成分を含む材料を充填するだけであり、連通部材91−1の形成が容易である。
図17は連通部材の他の例を示しており、図17(a)は斜視図、図17(b)は燃料流路17の流路方向に見た図、図17(c)は図17(b)のXVIIc−XVIIc線矢視方向の断面図である。
図17の連通部材91−2は、例えば、外形は連通部材91−1と同様に形成されており、図15に示した連通部材91−1の配置位置に配置される。連通部材91−2は、燃料流路17の流路方向に貫通する複数の孔部94が設けられている。孔部94の直径は、好ましくは燃料の電化の局在化を効率的に行うという観点からは50マイクロメートル以下、より好ましくは、流動性を良好にするとともに基体2の強度を高く維持するという観点からは5〜30マイクロメートルである。
連通部材91−2は、例えば、以下のように製造される。まず、焼成前のセラミックグリーンシート(絶縁層3)にレーザ加工や打ち抜き加工により、連通部材91−2となる部位に、孔部94となる穴を形成する。そして、そのセラミックグリーンシートに、金属ペースト(電極36−1)等が設けられたセラミックグリーンシートを積層し、焼成する。すなわち、連通部材91−2は、絶縁層3と同一材料により一体的に形成される。このように連通部材91−2が基体2を構成する絶縁層3と同一材料により形成されると、熱膨張差による応力を抑制でき、連通部材91−2の破損を有効に抑制できる。なお、孔部94が形成された部材を焼成前のセラミックグリーンシートに埋め込んで連通部材91−2を構成してもよい。
連通部材91−2によれば、連通部材91−1と同様の効果が得られる。すなわち、燃料と、燃料に接触する壁面との接触面積を大きくし、燃料の電荷の局在化を促して効率的に燃料を流動させることができる。
連通部材91−2が、燃料流路17のうち絶縁層3を貫通する部分に配置されていることから、孔部94を絶縁層3に直接形成して連通部材91−2を構成することができ、製造が容易である。
図18は連通部材の他の例を示しており、図18(a)は斜視図、図18(b)は燃料流路17の流路方向に見た図、図18(c)は図18(b)のXVIIIc−XVIIIc線矢視方向の断面図である。
図18の連通部材91−3は、例えば、外形は連通部材91−1と同様に形成されており、図15に示した連通部材91−1の配置位置に配置される。連通部材91−3は、燃料流路17の流路方向に貫通する複数のスリット96が設けられている。スリット96の幅(径)は、好ましくは燃料の電化の局在化を効率的に行うという観点からは50マイクロメートル以下、より好ましくは、流動性を良好にするとともに基体2の強度を高く維持するという観点からは5〜30マイクロメートルである。連通部材91−3は、例えば、連通部材91−2と同様に形成される。
連通部材91−3によれば、連通部材91−1や連通部材91−2と同様の効果が得られる。すなわち、燃料と、燃料に接触する壁面との接触面積を大きくし、燃料の電荷の局在化を促して効率的に燃料を流動させることができる。
図19は、電気浸透流型流動制御部の電極の配置の変形例を示しており、図19(a)は断面図、図19(b)は斜視図である。
流動制御部32−12の電極36−2P、36−2N(以下、単に「電極36−2」といい、両者を区別しないことがある。)は、例えば円筒状に形成されており、燃料流路17のうち、絶縁層3を貫通する部分の壁面に、連通部材91を挟んで配置されている。換言すれば、電極36−2は、燃料の流向に沿うように配置されている。電極36−2は、例えば焼成前のセラミックグリーンシート(絶縁層3)に形成された孔部に金属ペーストを充填するとともに、その中央側に樹脂を充填し、当該セラミックグリーンシートを他のセラミックグリーンシートと積層して焼成し、樹脂を揮発させることにより形成される。
図20は、電気浸透流型流動制御部の電極の配置の変形例を示しており、図20(a)は断面図、図20(b)は斜視図である。
流動制御部32−13の電極36−3P、36−3N(以下、単に「電極36−3」といい、両者を区別しないことがある)は、例えば連通部材91の断面形状と同一形状(例えば円形)の平板状に形成されており、連通部材91の端面に配置される。電極36−3には、複数の孔部98が設けられている。
孔部98は、例えば、連通部材91が、多孔質体からなる連通部材91−1である場合には、適宜な位置に適宜な形状で形成され、連通部材91が、孔部94が形成された連通部材91−2である場合には、孔部94の配置位置に孔部94と同等の大きさで形成され、連通部材91が、スリット96が形成された連通部材91−3である場合には、スリット96の配置位置にスリット96と同等の大きさのスリット状に形成される。すなわち、燃料は電極36−3の孔部98を通過するとともに、連通部材91を通過して、燃料流路17を流れることができる。
電極36−3は、例えば、焼成前のセラミックグリーンシート(絶縁層3)に連通部材91となる部材を配置した後に、連通部材91に金属ペーストを設け、レーザ加工や打ち抜き加工により孔部98を形成し、そのセラミックグリーンシートが他のセラミックグリーンシートと積層されて焼成されることにより形成される。なお、電極の孔部98の形成と同時に、連通部材91−2の孔部94や連通部材91−3のスリット96を形成してもよい。
図15、図19、図20に示したように、連通部材91を配置する場合、一対の電極は、電極間に連通部材91を配置できれば適宜に配置してよい。ただし、図15のように絶縁層3に沿う面に電極を設ける場合には、焼成前の絶縁層3の表面に金属ペーストを配置するだけでよく、形成が簡単である。図19のように絶縁層3に直交する面に電極を設ける場合には、絶縁層3に直交する連通部材91に隣接して電極を配置することができる。図20に示したように連通部材91の端面に電極を設ける場合には、形成が容易であるとともに連通部材91に隣接して電極を配置することができる。
図21は、連通部材91と、連通部材91を挟んで対向する一対の電極36−3とからなる流動制御部32−13を、直列及び並列に複数配列して構成した流動制御アレイ部32−15を示している。
