JP5066350B2 - グリノー式実体顕微鏡 - Google Patents

グリノー式実体顕微鏡 Download PDF

Info

Publication number
JP5066350B2
JP5066350B2 JP2006227761A JP2006227761A JP5066350B2 JP 5066350 B2 JP5066350 B2 JP 5066350B2 JP 2006227761 A JP2006227761 A JP 2006227761A JP 2006227761 A JP2006227761 A JP 2006227761A JP 5066350 B2 JP5066350 B2 JP 5066350B2
Authority
JP
Japan
Prior art keywords
microscope
stereomicroscope
magnification
monocular
numerical aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006227761A
Other languages
English (en)
Other versions
JP2007079562A (ja
Inventor
ツィンマー クラウス・ペーター
Original Assignee
ライカ インストルメント (シンガポール) プライベート リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライカ インストルメント (シンガポール) プライベート リミテッド filed Critical ライカ インストルメント (シンガポール) プライベート リミテッド
Publication of JP2007079562A publication Critical patent/JP2007079562A/ja
Application granted granted Critical
Publication of JP5066350B2 publication Critical patent/JP5066350B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • G02B21/20Binocular arrangements
    • G02B21/22Stereoscopic arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor

Description

本発明は、請求項1の上位概念(所謂おいて部分、プリアンブル部分)に係るグリノー式に基づく実体顕微鏡(実体顕微鏡)に関する。さらに詳細には、本発明は、それぞれ第1のビーム経路および第2のビーム経路を画定する第1の単眼顕微鏡および第2の単眼顕微鏡を備えるグリノー式実体顕微鏡に関する。
実体顕微鏡は、一方では目視観察下で物体を操作するため、および他方では細かい物体の詳細を目に見えるようにするために用いられる。物体の操作は、低倍率下で行うことが好ましく、良好な三次元再生を必要とする。詳細を認識するために、機器を変更することなく、高解像度の高倍率に迅速に切り替えることが所望される。
グリノー式実体顕微鏡については、文献でさまざまな箇所に記載されている。非特許文献1も参照のこと。そこに記載されているように、これらの顕微鏡は、互いに対して傾斜された2つの単眼顕微鏡からなる。従来技術によれば、これらの2つの顕微鏡は、物体の平面の垂線に対して対称に構成される。グリノー式実体顕微鏡は、異なる観察角からの物体の2つの視像を提供し、視像のそれぞれが1つの眼に供給されることによって三次元画像の印象を与える。2つの観察方向の間の角度が大きすぎる場合には、物体の横方向のエッジは焦点が外れているように見える。
2つの顕微鏡の間の角度(収束角と呼ぶ)は通常、10°〜12°の範囲にある。2つの顕微鏡の光軸は斜角で物体に当たるため、大きな収束角が物体のエッジの焦点の合った再生には弊害となり、三次元画像への2つの部分画像の統合を難しくする。従来の構成では、開口部の円錐を画定するレンズが互いに通すことができないため、個別の顕微鏡の開口数は、収束半角によって上向きに制限される。作動距離が相当減少する場合に限り、実際にアタッチメントレンズによって開口数を増大する可能性がある。同時に、物体端部における観察角が増大され、物体のエッジの再生に関して上述した望ましくない結果となる。
特許文献1から非対称な立体視光学内視鏡が周知であり、この内視鏡では異なる直径の入射瞳を有する2つの対物レンズ系が互いに平行に並置されている。2つの対物レンズは、光導波路によってセンサ面の上に物体の画像を生成する。たとえば、これらのCCDセンサから、画像データがディジタル処理後にモニタに伝送される。すなわち、たとえば立体視モニタを用いて、データを三次元で認識することができる。2つの内視鏡の光路の異なる直径にもかかわらず、観察者はより大きな直径の光路に決定されるような解像度および輝度によって立体視画像を認識することが記載されている。より小さな直径の第2の光路は、主に三次元の視覚を生成するのに機能する。
上述したような構成のグリノー式実体顕微鏡における状態は、特許文献1による内視鏡の場合とは根本的に異なる。第一に、物体は、事前のディジタル処理を行うことなく、一般に(少なくとも補足的に)目で直接行う。さらに取り付けられたカメラによって文書化が行われることになっている場合にも、そのようなディジタル処理を用いる、または用いてもよい。さらに、立体視光路または顕微鏡は互いに対して平行ではなく、互いに対して指定の収束角で配置される。上記の特許文献1からは、開示された配置構成では物体を視覚によって直接どのように目視することができるかについて明らかになっていない。さらに、1つのセンサ面の上への結像(固定焦点)は、目の調節能力が低下されるため、画像の焦点深度を制限する。
内視鏡の倍率は、物体の距離に左右される。高倍率では、物体の距離は一般に短い。この場合には、2つの隣接する対物レンズの視野の間の重なる領域は小さい。したがって、この場合には、重なる領域において唯一可能である立体視が制限される。他方、低倍率では重なりが大きいが、開口数が小さく、深い焦点深度を生じる。このことは、三次元物体の画質は焦点平面からの距離と共に徐々にだけ劣化することを意味する。この事実は、特に、物体の深さが焦点深度より短い場合には、2つの部分画像の1つの三次元画像への統合を支持する。
記載した種類の実体顕微鏡の主な構成要素は、2つの立体視光路における倍率の同期調整の場合には、倍率を非連続的に調整するための対物レンズの変倍装置、または倍率を連続的に選択するためのズーム系(可変系(Vario−System)の形の対物レンズとしても知られている)である。この種の倍率系は、内視鏡検査では一般的ではない。したがって、上述の特許文献1は、結像のスケールの変更については記載していない。
