JP5063374B2 - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP5063374B2
JP5063374B2 JP2008000920A JP2008000920A JP5063374B2 JP 5063374 B2 JP5063374 B2 JP 5063374B2 JP 2008000920 A JP2008000920 A JP 2008000920A JP 2008000920 A JP2008000920 A JP 2008000920A JP 5063374 B2 JP5063374 B2 JP 5063374B2
Authority
JP
Japan
Prior art keywords
oxide film
foil
solid electrolytic
sputtering
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008000920A
Other languages
Japanese (ja)
Other versions
JP2009164360A (en
Inventor
聡 吉満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga Sanyo Industry Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Saga Sanyo Industry Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga Sanyo Industry Co Ltd, Sanyo Electric Co Ltd filed Critical Saga Sanyo Industry Co Ltd
Priority to JP2008000920A priority Critical patent/JP5063374B2/en
Publication of JP2009164360A publication Critical patent/JP2009164360A/en
Application granted granted Critical
Publication of JP5063374B2 publication Critical patent/JP5063374B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、固体電解コンデンサLC(漏れ電流)不良の低減に関するものである。
The present invention, LC (leakage current) of the solid electrolytic capacitor relates the reduction of defects.

従来コンデンサは、図2、図3のように、それぞれ電気的引出しとしてリードタブ端子101に接続された陽極電極箔13と陰極電極箔14とをセパレータ15を介して巻回し、モノマーと酸化剤の混合用液または別々の溶液にそれぞれ浸漬して、前記陽極電極箔13と前記陰極電極箔14の間に固体電解質層(薄いため図示せず)を充填したコンデンサ素子100を形成する。   As shown in FIGS. 2 and 3, the conventional capacitor is formed by winding the anode electrode foil 13 and the cathode electrode foil 14 connected to the lead tab terminal 101 as an electrical lead through a separator 15 to mix the monomer and the oxidizing agent. Capacitor element 100 in which a solid electrolyte layer (not shown because it is thin) is filled between anode electrode foil 13 and cathode electrode foil 14 is immersed in a working solution or a separate solution.

その後、該コンデンサ素子100をアルミニウムケース20に入れ、ゴム21などで封止する。   Thereafter, the capacitor element 100 is put in the aluminum case 20 and sealed with rubber 21 or the like.

ここで、図3のようにリードタブ端子101は、丸棒部8と該丸棒部8を加工して扁平形状とした平坦部9と、該丸棒部8に接続されるリード線10からなり、丸棒部8及び平坦部9は陽極酸化され、平坦部9が陽極箔13および陰極箔14に接続されている。該丸棒部8及び平坦部9は、陽極酸化して陽極酸化膜を形成し、ショートの発生や、LC不良の低減が行われていた。   Here, as shown in FIG. 3, the lead tab terminal 101 includes a round bar portion 8, a flat portion 9 formed by processing the round bar portion 8 into a flat shape, and a lead wire 10 connected to the round bar portion 8. The round bar portion 8 and the flat portion 9 are anodized, and the flat portion 9 is connected to the anode foil 13 and the cathode foil 14. The round bar portion 8 and the flat portion 9 are anodized to form an anodic oxide film, and occurrence of short circuits and reduction of LC defects have been performed.

近年、巻回型固体電解コンデンサでは小型化および大容量化という市場の要求があり、例えば、20μmから150μm程度の電極箔(陽極箔及び陰極箔)を用いて巻回数を増加し、その電極箔に高密度エッチング処理を施すことにより実効表面積を拡大したり、電極箔に高い引張応力をかけながら巻回することにより、高密度のコンデンサ素子を得ることが行われている。
特開2001-284174号公報
In recent years, wound type solid electrolytic capacitors have a market demand for miniaturization and large capacity. For example, the number of windings is increased by using electrode foils (anode foil and cathode foil) of about 20 μm to 150 μm, and the electrode foils are increased. A high-density capacitor element is obtained by enlarging the effective surface area by performing high-density etching treatment on the electrode, or winding the electrode foil while applying high tensile stress.
JP 2001-284174 A

上記リードタブ端子101の丸棒部8及び平坦部9に陽極酸化で陽極酸化膜が形成されているが、付着強度があまり強くないため、上記のように電極箔に高い引張応力をかけながら巻回することにより、陽極酸化膜にクラック、剥がれなどが発生し、短絡の発生、LC(漏れ電流)不良の発生など問題があった。   Anodized films are formed by anodic oxidation on the round bar portion 8 and the flat portion 9 of the lead tab terminal 101. However, since the adhesion strength is not so strong, winding is performed while applying high tensile stress to the electrode foil as described above. As a result, cracks and peeling occurred in the anodic oxide film, and there were problems such as occurrence of short circuit and LC (leakage current) failure.