例えば、燃料流路17は、絶縁層3に沿う第1平行部17eと、第1平行部17eと複数層隔てられた第2平行部17fと、第1平行部17eと第2平行部17fとを結び、複数の絶縁層3を貫通する複数の貫通部17gとを含んでいる。複数の貫通部17gは、互いに隣接している。貫通部17gにおいては、複数個所に流動制御部32−13が設けられている。例えば、一層おきに流動制御部32−13が設けられている。なお、流動制御部32−13の並列方向の配列数(複数の貫通部17gの数)は、例えば100〜500であり、流動制御部32の直列方向の配列数は、例えば10〜20である。
なお、流動制御アレイ部を構成する複数の流動制御部は、流動制御部32−3に限らず、図15に示したような流動制御部32−1や図19に示したような流動制御部32−2であってもよい。複数の流動制御部を配列する場合には、直列のみ、又は、並列のみでもよい。複数の流動制御部を直列に配置する場合には、絶縁層に沿う方向に直列に配置してもよいし、直線的に連結されなくても、ジグザグに連結されてもよい。また、複数の流動制御部を並列に配置する場合には、絶縁層に直交する方向に並列に配置してもよい。直線状に並列に配置されてもよいし、平面状に並列に配置されてもよい。
図22は、電気浸透流型流動制御部を取り囲むシールド導体231を設けた例を示しており、図22(a)は断面図、図22(b)は斜視図である。
シールド導体231は、例えば、絶縁層3に沿って平板状に形成された平板状導体232と、絶縁層3を貫通するように形成されたビア導体233とを含んでいる。平板状導体232は、流動制御部32−1を絶縁層3に直交する方向(紙面上下方向)において挟み込むように、2つ配置されている。ビア導体233は、2つの平板状導体232を結ぶように延びるとともに、連通部材91の周囲を囲むように複数設けられている。ビア導体233同士の間隔は、例えば、対象とするノイズの波長の1/2以下、好ましくは1/4以下である。シールド導体231は、導電路18(導体層含む)を介してマイナス端子5Nに接続されている。すなわち、シールド導体231は基準電位(グランド)に接続されている。
平板状導体232は、焼成前のセラミックグリーンシート(絶縁層3)の表面に金属ペーストが設けられることにより形成される。ビア導体233は、焼成前のセラミックグリーンシートに打ち抜き加工やレーザ加工により孔部を設け、当該孔部に金属ペーストを充填することにより形成される。
図22の例では、シールド導体231により電気浸透流型流動制御部へ侵入するノイズが低減されるとともに電気浸透流型流動制御部から放出されるノイズが低減される。従って、電気浸透流型流動制御部による燃料の流動制御の誤差が低減されるとともに、燃料電池に設けられた電子部品や燃料電池により駆動される電子部品の誤作動も防止される。
シールド導体231はビア導体233を含んで構成されていることから、絶縁層3に沿う方向に侵入、放射されるノイズを遮断するようにシールド導体231を形成することが容易である。
なお、シールド導体231は、流動制御部が、圧電体等の振動体からなるものである場合に、当該流動制御部(振動体)を囲むように設けてもよい。
電気浸透流型流動制御部は、上記以外にも種々の態様で実施してよい。
電気浸透流型流動制御部は、燃料が高電位側へ流れるものであってもよいし、低電位側へ流れるものであってもよい。なお、燃料に接触する壁面が正電荷に帯電するか、負電荷に帯電するかは、燃料、燃料流路を形成する壁面、連通部材等の材料により決定される。
連通部材は、燃料と接触することにより、燃料の正電荷又は負電荷を引き付けることができるものであればよく、セラミックスからなるものに限定されない。連通部材は、一枚の絶縁層と同等の厚さでなくてもよく、一枚の絶縁層よりも薄くてもよいし、厚くてもよい。連通部材の断面形状も適宜に設定してよい。また、連通部材の配置位置は、燃料流路のうち絶縁層を貫通する部分でなくてもよく、燃料流路のうち絶縁層に平行な部分、屈曲部、分岐部等、適宜な位置に配置されてよい。
なお、流動制御部は、燃料を基準の流動方向とは逆方向に流動させることが可能であってもよい。あるいは、複数の流動制御部のうち、一部の流動制御部は、他の流動制御部とは逆方向に燃料を流動させるものであってもよい。例えば、図14(a)に示した流動制御部32−4が複数設けられる場合に、そのうち一部の流動制御部32−4は、流入通路83の断面積が流出通路84の断面積よりも大きく設定されてもよい。図14(b)に示した流動制御部32−5においては、流動制御部用電源装置9′は、複数の電極82へ印加する電圧変動のタイミングを変化させることにより、燃料を逆方向に流動させてもよい。図7等の電気浸透流型流動制御部では、流動制御部用電源装置9が、一対の電極に印加する電圧の正負を切り換えることにより、燃料を逆方向に流動させてもよい。流動制御部が、燃料を逆方向に流動させる力を燃料に付与することにより、燃料を速やかに減速、あるいは停止させ、適切に発電量や発熱量を制御することができる。
燃料電池に設けられる電子部品は、燃料電池を構成する要素(例えば燃料流路)に対して適宜な位置に配置されてよい。
図23は、燃料電池の基体2を平面透視したときにおける、電子部品301と燃料流路との配置例を示す概念図である。なお、平面透視の方向は、例えば実施形態のような薄型直方体状の基体2の厚み方向や絶縁層3を積層してなる基体2の積層方向である。また、電子部品301は、例えば、コイル(インダクタ)、コンデンサ(キャパシタ)、抵抗体、DC/DCコンバータ(例えば電源装置6、流動制御部用電源装置9を構成する)、フィルタ回路、アンテナ素子である。
図23(a)は、基体2を平面透視して電子部品301が燃料貯蔵部16の収納空間25に重なるように設けられている場合を例示している。収納空間25には比較的大量の燃料が蓄えられていることから、収納空間25の配置位置では発電による温度変化が時間的に緩慢であるとともに、局所的な温度変化も生じにくい。このため、電子部品301の温度は均一かつ一定に保たれやすい。従って、電子部品301の性能が安定する。