立体視観察の場合には、焦点深度は重要である。上述の立体視内視鏡に比べて、グリノー式高パワー実体顕微鏡は、目の調節能力を有利に用いる。倍率は、機器の焦点を変えることなく変更される。倍率範囲全体にわたって、右側部分画像と左側部分画像との間で物体の空白域に差はない。実体顕微鏡の開口数、したがって解像度は、倍率に適合され、無効倍率または空倍率を防止する。この種の配置構成では、高倍率で、焦点深度はきわめて浅く、多くの場合には、物体の深さより浅い。したがって、三次元物体の結像画質は、焦点平面からの距離と共に急激に劣化する。したがって、異なる開口数の結果として、立体視光路が異なる解像度および焦点深度の画像を提供する場合には、通常、低倍率および深い焦点深度で立体視内視鏡において観察される1つの三次元画像への部分画像の統合を、特に高倍率の高パワーの顕微鏡において主流である状態を移行させることができると想定することはできない。
さらに、無視することができない別の態様は、画像の輝度の態様であって、これは上記の特許文献1では、内視鏡光路の入射瞳の直径が異なるために画像輝度が変化する。ここでは、ディジタル画像処理には、適切な補正後に、等しい輝度でモニタに両方の部分画像を表示することができるという利点がある。実体顕微鏡などにおける直接目視観察の場合には、このような補正は可能ではない。
特許文献2から内視鏡として用いられることになっている体細胞顕微鏡が周知である。この顕微鏡は、グリノー式実体顕微鏡として設計されている。2つの立体視光路は互いに対して所与の受光角で配置され、それぞれが、それ自体の対物レンズを備える。この場合には、対物レンズは、ミニレンズ、ロッドレンズまたはガラスファイバの端部部分として構成される。特許文献2における体細胞顕微鏡に内在する問題点は、用いられる対物レンズがレンズの組み合わせであり、特に高倍率下で作業が行われることになっている場合には、球面収差が増大するために1つの対物レンズを使用することが不可能であるために、2つの対物レンズが用いられるときに、これらの対物レンズを互いに所望である程度に近くに配置することができないという事実に基づいている。したがって、上記の特許文献2の目的は、狭い内視鏡の直径を可能にすると同時に、高倍率を達成する配置構成を見つけることにある。
別の立体視内視鏡は、特許文献3から周知であり、互いに対して平行に配置される2つの光路を有し、光路の一方は照射用に用いられ、他方は観察用に用いられる。立体視画像の立体感を生成するために、2つの光路はたとえば、モータ式のプリズムを用いて、毎秒30回切り替えられる。
米国特許第5,603,687号明細書 米国特許第3,655,259号明細書 米国特許第4,862,873号明細書 「Optical Designs for Stereomicroscopes」、K−P.チィンマー(K−P.Zimmer)著、International Optical Design Conference 1998、SPIEの予稿集、第3482号、690〜697頁、(1998)
本発明の目的は、従来の設計のグリノー式実体顕微鏡に比べて、収束角の増大、したがって構成体積の増大ももたらすことなく、改良した詳細認識を伴うグリノー式実体顕微鏡を提供することにある。
本目的は、請求項1の特徴を有するグリノー式実体顕微鏡によって達成される。有利な実施形態は、従属項および以下の説明から明白となる。
第1の顕微鏡の第1のビーム経路における少なくとも1つの光学素子が、第2の顕微鏡の第2のビーム経路における少なくとも1つの対応する光学素子に比べて異なる光学的有効径を有する場合に好都合である。「光学的有効径」とは、貫通する光学素子に当たるときに、画像生成に寄与する光線束を表す直径を意味する。
ここで、一方では開口数の小さい結果として低倍率で深い焦点深度を有し、良好な三次元再生を可能にし、他方では高倍率で開口数が大きく、したがって、無効倍率または空倍率を生じることなく高解像度を提供する(詳細の認識を増大することなく、すなわち同一の解像度で倍率を上昇させる)本発明による実体顕微鏡を提供することが可能である。さらに、収束角、したがって構成体積を増大することなく、従来の構成の実体顕微鏡に比べて、詳細の認識を向上することができる。
第1の望遠鏡および/または第2の望遠鏡の光学素子は、レンズ素子または絞りである。第1の望遠鏡および第2の望遠鏡の少なくとも1つの倍率設定または1つのズーム範囲に関して、好ましくは高倍率で第1の顕微鏡の開口数は、第2の望遠鏡の開口数より少なくとも10%、特に10%〜50%大きい。第1の顕微鏡および第2の顕微鏡の最大倍率設定で、第1の顕微鏡の開口数は第2の望遠鏡の開口数より10%超、特に10%〜50%大きいことが好都合である。
したがって、第2の顕微鏡の開口数が収束半角の正弦より対応して小さいように選択される場合には、収束角を変更せずに維持すると同時に、第1の顕微鏡の開口数は収束半角の正弦より大きく構成することができる。したがって、本発明によって、実際に用いられる顕微鏡の開口数に関する収束半角の制限を今度は排除することができる。
本発明によるグリノー式実体顕微鏡において、2つの顕微鏡または物体の平面の垂線に対して固定される顕微鏡によって固定される光軸の配置には、種々の可能な方法がある。一方では、垂線が対称に収束角を対称に分割する配置構成、すなわち収束角を半分にする配置構成(「対称な配置構成」)が可能であり、他方では、垂線が収束角を非対称に分割してもよい配置構成(「非対称な配置構成」)が可能である。
第1の顕微鏡の光軸および第2の顕微鏡の光軸が物体平面における垂線に対して対称に配置されるのであれば、特に好都合である。この対称な配置構成は、射出瞳が物体の上の同一の高さにあり、したがってユーザが頭を横に曲げることなく見ることができ、したがって、頭の人間工学に基づかない位置を避けることができるという利点がある。この配置構成では、より深い焦点深度を有する光路もまた、全体的に見て認識される焦点深度を向上する。
最初に、顕微鏡の直径を増大する場合、空間に関する理由から垂線に対してより小さな角度でこの顕微鏡を配置し、収束角が変わらないことになっている場合には、垂線に対して対応してより大きな角度で他方の顕微鏡を配置することは明白であると思われる。垂線に対してより小さな角度は、より大きな開口数、したがってより浅い焦点深度の顕微鏡では、エッジの解像度の欠如を相殺するのに対し、より深い焦点深度のために、他方の顕微鏡の場合にはより大きな角度が許容可能である。しかし、結果として生じる非対称な配置構成は、結果として生じる人間工学に基づかない目視位置のために、独特の欠点を有する。
同様に、垂線に対してより大きな角度で大きな直径の顕微鏡を配置し、他方の顕微鏡を対応して垂線に対してより近くに移動することは明白であると思われることから、物体に面する2つの顕微鏡のレンズの特定の集合は垂線で互いに(概ね)接触する。この同様に非対称な配置構成は、垂線からの角度が大きくなると、より大きな開口数の顕微鏡のエッジ付近の解像度の欠如が生じやすいという不都合がある。さらに、より大きな角度で生じるこの顕微鏡の焦点深度の減少が不都合である。最後に、人間工学に基づかない目視位置の欠点も依然として残っている。
しかし、顕微鏡の光軸および垂線の間の角度が調整可能であるように、一定の収束角を有する2つの顕微鏡を備えるユニットを取り付けることは好都合である場合がある。たとえば、より大きな光学的有効径を有する顕微鏡が他方の顕微鏡より垂線に対して小さな角度であるように、ユニットを傾斜してもよい。この調整は、特により大きな光学的有効径を有する顕微鏡が文書化目的に用いられる場合に、エッジにおける解像度の欠如を緩和することから好都合である。
より大きな開口数を有する第1の顕微鏡のビーム経路に少なくとも1つのフィルタを位置決めすることができれば好都合である。これは、第1のビーム経路と第2のビーム経路との間の輝度の適合を生じる結果となる。ここでは、フィルタは、面全体にわたって一様であるフィルタとして設計されてもよい。さらに、フィルタはまた、段階的フィルタとして設計されることもできる。この場合には、倍率に左右される輝度の変化は、フィルタを移動することによって補償することができる。フィルタの移動または変更および一般に位置決めは、特に選択された倍率に応じて手動または自動的に行われてもよい。
顕微鏡の倍率は、倍率を連続的に変更するためのズーム系を有利に用いて、等しくかつ同期して調整される。
より大きな開口数を有する第1の顕微鏡のビーム経路に分離デバイス(decoupling device)を配置し、このビーム経路から文書化デバイスに少なくとも部分的に光を向けてもよい。文書化目的のために、より大きな開口数、したがって解像度を有するビーム経路が用いられる。
本発明のさらに好都合な実施形態については、従属項および以下の具体的な実施形態で分かる。本発明の特徴は、ここに示された組み合わせのほか、他の組み合わせまたは本発明の範囲を逸脱することない独自の組み合わせにおいて実現することができる。
図において、本発明の主題は概略的に示され、図に基づいて以下に記載される。
図1は、従来技術によるグリノー式実体顕微鏡60の斜視図である。実体顕微鏡60は基部71を備え、焦点調節支柱72が基部71に固定される。焦点調節アーム73は焦点調節支柱72に移動可能に取り付けられ、両矢印A−Aに沿って調節素子74によって焦点調節支柱72を変位されことができる。実体顕微鏡60は、双眼鏡筒65およびズーム系(図2参照)を有する。ズーム系は、調節素子78によって調節することができる。ズーム系を連続的に動作させるのではなく、倍率を非連続的に変更する対物レンズ変倍装置を設けてもよい。
図2は、従来技術によるグリノー式実体顕微鏡7の光学設計の概略図である。グリノー式実体顕微鏡7は、第1の単眼顕微鏡2Rおよび第2の単眼顕微鏡2Lから構成される。2つの顕微鏡2Rおよび2Lは、両方の顕微鏡2Rおよび2Lが同一の焦点11を有するように対称に構成される。焦点11は、物体平面1にある。検査対象の物体1aもまた、物体平面に位置している。焦点11で物体平面1における垂線12は、グリノー式実体顕微鏡の対称軸を表す。第1の顕微鏡2Rは、第1の光軸21Rを画定する。第2の顕微鏡は、第2の光軸21Lを画定する。2つの顕微鏡2Rまたは2Lの2つの光軸21Rおよび21Lは、角度10、すなわち収束角を包囲し、この角度は10°〜12°であることが好ましい。
2つの顕微鏡2Rまたは2Lは、それぞれ倍率系としてズーム系26Rおよび26Lを有することが好ましい。ズーム系26R、26Lは、たとえば、W.クライン(W.Klein)著、「Einige optische Grundlagen zu Vario−Systemen」、Jahrbuch fuer Optik und Feinmechanik 1972、Pegasus、Welzlar、33〜64頁の論文の8.8.3節の図13の右側に開示されているように、正の屈折力を有する2つの群およびその間に配置され、負の屈折力を有する群からなる。これはまた、ズーム群の移動も示す。各顕微鏡2Rまたは2Lにおいて、対称な反転器系3Rまたは3Lが正立像のために設けられる。顕微鏡2Rまたは2Lおよび反転器系3Rまたは3Lは、正立中間画像4Rまたは4Lを生成し、その下流に接眼レンズ5Rおよび5Lがそれぞれ配置される。ユーザは、眼6Rおよび6Lで物体の像を検出する。
この種のグリノー式実体顕微鏡7による再生が、いずれも焦点11から発している第1のビーム経路20Rおよび第2のビーム経路20Lの周辺ビーム22Rおよび22Lの概略図によって示される。周辺ビーム22Rおよび22Lは、グリノー式実体顕微鏡7によって用いられる2つの照射光束の限界を識別する。2つの顕微鏡2Rまたは2Lは貫通するように用いることが不可能であるため、顕微鏡2Rまたは2Lの開口数nAは収束半角nAR(=nAL)によって制限される。
高パワーのグリノー式立体顕微鏡の大きい開口数は同様に、不可欠である。解像度は以下のように与えられる。
解像度=3000*nA[Lp/mm] 式(1)
式中、nAは開口数である。Lp/mmは、1ミリメートル当たりのラインぺアを表す。
実体顕微鏡はまた物体操作にも用いられるため、大きな焦点深度Tが重要である。焦点深度Tは、以下の式によって与えられる。
T[mm]=λ/(2*nA)+0.34mm/(Vtot*nA) 式(2)
式中、λ=約550E−6mmの光波長であり、Vtot=接眼レンズの倍率を含む顕微鏡の倍率である。
従来技術によれば、解像度、開口数および焦点深度は、両方のビーム経路20Rおよび20Lにおいて同一である。
図3において、曲線23は、従来技術による代表的な高パワーグリノー式実体顕微鏡に関して、倍率の関数としての開口数nAの経過を示す。倍率は、x軸24にプロットされている。開口数nAは、y軸25にプロットされている。この実施例は、収束角10が10.5°である場合に基づいている。その結果、開口数は最大でnA=sin(5.25°)=0.0915に制限される。無効倍率が生じないように、総倍率Vtotが10x〜60xの間で変化するように顕微鏡2Rおよび2L(すなわちズーム系および接眼レンズ5Rおよび5L)の倍率が選択される。
図4は、高倍率について倍率の関数として焦点深度33の関連する経過を示す。倍率は、x軸30にプロットされている。焦点深度Tは、y軸32にプロットされている。倍率が増大すると、焦点深度33は減少する。
図5は、本発明によるグリノー式実体顕微鏡7の実施形態の概略図である。図2と比べて、収束角10は変わらない。2つの図において同一の要素は同一の参照符号によって識別されるように、図2による参照符号が用いられている。本発明によるグリノー式実体顕微鏡7は、同様に、第1の単眼顕微鏡2Rおよび第2の単眼顕微鏡2Lを備える。2つの顕微鏡2Rおよび2Lは、2つの顕微鏡2Rおよび2Lが同一の焦点11を有するように配置される。焦点11は、物体平面1にあり、検査対象の物体1aもまた、物体平面に位置している。この実施形態において2つの顕微鏡2Rおよび2Lの2つの光軸21Rおよび21Lは、焦点11で物体平面1における垂線12Bに対称に配置される。第1の顕微鏡2Rは、第1のビーム経路20Rに関して第2の顕微鏡2Lの第2のビーム経路20Lの直径とは異なる直径を有する。第1の顕微鏡2Rおよび第2の顕微鏡2Lは、構成が同一ではない。図5は、2つの顕微鏡2Rおよび2Lのズーム系26Rおよび26Lの最大倍率の設定の概略図である。第1のビーム経路20Rの直径が第2のビーム経路20Lの直径より大きいことが分かる。この実施例において、右側顕微鏡の開口部の円錐は垂線12Bを含むため、第1のビーム経路20Rの開口数は収束半角10の正弦より大きい。
ズーム系26R、26Lの代わりに、対物レンズ変倍装置(図示せず)を設けてもよい。たとえば、右側顕微鏡および左側顕微鏡に関して対物レンズのぺアがかさ歯車に取り付けられ、その回転軸が2つの顕微鏡軸の対称軸、この図5では軸12Bである。対物レンズのペアは倍率および物体距離において他のペアと異なり、再度焦点合わせを行うことなく、物体を目視することができる。かさ歯車を回転することによって、対物レンズの異なるペアが有効位置に達し、それによって異なる倍率が両方の顕微鏡で同期して調整される。
図6および図7はそれぞれ、第1の顕微鏡2Rにおける最大開口数nA=0.104(6°に対応)および第2の顕微鏡2Lにおける最大開口数nA=0.0768(4.4°に対応)である実施形態に関する、倍率の関数としての開口数nAおよび焦点深度Tの経過を示す。図6において、開口数nAはy軸51にプロットされ、倍率はx軸50にプロットされる。図7において、焦点深度Tはy軸61にプロットされ、倍率はx軸62にプロットされる。(第1の顕微鏡2Rおよび第2の顕微鏡2Lの)ズーム系26Rおよび26Lの倍率および接眼レンズ5Rおよび5Lの倍率は、総倍率Vtotが10x〜80xの間で変化するように選択される。連続線54(図6)は大きな開口数nAの第1の顕微鏡2Rに関して得られ、破線53はより小さな開口数nAの第2の(左側)顕微鏡2Lに関して得られる。大きな開口数nAのおかげで解像度が増大し、これにより、無効倍率を生じることなく、より高い最終的な倍率が可能となる。他方、図4の曲線33および図7の曲線63の比較から明白であるように、驚くべきことに、より高い最終的な倍率にもかかわらず、最高倍率における焦点深度は、より浅くなることはない。この説明のために、異なる解像度および焦点深度を有する2つの部分画像の評価に関する以下の注釈を参照されたい。連続線64(図7)は大きな開口数nAの第1の顕微鏡2Rに関して得られ、破線63はより小さな開口数nAの第2の(左側)顕微鏡2Lに関して得られる。
示された実施形態において、より小さな直径の顕微鏡2Lの光学的有効径は、たとえばレンズ素子27Lのレンズ直径によって制限され、低倍率の広い範囲における同一の有効径を有するように2つの顕微鏡を構成することができ、このために、この設定における実体顕微鏡は従来の顕微鏡と同様に機能する。より大きな直径の顕微鏡2Rの開口数がより小さい直径の顕微鏡2Lの上記の制限するレンズの直径を超え、開口数が非対称になる高倍率のときに限り、上述の効果が発揮される。
可変系として構成される対物レンズと呼ばれることもある図5および図10に示されるズーム系(26R、26L)の代わりに、図8および図9に示されるズーム系を用いてもよい。これらのズーム系に関するデータは、表1に列挙される。図8および図9から明らかであるように、各ズーム系は、4つのレンズ集合100、200、300および400を有し、各レンズ集合は、関連する面番号を伴うレンズの配置構成からなる(表1参照)。面番号101〜106は第1のレンズ集合に属し、番号107〜111は第2のレンズ集合に属し、番号112〜114は第3のレンズ集合に属し、番号115〜117は第4のレンズ集合に属する。物体平面1からの面101までの距離は、85.2mmである。面118および面119は、種々の開口数での画像輝度の適合のためのフィルタ素子を表す。面120および121は、反転系が画像を立像にするために用いられるミラーとあわせたプリズムを表す。
Figure 0005066350
左から右に、表1の列は、面番号、曲率半径、次の面までの距離、屈折率n、分散V、右ビーム経路および左ビーム経路の光学的有効径を列挙している。nは屈折率を示し、V=(n−1)/(n−n)はアッベ数である。空隙は、材料の詳細に関して空列によって識別される。第1の顕微鏡2Rおよび第2の顕微鏡2Lは、ズーム系のビーム経路において、可変距離D1、D2およびD3を有するため、異なる倍率を設定することができる。
表1に示されているように、右側ズーム系のレンズ集合100および200は、左側ズーム系のレンズ集合より大きな直径を有するのに対し、レンズ集合300および400は同一である。表1による顕微鏡のこの「同一の構成」において、面101〜111の直径以外の製作変数はすべて、同一である。これは、より長期の製作期間の実現可能性のために経済的な意味がある。
図8および図9は、最大倍率および最小倍率における第1の顕微鏡2Rのズーム系のビーム経路を示す。図8は、最大倍率を示す。図9は、最小倍率を示す。第1の顕微鏡2Rおよび第2の顕微鏡2Lのズーム系は、第1のレンズ群100、第2のレンズ群200、第3のレンズ群300および第4のレンズ群400から構成される。D1、D2およびD3は、レンズ群100、200、300および400の間の可変距離を示す。最大倍率で第1のレンズ群と第2のレンズ群200との間に広がっている距離D1=46.95mmである。最大倍率で第2のレンズ群200と第3のレンズ群300との間に広がっている距離D2=10.19mmである。最大倍率で第3のレンズ群300と第4のレンズ群400との間に広がっている距離D3=72.95mmである。最小倍率で距離の組み立ては異なる。最小倍率で第1のレンズ群と第2のレンズ群200との間に広がっている距離D1は、5.0mmである。最小倍率で第2のレンズ群200と第3のレンズ群300との間に広がっている距離D2は、107.26mmである。最小倍率で第3のレンズ群300と第4のレンズ群400との間に広がっている距離D3は、17.83mmである。表1は、図8および図9に示されているように、面番号の半径を示す。表1はまた、第1の顕微鏡2Rのズーム系の第1のレンズ群100および第2のレンズ群200の屈折素子の光学的有効径φが第2の顕微鏡2Lのズーム系の第1のレンズ群100および第2のレンズ群200の屈折素子の光学的有効径φより大きいことも示す。第1の顕微鏡2Rのズーム系および第2の顕微鏡2Lのズーム系の両方には、フィルタ素子およびプリズムなどの平面を備えた光学素子が画像を形成する前に設けられる。平面は、参照符号118、119、120および121によって表される。
図8および図9は、連続線として入射瞳の直径を決定する周辺ビームを示し、破線として最大視野角の主ビームを示す。図9は、主ビームが集合100の外径から著しい距離の位置にあることを示しているのに対し、図8では同一の群100においてエッジビームは外径に近い位置を進む。また、左側顕微鏡2Lにおいて、主ビームを遮断することなく、集合100の直径(18mm)を小さくすることができることは明白である。これは、画像のエッジまで立体視が可能にするために必要な条件である。同時に、より小さい直径を有する顕微鏡において画像のエッジまで主ビームを遮断することができないというこの条件は、異なる光学的有効径を有する実体顕微鏡に適したズーム系の設計に関する基準である。したがって、この条件は、低倍率で入射瞳の位置決めをするための指針を構成する。
図5による実施形態において、右側顕微鏡2Rおよび左側顕微鏡2Lの観察角は、物体平面1に対して対称である。収束角10を変えることなく、垂線12Bに対する顕微鏡2Rおよび2Lの光軸21Rおよび21Lの角度が可変であるように顕微鏡7を取り付けることも考えられる。より大きな光学的有効径を有する顕微鏡2に関して、この顕微鏡のより浅い焦点深度のために収束角10の半分より小さい角度を有することが好都合である(上記の注釈を参照)。この種の配置構成は、顕微鏡に対する焦点11を中心にして垂線12Bと共に、物体平面1における矢印を、特に時計回りの回転によって回転することによって、図5から得られる。
文書化目的のために、より高い解像度であることから、右側顕微鏡2Rが用いられることが好ましい。文書化デバイスに関するグリノー式顕微鏡の配置構成が、公知である。高解像度でエッジの解像度の欠如を最小限に抑えるために、文書化位置では垂線12Bに対する右側顕微鏡2Rの光軸21Rの角度を0°に近くなるように調整することが特に望ましい。図10から分かるように、第1の顕微鏡2Rのビーム経路20Rには、分離デバイス55が配置される。したがって、第1のビーム経路20Rにおける高解像度は、さらに文書化デバイス57に利用される。文書化デバイス57は、たとえば従来のCCDカメラである。
既に述べたように、グリノー式顕微鏡は、第1の顕微鏡2Rおよび第2の顕微鏡2Lを備える。さまざまな倍率を設定するために、第1の顕微鏡2Rおよび第2の顕微鏡2Lには、対物レンズ変倍装置またはズーム系が設けられる。2つの顕微鏡2Rおよび2Lの収束角10は、通常の範囲に保持される。2つの顕微鏡2Rおよび2Lの光軸21Rおよび21Lはまた、物体平面1に配置される垂線12Bに対して引き続き対称に配置されてもよいが、これは絶対必要というわけではない。本発明による第1の顕微鏡2Rおよび第2の顕微鏡2Lは、最大の開口数に関してもはや対称に構成されることはない。第1の顕微鏡2Rの最大開口数が第2の顕微鏡2Lの最大開口数より10〜50%大きければ好都合である。本発明は、より大きな開口数が、第2の顕微鏡2Lの開口数が収束半角10の正弦より小さい場合に可能性がある、2つの顕微鏡2R、2Lの収束半角10の正弦より大きい場合にはより特に有効である。小さな顕微鏡の倍率の広い範囲では、顕微鏡2Rおよび2Lの開口数が本質的に同一であるが、高倍率の場合には異なるように、2つの顕微鏡2R、2Lの対物レンズ変倍装置またはズーム系を設計することができる。
非対称な開口数の場合には、ユーザは、異なる輝度、異なる解像度および異なる焦点深度の2つの部分画像を受けとる。50%までの輝度の差および詳細認識における差は、三次元画像への2つの部分画像の統合に悪影響を及ぼすことはないことが分かっている。逆に言えば、驚くべきことに、より大きな開口数から生じる解像度およびより小さい開口数から生じるより深い焦点深度によって、物体は三次元的に認識される。本発明は、実体顕微鏡の設計に関するこの生理学的現象の利用に基づいている。
第1の顕微鏡2Rおよび第2の顕微鏡2Lの配置構成は、動作状態における倍率が同一であるという条件で、さまざまな構成要素からなってもよい。また、第1の顕微鏡2Rおよび第2の顕微鏡2Lに関して「同一の構成」で設計することも可能であるが、少なくとも1つのレンズ構成要素の光学的有効径は異なる。同様に、第1の顕微鏡2Rおよび第2の顕微鏡2Lはそれぞれ、絞り31Rまたは31Lに適合することができ、絞り31Rまたは31Lはそれらの直径を変更するために、互いに関係なく動作することができる。絞り31R、31Lの動作は、第1の設定において、第2の顕微鏡2Lにおける絞り開口部に対する第1の顕微鏡2Rにおける絞り開口部の比(第1の顕微鏡2Rの絞りの直径が第2の顕微鏡2Lの絞りの直径より大きい)が調整され、第2の設定または別の設定において、絞り31Rまたは31Lの両方の開口部が、絞り面の比は変わらない状態で同時に変更されるように行うこともできる。
異なる開口数nAから結果として生じる輝度の差を低減または排除するために、光フィルタより大きな開口数を有する第1の顕微鏡2Rの第1のビーム経路20Rに光フィルタ41R(たとえば、減光ステージまたは減光段階フィルタ)または必要に応じて第2のビーム経路20Lにおける任意の可能な光路差を補償するための素子41Lを導入することが好都合である。フィルタ41Rは手動で動作することができ、解像度または焦点深度に悪影響を及ぼすことなく、倍率選択によって制御される動作によって、その位置、したがってフィルタ強度を変更することができる。
文書化デバイス57の高解像度を利用するために、より大きな開口数の第1の顕微鏡2Rのビーム経路20Rにおいて、本質的に周知である文書化ポートに関して、デバイスの別の変形(たとえばビームスプリッタまたは分離デバイス55)を配置することができる。文書化デバイス57は、フィルム、ビデオセンサ、CCD、ディジタルカメラなどとして設計されてもよい。
本発明の長所は、高倍率、したがって高解像度が必要とされる、高パワーグリノー式実体顕微鏡にある。本発明の効果は、倍率比Vmax/Vmin>5のグリノー式実体顕微鏡またはズーム比z>5であるズーム系で実証される。
従来技術によるグリノー式実体顕微鏡の斜視図である。 従来技術によるグリノー式実体顕微鏡の光学設計の概略図である。 代表的なグリノー式実体顕微鏡に関して、倍率の関数としての開口数nAの経過である。 上述のグリノー式実体顕微鏡に関して、倍率の関数としての焦点深度Tの経過である。 本発明の第1の実施形態の光学設計の概略図である。 本発明によるグリノー式実体顕微鏡に関して、倍率の関数としての開口数nAの経過である。 本発明によるグリノー式実体顕微鏡に関して、倍率の関数としての焦点深度Tの経過である。 最大倍率における第1の顕微鏡の第1のズーム系のビーム経路である。 最小倍率における第1の顕微鏡の第1のズーム系のビーム経路である。 図5の説明で開示されていない別の光学素子を備えた本発明の実施形態の光学構成の概略図である。
符号の説明
1 物体平面
1a 物体
2R、L 単眼顕微鏡
3R、L 反転系
4R、L 中間画像
5R、L 接眼レンズ
6R、L 眼
7 実体顕微鏡
10 収束角
11 焦点
12 垂線
12B 垂線、物体平面上の垂線
20R、L ビーム経路
21R、L 光軸
22R、L 周辺ビーム
23 開口数曲線
24 x軸
25 y軸
26R、L ズーム系
27R、L レンズ素子
30 x軸
31R、L 絞り
32 y軸
33 焦点深度曲線
41R フィルタ
41L 光学素子
50 x軸
51 y軸
53 線(断続的)
54 線(連続的)
55 分離デバイス
57 文書化デバイス
60 実体顕微鏡
61 y軸
62 x軸
63 線(断続的)
64 線(連続的)
65 双眼鏡筒
71 基部
72 焦点調節支柱
73 焦点調節アーム
74 調節素子
78 調節素子
100 第1のレンズ集合
101〜121 面番号
200 第2のレンズ集合
300 第3のレンズ集合
400 第4のレンズ集合
T 焦点深度
nA 開口数
nAL 収束半角
nAR 収束半角

Claims (17)

  1. 第1のビーム経路(20R)を画定し、第1の光軸を画定する第1の倍率系(26R)を備える第1の単眼顕微鏡(2R)および第2のビーム経路(20L)を画定し、前記第1の光軸に対して収束角(10)で配置された第2の光軸を画定する第2の倍率系(26L)を備える第2の単眼顕微鏡(2L)を備え、
    前記第1の単眼顕微鏡(2R)は、第1の光学的有効径を有する第1の光学素子(27R、31R)と、前記第1のビーム経路(20R)に配置された第1の観察ユニット(5R)とを有し、
    前記第1の観察ユニット(5R)は、三次元画像の第1の部分画像を形成する前記第1のビーム経路(20R)の光をユーザの第1の眼(6R)に伝えるように構成され、
    前記第2の単眼顕微鏡(2L)は、前記第1の光学素子(27R、31R)に対応していて第2の光学的有効径を有する第2の光学素子(27L、31L)と、前記第2のビーム経路(20L)に配置された第2の観察ユニット(5L)とを有し、
    前記第2の観察ユニット(5L)は、三次元画像の第2の部分画像を形成する前記第2のビーム経路(20L)の光をユーザの第2の眼(6L)に伝えるように構成された、グリノー式実体顕微鏡(60)において、
    前記第1および第2の倍率系(26R、26L)は、互いに同期して変更可能な等しい倍率を形成するように構成され、
    前記第1の部分画像と前記第2の部分画像が異なる解像度および異なる焦点深度を有するように、前記第1の光学素子(27R、31R)は、対応する前記第2の光学素子(27L、31L)と異なる光学的有効径を有することを特徴とするグリノー式実体顕微鏡(60)。
  2. 前記第1および第2の光学素子の少なくとも1つは、レンズ素子(27R、27L)または絞り(31R、31L)であることを特徴とする請求項1に記載の実体顕微鏡。
  3. 前記第1および第2の顕微鏡(2R、2L)の少なくとも1つの倍率設定または1つの倍率範囲に関して、前記第1の単眼顕微鏡(2R)の開口数が前記第2の単眼顕微鏡(2L)の開口数より少なくとも10%、特に10%〜50%大きいことを特徴とする請求項1または2に記載の実体顕微鏡。
  4. 前記第1の単眼顕微鏡(2R)および前記第2の単眼顕微鏡(2L)の最大倍率設定で、前記第1の単眼顕微鏡(2R)の前記開口数が、前記第2の単眼顕微鏡(2L)の前記開口数より10%超、特に10%〜50%大きいことを特徴とする請求項3に記載の実体顕微鏡。
  5. 前記第1の単眼顕微鏡(2R)の前記開口数が、前記第1の単眼顕微鏡(2R)と前記第2の単眼顕微鏡(2L)との間の収束半角の正弦より大きいことを特徴とする請求項1〜4のいずれか一項に記載の実体顕微鏡。
  6. 前記第1の単眼顕微鏡(2R)の前記第1の光軸(21R)および前記第2の単眼顕微鏡(2L)の前記第2の光軸(21L)が、物体平面(1)における垂線(12B)に対して対称に配置されることを特徴とする請求項1〜5のいずれか一項に記載の実体顕微鏡。
  7. 前記第1の単眼顕微鏡(2R)の前記第1の光軸(21R)および前記第2の単眼顕微鏡(2L)の前記第2の光軸(21L)が、物体平面(1)における垂線(12B)に対して非対称に配置されることを特徴とする請求項1〜5のいずれか一項に記載の実体顕微鏡。
  8. 2つの前記第1および第2の顕微鏡(2R、2L)のユニットは、前記第1および第2の顕微鏡(2R、2L)のそれぞれの光軸(21R、21L)と物体平面(1)における垂線(12B)との間の角度が調整可能、特に一定の収束角(10)を維持しながら調整可能であることを特徴とする請求項1〜7のいずれか一項に記載の実体顕微鏡。
  9. 前記第1および第2の顕微鏡(2R、2L)はそれぞれ、倍率を選択するためのズーム系(26R、26L;100、200、300、400)を備えることを特徴とする請求項1〜8のいずれか一項に記載の実体顕微鏡。
  10. より大きい開口数を有する前記第1の顕微鏡(2R)の前記第1のビーム経路(20R)に少なくとも1つのフィルタ(41R)を位置決めすることができることを特徴とする請求項1〜9のいずれか一項に記載の実体顕微鏡。
  11. 前記フィルタ(41R)は、段階的フィルタであることを特徴とする請求項10に記載の実体顕微鏡。
  12. 前記フィルタ(41R)の位置決めは、手動で行われることを特徴とする請求項10または11に記載の実体顕微鏡。
  13. 前記フィルタ(41R)の位置決めは、前記第1および第2の顕微鏡(2R、2L)の倍率を選択することによって制御されることを特徴とする請求項10または11に記載の実体顕微鏡。
  14. 分離デバイス(55)が、より大きい開口数を有する前記第1の顕微鏡(2R)の前記第1のビーム経路(20R)に配置され、この第1のビーム経路(20R)から文書化デバイス(57)に少なくとも部分的に光を向けることを特徴とする請求項1〜13のいずれか一項に記載の実体顕微鏡。
  15. 前記第1の顕微鏡(2R)における絞り(31R)の直径は、前記第2の顕微鏡(2L)の絞り(31L)の直径より大きいことを特徴とする請求項1〜14のいずれか一項に記載の実体顕微鏡。
  16. 前記絞り(31Rおよび31L)の直径は、互いに無関係に変更することができることを特徴とする請求項15に記載の実体顕微鏡。
  17. 前記絞り(31Rおよび31L)の直径は、互いに一定の関係で変更することができることを特徴とする請求項15に記載の実体顕微鏡。
JP2006227761A 2005-08-26 2006-08-24 グリノー式実体顕微鏡 Active JP5066350B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102005040475 2005-08-26
DE102005040475.8 2005-08-26
DE102006036768A DE102006036768B4 (de) 2005-08-26 2006-08-07 Stereomikroskop nach Greenough
DE102006036768.5 2006-08-07

Publications (2)

Publication Number Publication Date
JP2007079562A JP2007079562A (ja) 2007-03-29
JP5066350B2 true JP5066350B2 (ja) 2012-11-07

Family

ID=37763267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227761A Active JP5066350B2 (ja) 2005-08-26 2006-08-24 グリノー式実体顕微鏡

Country Status (3)

Country Link
US (1) US7777941B2 (ja)
JP (1) JP5066350B2 (ja)
DE (1) DE102006036768B4 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005040473B4 (de) * 2005-08-26 2007-05-24 Leica Microsystems (Schweiz) Ag Stereomikroskop
DE102006036768B4 (de) 2005-08-26 2007-11-29 Leica Microsystems (Schweiz) Ag Stereomikroskop nach Greenough
DE102006036300B4 (de) * 2005-08-26 2007-11-29 Leica Microsystems (Schweiz) Ag Hochleistungs-Stereomikroskop
US8105233B2 (en) * 2007-10-24 2012-01-31 Tarek Ahmed Nabil Abou El Kheir Endoscopic system and method for therapeutic applications and obtaining 3-dimensional human vision simulated imaging with real dynamic convergence
BR112012013362A2 (pt) * 2009-12-04 2016-03-01 Unisensor As sistema para a determinação de um valor para pelo menos um parâmetro que descreve a atividade microbiana de organismos biológicos individuais em uma amostra de líquido, e, método para a determinação da atividade microbiana em uma amostra de líquido
KR101643607B1 (ko) * 2009-12-30 2016-08-10 삼성전자주식회사 영상 데이터 생성 방법 및 장치
JP5597525B2 (ja) * 2010-07-28 2014-10-01 パナソニック株式会社 立体映像撮像装置および立体映像撮像方法
DE102010039289A1 (de) * 2010-08-12 2012-02-16 Leica Microsystems (Schweiz) Ag Mikroskopsystem
DE102011100997B4 (de) 2011-05-10 2021-11-04 Sébastien Debruyne Hochleistungs-Stereo-Mikroskop mit verbesserter Auflösung
JP5762845B2 (ja) * 2011-06-23 2015-08-12 オリンパス株式会社 顕微鏡システム
US9642606B2 (en) 2012-06-27 2017-05-09 Camplex, Inc. Surgical visualization system
US9629523B2 (en) 2012-06-27 2017-04-25 Camplex, Inc. Binocular viewing assembly for a surgical visualization system
US9782159B2 (en) 2013-03-13 2017-10-10 Camplex, Inc. Surgical visualization systems
JP2016528531A (ja) * 2013-07-04 2016-09-15 ライカ マイクロシステムズ (シュヴァイツ) アクチエンゲゼルシャフトLeica Microsystems (Schweiz) AG 顕微鏡システムのための像取得方法および対応する顕微鏡システム
DE202013011877U1 (de) 2013-07-04 2014-09-05 Leica Microsystems (Schweiz) Ag Mikroskopsystem
TWI513999B (zh) * 2013-08-30 2015-12-21 Univ Nat Yunlin Sci & Tech Stereoscopic microscope system
US10028651B2 (en) 2013-09-20 2018-07-24 Camplex, Inc. Surgical visualization systems and displays
EP3046458B1 (en) 2013-09-20 2020-10-21 Camplex, Inc. Surgical visualization systems
DE102014201571B4 (de) * 2014-01-29 2022-08-04 Carl Zeiss Meditec Ag Modul für die Dateneinspiegelung in einer Visualisierungsvorrichtung, Visualisierungsvorrichtung und Verfahren zum Anpassen der Vorrichtung
USD738415S1 (en) * 2014-04-03 2015-09-08 Carl Zeiss Microscopy Gmbh Microscope base and arm
US10702353B2 (en) 2014-12-05 2020-07-07 Camplex, Inc. Surgical visualizations systems and displays
EP3277152A4 (en) 2015-03-25 2018-12-26 Camplex, Inc. Surgical visualization systems and displays
JP6588750B2 (ja) * 2015-06-30 2019-10-09 株式会社トプコン 眼科用顕微鏡システム
US10966798B2 (en) 2015-11-25 2021-04-06 Camplex, Inc. Surgical visualization systems and displays
WO2018208691A1 (en) 2017-05-08 2018-11-15 Camplex, Inc. Variable light source
DE102018218569A1 (de) 2018-10-30 2020-04-30 Carl Zeiss Microscopy Gmbh Stereomikroskop nach dem Greenough-Typ, optische Baugruppe zur Einstellung eines Stereowinkels in einem Stereomikroskop nach dem Greenough-Typ und Varioabbildungssystem für ein Stereomikroskop nach dem Greenough-Typ
USD968494S1 (en) * 2020-01-15 2022-11-01 Smartivity Labs Pvt. Ltd. Microscope toy
WO2022032418A1 (zh) * 2020-08-10 2022-02-17 南京溧水高新创业投资管理有限公司 一种医学检验装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1268855A (en) * 1968-08-24 1972-03-29 Nippon Selfoc Co Ltd Optical image transmitting apparatus
CH500500A (de) * 1970-03-31 1970-12-15 Wild Heerbrugg Ag Stereomikroskop
US3909106A (en) * 1974-03-19 1975-09-30 Applied Fiberoptics Inclined prism ocular systems for stereomicroscope
DE2949428C2 (de) * 1979-12-08 1982-09-16 Fa. Carl Zeiss, 7920 Heidenheim Stereomikroskop zur gleichzeitigen Benutzung durch mehrere Beobachter
JPS57158826A (en) * 1981-03-27 1982-09-30 Nippon Kogaku Kk <Nikon> Automatic focusing device for stereoscopical microscope
DE3266560D1 (en) * 1981-08-17 1985-10-31 Nat Res Dev Variable stereomicroscope
DE3217776C2 (de) * 1982-05-12 1985-01-31 Fa. Carl Zeiss, 7920 Heidenheim Stereomikroskop
DE3333471A1 (de) * 1983-09-16 1985-04-04 Fa. Carl Zeiss, 7920 Heidenheim Operationsmikroskop fuer zwei operateure
ATE32792T1 (de) * 1984-06-29 1988-03-15 Wild Heerbrugg Ag Mikroskop mit einem binokularen tubus.
US4786154A (en) * 1986-12-16 1988-11-22 Fantone Stephen D Enhanced-image operating microscope
JPS63294509A (ja) * 1987-05-27 1988-12-01 Olympus Optical Co Ltd 立体視内視鏡装置
DE8817126U1 (ja) * 1988-07-30 1992-12-17 Oculus Optikgeraete Gmbh, 6330 Wetzlar, De
US4989078A (en) * 1988-08-15 1991-01-29 Eastman Kodak Company Still video camera for recording stereo images on a video disk
US5603687A (en) * 1992-10-28 1997-02-18 Oktas General Partnership Asymmetric stereo-optic endoscope
JP3354627B2 (ja) * 1993-06-14 2002-12-09 オリンパス光学工業株式会社 手術用顕微鏡
JPH0871085A (ja) * 1994-09-06 1996-03-19 Nikon Corp 手術用顕微鏡
WO1999013370A1 (de) 1997-09-05 1999-03-18 Leica Microsystems Ag Mikroskop, insbesondere fluoreszenzmikroskop, insbesondere stereo-fluoreszenzmikroskop
GB2371878A (en) * 1999-11-22 2002-08-07 Sl3D Inc Stereoscopic telescope with camera
JP2001166214A (ja) * 1999-12-03 2001-06-22 Olympus Optical Co Ltd 光学装置
US6614595B2 (en) * 2001-02-16 2003-09-02 Olympus Optical Co., Ltd. Stereo endoscope
DE50206432D1 (de) * 2001-02-23 2006-05-24 Leica Microsystems Schweiz Ag Erweiterte Blendensteuerung für Bildeinblendungen in einem Stereomikroskop
WO2003052483A1 (fr) * 2001-12-17 2003-06-26 Olympus Corporation Systeme de microscope
DE10222041B4 (de) 2002-05-10 2006-01-26 Leica Microsystems (Schweiz) Ag Afokales Zoomsystem zur Verwendung in Mikroskopen
DE10225192B4 (de) 2002-06-06 2004-09-09 Leica Microsystems (Schweiz) Ag Objektiv für Stereomikroskope vom Teleskop-Typ sowie Stereomikroskop mit einem solchen Objektiv
JP4197915B2 (ja) * 2002-09-19 2008-12-17 オリンパス株式会社 実体顕微鏡用撮影装置
DE102004006066B4 (de) 2004-01-30 2005-12-15 Carl Zeiss Blendenvorrichtung
DE102006036768B4 (de) 2005-08-26 2007-11-29 Leica Microsystems (Schweiz) Ag Stereomikroskop nach Greenough
DE102005040473B4 (de) * 2005-08-26 2007-05-24 Leica Microsystems (Schweiz) Ag Stereomikroskop

Also Published As

Publication number Publication date
DE102006036768B4 (de) 2007-11-29
DE102006036768A1 (de) 2007-03-15
JP2007079562A (ja) 2007-03-29
US20070047072A1 (en) 2007-03-01
US7777941B2 (en) 2010-08-17

Similar Documents

Publication Publication Date Title
JP5066350B2 (ja) グリノー式実体顕微鏡
JP5066349B2 (ja) 立体顕微鏡
JP4991211B2 (ja) 実体顕微鏡
US8054543B2 (en) Microscopy system
JP5240483B2 (ja) 顕微鏡装置
US9910257B2 (en) Stereoscopic microscope
JP4446024B2 (ja) アフォーカルズームシステム
US20150160448A1 (en) Stereo microscope system
US7206127B2 (en) Stereomicroscope
KR20130121518A (ko) 스테레오 현미경
US9285576B2 (en) Stereoscopic microscope
JP2012047797A (ja) 実体顕微鏡
JP4660873B2 (ja) 平行系実体顕微鏡対物レンズ
WO2020095445A1 (ja) 顕微鏡
JPH06167658A (ja) 立体内視鏡
WO2011068185A1 (ja) 結像光学系及び顕微鏡装置
JP2012141470A (ja) 結像光学系、及び、顕微鏡装置
JP5184752B2 (ja) 実体顕微鏡
WO2020095444A1 (ja) 顕微鏡
JP2012042774A (ja) 結像光学系、顕微鏡装置及び実体顕微鏡装置
JP2002372669A (ja) 高解像力化が可能な実体顕微鏡
JPH08184762A (ja) 双眼実体顕微鏡
JP2009069295A (ja) ズーム顕微鏡
JP2009211022A (ja) 望遠鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090603

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120207

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120210

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120307

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120312

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120406

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

R150 Certificate of patent or registration of utility model

Ref document number: 5066350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250