発明は、リードタブ端子がそれぞれ接続された陽極箔と陰極箔とを巻回したコンデンサ素子に、固体電解質を含浸させた固体電解コンデンサにおいて、リードタブ端子は、丸棒部と前記陽極箔又は前記陰極箔に接続する平坦部と、該丸棒部に接続されリード線とを備え、平坦部の表面には、スパッタリングを用いて酸化アルミニウム皮膜又は酸化チタン皮膜が形成されてることを特徴とする。
The present invention relates to a capacitor element lead tab terminal is turned respectively connected anode foil and winding a cathode foil, in the solid electrolytic capacitor impregnated with a solid electrolyte, lead tab terminal, the round bars unit anode foil or the cathode a flat portion connected to the foil, and a lead wire connected to the round rod portion, on the surface of the flat portion, and characterized that you have an aluminum oxide film or a titanium oxide film is formed by sputtering To do.

好ましくは、前記スパッタリングは、反応性スパッタリングであることを特徴とする。   Preferably, the sputtering is reactive sputtering.

本発明によれば、陽極酸化で形成される陽極酸化膜より強固に成膜されるため、膜剥がれが発生しにくくなり、短絡の発生、LC(漏れ電流)を減少させることができる。   According to the present invention, the film is formed more firmly than the anodic oxide film formed by anodic oxidation, so that film peeling hardly occurs, and occurrence of short circuit and LC (leakage current) can be reduced.

また、IVa族、Va族、VIa族よりなる群から選択される少なくとも1種の金属の酸化皮膜であるため、アルミニウムより耐磨耗性が良好で、硬度も硬いため膜剥がれなど起きにくくなり、短絡の発生、LC(漏れ電流)を減少させることができる。   In addition, since it is an oxide film of at least one metal selected from the group consisting of IVa group, Va group, and VIa group, it has better wear resistance than aluminum, and its hardness is harder, so film peeling and the like hardly occur. Short circuit occurrence and LC (leakage current) can be reduced.

また、金属酸化皮膜を反応性スパッタリングで成膜することにより、多数のスパッタ用ターゲットを用意しなくても、酸素濃度を適宜変更することにより、用途にあった金属酸化皮膜を容易に形成できる。   Further, by forming the metal oxide film by reactive sputtering, a metal oxide film suitable for the application can be easily formed by appropriately changing the oxygen concentration without preparing a large number of sputtering targets.

以下、本発明の好ましい実施形態について、図面を参照しながら説明する。
なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
(実施例1)
本発明実施例1に係るコンデンサの構成であるリードタブ端子は、図3(a)斜視図、(b)矢印方向から見た図、(c)平坦部の拡大図、(d)(c)とは違う平坦部の拡大図に示すように、丸棒部8と該丸棒部8を一部残して扁平形状に加工した平坦部9と、該丸棒部8に接続されたリード線10とで構成されている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
Example 1
3A is a perspective view, FIG. 3B is a view seen from the direction of the arrow, FIG. 3C is an enlarged view of a flat portion, and FIGS. As shown in an enlarged view of a different flat part, a round bar part 8, a flat part 9 processed into a flat shape leaving a part of the round bar part 8, and a lead wire 10 connected to the round bar part 8, It consists of