例えば、電子部品301がコイル、コンデンサ、抵抗体である場合に、温度変化によるインダクタンス、キャパシタンス、抵抗値の変動が小さくなり、ひいては、これらのコイル、コンデンサ、抵抗体を含むDC/DCコンバータやフィルタ回路の動作も安定する。電子部品301がアンテナ素子である場合に温度変化による利得変動が縮小される。また、燃料貯蔵部16の燃料の温度が電子部品301よりも低温である場合には、電子部品301により生じた熱を燃料貯蔵部16に放熱して電子部品301の過熱を防止するとともに、燃料を発電に適した温度に上昇させることもできる。
なお、燃料貯蔵部16の収納空間25は、燃料が流入又は流出するから燃料流路の一部として捉えることができる。同様に、燃料貯蔵部16′に挿入されたカートリッジ71(図8)の内部空間も燃料流路の一部と捉えることができる。換言すれば、図23(a)では、基体2を平面透視して電子部品301と重なる流路が、燃料貯蔵部の少なくとも一部を形成していると捉えることができる。
図23(b)は、基体2を平面透視して電子部品301が燃料流路17に重なるように設けられている場合を例示している。具体的には、電子部品301は、燃料流路17のうち電池本体15よりも上流側の供給部17a及び電池本体15よりも下流側の排出部17cの双方に重なるように設けられている。なお、供給部17a及び排出部17cのいずれか一方にのみ重なるように設けられていてもよい。また、電子部品301は、供給部17aが分岐して形成された複数の流路に重なっている。なお、電子部品301は、排出部17cが分岐して形成された複数の流路に重なっていてもよい。
電子部品301は、基体2を平面透視して燃料流路17と重なるように配置されていることから、重ならない場合に比較して、電子部品301の温度は燃料流路17を流れる燃料の温度の影響を受ける。従って、電子部品301と燃料流路17とが重ならず、電子部品301の稼働状況及び燃料電池外部の温度環境の変化のみに電子部品301の温度が影響を受けるような場合に比較して、燃料流路17の燃料の温度により電子部品301の温度を調整する選択肢が生じ、設計の自由度が向上する。燃料の温度が一定になるように発電量等を制御している場合には、燃料流路17と重なるように配置された電子部品301の温度も一定に保つことが容易化され、安定した性能を得られる。燃料流路17の燃料の温度が電子部品301よりも低温である場合には、電子部品301により生じた熱を燃料に放熱して電子部品301の過熱を防止することができ、燃料を発電に適した温度に上昇させることもできる。
電子部品301は、燃料流路17が複数に分岐して形成された流路に重なるように配置されていることから、電子部品301は、より広い面積に亘って流路と重なることとなり、上述の効果をより確実に得ることができ、また、電子部品301が局所的に燃料流路17の燃料の熱の影響を受けることが防止される。また、分岐した流路はいずれも非常に近似した温度となり、むらなく均一な放熱を行うことができ、放熱効率が向上する。
電子部品301は、供給部17aと重なるように配置されており、供給部17aの燃料は排出部17cの燃料よりも低温である。従って、電子部品301から燃料へ放熱する場合には、電子部品301は、より効率的に燃料に放熱することができ、また、燃料を発電に適した温度に上昇させることもできる。燃料が電子部品301よりも高温である場合にも、電子部品301は、排出部17cと重なる位置に配置されるよりは過熱が防止される。
なお、電子部品301の平面透視したときの配置位置は、図23(a)及び図23(b)に示した位置に限定されず、例えば、燃料流路17や燃料貯蔵部16と重ならない位置でもよいし、双方に重なる位置でもよい。
図24(a)は、図23(b)のように、燃料流路17の供給部17a及び排出部17cと重なる位置に電子部品301が配置される場合等において、基体2の厚み方向における電子部品301の位置の例を示す断面図である。
図24(a)では、電子部品301は、供給部17a及び排出部17cのうち、供給部17aに近い位置に配置されている。そして、上述のように、供給部17aの燃料の温度は排出部17cの燃料の温度よりも低い。従って、電子部品301から燃料へ放熱する場合には、電子部品301は、より効率的に燃料に放熱することができ、また、燃料を発電に適した温度に上昇させることもできる。燃料が電子部品301よりも高温である場合にも、電子部品301は、排出部17cに近い位置に配置されるよりは過熱が防止される。
なお、図23においては、供給部17aと排出部17cとは、平面透視して互いに若干ずれた位置に配置されているが、供給部17aと排出部17cとは、平面透視して互いに重なるように配置されていてもよい。この場合、排出部17cの燃料の熱を供給部17aの燃料により吸収することにより、供給部17aと排出部17cとの間の熱交換による燃料温度の均一化を図りつつ、排出部17cから電子部品301への熱を遮断できる。
図24(a)では、電子部品301は、第1の面S1及び第2の面S2のうち第2の面S2寄りに配置されている。一方、燃料電池は、空気の取り入れ容易性や生成した水の排出容易性などから、第2の面S2が携帯電話機等の電子機器の筐体外側へ、第1の面S1が筐体内側へ装着されるのが好ましい。従って、第2の面S2が筐体外側になるように燃料電池を電子機器に装着すると、燃料電池に空気の取り入れ容易性等が向上するだけでなく、電子部品301が電子機器の筐体外側へ配置され、電子部品301の放熱性も向上する。
図24(b)は、燃料流路17や燃料貯蔵部16と重なるように配置された電子部品301における、基体2の厚み方向の位置の他の例を示す断面図である。
図24(b)では、基体2の第1の面S1及び第2の面S2のうち、電子部品301が第1の面S1よりに配置されている。第1の面S1には、端子5やIC302が配置されている。従って、電子部品301が端子5やIC302に電力を供給するDC/DCコンバータである場合には、端子5やIC302と、DC/DCコンバータとの距離が近くなり、電力の損失やノイズの混入が防止される。
なお、基体2の厚み方向における電子部品301の配置位置は、図24(a)及び図24(b)に示した位置に限定されず、例えば、供給部17aと排出部17cとの間の位置であってもよいし、第1の面S1上及び第2の面S2上であってもよい。また、端子5やIC302の配置や供給部17a及び排出部17cの配置の組合せも適宜であり、例えば、図24(a)において、第1の面S1側に供給部17a、第2の面S2側に排出部17cが配置され、第1の面S1寄りに電子部品301が配置されてもよい。図24(a)において、第2の面S2側に端子5やIC302が配置されてもよい。図24(b)において、第1の面S1側に供給部17a、第2の面S2側に排出部17cが配置されてもよい。
図25(a)及び図25(b)は、電子部品301の一例としてのコイル導体305の例を示しており、図25(a)はコイル導体305周辺の分解斜視図であり、図25(b)はコイル導体305周辺の断面図である。コイル導体305は、例えばDC/DCコンバータやLCフィルタ回路の一部を成すものである。
なお、コイル導体305は、例えば、図23や図24において電子部品301を示す矩形と同等の大きさ及び位置で配置される。すなわち、コイル導体305の配置例の説明は、上述の電子部品301の配置例の説明と同様であり、省略する。
コイル導体305は、例えばスパイラル状の導電層により形成されており、高透磁率を有する磁性フェライト層306、307に挟まれている。さらに、コイル導体305、磁性フェライト層306、307は、非磁性を示す非磁性フェライト層308、309に挟まれている。そして、コイル導体305、磁性フェライト層306、307、非磁性フェライト層308、309を積層した積層体310は、例えば、絶縁層3の一枚分の厚さに形成されており、一枚の絶縁層3に形成された孔部に挿入され、絶縁層3の積層体からなる基体に組み込まれている。
なお、本発明において磁性フェライトなどの磁性体とは、周波数が100kHz〜10MHzでの比透磁率が100以上、好ましくは500以上である高透磁率材料をいう。また、非磁性フェライトなどの非磁性体とは周波数が100kHz〜10MHzでの比透磁率が1.1以下、好ましくは1.05以下のものをいう。
コイル導体305は、磁性フェライト層308に形成された不図示の導電層あるいはビア導体を介して絶縁層3に形成された導電層又はビア導体からなる導電路と接続されている。そして、コイル導体305には、電池本体15から電力が供給される。
なお、磁性フェライト層306、307、非磁性フェライト層308、309は、燃料電池の基体の一部を構成しており、コイル導体305は、基体に形成された配線導体の一部から成っていると捉えることができる。
コイル導体305は、例えば、Cu,Ag,Au,Pt,Al,Ag−Pd合金及びAg−Pt合金のうち少なくとも一種の金属を主成分としている。磁性フェライト層306、307は、例えば、Fe、CuO、NiO、ZnOから成る。非磁性フェライト層308、309は、例えば、Fe、CuO、ZnOから成る。
コイル導体305を含む積層体310は、例えば、以下のように形成される。まず、磁性フェライト層306となるフェライトグリーンシートにコイル導体305となる導体ペーストを印刷し、そのフェライトグリーンシートと、磁性フェライト層307、非磁性フェライト層308、309となるフェライトグリーンシートとを積層する。次に、そのフェライトグリーンシートの積層体を、絶縁層3となるセラミックグリーンシートに形成された孔部に組み込む。そして、そのセラミックグリーンシートと、他の絶縁層3となるセラミックグリーンシートとを積層し、焼成する。焼成により、コイル導体305と、磁性フェライト層307とは互いに固着し、コイル導体305は基体と一体化される。
図25(a)及び図25(b)に示したように、燃料電池を保持する基体2にコイル導体305、すなわちインダクタを設けることから、燃料電池の多機能化が図られる。例えば、インダクタがDC/DCコンバータを構成するものである場合には、図7等において説明したように、発電した電力の電圧を適宜な電圧に変換してから燃料電池が装着される電子機器に出力することができ、また、燃料電池に設けられた電子部品(例えば温度センサ)に適した電圧の電力を当該他の電子部品に供給することができる。LCフィルタ回路のようにフィルタ回路を構成するものであれば、各種の電子部品(例えば温度センサや高周波素子)に入力又は出力される電気信号や電力からノイズを除去して燃料電池の動作を正確なものにすることができる。
コイル導体305は、基体に形成された配線導体の一部から成るから、燃料電池にチップコイルを設けるような場合に比較して小型化が図られる。また、コイル導体305は、基体に固着して一体化されているから、小型化が一層図られるとともに断線が防止される。コイル導体305と磁性フェライト層306等との同時焼成による製造の容易化も可能となる。
コイル導体305は磁性体に接するように配置されていることから、所定の大きさのインダクタンスを得つつ、コイル導体305の小型化や薄型化を図ることができる。磁性体としてフェライトを用いることにより、基体の一部として適宜な強度を得ることができ、また、コイル導体305やセラミックからなる絶縁層3との同時焼成も可能となる。
図25(c)は、コイル導体305の他の配置例を示している。図25(c)では、コイル導体305は、基体の全体を構成する絶縁層3間に挟まれている。なお、絶縁層3は、セラミック等の非磁性体からなるものでもよいし、磁性フェライト等の磁性体からなるものであってもよい。
燃料電池に設けられるインダクタは、図25に例示したものに限定されず、種々の構成としてよい。
例えば、インダクタは、燃料電池の基体に形成された配線導体により形成されるものに限定されず、例えばチップ型のインダクタであってもよい。コイル導体は導電層により形成されるものに限定されず、例えば、ビア導体等を含んで絶縁層の一枚以上の厚さに亘って立体的に構成されてもよい。スパイラル状の導電層がビア導体等により絶縁層の厚み方向や絶縁層に沿う方向において複数連結されていてもよい。コイル導体が磁性フェライトに接する場合、磁性フェライトを挟む非磁性フェライト層308、309は省略されてもよい。コイル導体が形成されるコイル形成層(例えば磁性フェライト層306)が、基体を構成する絶縁層の孔部に組み込まれる場合、コイル形成層の厚さは絶縁層の厚さに対して適宜に設定してよく、例えば絶縁層の複数枚相当の厚さであってもよい。
図26は、電子部品301の一例としてのコンデンサの例を示す断面図である。コンデンサは、例えばDC/DCコンバータやLCフィルタ回路の一部を成すものである。あるいは、図7のキャパシタ8を構成し得るものである。
図26(a)の例では、コンデンサ315は、絶縁層3を挟んで配置される一対の電極316、317を備えている。電極316及び電極317は絶縁層3に形成された導電層により構成されている。換言すれば、燃料電池の基体に形成された配線導体の一部から成る。電極316、317に挟まれた絶縁層3は、誘電体として機能する。
図26(b)の例では、電極316、317間に、絶縁層3とは材質が異なる誘電体318が配置されている。誘電体318は、例えば絶縁層3の一枚分の厚さを有し、絶縁層3に形成された孔部に組み込まれている。誘電体318は、例えばチタン酸バリウムやチタン酸バリウムである。
なお、コンデンサ315、315′は、例えば、図23や図24において電子部品301を示す矩形と同等の大きさ及び位置で配置される。すなわち、コンデンサ315、315の配置例の説明は、上述の電子部品301の配置例の説明と同様であり、省略する。コンデンサ315、315′には、導電路18を介して電池本体15から電力が供給される。
図26(a)に示すコンデンサ315は、例えば、絶縁層3となるセラミックグリーンシートに、電極316、317となる導体ペーストを印刷し、その後、複数の絶縁層3を積層して焼成することにより形成される。図26(b)に示すコンデンサ315′も同様である。ただし、コンデンサ315′では、セラミックグリーンシートの焼成前に、セラミックグリーンシートに孔部を設けて誘電体318が組み込まれる。なお、コンデンサ315′では、誘電体318となる材料に電極316、317となる導電ペーストを印刷し、焼成してもよい。
図26(a)及び図26(b)に示したように、燃料電池を保持する基体2にコンデンサ315、315′、すなわちキャパシタを設けることから、燃料電池の多機能化が図られる。
コンデンサ315、315′は、基体に形成された配線導体の一部から成るから、燃料電池にチップコンデンサを設けるような場合に比較して小型化が図られる。また、コンデンサ315、315′は、基体に固着して一体化されているから、小型化が一層図られ、また、絶縁層3との同時焼成による製造の容易化も図られる。
なお、電子部品301としてのインダクタ、キャパシタ、抵抗等の電気的要素を含んで構成されるDC/DCコンバータやフィルタ回路等の種々の電子回路は、公知のあらゆる構成としてよい。例えば、DC/DCコンバータは、絶縁型、非絶縁型、自励方式、他励方式、降圧型、昇圧型、反転型、フライバック型のいずれにより構成してもよい。フィルタ回路は、ローパスフィルタ、ハイパスフィルタ、バンドパスフィルタ、バンドエリミネーションフィルタ、LCフィルタ、エレクトロ・メカニカルフィルタ、能動RCフィルタ、機械フィルタ、水晶フィルタ、圧電セラミックフィルタのいずれにより構成してもよい。
燃料電池に設けられるキャパシタは、図26に例示したものに限定されず、種々の構成としてよい。
例えば、キャパシタは、燃料電池の基体に形成された配線導体により形成されるものに限定されず、例えばチップ型のキャパシタであってもよい。電極は導電層により形成されるものに限定されず、例えば、ビア導体等を含んで絶縁層の一枚以上の厚さに亘って立体的に構成されてもよい。複数のコンデンサがビア導体等により絶縁層の厚み方向や絶縁層に沿う向において連結されていてもよい。電極間の厚さは、絶縁層の一枚分の厚さよりも薄くても厚くてもよい。
図27は、電子部品301の一例としてのアンテナ素子321を示す断面図である。
アンテナ素子321の配置例は、例えば、図23及び図24において電子部品301を示す矩形と同様の位置や大きさである。すなわち、アンテナ素子321の配置例の説明は、上述の電子部品301の配置例の説明と同様であり、省略する。ただし、図27では、アンテナ素子321は、基体2の第2の面S2において燃料貯蔵部16及び燃料流路17に亘る広さで形成された場合を例示している。
アンテナ素子321は、第2の面S2に適宜なパターンで導電層が形成されることにより構成されている。換言すれば、基体2に形成された配線導体の一部から成る。アンテナ素子321は導電路18を介して高周波素子322と電気的に接続されている。高周波素子322は例えばICにより構成されている。
アンテナ素子321よりも基体2の内部側には、シールド層323が形成されており、アンテナ素子321と、第1の面S1側に配置された他の電子部品とを隔離している。アンテナ素子321と高周波素子322とを接続する導電路18は、シールド層323に形成された孔部を通過している。アンテナ素子321とシールド層323との間には、例えば絶縁層3が一枚あるいは複数枚介在する。なお、アンテナ素子321とシールド層323との間の層は、全部又は一部を他の絶縁層3とは誘電率が異なるものとし、アンテナ特性を適宜に調整してもよい。なお、アンテナ素子321と高周波素子322とは導電路18を介さなくても、電磁結合により電気的に結合されていてもよい。
アンテナ素子321の形状は、パッチアンテナ、ループアンテナ、スロットアンテナ、ダイポールアンテナ、モノポールアンテナ、ミアンダアンテナ、ヘリカルアンテナ、スパイラルアンテナ等の適宜なアンテナの形状としてよい。
図27に示すアンテナ素子321等は、例えば、絶縁層3となるセラミックグリーンシートに、アンテナ素子321やシールド層323となる導体ペーストを印刷し、その後、複数の絶縁層3を積層して焼成することにより形成される。
アンテナ素子321からは適宜な情報を送信してよく、また、アンテナ素子321により適宜な情報を受信してよい。当該情報は、燃料電池としての機能に関連するものでもよいし、関連しないものでもよい。
例えば、燃料電池の稼働状況を示す情報として、発電量、燃料温度、燃料濃度などの各種センサの検出結果の情報や当該検出結果の情報を演算した情報をアンテナ素子321から送信してよい。この場合、燃料電池の稼働状況を示す情報を他の機器により受信することにより、燃料電池の稼働状況をモニタして燃料電池を管理することができる。
また、燃料電池の稼働状況を規定する情報として、発電量、燃料温度、燃料濃度などの目標値を他の機器から送信し、当該目標値をアンテナ素子321により受信し、受信した目標値に基づいて燃料電池の制御装置が流動制御部等の動作を制御するようにしてもよい。この場合、簡単に燃料電池の動作制御の設定変更を行うことができる。
燃料電池に燃料電池としての機能とは別の機能を果たす電子部品(例えば小型の監視カメラ)が設けられているときに、当該別の電子部品の得た情報(例えば映像情報)を送信するようにしてもよい。
以上のように、燃料電池を保持する基体2にアンテナ素子321を設けることから、燃料電池の多機能化が図られる。
アンテナ素子321は、基体2に形成された配線導体の一部から成るから、燃料電池に外付けのアンテナを設けるような場合に比較して小型化が図られる。また、アンテナ素子321は、基体2に固着して一体化されているから、小型化が一層図られるとともに断線が防止される。アンテナ素子321と絶縁層3との同時焼成による製造の容易化も図られる。
なお、図25〜図27では、基体に形成される配線導体によりコイル導体、コンデンサの電極、アンテナ素子等が構成される場合を例示したが、配線導体は、基体の表面に積層される導電層や基体に埋設される導電体であればよく、基体と同時焼成されることなどにより基体に固着して基体と一体化されたものに限定されない。例えば基体の焼成後に基体の孔部に嵌入されて組み込まれるものであってもよい。
電池本体が基体の一方側にある場合、インダクタやアンテナは基体の他方側にあるのがよい。これにより、電池本体からの熱をインダクタやアンテナに伝えにくくすることができ、インダクタやアンテナの特性を良好に維持できる。
さらに電池本体とインダクタとの間、または電池本体とアンテナとの間を流路が横切るように配置されているのがよい。これにより、電池本体からインダクタやアンテナへ熱が伝わるのを流路により有効に抑制でき、インダクタやアンテナの特性をより安定化できる。
電子機器の稼働状況に応じて発電量を制御する場合、最終的に発電量を制御できればよく、その方法は燃料の制御に限定されない。例えば、電解質部材に供給する酸素の量を制御してもよい。この場合、例えば、空気流路に電磁バルブや流動制御部を設けて酸素の量を制御すればよい。
また、発電量の制御を行う反応制御部は、燃料電池に設けられていてもよいし、燃料電池が接続される電子機器の本体に設けられていてもよい。また、燃料電池の制御部と電子機器本体の制御部とにより反応制御部を構成する場合、その両者における役割分担は適宜に設定してよい。例えば、電子機器本体の制御部は、必要な電力だけでなく、当該電力に対応した燃料の流速まで算出して燃料電池の制御部に出力してもよい。ただし、必要電力の算出のような電子機器本体の特性に基づく処理は電子機器本体の制御部に負担させ、必要電力に対応する流速の算出等の燃料電池の特性に基づく処理は燃料電池の制御部に負担させたほうが、燃料電池の互換性は高くなる。また、表示部、操作部を燃料電池に設けてもよい。

Claims (17)

  1. 複数の絶縁層を積層して成る積層体により形成された基体と、
    該基体の内部の流路であって、異なる前記絶縁層に設けた溝同士を相互に連結して成る流路と、
    前記流路の一部と接するようにして配置される電解質部材と、
    前記基体に形成された配線導体の一部から成るアンテナであって、前記基体を平面透視して前記流路と重なるように前記基体に設けられているアンテナと、
    を備えた燃料電池。
  2. 前記電解質部材は複数の前記絶縁層に挟まれている
    請求項1に記載の燃料電池。
  3. 前記絶縁層がセラミック材料から成る
    請求項1に記載の燃料電池。
  4. 前記流路が、前記基体の内部で循環経路を形成している
    請求項1に記載の燃料電池。
  5. 前記流路は、前記電解質部材と接する部位が複数の経路に分岐している
    請求項1に記載の燃料電池。
  6. 前記溝が前記絶縁層を厚み方向に貫通している
    請求項1に記載の燃料電池。
  7. 前記基体の表面に出力端子が設けられ、前記基体の内部に、前記出力端子と電解質部材とを電気的に接続する導電路が設けられている
    請求項1に記載の燃料電池。
  8. 前記流路は、前記電解質部材と接する部位よりも燃料の流動方向の下流側に位置する排出部が、前記電解質部材と接する部位よりも燃料の流動方向の上流側に位置する供給部に比し前記基体の表面に近づけて配置されている
    請求項1に記載の燃料電池。
  9. 前記流路は、前記電解質部材と接する部位よりも燃料の流動方向の下流側に位置する排出部の少なくとも一部が、前記電解質部材と接する部位よりも燃料の流動方向の上流側に位置する供給部に沿って配置されている
    請求項1に記載の燃料電池。
  10. 前記排出部の前記供給部に沿って配置された部分を流れる流体の向きが前記供給部を流れる流体の向きと逆方向である
    請求項9に記載の燃料電池。
  11. 前記循環経路を流れる燃料の濃度を調整する濃度調整装置を更に備えた
    請求項4に記載の燃料電池。
  12. 前記電解質部材と電気的に接続される出力端子が前記基体の一主面に、前記電解質部材が前記基体の他主面寄りに配置されている
    請求項1に記載の燃料電池。
  13. 前記基体を平面透視して前記アンテナと重なるように設けられた前記流路が、前記電解質部材の上流側および下流側の流路であり、前記上流側の流路と前記アンテナとの距離が前記下流側の流路と前記アンテナとの距離よりも短い
    請求項に記載の燃料電池。
  14. 前記基体を平面透視して前記アンテナと重なるように設けられた前記流路が、燃料を貯蔵する燃料貯蔵部の少なくとも一部である
    請求項に記載の燃料電池。
  15. 基体と、
    該基体の内部の流路であって、該基体の内部に設けられた中空部同士を前記基体の厚み方向に連結して成る流路と、
    前記流路の一部と接するようにして配置される電解質部材と、
    前記基体に形成された配線導体の一部から成るアンテナであって、前記基体を平面透視して前記流路と重なるように前記基体に設けられているアンテナと、
    を備えた燃料電池。
  16. 筐体に設けられた操作部及び表示部と、
    前記操作部からの入力情報に基づいて前記表示部の表示内容を制御する動作制御部と、
    前記筐体内に収容され、前記操作部、前記表示部及び前記動作制御部に電力を供給する請求項1に記載の燃料電池と、
    を備えた電子機器。
  17. 前記表示部、前記操作部及び前記動作制御部のうち少なくともいずれか一つの稼動状況に応じて前記燃料電池の前記電解質部材への燃料若しくは酸化ガスの供給を制御する反応制御部を更に備えた
    請求項16に記載の電子機器。
JP2007537731A 2005-09-30 2006-09-29 燃料電池及び当該燃料電池を備えた電子機器 Expired - Fee Related JP5068656B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007537731A JP5068656B2 (ja) 2005-09-30 2006-09-29 燃料電池及び当該燃料電池を備えた電子機器

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005286306 2005-09-30
JP2005286306 2005-09-30
JP2006053686 2006-02-28
JP2006053686 2006-02-28
JP2006098737 2006-03-31
JP2006098737 2006-03-31
PCT/JP2006/319558 WO2007037420A1 (ja) 2005-09-30 2006-09-29 燃料電池及び当該燃料電池を備えた電子機器
JP2007537731A JP5068656B2 (ja) 2005-09-30 2006-09-29 燃料電池及び当該燃料電池を備えた電子機器

Publications (2)

Publication Number Publication Date
JPWO2007037420A1 JPWO2007037420A1 (ja) 2009-04-16
JP5068656B2 true JP5068656B2 (ja) 2012-11-07

Family

ID=37899840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007537731A Expired - Fee Related JP5068656B2 (ja) 2005-09-30 2006-09-29 燃料電池及び当該燃料電池を備えた電子機器

Country Status (3)

Country Link
US (1) US8481222B2 (ja)
JP (1) JP5068656B2 (ja)
WO (1) WO2007037420A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5138583B2 (ja) * 2006-03-31 2013-02-06 京セラ株式会社 燃料電池及び当該燃料電池を備えた電子機器
JP5018150B2 (ja) * 2007-03-12 2012-09-05 ソニー株式会社 燃料電池、電子機器、燃料供給板および燃料供給方法
JP2009158143A (ja) * 2007-12-25 2009-07-16 Sony Corp 燃料電池および温度測定方法
EP2330604A4 (en) * 2008-09-30 2018-03-28 Soshin Electric Co. Ltd. Composite electronic component
US8503949B2 (en) * 2008-10-17 2013-08-06 Honeywell International Inc. Miniature fiber radio transceiver and related method
JP2010198741A (ja) * 2009-02-23 2010-09-09 Sony Corp 燃料電池装置
CN102934272B (zh) * 2010-03-19 2016-01-13 日产自动车株式会社 燃料电池系统及其运转方法
US9537164B2 (en) 2010-07-20 2017-01-03 GM Global Technology Operations LLC Through-stack communication method for fuel cell monitoring circuits
US9748006B2 (en) 2010-10-01 2017-08-29 Terrapower, Llc System and method for maintaining and establishing operational readiness in a fuel cell backup system of a nuclear reactor system
US9691508B2 (en) * 2010-10-01 2017-06-27 Terrapower, Llc System and method for determining a state of operational readiness of a fuel cell backup system of a nuclear reactor system
KR102006908B1 (ko) * 2016-06-28 2019-08-02 이오플로우(주) 전기 삼투 펌프 및 이를 포함하는 유체 펌핑 시스템
DE102017210263A1 (de) * 2017-06-20 2018-12-20 Robert Bosch Gmbh Verbesserte Medienverteilung in Brennstoffzellenstacks
JP7013767B2 (ja) * 2017-09-25 2022-02-01 Tdk株式会社 振動ユニット
JP7218109B2 (ja) * 2018-06-28 2023-02-06 日置電機株式会社 測定装置
CN109728367B (zh) * 2018-12-29 2020-12-18 联想(北京)有限公司 电池、电池管理方法和电池控制方法
US11600902B2 (en) * 2020-02-13 2023-03-07 Infineon Technologies Ag Antenna-in-package device with chip embedding technologies

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004531021A (ja) * 2000-12-15 2004-10-07 モトローラ・インコーポレイテッド 調整される流場を備える直接メタノール燃料電池システム
JP2005019340A (ja) * 2003-06-27 2005-01-20 Kyocera Corp 電子機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465119B1 (en) * 2000-07-18 2002-10-15 Motorola, Inc. Fuel cell array apparatus and method of fabrication
JP3893945B2 (ja) 2001-11-08 2007-03-14 トヨタ自動車株式会社 燃料電池システム
JP3740455B2 (ja) 2002-10-21 2006-02-01 京セラ株式会社 燃料電池用容器および燃料電池
US20040142227A1 (en) * 2002-11-26 2004-07-22 Kyocera Corporation Fuel cell casing, fuel cell, and electronic apparatus
JP4583005B2 (ja) * 2003-06-26 2010-11-17 京セラ株式会社 燃料電池用容器および燃料電池
JP2005154207A (ja) * 2003-11-26 2005-06-16 Kyocera Corp グリーンシート、積層成形体、積層基板及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004531021A (ja) * 2000-12-15 2004-10-07 モトローラ・インコーポレイテッド 調整される流場を備える直接メタノール燃料電池システム
JP2005019340A (ja) * 2003-06-27 2005-01-20 Kyocera Corp 電子機器

Also Published As

Publication number Publication date
US8481222B2 (en) 2013-07-09
JPWO2007037420A1 (ja) 2009-04-16
WO2007037420A1 (ja) 2007-04-05
US20100151344A1 (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP5068656B2 (ja) 燃料電池及び当該燃料電池を備えた電子機器
JP5068658B2 (ja) 燃料電池及び当該燃料電池を備えた電子機器
US20040146772A1 (en) Fuel cell casing, fuel cell and electronic apparatus
US7746286B2 (en) Antenna device having good symmetry of directional characteristics
JP2010268306A (ja) コイルアンテナ
JP4661023B2 (ja) 燃料電池用セパレータ、燃料電池装置及び電子応用装置
JP5138583B2 (ja) 燃料電池及び当該燃料電池を備えた電子機器
JP5068657B2 (ja) 燃料電池及び当該燃料電池を備えた電子機器
JP2006004713A (ja) 燃料電池装置
CN108780869B (zh) 蓄电设备
JP4674789B2 (ja) 膜電極素子の製造方法、膜電極素子及び燃料電池
WO2005081364A1 (ja) 誘電体アンテナ
JP4721272B2 (ja) 誘電体アンテナ
JP4759960B2 (ja) 燃料電池装置
JP4502604B2 (ja) 電子機器
KR100634868B1 (ko) 연료전지용 용기, 연료전지 및 전자기기
JPH0897479A (ja) 積層型圧電アクチュエータ
JP2005235713A (ja) 締結装置及び燃料電池
JP2005038671A (ja) 電子機器
KR100599224B1 (ko) 연료전지용 용기, 연료전지 및 전자기기
JP2007123163A (ja) 燃料電池及び電源供給システム
KR100576622B1 (ko) 연료전지용 용기, 연료전지 및 전자기기
JP2007265822A (ja) 燃料電池
JP5047122B2 (ja) 膜電極素子の製造方法、膜電極素子及び燃料電池
JP2007227227A (ja) 燃料電池およびそれを備える電子機器

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees