JP5064097B2 - 超音波式渦流量計 - Google Patents

超音波式渦流量計 Download PDF

Info

Publication number
JP5064097B2
JP5064097B2 JP2007113060A JP2007113060A JP5064097B2 JP 5064097 B2 JP5064097 B2 JP 5064097B2 JP 2007113060 A JP2007113060 A JP 2007113060A JP 2007113060 A JP2007113060 A JP 2007113060A JP 5064097 B2 JP5064097 B2 JP 5064097B2
Authority
JP
Japan
Prior art keywords
vortex
ultrasonic
frequency
signal
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007113060A
Other languages
English (en)
Other versions
JP2008268066A (ja
Inventor
誠 大菊
英伸 市川
博史 吉倉
Original Assignee
トキコテクノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トキコテクノ株式会社 filed Critical トキコテクノ株式会社
Priority to JP2007113060A priority Critical patent/JP5064097B2/ja
Publication of JP2008268066A publication Critical patent/JP2008268066A/ja
Application granted granted Critical
Publication of JP5064097B2 publication Critical patent/JP5064097B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は超音波式渦流量計に係り、特に被測流体中に超音波を送信し、渦発生体の下流に発生するカルマン渦を、気泡の判定をしながら検出して被測流体の流量を測定する超音波式渦流量計に関する。
一般に、超音波式流量計は、半導体工場での純水の流量測定、食品工場での洗浄水の流量測定、製鉄工場での鉄粉を含む冷却水の流量測定、上下水道での流量測定等に使用されている。
従来の超音波式渦流量計では、被測流体が流れる流路内に流れ方向と直交する方向に延在形成された渦発生体を設け、渦発生体の下流には1組または2組の超音波センサを設けて渦発生体の下流に発生するカルマン渦を検出するように構成されている(例えば、特許文献1参照)。このような超音波式流量計では、1組の超音波センサは、互いに対向するように流路内に設けられており、一方が超音波を送信する送信側であり、他方が被測流体中を伝搬した超音波を受信する受信側となる。
そして、この種の超音波式渦流量計では、流路中に流速に比例して交番的に発生するカルマン渦の中を伝搬して受信された超音波の受信信号と、送信側に供給される超音波の送信信号とを位相比較することで超音波がカルマン渦から受けるドップラー効果を正弦波的な位相変調量(渦信号)として検出している。
また、2組の超音波センサを用いた超音波式渦流量計では、カルマン渦の流れに対して相対的な相反する方向から流体を伝搬した2つの超音波信号同士を位相比較することにより、被測流体の音速変化の影響をキャンセルしてカルマン渦から受ける位相変調量としての位相変化のみを抽出するように構成されている。
上記のように構成された従来の超音波式渦流量計では、理論的には超音波がカルマン渦から受けるドップラー効果を位相変化として抽出する構成であるため、被測流体の種類によらずカルマン渦を検出することができる。
しかし、一般的に、渦信号には、フローノイズや配管振動などから受ける外乱ノイズが重畳されている。
特開2004−286673号公報
そして、超音波式渦流量計は、被測流体に気泡が存在すると、超音波の気体と液体との伝播速度の違いから、気泡の影響を受けやすい。そのため、流体中に外乱ノイズだけでなく、気泡から受ける大きなノイズが渦信号に重畳し、大きな気泡が多量に混入された場合には、カルマン渦の検出ができなくなるおそれもある。
このような問題に対して、特許文献1の発明では、渦信号をゼロクロスコンパレートした渦パルスの周波数から、渦信号に掛けるフィルタのカットオフ周波数を決めるトラッキングフィルタを使用して、渦信号本来のきれいな正弦波を得ている。
その場合に、渦パルスは、気泡の影響を受けていることから、真の渦周波数との間に誤差があった。そのため、最終段で気泡の影響によるノイズを除去するためのトラッキングフィルタの通過帯域は、その帯域から本来の渦周波数が外れないように、帯域幅を比較的広く設定していた。
しかし、そのために本来の信号に加えてノイズも計測することになる。そして、気泡の通過に伴い渦信号の振幅よりも大きなノイズが重畳した場合には、誤パルスとなって出力される。また、超音波の伝播を遮るほどの大きな気泡が通過した場合には、受信電圧が確保できなくなり、結果として渦パルスが欠落するという問題が発生する。結果として、出力誤差の発生や出力停止といった事態を生じる。したがって、気泡を検知してその結果を流量測定に反映する必要がある。
そこで、本発明は、従来の構成に加えて気泡の検知を行うことにより、上記課題を解決し、耐気泡性を向上させた超音波式渦流量計を提供することを目的とする。
上記課題を解決するため、本発明は被測流体が流れる流路が形成された流量計本体と、
前記流路内に流れ方向と直交するように設けられた渦発生体と、
所定周期の送信信号により超音波を送信する超音波送信器と、
該超音波送信器から送信された超音波を受信する超音波受信器と、
該超音波受信器で受信された前記渦発生体の下流に発生するカルマン渦の影響を受けた受信信号を用いて、当該カルマン渦の発生により当該受信信号に生ずる位相変調量を示す渦信号を生成する渦信号生成手段と、
前記渦信号生成手段により生成された渦信号の周期から前記被測流体の流量を演算する演算手段と、
前記渦信号生成手段と前記演算手段との間に設けられ、所定の周波数帯域の周波数を通過させるフィルタ手段と、
記憶手段より前記流量計本体の流路の口径に対応する周波数帯域を読出し、この周波数帯域に基づき前記フィルタのカットオフ周波数を設定する設定手段と
を備えた超音波式渦流量計において、
さらに、
前記渦信号の振幅値に基づき、該振幅値と記憶手段に記憶された閾値との比較により気泡の有無を検知する気泡検知部を備え、
前記気泡検知部による気泡の有無の検知に基づき、
気泡がないとき、前記フィルタ手段の通過帯域を当該超音波式渦流量計の最小流量から最大流量に相当する周波数とし、
気泡があるとき、前記フィルタ手段の通過帯域を前記気泡検知部により気泡があると判断される直前の気泡がないと判断されているときに前記渦信号生成手段により生成された渦信号の周波数に基づいて設定することを特徴とする。
本発明によれば、渦信号から気泡の有無を検知することで、フィルタの帯域を決めるカットオフ周波数の算出に、気泡のない時の渦信号の周波数を用いることができるので、気泡混入時の出力誤差を低減することができる。
また、渦信号から気泡の有無を検知することで、フィルタの帯域を決めるカットオフ周波数の算出に、気泡のない時の渦信号の周波数を用いることができる。そのため、流量の急峻な変化により、渦周波数がバンドパスフィルタの通過帯域を外れることによる、出力停止、誤出力を発生させる確率を低減できる。
以下、添付図面を参照して本発明の実施の形態を詳細に説明する。
図1は本発明になる超音波式渦流量計の一実施例の回路構成を示すブロック図である。
図1に示されるように、超音波式渦流量計10は、被測流体が流れる流路12を内部に有する流量計本体14と、流量計本体14の流路12内で被測流体の流れ方向(図1中矢印で示す)と直交する垂直方向に延在する渦発生体16とを有する。この渦発生体16は、上方からみると水平方向の断面が概略五角形になっている。
そして、上流側に対向する渦発生体16に被測流体が衝突しながら下流側へ流れる過程において、カルマン渦17が渦発生体16の下流側左右で交互に発生する。このカルマン渦17の周波数が被測流体の流速に比例しているため、被測流体中に発生するカルマン渦17の数を検出することにより被測流体の流速を求め、あらかじめ入力された口径から流量を算出する。
なお、超音波式渦流量計10の口径には大小さまざま存在し、また、渦発生体の上流側端面の大きさ(渦発生体の大きさ)もさまざま存在するが、本実施の形態においては口径と渦発生体の大きさとは比例の関係にあり、即ち、口径が大きくなれば渦発生体の大きさもそれに比例して大きくなるように設定されている。
次に、本実施の形態の超音波渦流量計10の詳細構造について以下に説明する。
流量計本体の渦発生体16の下流側の流路内壁には、超音波送信器20と超音波受信器22とが対向するように取り付けられている。そして、超音波送信器20及び超音波受信器22は、圧電素子からなる超音波センサを有しており、駆動回路24から超音波送信器20に駆動信号が入力されると、超音波送信器20から送信された超音波が流路12を流れる被測流体中を伝搬して超音波受信器22によって受信される。
そして、被測流体が渦発生体16に衝突しながら下流側に流れる過程において、流路12内を流れる被測流体の流速に比例した周期で、カルマン渦17が渦発生体16の下流側の左右に発生する。その際、流路12内を伝搬する超音波は、渦発生体16の下流に発生するカルマン渦17を通過する過程で変調される。そのため、超音波受信器22から出力された検出信号と駆動信号との位相差からカルマン渦17の発生周波数(渦信号)を検出し、この周波数に基づいて流路12内を流れる被測流体の流量を計測する。
超音波送信器20及び超音波受信器22は、流量演算部26に接続されている。そして、流量演算部26は、超音波送信器20に入力される駆動信号と超音波受信器22から出力された受信信号の位相差から得られたカルマン渦17の周波数に基づいて流路12を流れる被測流体の流量を演算する。
また、流量演算部26は、上記駆動回路24、受信回路28、位相比較回路29(渦信号生成手段)、フィルタアンプ回路(増幅回路)30、コンパレート回路32、演算回路34を有する。そして、演算回路(CPU)34は、A/D変換部36、バンドパスフィルタ部(BPF部)38(フィルタ)、カウンタ部40、周波数設定部42(設定手段)、メモリ44(記憶手段)、流量積算部46(演算手段)、AD変換部60、気泡検知部61を有し、バンドパスフィルタ処理とフィルタのカットオフ周波数演算処理、流量演算を行う。
駆動回路24は、一定周期の励振信号を出力する発振器を有しており、発振器からの励振信号に基づいて電圧を正弦波状に変化させた駆動信号を超音波送信器20に対して出力する。
超音波受信器22は、流路12を伝搬した超音波信号を受信すると、受信信号を受信回路28に出力する。受信回路28では、受信信号を増幅して位相比較回路29に出力する。そして、位相比較回路29では、駆動回路24から出力された駆動信号と、受信回路28から出力された受信信号との位相差を示す信号(渦信号)を生成する。位相比較回路29から出力された渦信号は、フィルタアンプ回路30で増幅されて演算回路(CPU)34のA/D変換部36に入力されてデジタル信号に変換された後、バンドパスフィルタ部(BPF部)38でフィルタ処理される。
また、位相比較回路29から出力された渦信号は、コンパレート回路32でゼロクロスコンパレートされてハイレベルとローレベルとのみからなる2値の信号(渦パルス信号)に変換されてカウンタ部40に入力される。そして、カウンタ部40では、渦パルス信号の周波数を計測する。
また、フィルタアンプ回路30からの信号は、A/D変換部60に入力され、デジタル信号化された後、気泡検知部61に入力される。そして、A/D変換された渦信号の振幅値が、閾値(メモリ44に流量計の口径別に記憶されている)以上になったかどうかが常時監視され、閾値を越えている場合には、気泡が混入したと判断し、周波数設定部42に出力する。
演算回路(CPU)34の周波数設定部42は、メモリ44に記憶されたデータ(流量計の口径や流量範囲(渦周波数範囲)などの各流量計別の個別情報)、及びカウンタ部40で計測した渦パルス信号の周波数に基づいて、渦信号を通過させるバンドパスフィルタ部38のカットオフ周波数を設定する。
上記メモリ44(記憶手段)には、流量計の口径に対応させて通過させるべき渦信号の周波数の範囲(渦周波数範囲)、気泡を検知して、周波数計測を中止する場合の閾値、当該流量計で測定可能な流量計測可能範囲などの、流量計の口径別の個別情報(例えば、最小流量から最大流量の各々に相当する周波数)が予め登録されている。
また、周波数設定部42は、流量計の口径が指定されると、当該口径に対応する渦周波数範囲を含む個別情報をメモリ44から読み込み、当該渦周波数範囲をバンドパスフィルタ部38のカットオフ周波数の範囲として設定するものである。
バンドパスフイルタ部38に入力される信号として、被測流体中に気泡がない場合のカットオフ周波数は、流量計の口径別に決められている最小流量から最大流量の各々に相当する周波数(それぞれをfmin、fmaxと呼ぶ)とする。
被測流体中に気泡がある場合のカットオフ周波数は、計測した渦周波数に対して係数nを乗じた周波数から係数mを乗じた周波数までとする(m>n)。
また、気泡検知部61から、気泡ありとの信号が出力された場合(すなわち、上述したように、気泡検知部61が、A/D変換部60でA/D変換された渦信号の振幅値が閾値を越えている場合と判断した場合)には、渦周波数の計測を中止し、その間の値として直前のカットオフ周波数の値を採用する。そして、気泡なしとなった場合に、周波数計測を再開する。
したがって、演算回路(CPU)34内では、A/D変換部36でA/D変換された渦信号は、上記で設定されたカットオフ周波数に基づいて、BPF部38でトラッキングバンドパスフィルタ処理された後に、流量演算部46でパルス列に変換・積算して流量演算し、流量信号を出力端子47に出力する。なお、パルス列への変換方法は、小さなヒステリシスでゼロクロスコンパレートすることで行う。
図2において、気泡の有無とカットオフ周波数(=通過帯域)の関係を説明する。横軸に計測時間、縦軸に渦信号としての位相差信号電圧(位相検出回路29の出力)を目盛っている。図2からわかるように、気泡の有無は、気泡検知判定値の上下の点線U,L間に計測された周波数の値があるか、ないかによって判断している。U,Lは、実験的に設定される。
図2において、最初、気泡がある場合には、バンドパスフィルタの通過帯域が閾値を越えてA(渦周波数のn倍〜m倍)になっていれば、同時に周波数計測を停止する。帯域Aから帯域Bになり、気泡がなくなった場合には、バンドパスフィルタの通過帯域がB(最小流量fminから最大流量fmaxの各々に相当する周波数)であるので、周波数計測を再開する。図では、さらに帯域がA→B→A→Bのように計測されている場合を示している。なお、周波数帯域A、Bの関係は、図3に示されており、渦周波数fcに対し、0.7倍〜1.3倍の範囲で帯域Aが設定されている。
次に、本発明の制御フローを図4により説明する。
先ず、電源を投入した直後においては、渦周波数を計測していないので、通過帯域を上述のfmin〜fmaxとする(ステップS1)。
ステップS2では、気泡検知部61を使用して、A/D変換部60でA/D変換された渦信号の振幅値が閾値以上かどうかを判断して、気泡の有無を確認し(具体的には、図2で説明したとおりである)、ない場合には、先ず時定数を戻して(ステップS3)、改めて通過帯域をfmin〜fmaxとする(ステップS3)。そして、一定周期で(ここでは、30ms周期とする)周波数設定部42を用いて渦周波数を計測し(ステップS5)、流量演算をする(ステップS10)。
ステップS2で気泡があると判断された時には、ステップS6で気泡が連続的に混入している時間を確認する。ここでは、500ms継続しているかどうかをみる。ここで、継続が500ms未満の場合(NO)では(ステップS7)、通過帯域を直近に計測した渦周波数のn倍〜m倍(ここでは0.7倍〜1.3倍とする)に設定する。そして、流量演算をする(ステップS10)。
ステップS6で混入が500ms以上続いている場合には(ステップ8)、通過帯域をfmin〜fmaxとする。
本発明では、気泡混入ありの場合には、渦周波数の計測を行わない。そのため、気泡が混入している場合に流量が変化しても、通過帯域を再設定することができない。この場合、渦周波数が通過帯域を外れてしまう可能性があり、結果として出力停止や誤出力を引き起こす可能性がある。このため、通過帯域を広げ、このような状況を回避する。
また、この状態は、ノイズ除去効果が低く、気泡の影響により出力が暴れるために、出力を安定させることを目的に、短い時定数が設定されていた場合に限り、時定数を長めに設定しなおす(ここでは3秒。ステップ9)。そして、流量演算をする(ステップS10)。
上記実施形態では、気泡混入の検知を演算回路内でソフトウエアで処理しているが、回路素子として振幅閾値を決めて比較処理することにより、ハードウエアから気泡混入検知信号を生成し、それを演算回路に割り込みで入力しても気泡を検知することが可能である。さらにトラッキングフィルタもハードウエアとして構成してもよい。
本発明になる超音波式渦流量計の一実施例の回路構成を示すブロック図である。 本発明の超音波式渦流量計により被測流体を測定したときの、図1の位相差回路29の出力を示す。 図2に示す帯域A,Bの関係を示す図である。 本発明の図1におけるバンドパスフィルタでの帯域設定のやり方を示す制御フローを示す図である。
符号の説明
10 超音波式渦流量計
12 流路
14 流量計本体
16 渦発生体
17 カルマン渦
20 超音波送信器
22 超音波受信器
24 駆動回路
26 流量演算部
28 受信回路
29 位相比較回路(渦信号生成手段)
32 コンパレート回路
34 演算回路
36 A/D変換部
38 バンドパスフィルタ部(フィルタ部)
40 カウンタ部
42 周波数設定部(設定手段)
44 メモリ(記憶手段)
46 流量積算部(演算手段)
60 A/D変換部
61 気泡検知部

Claims (2)

  1. 被測流体が流れる流路が形成された流量計本体と、
    前記流路内に流れ方向と直交するように設けられた渦発生体と、
    所定周期の送信信号により超音波を送信する超音波送信器と、
    該超音波送信器から送信された超音波を受信する超音波受信器と、
    該超音波受信器で受信された前記渦発生体の下流に発生するカルマン渦の影響を受けた受信信号を用いて、当該カルマン渦の発生により当該受信信号に生ずる位相変調量を示す渦信号を生成する渦信号生成手段と、
    前記渦信号生成手段により生成された渦信号の周期から前記被測流体の流量を演算する演算手段と、
    前記渦信号生成手段と前記演算手段との間に設けられ、所定の周波数帯域の周波数を通過させるフィルタ手段と、
    記憶手段より前記流量計本体の流路の口径に対応する周波数帯域を読出し、この周波数帯域に基づき前記フィルタのカットオフ周波数を設定する設定手段と
    を備えた超音波式渦流量計において、
    さらに、
    前記渦信号の振幅値に基づき、該振幅値と記憶手段に記憶された閾値との比較により気泡の有無を検知する気泡検知部を備え、
    前記気泡検知部による気泡の有無の検知に基づき、
    気泡がないとき、前記フィルタ手段の通過帯域を当該超音波式渦流量計の最小流量から最大流量に相当する周波数とし、
    気泡があるとき、前記フィルタ手段の通過帯域を前記気泡検知部により気泡があると判断される直前の気泡がないと判断されているときに前記渦信号生成手段により生成された渦信号の周波数に基づいて設定することを特徴とする超音波式渦流量計。
  2. 前記気泡検知部により、気泡があることが所定時間継続して検知された場合、前記フィルタ手段の通過帯域を当該超音波式渦流量計の最小流量から最大流量に相当する周波数とすることを特徴とする請求項1に記載の超音波式渦流量計。
JP2007113060A 2007-04-23 2007-04-23 超音波式渦流量計 Active JP5064097B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007113060A JP5064097B2 (ja) 2007-04-23 2007-04-23 超音波式渦流量計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007113060A JP5064097B2 (ja) 2007-04-23 2007-04-23 超音波式渦流量計

Publications (2)

Publication Number Publication Date
JP2008268066A JP2008268066A (ja) 2008-11-06
JP5064097B2 true JP5064097B2 (ja) 2012-10-31

Family

ID=40047757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007113060A Active JP5064097B2 (ja) 2007-04-23 2007-04-23 超音波式渦流量計

Country Status (1)

Country Link
JP (1) JP5064097B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102128648B (zh) * 2011-01-14 2012-10-31 华南理工大学 一种测量发动机燃油的加速度智能传感器的测量方法
CN104729591B (zh) * 2015-01-16 2017-09-29 合肥工业大学 一种基于数据替换的涡街流量计抗低频强瞬态冲击振动的信号处理方法
CN109274299B (zh) * 2018-11-22 2021-08-27 东莞市凯福电子科技有限公司 一种数字步进驱动器振动处理技术及其处理方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3728530B2 (ja) * 1997-05-01 2005-12-21 トキコテクノ株式会社 流量計
JP4146699B2 (ja) * 2002-09-27 2008-09-10 トキコテクノ株式会社 超音波式渦流量計
JP4405167B2 (ja) * 2003-03-24 2010-01-27 トキコテクノ株式会社 超音波式渦流量計

Also Published As

Publication number Publication date
JP2008268066A (ja) 2008-11-06

Similar Documents

Publication Publication Date Title
WO2014068952A1 (ja) 流量計測装置およびその流量算出方法
US8151653B2 (en) Coriolis flowmeter
WO2005083372A1 (ja) パルスドップラ方式と伝搬時間差方式の両方式対応型超音波流量計、同流量計において測定方式を自動選択する方法およびプログラム、同流量計用の電子装置
JP2008528980A (ja) モジュロ2pi残差トラッキングを用いた超音波流量センサ
JP5064097B2 (ja) 超音波式渦流量計
JP5875999B2 (ja) 超音波流量計、流体速度測定方法、および流体速度測定プログラム
JP6652840B2 (ja) 超音波流量計
KR101764870B1 (ko) 초음파 유량계의 신호처리시스템
JP2017116458A (ja) 超音波流量計
JP4405167B2 (ja) 超音波式渦流量計
JP4146699B2 (ja) 超音波式渦流量計
JP2010223855A (ja) 超音波流量計
JP3473592B2 (ja) 流量計測装置
EP3769049B1 (en) Fluid flow speed method and apparatus
JP5043514B2 (ja) 超音波式渦流量計
JP4117635B2 (ja) 渦流量計
JP2001194197A (ja) 超音波流量計
JP4824864B2 (ja) 渦流量計
JP2018128264A (ja) 超音波流量計および流量計測方法
JP6767628B2 (ja) 流量計測装置
JPH0324607B2 (ja)
JP3594931B2 (ja) 誤出力防止装置及び該装置を備えた渦流量計
JP2009174980A (ja) 配管内気泡検出装置
JPH11287680A (ja) 渦流量計
JP4447720B2 (ja) 超音波式渦流量計

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120808

R150 Certificate of patent or registration of utility model

Ref document number: 5064097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250