次に、前記平坦部9へのアルミニウム酸化皮膜の形成には、図1に示すようなマグネトロンスパッタリングカソード6、ヒーター5、矢印の方向に回転する基材回転機構等を備えた真空成膜装置1(株式会社神戸製鋼所製 AIP−S40複合機)を用いて行った。
スパッタリングカソード6にアルミニウム金属ターゲットを装着した後、タブ端子(丸棒部8と平坦部9)を真空成膜装置1内の回転テーブル3上に設けた遊星回転治具4に前記丸棒部8(基材)まで差し込んで固定して、真空状態となるまで排気した後、真空層内をアルゴンガスと酸素ガス含有雰囲気に置換後、上記スパッタリングカソード6に与える放電電力は、約2kWとし、アルゴンガス流量は120sccmで一定とし、酸素ガス流量および放電電圧を適宜調節した。即ち成膜中は、所定の放電状態とすべく、アルミニウム原子の蒸発するターゲット面から約20mm位置のガス組成を、プラズマ発光分光法でアルミニウムと酸素の発光強度を目安として測定し、その結果をもとに放電電圧を調節し、パルスDC反応スパッタリング法で行った。タブ端子の平坦部9におけるアルミニウム酸化皮膜の膜厚は、蛍光X線分析により5.3μmとなった。ここで、図3には、アルミニウム酸化皮膜は薄いため図示していない。
Next, in order to form the aluminum oxide film on the flat portion 9, a vacuum film forming apparatus 1 having a magnetron sputtering cathode 6, a heater 5, a substrate rotating mechanism that rotates in the direction of the arrow as shown in FIG. (AIP-S40 multifunction machine manufactured by Kobe Steel, Ltd.) was used.
After mounting the aluminum metal target on the sputtering cathode 6, tab terminals (round bar portion 8 and flat portion 9) are attached to the planetary rotating jig 4 provided on the rotary table 3 in the vacuum film forming apparatus 1. (Substrate) is inserted and fixed, exhausted to a vacuum state, the inside of the vacuum layer is replaced with an atmosphere containing argon gas and oxygen gas, the discharge power applied to the sputtering cathode 6 is about 2 kW, argon The gas flow rate was fixed at 120 sccm, and the oxygen gas flow rate and discharge voltage were adjusted as appropriate. In other words, during film formation, the gas composition at a position of about 20 mm from the target surface where aluminum atoms evaporate was measured with plasma emission spectroscopy using the emission intensity of aluminum and oxygen as a guide, and the result was obtained. The discharge voltage was adjusted based on the pulse DC reaction sputtering method. The thickness of the aluminum oxide film on the flat portion 9 of the tab terminal was 5.3 μm by fluorescent X-ray analysis. In FIG. 3, the aluminum oxide film is not shown because it is thin.

ここで、スパッタリングを断続的に成膜しても同様な膜が作製できた。この場合は、1回あたりの成膜膜厚や成膜時間等は、上記回転テーブル3や遊星回転治具4の回転数や放電電力を制御し調節した。   Here, even if sputtering was intermittently formed, a similar film could be produced. In this case, the film thickness and the film formation time per one time were adjusted by controlling the rotation speed and discharge power of the rotary table 3 and the planetary rotating jig 4.

ここで、丸棒部8及び平坦部10を構成する材料としては、アルミニウムを使用したが、他の金属材料でも良い。リード線10は、鉄線、銅線、または鉄線に銅を被覆したものなどが使用でき、さらに、半田付けを容易にするため表面に半田メッキを施している。   Here, although aluminum was used as a material which comprises the round bar part 8 and the flat part 10, another metal material may be used. The lead wire 10 can be an iron wire, a copper wire, or an iron wire coated with copper, and the surface thereof is solder-plated for easy soldering.

次に、図2にコンデンサ素子100の斜視図をしめす。図4は固体電解コンデサの断面図である。   Next, a perspective view of the capacitor element 100 is shown in FIG. FIG. 4 is a cross-sectional view of a solid electrolytic capacitor.

図2に示すように、陽極箔13となるアルミニウム箔をエッチング処理した後、0.01〜2wt%のリン酸水溶液又はアジピン酸水溶液などで電解化成処理し、表面に誘電体皮膜を形成し、陽極箔13とした。ここで誘電体皮膜は、薄いため図示していない。
次に、得られた陽極箔13と陰極箔14とを対向させ、陽極箔13と陰極箔14との間にマニラ麻を主成分とする電解紙からなるセパレータ15を介して円筒状に巻取り、巻取りテープ16で止めてコンデンサ素子100を形成した。
ここで、セパレータ15には、PET(ポリエチレンテレフタレート)、ビニロン、アラミド繊維を主成分とする不織布等を用いることもできる。
As shown in FIG. 2, after the aluminum foil to be the anode foil 13 is etched, it is subjected to an electrolytic conversion treatment with a phosphoric acid aqueous solution or an adipic acid aqueous solution of 0.01 to 2 wt% to form a dielectric film on the surface, Anode foil 13 was obtained. Here, the dielectric film is not shown because it is thin.
Next, the obtained anode foil 13 and the cathode foil 14 are opposed to each other, and wound between the anode foil 13 and the cathode foil 14 in a cylindrical shape via a separator 15 made of electrolytic paper mainly composed of Manila hemp, The capacitor element 100 was formed by stopping with the winding tape 16.
Here, the separator 15 may be a nonwoven fabric mainly composed of PET (polyethylene terephthalate), vinylon, or aramid fiber.

次に、コンデンサ素子100に、重合性モノマーとして3,4-エチレンジオキシチオフェンと、酸化剤溶液として50wt%のp-トルエンスルホン酸第二鉄エタノール溶液を含浸して、280℃に加熱して重合することにより、前記コンデンサ素子100の陽極及び陰極の両電極間に導電性高分子層を形成した。ここで、二酸化マンガン等の導電性無機材料、或いはTCNQ錯塩などでも同様な効果を発揮するが、より好ましくは、導電性高分子の伝導度が大きいため有利である。
次に、図3に示すように、コンデンサ素子100に封止用ゴム21を挿入し、寸法φ8×11.5Lのアルミケース20に収納固定後、アルミケース20の開口部を横絞りとカールすることで封止を行い、その後、エージング処理を行う。
次に、コンデンサのカール面にプラスチック製の座板22を挿入し、コンデンサのリード線18(陽極用)、19(陰極用)を電極端子としてプレス加工・折り曲げを行い、固体電解コンデンサとして完成させた。
(実施例2)
実施例2では、リードタブ端子100の形成において、真空装置1のスパッタリングカソード6に、チタン金属ターゲットを装着し、スパッタリングカソード6に与える放電電力は、約3kWとし、アルゴンガス流量は130sccmで一定とし、酸素ガス流量および放電電圧を適宜調節した以外は実施例1と同様に作製した。
Next, the capacitor element 100 was impregnated with 3,4-ethylenedioxythiophene as a polymerizable monomer and 50 wt% p-toluenesulfonic acid ferric ethanol solution as an oxidant solution, and heated to 280 ° C. By polymerizing, a conductive polymer layer was formed between the anode and cathode electrodes of the capacitor element 100. Here, a conductive inorganic material such as manganese dioxide or a TCNQ complex salt exhibits the same effect, but more preferably, it is advantageous because the conductivity of the conductive polymer is large.
Next, as shown in FIG. 3, a sealing rubber 21 is inserted into the capacitor element 100, and is stored and fixed in an aluminum case 20 having a size φ8 × 11.5L, and then the opening of the aluminum case 20 is curled with a horizontal diaphragm. Then, sealing is performed, and then an aging process is performed.
Next, a plastic seat 22 is inserted into the curled surface of the capacitor, and the lead wires 18 (for anode) and 19 (for cathode) of the capacitor are pressed and bent as electrode terminals to complete a solid electrolytic capacitor. It was.
(Example 2)
In Example 2, in the formation of the lead tab terminal 100, a titanium metal target is mounted on the sputtering cathode 6 of the vacuum apparatus 1, the discharge power applied to the sputtering cathode 6 is about 3 kW, the argon gas flow rate is constant at 130 sccm, It was produced in the same manner as in Example 1 except that the oxygen gas flow rate and the discharge voltage were appropriately adjusted.

上記の結果得られた扁平加工部におけるチタン酸化皮膜の膜厚は、蛍光X線分析により4.2μmとなった。
(比較例1)
比較例1では、リードタブ端子の酸化皮膜の形成は、2.0%アジピン酸アンモニウム水溶液に平坦部9のみを浸漬して、400V定電圧にて昇圧後、2時間の陽極酸化を行った。該平坦部9のアルミニウム酸化皮膜の膜厚は、蛍光X線分析により5.7μmとなった。
The thickness of the titanium oxide film in the flattened portion obtained as a result of the above was 4.2 μm by fluorescent X-ray analysis.
(Comparative Example 1)
In Comparative Example 1, the oxide film of the lead tab terminal was formed by immersing only the flat part 9 in a 2.0% ammonium adipate aqueous solution and increasing the voltage at a constant voltage of 400 V, followed by anodic oxidation for 2 hours. The film thickness of the aluminum oxide film on the flat portion 9 was 5.7 μm by fluorescent X-ray analysis.

リードタブ端子の酸化皮膜を陽極酸化によって形成したこと以外は、実施例1と同様に製作した。   The lead tab terminal was manufactured in the same manner as in Example 1 except that the oxide film was formed by anodic oxidation.

Figure 0005063374
Figure 0005063374

表1に実施例1,2及び比較例1で試作したコンデンサのリードタブ端子の酸化皮膜形成方法、金属酸化皮膜の種類、金属酸化膜厚、LC(漏れ電流)及びLC(漏れ電流)歩留まりを示す。(試作数は300個、測定値はその平均を示す)
試作機種は、定格電圧2.5V、定格容量180pF(Φ6.3mm、長さ6.0mm)
漏れ電流測定は、2.5V印加して60秒後のLC(漏れ電流)を測定した。
LC(漏れ電流)歩留まりは、規格値として300μA以下を合格とした。
Table 1 shows the lead tab terminal oxide film formation method, metal oxide film thickness, metal oxide film thickness, LC (leakage current), and LC (leakage current) yield of capacitors manufactured in Examples 1 and 2 and Comparative Example 1. . (The number of prototypes is 300, and the measured value is the average)
The prototype is rated voltage 2.5V, rated capacity 180pF (Φ6.3mm, length 6.0mm)
In the leakage current measurement, LC (leakage current) 60 seconds after applying 2.5 V was measured.
As the LC (leakage current) yield, a standard value of 300 μA or less was accepted.

表1の結果から、実施例1及び2は、比較例1と比べて、LC(漏れ電流)が約20%〜30%低く抑えられた。   From the results of Table 1, in Examples 1 and 2, LC (leakage current) was suppressed to about 20% to 30% lower than that in Comparative Example 1.

また、金属酸化皮膜の膜厚に関して、酸化アルミニウム膜5.3μmに対して、酸化チタン膜4.2μmと約1μmも薄いのに、ほぼ同等のLC(漏れ電流)及び歩留りを示している。これは、IVa、Va、VIa族の耐磨耗性、耐熱性、硬度などがAlに比べて大きいことによる。   Further, regarding the film thickness of the metal oxide film, although the titanium oxide film is 4.2 μm and about 1 μm thinner than the aluminum oxide film 5.3 μm, it shows almost the same LC (leakage current) and yield. This is because the IVa, Va, and VIa groups have higher wear resistance, heat resistance, hardness and the like than Al.

また、反応性スパッタリングでありガス濃度を変更することで、さらなる良好な膜が容易に形成できる。   Moreover, it is reactive sputtering, and a further favorable film | membrane can be easily formed by changing gas concentration.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲 によって示され、特許請求の範囲と均等の意味および範囲ないでのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and is intended to include all modifications without equivalent meaning and scope to the scope of claims for patent.

真空成膜装置の概略図Schematic diagram of vacuum deposition system コンデンサのコンデンサ素子図である。It is a capacitor element figure of a capacitor. 本発明に係るリードタブ端子の(a)斜視図、(b)矢印方向からみた平面図、(c)平坦部の扁平形状の拡大図である。It is (a) perspective view of the lead tab terminal concerning this invention, (b) The top view seen from the arrow direction, (c) The enlarged view of the flat shape of a flat part. 固体電解コンデンサの断面図である。It is sectional drawing of a solid electrolytic capacitor.

符号の説明Explanation of symbols

1 真空成膜装置
2 基材
3 回転テーブル
4 遊星回転治具
5 ヒーター
6 スパッタリングカソード
8 丸棒部
9 平坦部
10 リード線
100 コンデンサ素子
12 コンデンサ素子本体
13 陽極箔
14 陰極箔
15 セパレータ
16 巻止めテープ
18 陽極リード線
19 陰極リード線
DESCRIPTION OF SYMBOLS 1 Vacuum film-forming apparatus 2 Base material 3 Rotary table 4 Planetary rotating jig 5 Heater 6 Sputtering cathode 8 Round bar part 9 Flat part 10 Lead wire 100 Capacitor element 12 Capacitor element body 13 Anode foil 14 Cathode foil 15 Separator 16 Winding tape 18 Anode lead wire 19 Cathode lead wire

Claims (2)

リードタブ端子がそれぞれ接続された陽極箔と陰極箔とを巻回したコンデンサ素子に、固体電解質を含浸させた固体電解コンデンサにおいて、
前記リードタブ端子は、丸棒部と前記陽極箔及び前記陰極箔に接続する平坦部と、該丸棒部に接続されリード線とを備え、
前記平坦部の表面には、スパッタリングを用いて酸化アルミニウム皮膜又は酸化チタン皮膜が形成されてることを特徴とする固体電解コンデンサ。
In a solid electrolytic capacitor in which a solid electrolyte is impregnated in a capacitor element in which an anode foil and a cathode foil each having a lead tab terminal connected thereto are wound,
The lead tab terminal, e Bei a flat portion connected to the anode foil and the cathode foil and the round bar portion, and a lead wire connected to the round rod portion,
Wherein the surface of the flat portion, the solid electrolytic capacitor characterized that you have been aluminum oxide film or titanium oxide film formed by the sputtering.
前記スパッタリングは、反応性スパッタリングであることを特徴とする請求項1に記載の固体電解コンデンサ。
The sputtering is solid electrolytic capacitor according to claim 1, characterized in that the reactive sputtering.
JP2008000920A 2008-01-08 2008-01-08 Solid electrolytic capacitor Expired - Fee Related JP5063374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008000920A JP5063374B2 (en) 2008-01-08 2008-01-08 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008000920A JP5063374B2 (en) 2008-01-08 2008-01-08 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2009164360A JP2009164360A (en) 2009-07-23
JP5063374B2 true JP5063374B2 (en) 2012-10-31

Family

ID=40966635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008000920A Expired - Fee Related JP5063374B2 (en) 2008-01-08 2008-01-08 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5063374B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3282462A4 (en) 2015-04-09 2019-01-09 Nesscap Co., Ltd. Electric double-layer device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3585193B2 (en) * 1995-12-06 2004-11-04 ニチコン株式会社 Tab terminal for electrolytic capacitor
JP2001284174A (en) * 2000-03-30 2001-10-12 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacturing method
JP2007273912A (en) * 2006-03-31 2007-10-18 Nippon Chemicon Corp Electrolytic capacitor

Also Published As

Publication number Publication date
JP2009164360A (en) 2009-07-23

Similar Documents

Publication Publication Date Title
JP2010067966A (en) Substrate for use in wet capacitor
JP4614269B2 (en) Solid electrolytic capacitor
JP2015073015A (en) Electrode foil, electrolytic capacitor and method of manufacturing electrode foil
JP5063374B2 (en) Solid electrolytic capacitor
JP2010278360A (en) Solid electrolytic capacitor and method of manufacturing the same
JP2001057319A (en) Solid electolytic capacitor, anode element thereof, manufacturing method and manufacturing device therefor
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JP2002246271A (en) Method and system for producing electrolytic capacitor
JP2811648B2 (en) Method for manufacturing solid electrolytic capacitor
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor
JP2005191421A (en) Process for producing electrolytic capacitor
JP2640866B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0536575A (en) Solid electrolytic capacitor and its manufacture
JP2006108192A (en) Solid electrolytic capacitor
JP4609045B2 (en) Conductive tape for power supply, method for producing the same, and method for producing a solid electrolytic capacitor using the same
JP5273736B2 (en) Manufacturing method of solid electrolytic capacitor
JP2010267778A (en) Niobium solid electrolytic capacitor and method of manufacturing the same
JP4241495B2 (en) Method and apparatus for producing conductive polymer
JP2009194266A (en) Solid electrolytic capacitor, and method of manufacturing the same
JP4947888B2 (en) Manufacturing method of solid electrolytic capacitor
JPH05152169A (en) Manufacture of solid electrolytic capacitor
WO2011145372A1 (en) Method of manufacturing capacitor
JP4942837B2 (en) Solid electrolytic capacitor
JP4484084B2 (en) Manufacturing method of solid electrolytic capacitor
JP5502563B2 (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101227

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R151 Written notification of patent or utility model registration

Ref document number: 5063374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees