JP5061055B2 - 温度測定装置,温度測定方法 - Google Patents

温度測定装置,温度測定方法 Download PDF

Info

Publication number
JP5061055B2
JP5061055B2 JP2008186854A JP2008186854A JP5061055B2 JP 5061055 B2 JP5061055 B2 JP 5061055B2 JP 2008186854 A JP2008186854 A JP 2008186854A JP 2008186854 A JP2008186854 A JP 2008186854A JP 5061055 B2 JP5061055 B2 JP 5061055B2
Authority
JP
Japan
Prior art keywords
ultrasonic
temperature
measurement
detection
feature amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008186854A
Other languages
English (en)
Other versions
JP2010025724A (ja
Inventor
浩司 井上
弘行 高松
吉人 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008186854A priority Critical patent/JP5061055B2/ja
Publication of JP2010025724A publication Critical patent/JP2010025724A/ja
Application granted granted Critical
Publication of JP5061055B2 publication Critical patent/JP5061055B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は,支持台により支持された半導体ウェハ等の平板状の処理対象物の温度を超音波を利用して測定する温度測定装置及びその方法に関するものである。
半導体デバイスの製造過程では,半導体ウェハ(主としてシリコンウェハ)に対し,成膜処理,エッチング処理,熱処理等の各種の処理が施される。その処理の速度や結果(シリコンウェハの結晶性等)は,その処理プロセスにおける半導体ウェハの温度に大きく左右される。このため,半導体デバイスの製造過程において,歩留まり向上や製造効率向上の面から,処理中の半導体ウェハの温度を高精度で測定することが重要となる。
一般に,半導体デバイスの製造過程では,半導体ウェハがその下面においてヒータが内蔵されたウェハステージにより支持され,そのヒータにより温度が調節された半導体ウェハに対して各種の処理が施される。
ここで,半導体ウェハとウェハステージとの間に熱抵抗が存在することから,ウェハステージの温度とそれに支持された半導体ウェハとは必ずしも温度が一致しない。そのため,処理中の半導体ウェハの温度を直接測定することが必要である。
また,温度測定の手間の軽減や半導体ウェハの汚染防止のため,処理中の半導体ウェハの温度を,熱電対等の硬い突起物を接触させることなく測定することが望ましい。
例えば,特許文献1には,放射温度計により,プロセスチャンバーの上部に設けられた窓を通して,そのプロセスチャンバーに収容された半導体ウェハの温度を非接触で測定するにあたり,半導体ウェハの加工前の測定値によって放射率を校正することが示されている。
また,特許文献2には,半導体ウェハの下面(ウェハステージにより支持される面)にダイヤフラムを密着させ,そのダイヤフラムの温度を測定することによって半導体ウェハの温度を間接的に測定する技術が示されている。
特開2003−106902号公報 特開2003−214957号公報
しかしながら,物質の赤外線放射率は,その表面状態(表面粗さ等)によって大きく異なる。そのため,特許文献1に示されるように放射温度計により半導体ウェハの温度を測定した場合,半導体ウェハの表面コーティングやエッチングの状態によって測定値が変化する。さらに,放射温度計は,測定部以外の周辺からの放射や反射の影響を受けやすい。これらのことから,放射温度計による半導体ウェハの測定は,安定かつ高精度での温度測定が難しいという問題点があった。特に,半導体ウェハの素材として採用されることが多いシリコンは,その赤外線放射率が非常に低いため,放射温度計による半導体ウェハの温度測定は,精度面で特に不利となる。
また,特許文献2に示されるように,半導体ウェハに接触させた物の温度測定によって間接的に半導体ウェハの温度を測定した場合,半導体ウェハとそれに対する接触物(前記ダイヤフラム等)との間の熱抵抗の存在により,やはり高精度での温度測定が難しいという問題点があった。
また,その他の温度測定手法として,半導体ウェハの反射率やラマン光の測定よって温度測定を行うことが考えられるが,前者については温度に対する反射率変化が微小であること,後者についてはラマン光強度そのものが微弱であることに起因して,安定かつ高精度の温度測定が難しいという問題点がある。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,各種の処理が施される半導体ウェハ等の平板状の処理対象物の温度を,温度計等の硬い突起物の接触による汚染を回避しつつ高精度で測定することができる温度測定装置及びその方法を提供することにある。
上記目的を達成するために本発明に係る温度測定装置は,平板状の処理対象物(半導体ウェハがその典型例)をその一の面において支持する支持台を備え,その支持台により支持された前記処理対象物の温度を測定するものであり,以下の(1−1)〜(1−6)に示す各構成要素を備えるものである。
(1−1)前記処理対象物と材質が同じで厚みが既知の参照部材に対して超音波を出力する参照用超音波出力手段。
(1−2)前記参照部材に反射した反射超音波を検出する参照用超音波検出手段。
(1−3)前記処理対象物に反射した反射超音波を検出する測定用超音波検出手段。
(1−4)前記参照用超音波検出手段及び前記測定用超音波検出手段それぞれの検出信号から,前記参照部材及び前記測定対象物それぞれの内部での超音波の伝播速度に応じて定まる特徴量を検出する特徴量検出手段。
(1−5)前記参照部材及び前記処理対象物が同等の温度環境内に存在する定常状態における,前記参照用超音波検出手段及び前記測定用超音波検出手段それぞれの検出信号から検出された前記特徴量に基づいて,前記処理対象物の厚みに関する調整値を算出する調整値算出手段。
(1−6)前記定常状態以外における前記測定用超音波検出手段の検出信号から検出された前記特徴量と前記調整値とに基づいて前記処理対象物の温度を算出する温度算出手段。
なお,前記特徴量としては,前記参照部材内及び前記処理対象物内で伝播する超音波の伝播時間,共振周波数又は位相のいずれかが考えられる。
図7に示すように,物質中を伝播する超音波の速度(即ち,音速)は,その物質の温度と高い相関がある。例えば,半導体ウェハに採用されることが多いシリコンが超音波(縦波)の伝送媒体である場合,常温での超音波の伝播速度(音速)が8433[m/s](縦波)であるのに対し,シリコンの温度変化に応じて−0.4[(m/s)/℃]の温度係数をもって超音波の伝播速度が変化する。このため,前記処理対象物に超音波を照射し,その処理対象物中における超音波の伝播速度(音速)を測定できれば,その速度に対応する処理対象物の温度を測定(算出)することができる。
一方,超音波を前記処理対象物に照射した場合,その超音波は前記処理対象物における超音波照射面とその反対側の面との両方に反射するため,その反射波を検出すれば,その検出信号と前記処理対象物の厚み(超音波照射面とその反対側の面との間隔)とに基づいて,前記処理対象物内での超音波の伝播速度(音速)を算出することができる。しかも,超音波による温度測定は,前記処理対象物に汚染を生じさせない。
しかしながら,半導体ウェハの厚みは,設計値(目標値)に対して±3.5%程度の範囲で誤差(ばらつき)を有していることがある。この厚みの誤差は,超音波を用いた温度測定の誤差となる。例えば,半導体ウェハ(前記処理対象物)の厚みが,700μmの設計値に対して10μmの誤差を有する場合,超音波の伝播速度の計算値に120m/s程度の誤差が生じ,それを温度に換算すると300℃の測定誤差となってしまい,そのような測定誤差は許容されない。
一方,本発明に係る温度測定装置は,前記処理対象物と材質が同じで厚みが既知の前記参照部材と前記処理対象物とについて,同等の温度環境下(前記定常状態)で超音波測定を行うことができる。
そのため,後述するように,前記定常状態において前記参照部材及び前記処理対象物それぞれについて得られる前記特徴量の差異は,両者の厚みの差異に起因して生じる。即ち,前記定常状態において前記参照部材及び前記処理対象物それぞれについて得られる前記特徴量と,前記参照部材の既知の厚みとに基づいて,前記処理対象物の厚みの誤差(未知)を修正するための前記調整値を算出することができる。
従って,前記温度算出手段により,前記定常状態以外(非定常状態)における前記測定用超音波検出手段の検出信号についての前記特徴量と,前記調整値とに基づいて,前記処理対処物の厚み誤差に起因する温度の誤差が修正された前記処理対象物の温度を高精度で算出することができる。
また,本発明に係る温度測定装置が,さらに,次の(1−7)及び(1−8)に示される各構成要素を備えれば好適である。
(1−7)前記参照部材の温度を検出する参照用温度検出手段。
(1−8)前記定常状態における,前記参照用超音波検出手段の検出信号から検出された前記特徴量と前記参照用温度検出手段の検出温度とに基づいて,前記処理対象物の温度と前記処理対象物内での超音波の伝播速度との対応関係を表す温度・速度対応情報を調整する温度・速度対応情報調整手段。
この場合,前記温度算出手段が,前記特徴量と前記調整値と前記温度・速度対応情報調整手段による調整後の前記温度・速度対応情報とに基づいて前記処理対象物の温度を算出する。
後述するように,前記定常状態における前記参照部材について得られる前記特徴量とその厚み(既知)とに基づいて,前記参照部材内での超音波伝播速度を算出できる。さらに,その算出結果を図7に示される温度と超音波伝播速度との対応関係(前記温度・速度対応情報)に適用することにより,前記参照部材の温度を算出できる。従って,前記参照部材につての計算上の温度と実測温度とに差異がある場合,その温度の差異は,前記参照部材における温度と超音波伝播速度との対応関係(前記温度・速度対応情報)が包含する誤差であるといえる。
従って,前記温度・速度対応情報調整手段により,前記参照部材と同じ材質の前記処理対象物についての前記温度・速度対応情報が,それに包含される誤差がなくなるように調整される。その結果,より高精度での温度測定が可能となる。
また,本発明に係る温度測定装置が,さらに,次の(1−9)に示される構成要素を備えればなお好適である。
(1−9)前記測定用超音波出力手段の超音波出力端及び前記測定用超音波検出手段の超音波検出端と前記処理対象物との間に位置する前記支持台の部分と構造及び材質が同じであって,前記参照用超音波出力手段の超音波出力端及び前記参照用超音波検出手段の超音波検出端と前記参照部材との間に位置する参照用超音波伝播部。
これにより,前記参照部材と前記処理対象物との間で,超音波の伝播経路の条件が統一され,反射超音波の検出信号に関する各処理の内容を統一することができる。その結果,不測の外乱要因の影響を受けずに高精度での温度測定が可能となる。
なお,前記参照用温度検出手段としては,前記参照部材に接触してその温度を検出する接触式の温度検出手段(熱電対やサーミスタ等)が考えられる。もちろん,高精度での温度測定が可能であれば,放射温度計等の非接触式の温度検出手段が採用されてもよい。
また,本発明に係る温度測定装置が,次の(1−10)〜(1−12)に示される構成を有していることも考えられる。
(1−10)前記参照用超音波出力手段及び前記測定用超音波出力手段が,それぞれ個別の超音波振動子を有するとともに,それら超音波振動子に交流信号を供給する1つの交流信号供給部を共有する。
(1−11)前記参照用超音波検出手段及び前記測定用超音波検出手段が,それぞれ個別の超音波振動子を有するとともに,それら超音波振動子が出力する反射超音波の検出信号が入力される1つの信号入力部を共有する。
(1−12)当該温度測定装置が,前記参照用超音波出力手段及び前記測定用超音波出力手段それぞれの前記超音波振動子と前記交流信号供給部との間の信号経路,及び前記参照用超音波検出手段及び前記測定用超音波検出手段それぞれの前記超音波振動子と前記信号入力部との間の信号経路を順次切り替える信号経路切替手段を有する。
この場合,前記特徴量検出手段が,前記信号入力部を通じて得られる検出信号を用いて前記特徴量を検出する。
また,本発明に係る温度測定装置が,さらに次の(1−13)に示される構成を有していることも考えられる。
(1−13)前記測定用超音波出力手段及び前記測定用超音波検出手段それぞれが,前記支持台における複数の測定位置ごとに設けられた複数の超音波振動子を有する。
この場合,前記信号経路切替手段が,前記測定用超音波出力手段における前記複数の超音波振動子と前記交流信号供給部との間の信号経路,及び前記測定用超音波検出手段における前記複数の超音波振動子と前記信号入力部との間の信号経路についても切り替える。
また,前記特徴量検出手段が,前記処理対象物における前記複数の測定位置それぞれについて,前記信号入力部を通じて得られる検出信号を用いて前記特徴量を検出する。
さらに,前記温度算出手段が,前記処理対象物における前記複数の測定位置それぞれについて前記処理対象物の温度を算出する。
以上の構成により,比較的少ない構成機器によって本発明に係る温度測定装置を実現できる。
また,本発明に係る温度測定装置が,さらに,次の(1−14)に示される構成要素を備えることが考えられる。
(1−14)前記定常状態において前記参照部材を収容してその収容部の温度を前記処理対象物の収容室内の温度と同じ温度に調節する参照部材用恒温槽。
これにより,前記参照部材の温度を安定化することができ,その結果,前記調整量を高精度化できる。
本発明における前記特徴量検出手段としては,例えば,以下に示す4つの例が考えられる。
まず,第1の例は,前記参照用超音波出力手段及び前記測定用超音波出力手段がパルス状の超音波を出力場合の例である。
この場合,前記特徴量検出手段が,前記参照用超音波検出手段及び前記測定用超音波検出手段それぞれの検出信号に基づいて,前記参照部材及び前記処理対象物それぞれにおける表裏各面で反射した超音波の前記参照用超音波検出手段及び前記測定用超音波検出手段それぞれへの到達時点の差から前記伝播時間を検出する。
一般に,超音波の伝播速度を既知とし,反射超音波の検出信号におけるピーク間の時間間隔から測定対象物の厚みを測定することが行われる。これに対し,前記第1の例では,物体(前記処理対象物や前記参照部材)の厚みと,反射超音波の検出信号におけるピーク間の時間間隔とに基づいて,その物体内での超音波の伝播速度(音速)に対応する温度を算出する。
また,第2の例は,本発明に係る温度測定装置が,前記参照用超音波出力手段及び前記測定用超音波出力手段それぞれにより出力される超音波の周波数掃引を行う周波数掃引手段を具備する場合の例である。
この場合,前記特徴量検出手段が,前記周波数掃引手段による超音波の掃引周波数と超音波の周波数掃引に応じて変化する前記参照用超音波検出手段及び前記測定用超音波検出手段それぞれの検出信号の強度とに基づいて,前記共振周波数を前記特徴量として検出する。
物体の表面に超音波を照射した場合,その物体内において超音波照射面とその反対側の面との間で超音波が多重反射する。その際,超音波の周波数,その伝播速度及び物体の厚みの関係が所定の共振条件を満たすと大きな超音波振動が発生し,反射超音波の検出信号の強度(反射超音波の強度)が相対的に大きくなる。従って,前記参照部材や前記処理対象物に照射する超音波の周波数掃引を行えば,反射超音波の強度がピークとなるとき(前記共振条件を満たすとき)の掃引周波数から前記共振周波数を検出でき,その共振周波数に基づいて,物体中の超音波の伝播速度(音速)に対応するその物体の温度を算出できる。
また,第3の例は,前記参照用超音波出力手段及び前記測定用超音波出力手段がパルス状の超音波を出力する場合の例である。
この場合,前記参照用超音波検出手段及び前記測定用超音波検出手段それぞれの検出信号の変化に基づいて,前記共振周波数を前記特徴量として検出する。
前述したように,超音波が物体内で多重反射するため,前記共振条件を満たさなくても,前記反射超音波の検出信号の変化に前記共振周波数の成分が現れる。従って,前記反射超音波の検出信号の波形解析を行えば,前記共振周波数を検出できる。さらに,その共振周波数及び物体の厚みに基づいて,その物体中の超音波の伝播速度(音速)に対応する前記処理対象物の温度を算出できる。
また,第4の例は,前記参照用超音波出力手段及び前記測定用超音波出力手段が複数の一定周波数のバースト波状の超音波を既定周期で出力する場合の例,即ち,超音波が既定周期で断続する(一定周波数の)いわゆるバースト波状の超音波を出力する例である。
この場合,前記特徴量検出手段が,前記参照用超音波検出手段及び前記測定用超音波検出手段それぞれの検出信号から,前記参照部材及び前記処理対象物それぞれにおける表裏各面で往復反射した超音波の位相を前記特徴量として検出する。
例えば,前記特徴量検出手段が,前記参照用超音波検出手段及び前記測定用超音波検出手段それぞれの検出信号と,前記参照用超音波出力手段及び前記測定用超音波出力手段それぞれにより生成され前記超音波の周波数で発振する基準発振信号と,のミキシングにより前記位相を検出する。
前述したように,物体の内部を伝播する超音波の速度(音速)は,その物体の温度と高い相関があり,また,物体内を伝搬した超音波の位相は,その伝播時間(伝播に要した時間)に応じて定まる。
そこで,前記第4の例では,前記処理対象物の厚みと前記反射超音波の検出信号の位相とに基づいて,前記処理対象物内での超音波の伝播速度(音速)に対応する温度を算出する。
その際,前記特徴量検出手段が,前記参照用超音波検出手段及び前記測定用超音波検出手段それぞれの検出信号から,前記参照用超音波出力手段及び前記測定用超音波出力手段それぞれにより出力されるバースト波状の超音波の出力周期に同期した既定の時間帯の信号を抽出し,その抽出信号と前記基準発振信号とのミキシングにより前記位相を検出することが考えられる。
前記物体内を伝搬する超音波の位相は,その伝播時間が長いほど大きく変化するため,前記対向面の間で複数回往復反射した(即ち,伝播時間の長い)超音波の位相を検出することにより,高感度での温度算出(温度検出)が可能となる。
また,本発明は,以上に示した本発明に係る温度測定装置を用いて前記処理対象物の温度を測定する温度測定方法として捉えることもできる。
即ち,本発明に係る温度測定方法は,所定の処理対象物がその一の面において支持台により支持された状態で,前記処理対象物の温度を測定する方法であり,次の(2−1)〜(2−7)に示す各工程を有する。
(2−1)前記参照部材及び前記処理対象物が同等の温度環境内に存在する定常状態において,前記処理対象物と材質が同じで厚みが既知の参照部材に対して超音波を出力し,前記参照部材に反射した反射超音波を検出する定常時参照用超音波検出工程。
(2−2)前記定常状態において,前記支持台側から前記処理対象物に対し超音波を出力し,前記処理対象物に反射した反射超音波を検出する定常時測定用超音波検出工程。
(2−3)前記定常時参照用超音波検出工程及び前記定常時測定用超音波検出工程それぞれで得られた検出信号から,前記参照部材及び前記測定対象物それぞれの内部での超音波の伝播速度に応じて定まる特徴量を検出する定常時特徴量検出工程。
(2−4)前記定常時特徴量検出工程で得られた前記特徴量に基づいて前記処理対象物の厚みに関する調整値を算出する調整値算出工程。
(2−5)前記定常状態以外の状態において,前記支持台側から前記処理対象物に対し超音波を出力し,前記処理対象物に反射した反射超音波を検出する非定常時測定用超音波検出工程。
(2−6)前記非定常時測定用超音波検出工程で得られた検出信号から前記特徴量を検出する非定常時特徴量検出工程。
(2−7)前記調整値算出工程で得られた前記調整値と前記非定常時特徴量検出工程で得られた前記特徴量とに基づいて前記処理対象物の温度を算出する非定常時温度算出工程。
また,本発明に係る温度測定方法が,さらに,次の(2−8)及び(2−9)に示される各工程を有することが考えられる。
(2−8)前記定常状態における前記参照部材の温度を検出する参照用温度検出工程。
(2−9)前記定常時特徴量検出工程で得られた前記参照部材における超音波についての前記特徴量と前記参照用温度検出工程で得られた検出温度とに基づいて,前記処理対象物の温度と前記処理対象物内での超音波の伝播速度との対応関係を表す温度・速度対応情報を調整する温度・速度対応情報調整工程。
この場合,前記非定常時温度算出工程において,前記特徴量と前記調整値と前記温度・速度対応情報調整工程による調整後の前記温度・速度対応情報とに基づいて前記処理対象物の温度を算出する。
また,前記定常状態としては,次の(A)又は(B)のいずれかに示される状態が考えられる。
(A)前記処理対象物及び前記参照部材が一の収容室内に収容された状態。
(B)前記処理対象物が所定の収容室内に収容されており,前記参照部材が前記処理対象物の収容室内の温度と同じ温度に調節された恒温槽内に収容された状態。なお,ここでいう恒温槽は,前記参照部材用恒温槽に相当する。
また,前記定常時参照用超音波検出工程において,前記定常時測定用超音波出力工程での超音波出力端及び超音波検出端と前記処理対象物との間に位置する前記支持台の部分と構造及び材質が同じ参照用超音波伝播部を介して,超音波の出力及び反射超音波の検出が行われることが考えられる。
以上に示した本発明に係る温度測定方法も,前述した本発明に係る温度測定装置と同様の作用効果を奏する。
本発明によれば,各種の処理が施される半導体ウェハ等の処理対象物の温度を,接触による汚染を回避しつつ,また,処理対象物の厚みのばらつきの影響を受けずに,安定かつ高精度で簡易に測定することができる。
以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の第1実施形態に係る半導体ウェハ温度測定装置X1の概略構成図,図2は半導体ウェハ温度測定装置X1による温度測定手順を表すフローチャート,図3は半導体ウェハ温度測定装置X1により得られる超音波周波数と反射超音波強度との関係を表す図,図4は本発明の第2実施形態に係る半導体ウェハ温度測定装置X2の概略構成図,図5は半導体ウェハ温度測定装置X2により得られる反射超音波の検出信号の変化を模式的に表した図,図6は本発明の第3実施形態に係る半導体ウェハ温度測定装置X3により得られる反射超音波の検出信号の変化を表すグラフ,図7は物質の温度とその物質内での縦波伝播速度との関係を表す図,図8は本発明の第4実施形態に係る半導体ウェハ温度測定装置X4の概略構成図,図9は半導体ウェハ温度測定装置X4により得られる反射超音波の検出信号の変化を模式的に表した図,図10は本発明の第5実施形態に係る半導体ウェハ温度測定装置X5の概略構成図である。
[第1の実施形態]
まず,図1を参照しつつ,本発明の第1実施形態に係る半導体ウェハ温度測定装置X1(以下,温度測定装置X1という)の構成について説明する。
温度測定装置X1は,図1に示すように,ウェハステージ2,参照ウェハ支持部2x,発振器3,セレクタ4,増幅器5,制御・演算装置6及び参照温度センサ7xを備えている。
前記ウェハステージ2,前記参照ウェハ支持部2x及び前記参照温度センサ7xは,プロセスチャンバー8内に収容されている。
前記ウェハステージ2は,成膜処理,エッチング処理,熱処理等の各種の処理が施される平板状の処理対象物である半導体処理ウェハ1(以下,処理ウェハという)をその下面において支持する支持台である。前記ウェハステージ2は,基材部2aとその基材部2aの表面に形成された誘電層である静電チャック部2bとを有している。前記基材部2aは,例えば,テフロン(デュポン社の登録商標)やセラミック等からなる部材である。また,前記静電チャック部2bは,例えば,耐熱性に優れた酸化アルミニウム(Al23:いわゆるアルミナ)等からなる部材である。前記基材部2aと前記処理ウェハ1との間に電圧が印加され,両者の間に発生した力によって前記処理ウェハ1を前記静電チャック部2b(ウェハステージ2の支持面)に吸着固定する。
さらに,前記ウェハステージ2には,不図示のヒータが内蔵されており,このヒータによってウェハステージ2上の処理ウェハ1が所望の温度に加温される。
なお,前記ウェハステージ2は,それ自体の温度を検出する温度センサ,処理ウェハ1を保持して上下させる上下機構,処理ウェハ1への電圧印加機構等も備えるが(いずれも不図示),ここではその説明を省略する。
そして,温度測定装置X1は,ウェハステージ2により支持された処理ウェハ1の温度を超音波を用いて測定する装置である。
さらに,前記ウェハステージ2には,その内部の複数の箇所(以下,測温箇所という)に測定用超音波送受部10が埋め込まれている。
前記測定用超音波送受部10は,それぞれ第1の送信用超音波振動子11と,第1の受信用超音波振動子12とを有している。
前記第1の送信用超音波振動子11は,前記ウェハステージ2内の複数の前記測温箇所ごとに設けられ,前記発振器3(前記交流信号供給部の一例)から交流信号が供給されることによって発振し,前記ウェハステージ2の表層部(前記基材部2a及び前記静電チャック部2b)を通じて処理ウェハ1に対してその被支持面側から超音波を出力する(照射する)ものである。なお,前記発振器3及び前記第1の送信用超音波振動子11が,前記測定用超音波出力手段の一例である。
前記第1の受信用超音波振動子12は,複数の前記測温箇所ごとに設けられ,処理ウェハ1に反射して前記ウェハステージ2を通じて戻る反射超音波を検出し,その検出信号(前記反射超音波の強度を表す電気信号)を出力するものである。その検出信号は,前記増幅器5(前記信号入力部の一例)に入力され,その増幅器5によって増幅された後に前記制御・演算装置6に伝送される。なお,前記第1の受信用超音波振動子12及び前記増幅器5が,前記測定用超音波検出手段の一例である。
前記参照ウェハ支持部2xは,前記処理ウェハ1と材質が同じで厚みが既知の部材(以下,参照ウェハ1xと称する)を支持するものである。
前記参照ウェハ支持部2xの内部には,参照用超音波送受部10xが埋め込まれている。
前記参照用超音波送受部10xは,第2の送信用超音波振動子11xと,第2の受信用超音波振動子12xとを有し,その構成は前記測定用超音波送受部10と同じである。
前記第2の送信用超音波振動子11xも,前記発振器3から交流信号が供給されることによって発振し,前記参照ウェハ支持部2xの表層部を通じて前記参照ウェハ1に対してその被支持面側から超音波を出力する(照射する)ものである。なお,前記発振器3及び前記第2の送信用超音波振動子11xが,前記参照用超音波出力手段の一例である。
前記第2の受信用超音波振動子12xは,前記参照ウェハ1xに反射して前記参照ウェハ支持部2xを通じて戻る反射超音波を検出し,その検出信号(前記反射超音波の強度を表す電気信号)を出力するものである。その検出信号は,前記増幅器5に入力され,その増幅器5によって増幅された後に前記制御・演算装置6に伝送される。なお,前記第2の受信用超音波振動子12x及び前記増幅器5が,前記参照用超音波検出手段の一例である。
前記参照ウェハ支持部2xにおける前記参照用超音波送受部10xの埋め込み位置から表面に至る部分(参照用の超音波の伝播部)は,前記ウェハステージ2における前記測定用超音波送受部10の埋め込み位置から表面に至る部分と構造及び材質が同じになっている。即ち,前記参照ウェハ支持部2xにおける参照用の超音波の出力端及び検出端と前記参照ウェハ1xとの間に位置する部分(前記参照用超音波伝播部の一例)は,測定用の超音波の出力端及び検出端と前記処理ウェハ1との間に位置する前記ウェハステージ2の部分(前記基材部2a及び前記静電チャック部2b)と構造及び材質が同じである。
前記発振器3は,複数の前記第1の送信用超音波振動子11及び前記第2の送信用超音波振動子11xに対して1つ設けられたものであり,それら超音波振動子11,11xに対して交流信号を供給するものである。即ち,前記発振器3は,複数の(個別の)送信用超音波振動子11,11xの間で共用される。
同様に,前記増幅器5も,複数の(個別の)受信用超音波振動子12,12xの間で共用される。
また,温度測定装置X1における前記発振器3は,前記制御・演算装置6からの指令に従って前記交流信号の周波数を調節(変更)する機能を備え,その周波数調節により,前記第1の送信用超音波振動子11から出力される超音波の周波数掃引を実行できる(前記周波数掃引手段の一例)。もちろん,前記発振器3は,前記交流信号の周波数を固定することにより,前記第1の送信用超音波振動子11から出力される超音波の周波数を特定の周波数に固定することもできる。
前記セレクタ4は,複数の前記第1の送信用超音波振動子11及び前記第2の送信用超音波振動子11xと前記発振器3との間の信号経路,及び複数の前記第1の受信用超音波振動子12及び前記第2の受信用超音波振動子12xと前記増幅器5との間の信号経路を順次切り替える信号切替器である(前記信号経路切替手段の一例)。
また,前記参照温度センサ7xは,前記参照ウェハ1xに接触してその温度を検出する接触式の温度センサであり,例えば,熱電対やサーミスタ等である。その検出温度は前記制御・演算装置6に取り込まれる。
前記制御・演算装置6は,予めその記憶部に記憶された所定のプログラムを実行するプロセッサ(演算手段)を備え,そのプロセッサにより,前記発振器3の制御や,前記増幅器5を通じて得られる反射超音波の検出信号に基づく処理ウェハ1の厚み算出処理及び温度算出処理等を実行する。
次に,図2に示すフローチャートを参照しつつ,温度測定装置X1による処理ウェハ1の温度測定の手順について説明する。以下,S1,S2,…は,処理手順(ステップ)の識別符号を表す。なお,以下に示すS1〜S13の処理は,処理対象物である処理ウェハ1がその一方の面(下面)においてウェハステージ2により支持された状態で行われる。
また,以下に示されるステップS1〜S8の処理は,前記参照ウェハ1x及び前記処理ウェハ1が同等の温度環境内に存在する定常状態において行われる。
温度測定装置X1における前記定常状態は,前記参照ウェハ1x及び前記処理ウェハ1が,前記プロセスチャンバー8(一の収容室の一例)内に収容された状態である。その際,前記プロセスチャンバー8内は,加温や冷却がなされていない常温状態,或いは,室内が一定温度に維持された保温常態である。前記定常状態においては,前記処理ウェハ1の温度と前記参照ウェハ1xの温度がほぼ等しいとみなせる。
前記定常状態において,まず,前記制御・演算装置6が,複数の前記測定用超音波送受部10及び前記参照用超音波送受部10xのうち,前記参照用超音波送受部10xを選択し,その参照用超音波送受部10xにおける前記第2の送信用超音波振動子11xと前記発振器3との間の信号経路が接続されるとともに,前記第2の受信用超音波振動子12xと前記増幅器5との間の信号経路が接続されるように,前記セレクタ4の設定(制御)を行う(S1)。
さらに,前記制御・演算装置6は,前記参照温度センサ7xの検出温度(以下,参照温度Txという)を取得する(S2)。
次に,前記制御・演算装置6は,前記発振器3に対して超音波出力指令を出力する。これにより,前記発振器3及び前記第2の送信用超音波振動子11xが,前記参照ウェハ1の被支持面(図1における下面)に対し,周波数掃引を行いながら超音波を出力する(S3)。これにより,超音波が,前記参照ウェハ1に対してその厚み方向から照射される。これと並行して,前記制御・演算装置6は,超音波の掃引周波数と,その超音波の周波数掃引に応じて変化する前記反射超音波の検出信号(前記第2の受信用超音波振動子12xの検出信号)のデータとを,ステップS2で得た前記参照温度センサ7xの検出温度と関連付けて所定の記憶手段に記録する(S3)。超音波の掃引周波数の範囲は,例えば,11.2[MHz]〜11.3[MHz]程度の範囲である。
なお,温度測定装置X1において,前記制御・演算装置6は,前記反射超音波の検出信号をその波形を把握できる程度の分解能をもって取得及び記録する必要はなく,前記反射超音波の検出信号の強度IUS(振幅,実効値など)を検出及び記録できれば十分である。
次に,前記制御・演算装置6は,ステップS6で記録した超音波の掃引周波数及びその周波数掃引に応じて変化する反射超音波の検出信号の強度IUSとに基づいて,超音波が照射された物質内(ここでは,前記参照ウェハ1x内)での超音波の共振周波数fr0を,前記反射超音波の検出信号の特徴量として検出(特定)する(S4)。このステップS4で得られる前記共振周波数fr0は,前記参照ウェハ1x内での超音波の伝播速度に応じて定まる特徴量である。なお,このステップS4の処理の詳細については後述する。
次に,前記制御・演算装置6は,前記定常状態におけるステップS3の処理で得られた前記参照温度Txと,同ステップS4の処理で得られた前記第2の受信用超音波振動子12xの検出信号から検出された前記特徴量(ここでは,前記共振周波数fr)とに基づいて,前記処理ウェハ1の温度と前記処理ウェハ1内での超音波の伝播速度との対応関係(即ち,図7に示される特性)を表す温度・速度対応情報を調整する(S5:温度・速度対応情報調整処理)。このステップS5における温度・速度対応情報調整処理の具体的な内容については後述する。
次に,前記制御・演算装置6は,複数の前記測定用超音波送受部10のうちのいずれか1つを選択する(S6)。以下,このステップS6で選択された前記測定用超音波送受部10を,選択超音波送受部という。さらに,前記制御・演算装置6が,前記選択超音波送受部の前記第1の送信用超音波振動子11と前記発振器3との間の信号経路が接続されるとともに,前記選択超音波送受部の前記第1の受信用超音波振動子12と前記増幅器5との間の信号経路が接続されるように,前記セレクタ4の設定(制御)を行う(S6)。
次に,前記制御・演算装置6は,前記発振器3に対して超音波出力指令を出力する。これにより,前記発振器3及び前記選択超音波送受部の前記第1の送信用超音波振動子11が,処理ウェハ1の被支持面(図1における下面)に対し,周波数掃引を行いながら超音波を出力する(S7)。これと並行して,前記制御・演算装置6は,超音波の掃引周波数とその超音波の周波数掃引に応じて変化する前記反射超音波の検出信号(前記第1の受信用超音波振動子12の検出信号)のデータ(反射超音波の強度IUS)とを,ステップS5で得られた前記参照温度センサ7xの検出温度と関連付けて所定の記憶手段に記録する(S7)。このステップS6における超音波の掃引周波数の範囲も,ステップS3における掃引周波数の範囲と同じである。
次に,前記制御・演算装置6は,ステップS7で記録した超音波の掃引周波数及びその周波数掃引に応じて変化する前記反射超音波の強度IUS(反射超音波の検出信号の値)とに基づいて,前記処理ウェハ1内での超音波の共振周波数fr1を,前記反射超音波の検出信号の特徴量として検出(特定)する(S8)。このステップS8で得られる前記共振周波数fr1は,前記処理ウェハ1内での超音波の伝播速度に応じて定まる特徴量である。なお,このステップS8の処理も,前記ステップS4の処理と同じであり,その詳細については後述する。
さらに,前記制御・演算装置6は,ステップS4,S8で得られた反射超音波の検出信号の特徴量である前記共振周波数fr0,fr1と,ステップS2で得られた前記参照温度Txとに基づいて,その時点で選択されている前記測定用超音波送受部10に対応する位置における処理ウェハ1の厚みに関する調整値(以下,厚み調整値という)を算出するとともに,その算出結果を所定の記憶手段に記録する(S9,調整値算出処理)。このステップS9で算出される前記調整値は,処理ウェハ1の厚みのばらつきを調整するためのパラメータであり,後述する温度算出処理(S14)で用いられる。なお,このステップS9の処理の詳細については後述する。
そして,前記制御・演算装置6は,複数箇所の前記測定用超音波送受部10全てに対応する処理ウェハ1の厚み測定が終了するまで,前記セレクタ4の切り替え実績を判別(S10)しつつステップS6〜S9の処理を順次実行する。
以上に示したステップS6〜S10の処理により,複数の前記測定用超音波送受部10に対応する全ての測定部位ついて,後述する温度算出処理(S14)で用いられる前記調整値(処理ウェハ1の厚みの変動分の調整値)が事前に(温度測定前に)設定される。
そして,前記制御・演算装置6は,所定の温度測定開始条件が成立したことを検知(S11)した場合に,前記プロセスチャンバー8内で成膜処理,エッチング処理,熱処理等の各種の処理が施されているとき,即ち,前記定常状態以外の非定常状態であるときの前記処理ウェハ1の温度測定処理(ステップS12〜S15)を実行する。
温度測定処理では,まず,前記制御・演算装置6は,ステップS6と同様に,複数の前記測定用超音波送受部10のうちのいずれか1つについて,前記第1の送信用超音波振動子11と前記発振器3との間の信号経路の接続,及び前記第1の受信用超音波振動子12と前記増幅器5との間の信号経路の接続を行う(S12)。
さらに,前記制御・演算装置6は,ステップS7と同様に,前記発振器3に対して超音波出力指令を出力することにより,前記発振器3及び前記第1の送信用超音波振動子11による超音波出力処理(処理ウェハ1の被支持面に対し,周波数掃引を行いながら超音波を出力する処理)を実行させる(S13)。これと並行して,前記制御・演算装置6は,超音波の掃引周波数と,その超音波の周波数掃引に応じて変化する前記反射超音波の検出信号(前記第1の受信用超音波振動子12の検出信号)のデータと,その時点の時刻とを,相互に関連付けて所定の記憶手段に記録する(S13)。
次に,前記制御・演算装置6は,ステップS8で記録した超音波の掃引周波数及びその周波数掃引に応じて変化する前記反射超音波の強度IUS(反射超音波の検出信号の値)とに基づいて,前記処理ウェハ1内での超音波の共振周波数fr1を,前記反射超音波の検出信号の特徴量として検出(特定)する(S14)。
さらに,前記制御・演算装置6は,ステップS13で得られた前記共振周波数fr1とステップS9で記録した前記厚み調整値とに基づいて,処理ウェハ1の温度を算出するとともに,その算出結果を所定の記憶手段に記録する(S15,温度算出処理)。なお,このステップS14の処理の詳細については後述する。
そして,前記制御・演算装置6は,所定の温度測定終了条件が成立するまで,その終了条件を判別(S16)しつつステップS7〜S10の処理を順次実行する。
このように,前記制御・演算装置6は,前記セレクタ4により信号経路が切り替えられるごとに前記増幅器5を通じて得られる前記反射超音波の検出信号に基づいて,処理ウェハ1における複数箇所の温度を算出する。以上に示したステップS12〜S16の処理により,複数の前記測定用超音波送受部10に対応する全ての測定部位ついて,処理中(非定常時)の前記処理ウェハ1の温度変化の実測値が記憶手段に記録される。
次に,温度測定装置X1における温度算出処理(S15)の詳細について説明する。
図7に示したように,半導体ウェハの材料として採用されることが多いシリコン単結晶内における音速は温度依存性を有する。その温度係数は,シリコン単結晶の場合−0.4[(m/s)/℃]程度である。
一方,超音波を処理ウェハ1に対してその厚み方向から照射した場合,その超音波は処理ウェハ1における超音波照射面とその反対側の面との間で多重反射する。そのときの超音波の波長をλ,処理ウェハ1の厚みをLとすると,次の(a1)式で表される共振条件を満たす場合に,処理ウェハ1において大きな超音波振動が発生し,前記反射超音波の検出信号の強度が相対的に大きくなる。
λ=2L/n (但し,n=1,2,…) …(a1)
また,前記共振条件を満たすときの共振周波数をfrとすると,処理ウェハ1内での音速(超音波伝播速度)Vtは次の(a2)式で表される。
Vt = fr・(2L)/n (但し,n=1,2,…) …(a2)
なお,「n」は,処理ウェハ1の材質及び概略の厚み,及び超音波の掃引周波数の範囲から予め想定できる数値である。
図3は,超音波の周波数(横軸)と反射超音波の強度(縦軸)との関係を表すグラフである。図3に示すように,処理ウェハ1に照射する超音波の周波数掃引を行えば,反射超音波の強度が変化してある掃引周波数においてピークとなる。従って,処理ウェハ1に照射する超音波の周波数掃引を行い,反射超音波の強度がピークとなるとき(前記共振条件を満たすとき)の掃引周波数fpを特定(検出)すれば,その周波数fpが処理ウェハ1の共振周波数frであるといえる。
前記制御・演算装置6は,ステップS9において,まず,処理ウェハ1に照射する超音波の周波数掃引を行った場合に反射超音波の強度がピークとなるときの掃引周波数fpを特定(検出)することにより,前記共振周波数frを特定する。さらに,前記制御・演算装置6は,前記共振周波数fr及び処理ウェハ1の厚みLを(a2)式に適用して得られる超音波伝播速度Vtを,図7に示した音速Vtと温度Txとの関係(前記温度・速度対応情報)を表す式に適用することにより,処理ウェハ1の温度Txを算出する。
なお,以上に示した処理ウェハ1の温度Txの算出において,後述する前記厚み調整値(ステップS9で算出されるもの)が反映される。また,処理ウェハ1の温度Txの算出に用いられる前記温度・速度対応情報は,ステップS5において調整された後の情報である。
ところで,処理ウェハ1の厚みLが0.8[mm],温度係数が−0.4[(m/s)/℃]であるとすると,処理ウェハ1の測定温度について2[℃]の分解能を得るためには,処理ウェハ1内での音速を1[m/s]以下の精度で測定する必要がある。
また,(a2)式より,処理ウェハ1内での音速を1[m/s]以下の精度で測定するためには,掃引周波数の分解能(刻み幅)を1[kHz]以下にする必要がある。
これに対し,ステップS8における掃引周波数の刻み幅(分解能)を1[kHz]程度にすることは十分に可能である。従って,温度測定装置X1は,2[℃]以下の温度分解能により高精度で処理ウェハ1の温度測定を行うことができる。しかも,超音波による非接触測定であるので,ごく簡易に温度測定を行うことができる上,処理ウェハ1に汚染を生じさせず,さらに,処理ウェハ1の表面状態(表面粗さ等)の影響を受けにくいため測定の安定性が高い。
次に,前記厚み調整値の算出処理(S9)について説明する。
前述したように,前記定常状態では,前記処理ウェハ1の温度及び前記参照ウェハ1xの温度の両方が,前記参照温度センサ7xの検出温度と等しいとみなせる。
また,前記処理ウェハ1及び前記参照ウェハ1xは,材質が同じであるので,図7に示される温度と超音波の伝播速度との対応関係(即ち,前記温度・速度対応情報)が同じである。
従って,ステップS4で得られる前記参照ウェハ1xについての前記特徴量(温度測定装置X1においては前記共振周波数fr)と,ステップS8で得られる前記処理ウェハ1についての前記特徴量とに差異がある場合,その差異は,(a2)式から,前記参照ウェハ1xと前記処理ウェハ1との厚みの差異によって生じているといえる。即ち,ステップS4で得られる前記共振周波数に対するステップS8で得られる前記共振周波数の比は,前記参照ウェハ1xの厚みに対する前記処理ウェハ1の厚みの比の逆数に等しい。
そこで,前記制御・演算装置6は,ステップS15において,ステップS4で得られる前記共振周波数とステップS8で得られる前記共振周波数との比,及び既知の前記参照ウェハ1xの厚みとに基づいて,前記厚み調整値を算出する。
ここで,前記厚み調整値は,例えば,前記処理ウェハ1の厚みそのものであることが考えられるが,その他,以下に示すパラメータを前記厚み調整値として算出することも考えられる。
例えば,温度算出処理で用いられる(a2)式において,前記処理ウェハ1の厚みLとして既知の前記参照ウェハ1xの厚み(前記処理ウェハ1の設計上の厚み)を採用する場合,その厚みに加算又は乗算する補正係数や前記共振周波数に乗算する補正係数が,前記厚み調整値として算出されてもよい。
前記厚み調整値を用いて前記温度算出処理(S15)が行われることにより,前記処理ウェハ1の厚みのばらつき(誤差)に起因する温度測定誤差が修正される。
なお,前記処理ウェハ1が加熱処理される場合,加熱中の前記処理ウェハ1の厚みは,熱膨張によって変化する。しかしながら,例えばシリコンの熱膨張係数は10-6であるため,通常はその影響をほぼ無視できる。また,前記処理ウェハ1の温度算出(S14)に用いる前記処理ウェハ1の厚みを,前記処理ウェハ1の熱膨張分を考慮して補正することも考えられる。
また,前記定常状態における前記参照ウェハ1xに関して成立する(a2)式において,厚みLは既知であり,また,前記共振周波数fr(前記特徴量)はステップS4の処理により得られる。
従って,前記定常状態における前記参照ウェハ1xについて,既知の厚みとステップS4で得られる前記共振周波数frとを(a2)式に適用して獲られる超音波の伝播速度を,図7に示される前記温度・速度対応情報に適用することにより,前記定常状態における前記参照ウェハ1xの計算上の温度を算出できる。
一方,前記定常状態における前記参照ウェハ1xの実測温度が,ステップS2の処理により得られる。
従って,前記計算上の温度と前記実測温度とに差異が生じた場合,その差異は,予め設定された前記温度・速度対応情報に含まれる誤差に起因するものであるといえる。
そこで,前記制御・演算装置6は,ステップS5において,ステップS4で得られる前記共振周波数frとステップS2で得られる前記参照ウェハ1xの実測温度とを用いて,予め設定された前記温度・速度対応情報(図7参照)の内容を調整する。
例えば,予め設定された前記温度・速度対応情報に含まれる誤差は,オフセット誤差である,即ち,前記温度・速度対応情報を表す式(例えば,線形式)における傾きは,事前に測定したウェハの試験片と前記処理ウェハ1とで一致するとの考えの下に,前記参照ウェハ1xの実測温度と前記共振周波数frとが対応するように,予め設定された前記温度・速度対応情報の全体を,温度軸の方向にシフト調整する。
これにより,事前にウェハの試験片等から得られた前記温度・速度対応情報と,実際の測定対象である前記処理ウェハ1と同等品である前記参照ウェハ1xにおける前記温度・速度対応情報との間に誤差がある場合,その誤差が修正される。
[第2の実施形態]
次に,図4を参照しつつ,本発明の第2実施形態に係る半導体ウェハ温度測定装置X2(以下,温度測定装置X2という)について説明する。
温度測定装置X2は,前記温度測定装置X1の応用例であるので,以下,前記温度測定装置X1と異なる部分についてのみ説明する。なお,図4において,前記温度測定装置X1と同じ構成要素については同じ符号が付されている。
温度測定装置X2は,図4に示すように,ウェハステージ2,参照ウェハ支持部2x,セレクタ4’,超音波信号処理装置9,制御・演算装置6’及び参照温度センサ7xを備えている。
また,前記ウェハステージ2は,その複数の箇所に超音波振動子10’が埋め込まれている。
前記超音波振動子10’は,前記温度測定装置X1における前記第1の送信用超音波振動子11としての役割と,前記第1の受信用超音波振動子12としての役割とを兼用するものであり,前記温度測定装置X1における前記測定用超音波送受部10に相当する。
また,前記超音波信号処理装置9は,前記温度測定装置X1における前記発振器3及び前記増幅器5の両機能を併せ持つものであるが,周波数掃引機能を有する必要はなく,前記超音波振動子10’に対してパルス状の交流信号を供給することにより,前記超音波振動子10’を通じてパルス状の超音波を出力させる。前記超音波信号処理装置9及び前記超音波振動子10’により出力される超音波のパルス幅は,例えば,30[ns]程度である。
さらに,前記超音波信号処理装置9は,ウェハステージ2により支持された処理ウェハ1に反射して前記導波路13を通じて戻る反射超音波を前記超音波振動子10’を通じて検出し,その検出信号を出力する。このように,前記超音波振動子10’は,パルス状の超音波を出力し,その反射波を検出することにより,超音波の出力と検出とを時分割で行う。なお,前記超音波信号処理装置9及び前記超音波振動子10’は,前記測定用超音波出力手段及び前記測定用超音波検出手段の両方を兼ねたものの一例である。
また,前記参照ウェハ支持部2xにも,前記参照用超音波送受部10xに替えて,前記温度測定装置X1における前記第2の送信用超音波振動子11xとしての役割と,前記第2の受信用超音波振動子12xとしての役割とを兼用する超音波振動子10x’が埋め込まれている。
また,前記制御・演算装置6’は,前記温度測定装置X1における前記制御・演算装置6と同様に,予めその記憶部に記憶された所定のプログラムを実行するプロセッサ(演算手段)を備え,そのプロセッサにより,前記超音波信号処理装置9の制御や,その超音波信号処理装置9を通じて得られる反射超音波の検出信号に基づく処理ウェハ1の厚み算出処理及び温度算出処理等を実行する。
次に,温度測定装置X2による処理ウェハ1の温度測定の手順について説明する。
温度測定装置X2において,前記制御・演算装置6’は,図2のフローチャートに示す手順と同様の手順で温度測定を実行する。
但し,温度測定装置X2においては,ステップS3,S7,S13で実行する超音波の出力制御及び反射超音波の検出処理の内容と,ステップS4,S8,S14で実行する前記特徴量の算出の内容と,ステップS5,S9,S14で実行する前記温度・速度対応情報の調整の内容と,処理ウェハ1の前記厚み調整値の算出及び温度算出の内容とが,前記温度測定装置X1において実行される内容と異なる。以下,その点について説明する。
ステップS3,S7及びS13において,前記制御・演算装置6’は,前記超音波信号処理装置9に対してパルス超音波出力指令を出力する。これにより,前記超音波信号処理装置9が,超音波照射対象のウェハ(前記処理ウェハ1又は前記参照ウェハ1x)の被支持面(図1における下面)に対し,パルス状の超音波を出力する。これと並行して,前記制御・演算装置6’は,前記反射超音波の検出信号のデータを所定の記憶手段に記録する。なお,温度測定装置X2において,前記制御・演算装置6’は,前記反射超音波の検出信号をその波形を把握できる程度の分解能をもって取得及び記録する。
また,ステップS4,S8及びS14において,前記制御・演算装置6’は,ステップS3,S7及びS13で記録した前記反射超音波の検出信号から,超音波照射対象のウェハにおける被支持面及びその反対側の面(表裏各面)で反射した超音波(エコー)それぞれの前記超音波振動子10’への到達時点の差を検出する。
図5は,ウェハにパルス状の超音波を照射したときの反射超音波の検出信号の変化を模式的に表した図である。
ウェハに対し,その被支持面にほぼ垂直な方向から超音波を照射すると,その超音波の一部がウェハの被支持面に反射するとともに,残りの一部がウェハ内に入って前記被支持面の反対側の面(図4における上面)と被支持面との間で多重反射する。このため,図5に示すように,前記超音波信号処理装置9により,前記超音波振動子10’とウェハの被支持面との距離に応じた時間の経過後に,ウェハの被支持面で反射した反射超音波の信号(エコー信号)が検出され,その後,ウェハの厚みLに応じた時間(2Lの距離を超音波が進む時間)が経過するごとに,ウェハの被支持面の反対側の面で反射した反射超音波の信号が検出される。
前記制御・演算装置6’は,ステップS4,S8,S14において,ステップS3,S7,S13で記録した前記反射超音波の検出信号のピーク間の時間間隔を検出することにより,ウェハにおける被支持面及びその反対側の面で反射した超音波それぞれの前記超音波振動子10’への到達時点の差であるエコー時間差tppを検出する。このエコー時間差tppは,前記参照ウェハ1x内及び前記処理ウェハ1内それぞれで伝播する超音波の伝播時間である。
ここで,ウェハ中の超音波の伝播速度(縦波音速)Vtは,ウェハの厚みL及び前記エコー時間差tppに基づく次の(b1)式により表される。
Vt = 2L/tpp …(b1)
従って,前記制御・演算装置6’は,ステップS15において,図7に示した音速Vtと温度Txとの関係(前記温度・速度対応情報)を表す式における音速Vtに対し(b1)式を適用して得られる式に,反射超音波の検出信号に基づき検出した前記エコー時間差tppとステップS4で算出した処理ウェハ1の厚みLとを適用することによって処理ウェハ1の温度Txを算出する。
また,(b1)式より,処理ウェハ1内での音速を1[m/s]以下の精度で測定するためには,前記エコー時間差tppを20[ps]以下の分解能で測定する必要がある。一般的な信号波形の観測機の時間分解能(サンプリング周期)は数百[ps]程度であるが,反射超音波の検出信号に対して遅延相関処理等の波形解析処理を施すことにより,20[ps]以下の分解能で前記エコー時間差tppを測定することができる。
ここで,パルス状の超音波を出力した場合,処理ウェハ1の厚みが0.8[mm]程度であると,前記エコー時間差tppが200[ns]以下となるため,超音波のパルス幅を0.1[μs]程度以下にする必要がある。
また,温度測定装置X2においては,ステップS4で得られる前記参照ウェハ1xについての前記特徴量である前記エコー時間差tppと,ステップS8で得られる前記処理ウェハ1についての前記エコー時間差tppとに差異がある場合,その差異は,(b1)式から,前記参照ウェハ1xと前記処理ウェハ1との厚みの差異によって生じているといえる。即ち,ステップS4で得られる前記エコー時間差tppに対するステップS8で得られる前記エコー時間差tppの比は,前記参照ウェハ1xの厚みに対する前記処理ウェハ1の厚みの比に等しい。
そこで,前記制御・演算装置6’は,ステップS15において,ステップS4で得られる前記エコー時間差tppとステップS8で得られる前記エコー時間差tppとの比,及び既知の前記参照ウェハ1xの厚みとに基づいて,前記厚み調整値を算出する。
ここで,前記厚み調整値は,例えば,前記処理ウェハ1の厚みそのものであることが考えられるが,その他,以下に示すパラメータを前記厚み調整値として算出することも考えられる。
例えば,温度算出処理で用いられる(b1)式において,前記処理ウェハ1の厚みLとして既知の前記参照ウェハ1xの厚み(前記処理ウェハ1の設計上の厚み)を採用する場合,その厚みに加算又は乗算する補正係数や前記エコー時間差tppに乗算する補正係数が,前記厚み調整値として算出されてもよい。
前記厚み調整値を用いて前記温度算出処理(S15)が行われることにより,前記処理ウェハ1の厚みのばらつき(誤差)に起因する温度測定誤差が修正される。
また,前記定常状態における前記参照ウェハ1xに関して成立する(b1)式において,厚みLは既知であり,また,前記エコー時間差tpp(前記特徴量)はステップS4の処理により得られる。
従って,前記定常状態における前記参照ウェハ1xについて,既知の厚みとステップS4で得られる前記エコー時間差tppとを(b1)式に適用して獲られる超音波の伝播速度を,図7に示される前記温度・速度対応情報に適用することにより,前記定常状態における前記参照ウェハ1xの計算上の温度を算出できる。
一方,前記定常状態における前記参照ウェハ1xの実測温度が,ステップS2の処理により得られる。
従って,前記計算上の温度と前記実測温度とに差異が生じた場合,その差異は,予め設定された前記温度・速度対応情報に含まれる誤差に起因するものであるといえる。
そこで,前記制御・演算装置6’は,ステップS5において,前記温度測定装置X1の場合と同様に,ステップS4で得られる前記エコー時間差tppとステップS2で得られる前記参照ウェハ1xの実測温度とを用いて,予め設定された前記温度・速度対応情報(図7参照)の内容を調整する。
[第3の実施形態]
次に,本発明の第3実施形態に係る半導体ウェハ温度測定装置X3(以下,温度測定装置X3という)について説明する。
温度測定装置X3の装置構成は,前記温度測定装置X2と同じである。この温度測定装置X3において,前記超音波信号処理装置9及び前記超音波振動子10’により出力される超音波のパルス幅は,例えば,0.5[μs]程度である。
但し,温度測定装置X3においては,ステップS4,S8,S14で実行する前記特徴量の算出の内容が,前記温度測定装置X2において実行される内容と異なる。即ち,温度測定装置X3においては,前記温度測定装置X1と同様に前記共振周波数が前記特徴量として検出される。従って,温度測定装置X3における前記制御・演算装置6’は,ステップS5(温度・速度対応情報の調整処理),ステップS9(前記厚み調整値の算出処理),及びステップS14(温度算出処理)については,前記温度測定装置X1における前記制御・演算装置6と同じ処理を実行する。
また,ステップS4,S8,S14において,温度測定装置X3の前記制御・演算装置6’は,ステップS3,S7,S13で記録した前記反射超音波の検出信号の変化に基づいて,ウェハ内での超音波の共振周波数frを前記特徴量として検出する。
図6(b)は,処理ウェハ1にパルス状の超音波を照射したときの反射超音波の検出信号の変化を表したグラフである。
前述したように,超音波が処理ウェハ1内で多重反射するため,(a1)式に示した共振条件を満たさなくても,前記反射超音波の検出信号の変化には,図6(b)に示される区間Peの波形のように前記共振周波数frの成分が現れる。
なお,図6(a)は,温度測定装置X3において,ウェハステージ2上に処理ウェハ1が存在しない場合の反射超音波の検出信号の変化を表したグラフである。図6(a)から,共振媒体となる処理ウェハ1が存在しない場合は前記反射超音波の検出信号に前記共振周波数frの成分が生じないことがわかる。
従って,前記制御・演算装置6’は,ステップS4,S8,S14において,前記反射超音波の検出信号の波形解析を行うことにより,前記共振周波数fr(区間Peの信号の周波数)を検出する。
[第4の実施形態]
次に,図8を参照しつつ,本発明の第4実施形態に係る半導体ウェハ温度測定装置X4(以下,温度測定装置X4という)について説明する。
温度測定装置X4は,前記温度測定装置X1及び前記温度測定装置X2の応用例であるので,以下,前記温度測定装置X1,X2と異なる部分についてのみ説明する。なお,図8において,前記温度測定装置X1,X2と同じ構成要素については同じ符号が付されている。
温度測定装置X4は,図8に示すように,前記ウェハステージ2,前記参照ウェハ支持部2x,前記発振器3,前記セレクタ4’,増幅器5a,5b,制御・演算装置6”,前記参照温度センサ7x,分配器20,バースト化回路21,ゲート回路22及び位相検波回路23を備えている。
ここで,複数の箇所に前記超音波振動子10’が設けられた前記ウェハステージ2,前記セレクタ4’及び前記参照温度センサ7xは,前記温度測定装置X2が備えるものと同じものである。
また,温度測定装置X4においは,前記発振器3が,一定の周波数foの正弦波状の信号である基準発振信号Soを出力し,前記バースト化回路21が,その基準発振信号Soを周期的に断続させることにより,一定周波数foのバースト波が,予め定められた周期(以下,断続周期Tpという)で表れるバースト信号Sbに変換する。そのバースト信号Sbは,前記増幅器5aで増幅された後に前記セレクタ4’を通じて前記超音波振動子10’に供給される。
これにより,前記超音波振動子10’から,一定周波数foのバースト波状の超音波が前記断続周期Tpで出力される。このように,温度測定装置X4は,一定の周波数foの超音波が前記断続周期Tpで断続するいわゆるバースト波状の超音波を出力する。例えば,前記周波数foは200MHz程度,超音波のパルス幅は2〜10波長分(0.01〜0.1μs)程度,前記断続周期Tpは10μs程度等に設定される。
なお,前記発振器3により出力される前記基準発振信号Soは,前記分配器20により2分岐され,分岐信号の一方は前記バースト化回路21に伝送され,分岐信号の他方は前記位相検波回路23に伝送される。
また,前記超音波振動子10’が,ウェハステージ2により支持された処理ウェハ1内で反射して戻る反射超音波を検出し,その検出信号は,前記セレクタ4’及び前記増幅器5bを通じて前記ゲート回路22に伝送される。このように,前記超音波振動子10’は,バースト波状の超音波を出力し,その反射波を検出することにより,超音波の出力と検出とを時分割で行う。なお,前記超音波振動子10’及び前記増幅器5a,5bは,前記測定用超音波出力手段及び前記測定用超音波検出手段の両方を兼ねたものの一例である。同様に,前記参照ウェハ支持部材2xにおける超音波振動子10x’及び前記増幅器5a,5bは,前記参照用超音波出力手段及び前記参照用超音波検出手段の両方を兼ねたものの一例である。
図9は,温度測定装置X4により得られる反射超音波の検出信号の変化を模式的に表した図である。
図9に示されるように,温度測定装置X4においても,前記温度測定装置X2と同様に,ウェハ内部に侵入することなくウェハの被支持面に反射した反射超音波を検出した1番目のエコー信号と,ウェハの被支持面及びその反対側の面(以下,その両面を対向面と総称する)の間で1回及び複数回に渡って往復反射(多重反射)した反射超音波それぞれに対応する2番目以降の複数のエコー信号とが検出される。以下,1つのパルス状の超音波(出力超音波)に対応する複数の前記エコー信号を総称してエコー信号ブロックEbkという。
また,温度測定装置X4においては,前記断続周期Tpで断続するバースト波状の超音波が出力されることから,図9に示されるように,複数の前記エコー信号ブロックEbkが前記断続周期Tpで検出される。
また,前記ゲート回路22は,前記超音波振動子10’の検出信号から,超音波出力の前記断続周期Tp(即ち,前記超音波振動子10’により出力されるパルス状の超音波の出力周期)に同期した既定の時間帯(以下,抽出時間帯という)の信号を抽出する回路である。前記ゲート回路22は,前記バースト化回路21から,前記断続周期Tpに同期したタイミング信号を取得し,そのタイミング信号を基準として前記抽出時間帯を設定する。
ここで,前記ゲート回路22は,前記抽出時間帯の信号抽出により,前記対向面の間で複数回(例えば,2回乃至4回)往復反射した超音波(反射超音波)の検出信号を抽出する。なお,図8において,波線で囲まれた時間帯が前記抽出時間帯の一例である。
また,前記位相検波回路23は,前記ゲート回路22による抽出信号(反射超音波の検出信号の一部)と,前記発振器3から前記分配器20を通じて得られる前記基準発振信号Soとをミキシングして検波することにより,前記対向面の間で複数回(例えば,2回乃至4回)往復反射した超音波の位相(前記特徴量の一例)を検出し,その検出信号を出力する回路である。前記位相の検出信号は,前記制御・演算装置6”へ伝送される。この位相検波回路23により検出される位相は,前記基準発振信号Soの位相を基準とした前記ゲート回路22の抽出信号の位相(位相差)である。
例えば,前記基準発振信号Soの波形(時間tの時点における信号レベルLso),及び前記エコー信号ブロックEbkそれぞれにおけるn番目(n=1,2,3,…)のエコーの信号波形(時間tの時点における信号レベルEn)は,それぞれ次の(c1)式及び(c2)式で表すことができる。
Lso = A・sin(2πft+φo) …(c1)
En = Bn・sin(2πft+φn) …(c2)
(c1)式において,Aは前記基準発振信号Soの振幅,φoは前記基準発振信号Soの初期位相であり,A,φoはいずれも前記発振器3によって設定可能な値である。また,(c2)式において,Bnはn番目のエコーの振幅,φnはn番目のエコーの位相である。なお,初期位相φoは,前記発振器3によって設定可能である。
そして,前記基準発振信号Soとn番目のエコーの信号とのミキシング検波によって得られる検波信号のレベルLdは,次の(c3)式で表すことができる。
Ld = C・Bn・cos(φn−φo) …(c3)
なお,(c3)式におけるCは定数である。
ここで,前記位相検波回路23は,前記基準発振信号Soと複数のエコー信号(i番目からj番目(2≦i<j)とする)とのミキシング検波を行うため,前記位相検波回路23により得られる実際の検波信号のレベルLd'は,i番目からj番目のエコーの平均的な振幅Bn',及びi番目からj番目のエコーの平均的な位相φn'に基づく次の(c4)式で表すことができる。
Ld' = C・ Bn'・cos(φn'−φo) …(c4)
図7に示したように,ウェハの内部を伝播する超音波の速度(音速)は,そのウェハの温度と高い相関があり,また,そのウェハの内部を伝搬(往復反射)した超音波の位相は,その伝播時間(伝播に要した時間)に応じて定まる。そのことは,i番目からj番目のエコーの平均的な位相φn'についても同様にいえる。
ところで,(c4)式には,検出対象となるエコーの位相φn'の他に,未知の数値C・Bn'が含まれるが,前記発振器3により,前記基準発振信号Soの初期位相φoを変更して複数回の測定を行うことにより,(c4)式に基づいて,エコーの位相をφn'を検出することができる。なお,前記基準発振信号Soの振幅Aは一定とする。
そこで,前記位相検波回路23は,前記基準発振信号Soの初期位相φoを変更した複数の条件下で検波を行い,その検波により得られる複数の検波信号(信号レベルLd')から,(c4)式に基づいて前記反射超音波の検出信号の位相φn'(i番目からj番目のエコーの平均的な位相)を検出する。
このように,前記位相検波回路23は,前記ゲート回路22による抽出信号と前記基準発振信号Soとのミキシングにより,前記対向面の間で複数回(例えば,2回乃至4回)往復反射した超音波の位相φn'を検出する。
ウェハの内部を伝搬する超音波の位相は,その伝播時間が長いほど大きく変化するため,前記対向面の間で複数回往復反射した(即ち,伝播時間の長い)超音波の位相φn'を検出することにより,高感度での位相検出が可能となり,ひいては高感度での温度算出(温度検出)が可能となる。
また,前記制御・演算装置6”は,前記温度測定装置X1,X2における前記制御・演算装置6と同様に,予めその記憶部に記憶された所定のプログラムを実行するプロセッサ(演算手段)を備える。そして,そのプロセッサが,前記発振器3の制御や,前記位相検波回路23を通じて得られる位相φn'の検出信号に基づくステップS4,S5,S8,S9,S14の処理を実行する。
ウェハの厚みLが一定であれば,前記反射超音波の検出信号の位相φn'とウェハの温度との間に一定の相関がある。
そこで,前記制御・演算装置6”の記憶部に,厚みが既知のウェハの試験片の実測によって予め求められたウェハの厚みLと温度と位相φn'との対応関係を表す厚み・温度・位相対応情報(対応テーブル或いは対応式等)を予め記憶させておく。
また,前述したように,前記定常状態においては,処理ウェハ1の温度が前記参照温度センサ7xの検出温度と等しいとみなせる。
そこで,前記制御・演算装置6”は,前記定常状態におけるステップS9において,前記参照温度センサ7xの検出温度と,前記位相検波回路23により検出された位相φn'と,前記厚み・温度・位相対応情報とに基づいて,処理ウェハ1の厚みやその厚みの補正係数等を,前記厚み調整値として算出する(図2におけるステップS4の処理に相当)。
さらに,前記制御・演算装置6”は,前記処理ウェハ1の処理中(加熱処理等)に,前記位相検波回路23により検出された位相φn'及び前記厚み調整値(処理ウェハの厚み等)と,前記厚み・温度・位相対応情報とに基づいて,処理ウェハ1の温度Txを算出する(S14)。
以上に示した温度測定装置X4によっても,処理ウェハ1等の処理対象物の温度を,接触による汚染を回避しつつ,安定かつ高精度で簡易に測定することができる。
[第5の実施形態]
次に,図10を参照しつつ,本発明の第5実施形態に係る半導体ウェハ温度測定装置X5(以下,温度測定装置X5という)について説明する。
温度測定装置X5は,前記温度測定装置X2の応用例であるので,以下,前記温度測定装置X2と異なる部分についてのみ説明する。なお,図10において,前記温度測定装置X1,X2と同じ構成要素については同じ符号が付されている。
温度測定装置Xが,前記温度測定装置X2と異なる点は,前記参照ウェハ1x用の別個の恒温槽(以下,参照ウェハ用恒温槽8xという)を備えている点である。
前記参照ウェハ用恒温槽8xは,前記定常状態において,前記参照ウェハ1x及び前記参照ウェハ支持部2xを収容し,その収容部の温度を前記処理ウェハ1の収容室である前記プロセスチャンバー8内の温度と同じ温度に調節する恒温槽である(前記参照部材用恒温槽の一例)。
図10に示されるように,前記プロセスチャンバー8内には,その室内の温度を検出する温度センサ(以下,第1環境温度センサ7と称する)が設けられている。
また,前記参照ウェハ用恒温槽8xは,その室内の温度を検出する温度センサ(以下,第2環境温度センサ8axと称する)と,その室内の温度を設定された目標温度に調節する温度調節器8bxとを備えている。
前記温度調節器8bxは,前記第1環境温度センサ7の検出温度を目標温度として入力し,前記第2環境温度センサ8axの検出温度がその目標温度に追従するように,不図示のヒータやファンを制御することによって前記参照ウェハ用恒温槽8x内の温度を調節する。即ち,温度測定装置X5における前記定常状態は,熱処理等が行われる前の前記処理ウェハ1が前記プロセスチャンバー8内に収容されており,前記参照ウェハ1xが,前記プロセスチャンバー8内の温度と同じ温度に調節された前記参照ウェハ用恒温槽8x内に収容された状態である。
前記参照ウェハ用恒温槽8xにより,前記参照ウェハ1xの温度を安定化することができ,その結果,より精度の高い前記調整量を算出できる。
本発明は,半導体ウェハ等の処理対象物の温度を測定する温度測定装置及びその方法に利用可能である。
本発明の第1実施形態に係る半導体ウェハ温度測定装置X1の概略構成図。 半導体ウェハ温度測定装置X1による温度測定手順を表すフローチャート。 半導体ウェハ温度測定装置X1により得られる超音波周波数と反射超音波強度との関係を表す図。 本発明の第2実施形態に係る半導体ウェハ温度測定装置X2の概略構成図。 半導体ウェハ温度測定装置X2により得られる反射超音波の検出信号の変化を模式的に表した図。 本発明の第3実施形態に係る半導体ウェハ温度測定装置X3により得られる反射超音波の検出信号の変化を表すグラフ。 物質の温度とその物質内での縦波伝播速度との関係を表す図。 本発明の第4実施形態に係る半導体ウェハ温度測定装置X4の概略構成図。 半導体ウェハ温度測定装置X4により得られる反射超音波の検出信号の変化を模式的に表した図。 本発明の第5実施形態に係る半導体ウェハ温度測定装置X5の概略構成図。
符号の説明
X1,X2,X3,X4,X5:半導体ウェハ温度測定装置
1 :処理ウェハ
1x:参照ウェハ
2 :ウェハステージ
3 :発振器
4,4’:セレクタ
5,5a,5b:増幅器
6,6’,6”:制御・演算装置
7 :第1環境温度センサ
8 :プロセスチャンバー
8ax:第2環境温度センサ
8bx:温度調節器
8x:参照ウェハ用恒温槽
9 :超音波信号処理装置
10:測定用超音波送受部
11:送信用超音波振動子
12:受信用超音波振動子
10’:超音波振動子
13:導波路
20:分配器
21:バースト化回路
22:ゲート回路
23:位相検波回路

Claims (20)

  1. 平板状の処理対象物をその一の面において支持する支持台を備え,該支持台により支持された前記処理対象物の温度を測定する温度測定装置であって,
    前記処理対象物と材質が同じで厚みが既知の参照部材に対して超音波を出力する参照用超音波出力手段と,
    前記参照部材に反射した反射超音波を検出する参照用超音波検出手段と,
    前記支持台側から前記処理対象物に対し超音波を出力する測定用超音波出力手段と,
    前記処理対象物に反射した反射超音波を検出する測定用超音波検出手段と,
    前記参照用超音波検出手段及び前記測定用超音波検出手段それぞれの検出信号から,前記参照部材及び前記測定対象物それぞれの内部での超音波の伝播速度に応じて定まる特徴量を検出する特徴量検出手段と,
    前記参照部材及び前記処理対象物が同等の温度環境内に存在する定常状態における,前記参照用超音波検出手段及び前記測定用超音波検出手段それぞれの検出信号から検出された前記特徴量に基づいて,前記処理対象物の厚みに関する調整値を算出する調整値算出手段と,
    前記定常状態以外における前記測定用超音波検出手段の検出信号から検出された前記特徴量と前記調整値とに基づいて前記処理対象物の温度を算出する温度算出手段と,
    を具備してなることを特徴とする温度測定装置。
  2. 前記特徴量が,前記参照部材内及び前記処理対象物内で伝播する超音波の伝播時間,共振周波数又は位相のいずれかである請求項1に記載の温度測定装置。
  3. 前記参照部材の温度を検出する参照用温度検出手段と,
    前記定常状態における,前記参照用超音波検出手段の検出信号から検出された前記特徴量と前記参照用温度検出手段の検出温度とに基づいて,前記処理対象物の温度と前記処理対象物内での超音波の伝播速度との対応関係を表す温度・速度対応情報を調整する温度・速度対応情報調整手段と,を具備し,
    前記温度算出手段が,前記特徴量と前記調整値と前記温度・速度対応情報調整手段による調整後の前記温度・速度対応情報とに基づいて前記処理対象物の温度を算出してなる請求項1又は2のいずれかに記載の温度測定装置。
  4. 前記測定用超音波出力手段の超音波出力端及び前記測定用超音波検出手段の超音波検出端と前記処理対象物との間に位置する前記支持台の部分と構造及び材質が同じであって,前記参照用超音波出力手段の超音波出力端及び前記参照用超音波検出手段の超音波検出端と前記参照部材との間に位置する参照用超音波伝播部を具備してなる請求項1〜3のいずれかに記載の温度測定装置。
  5. 前記参照用温度検出手段が,前記参照部材に接触してその温度を検出する接触式の温度検出手段である請求項1〜4のいずれかに記載の温度測定装置。
  6. 前記参照用超音波出力手段及び前記測定用超音波出力手段が,それぞれ個別の超音波振動子を有するとともに該超音波振動子に交流信号を供給する1つの交流信号供給部を共有し,
    前記参照用超音波検出手段及び前記測定用超音波検出手段が,それぞれ個別の超音波振動子を有するとともに該超音波振動子が出力する反射超音波の検出信号が入力される1つの信号入力部を共有し,
    当該温度測定装置が,前記参照用超音波出力手段及び前記測定用超音波出力手段それぞれの前記超音波振動子と前記交流信号供給部との間の信号経路,及び前記参照用超音波検出手段及び前記測定用超音波検出手段それぞれの前記超音波振動子と前記信号入力部との間の信号経路を順次切り替える信号経路切替手段を具備し,
    前記特徴量検出手段が,前記信号入力部を通じて得られる検出信号を用いて前記特徴量を検出してなる請求項1〜5のいずれかに記載の温度測定装置。
  7. 前記測定用超音波出力手段及び前記測定用超音波検出手段それぞれが,前記支持台における複数の測定位置ごとに設けられた複数の超音波振動子を有し,
    前記信号経路切替手段が,前記測定用超音波出力手段における前記複数の超音波振動子と前記交流信号供給部との間の信号経路,及び前記測定用超音波検出手段における前記複数の超音波振動子と前記信号入力部との間の信号経路についても切り替えるものであり,
    前記特徴量検出手段が,前記処理対象物における前記複数の測定位置それぞれについて,前記信号入力部を通じて得られる検出信号を用いて前記特徴量を検出し,
    前記温度算出手段が,前記処理対象物における前記複数の測定位置それぞれについて前記処理対象物の温度を算出してなる請求項6に記載の温度測定装置。
  8. 前記定常状態において前記参照部材を収容してその収容部の温度を前記処理対象物の収容室内の温度と同じ温度に調節する参照部材用恒温槽を具備してなる請求項1〜7のいずれかに記載の温度測定装置。
  9. 前記参照用超音波出力手段及び前記測定用超音波出力手段がパルス状の超音波を出力し,
    前記特徴量検出手段が,
    前記参照用超音波検出手段及び前記測定用超音波検出手段それぞれの検出信号に基づいて,前記参照部材及び前記処理対象物それぞれにおける表裏各面で反射した超音波の前記参照用超音波検出手段及び前記測定用超音波検出手段それぞれへの到達時点の差から前記伝播時間を検出してなる請求項2〜8のいずれかに記載の温度測定装置。
  10. 前記参照用超音波出力手段及び前記測定用超音波出力手段それぞれにより出力される超音波の周波数掃引を行う周波数掃引手段を具備し,
    前記特徴量検出手段が,
    前記周波数掃引手段による超音波の掃引周波数と超音波の周波数掃引に応じて変化する前記参照用超音波検出手段及び前記測定用超音波検出手段それぞれの検出信号の強度とに基づいて,前記共振周波数を前記特徴量として検出してなる請求項2〜8のいずれかに記載の温度測定装置。
  11. 前記参照用超音波出力手段及び前記測定用超音波出力手段がパルス状の超音波を出力し,
    前記特徴量検出手段が,
    前記参照用超音波検出手段及び前記測定用超音波検出手段それぞれの検出信号の変化に基づいて,前記共振周波数を前記特徴量として検出してなる請求項2〜8のいずれかに記載の温度測定装置。
  12. 前記参照用超音波出力手段及び前記測定用超音波出力手段が複数の一定周波数のバースト波状の超音波を既定周期で出力し,
    前記特徴量検出手段が,
    前記参照用超音波検出手段及び前記測定用超音波検出手段それぞれの検出信号から,前記参照部材及び前記処理対象物それぞれにおける表裏各面で往復反射した超音波の位相を前記特徴量として検出してなる請求項2〜8のいずれかに記載の温度測定装置。
  13. 前記特徴量検出手段が,
    前記参照用超音波検出手段及び前記測定用超音波検出手段それぞれの検出信号と,前記参照用超音波出力手段及び前記測定用超音波出力手段それぞれにより生成され前記超音波の周波数で発振する基準発振信号と,のミキシングにより前記位相を検出してなる請求項12に記載の温度測定装置。
  14. 前記特徴量検出手段が,
    前記参照用超音波検出手段及び前記測定用超音波検出手段それぞれの検出信号から,前記参照用超音波出力手段及び前記測定用超音波出力手段それぞれにより出力されるバースト波状の超音波の出力周期に同期した既定の時間帯の信号を抽出し,その抽出信号と前記基準発振信号とのミキシングにより前記位相を検出してなる請求項13に記載の温度測定装置。
  15. 平板状の処理対象物がその一の面において支持台により支持された状態で,前記処理対象物の温度を測定する温度測定方法であって,
    前記参照部材及び前記処理対象物が同等の温度環境内に存在する定常状態において,前記処理対象物と材質が同じで厚みが既知の参照部材に対して超音波を出力し,前記参照部材に反射した反射超音波を検出する定常時参照用超音波検出工程と,
    前記定常状態において,前記支持台側から前記処理対象物に対し超音波を出力し,前記処理対象物に反射した反射超音波を検出する定常時測定用超音波検出工程と,
    前記定常時参照用超音波検出工程及び前記定常時測定用超音波検出工程それぞれで得られた検出信号から,前記参照部材及び前記測定対象物それぞれの内部での超音波の伝播速度に応じて定まる特徴量を検出する定常時特徴量検出工程と,
    前記定常時特徴量検出工程で得られた前記特徴量に基づいて前記処理対象物の厚みに関する調整値を算出する調整値算出工程と,
    前記定常状態以外の状態において,前記支持台側から前記処理対象物に対し超音波を出力し,前記処理対象物に反射した反射超音波を検出する非定常時測定用超音波検出工程と,
    前記非定常時測定用超音波検出工程で得られた検出信号から前記特徴量を検出する非定常時特徴量検出工程と,
    前記調整値算出工程で得られた前記調整値と前記非定常時特徴量検出工程で得られた前記特徴量とに基づいて前記処理対象物の温度を算出する非定常時温度算出工程と,
    を有してなることを特徴とする温度測定方法。
  16. 前記特徴量が,前記参照部材内及び前記処理対象物内それぞれで伝播する超音波の共振周波数,伝播時間又は位相のいずれかである請求項15に記載の温度測定方法。
  17. 前記定常状態における前記参照部材の温度を検出する参照用温度検出工程と,
    前記定常時特徴量検出工程で得られた前記参照部材における超音波についての前記特徴量と前記参照用温度検出工程で得られた検出温度とに基づいて,前記処理対象物の温度と前記処理対象物内での超音波の伝播速度との対応関係を表す温度・速度対応情報を調整する温度・速度対応情報調整工程と,をさらに有し,
    前記非定常時温度算出工程において,前記特徴量と前記調整値と前記温度・速度対応情報調整工程による調整後の前記温度・速度対応情報とに基づいて前記処理対象物の温度を算出してなる請求項15又は16のいずれかに記載の温度測定方法。
  18. 前記定常状態が,前記処理対象物及び前記参照部材が一の収容室内に収容された状態である請求項15〜17のいずれかに記載の温度測定方法。
  19. 前記定常状態が,前記処理対象物が所定の収容室内に収容されており,前記参照部材が前記処理対象物の収容室内の温度と同じ温度に調節された恒温槽内に収容された状態である請求項15〜17のいずれかに記載の温度測定方法。
  20. 前記定常時参照用超音波検出工程において,前記定常時測定用超音波出力工程での超音波出力端及び超音波検出端と前記処理対象物との間に位置する前記支持台の部分と構造及び材質が同じ参照用超音波伝播部を介して,超音波の出力及び反射超音波の検出が行われてなる請求項15〜19のいずれかに記載の温度測定方法。
JP2008186854A 2008-07-18 2008-07-18 温度測定装置,温度測定方法 Expired - Fee Related JP5061055B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008186854A JP5061055B2 (ja) 2008-07-18 2008-07-18 温度測定装置,温度測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008186854A JP5061055B2 (ja) 2008-07-18 2008-07-18 温度測定装置,温度測定方法

Publications (2)

Publication Number Publication Date
JP2010025724A JP2010025724A (ja) 2010-02-04
JP5061055B2 true JP5061055B2 (ja) 2012-10-31

Family

ID=41731703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008186854A Expired - Fee Related JP5061055B2 (ja) 2008-07-18 2008-07-18 温度測定装置,温度測定方法

Country Status (1)

Country Link
JP (1) JP5061055B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813528B (zh) * 2010-04-30 2012-01-04 重庆理工大学 一种利用超声波技术精密测量温度的方法及测量仪
EP3786745B1 (de) * 2019-08-28 2023-02-22 Siemens Aktiengesellschaft Identifikation von abweichungen zwischen realer anlage und ihrem digitalen zwilling
CN116608802A (zh) * 2023-07-17 2023-08-18 中国空气动力研究与发展中心计算空气动力研究所 厚度变化时温度和厚度同步测量方法、装置、设备及介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243933A (ja) * 1989-03-16 1990-09-28 Sumitomo Metal Ind Ltd 薄板の内部温度測定方法
JPH03245026A (ja) * 1990-02-23 1991-10-31 Sumitomo Metal Ind Ltd 鋳片の内部温度測定方法
JPH11190670A (ja) * 1997-12-26 1999-07-13 Toshiba Corp 表面温度測定装置及び表面温度測定方法
JP2001166054A (ja) * 1999-12-13 2001-06-22 Toshiba Corp 演算計測装置、物体移動速度測定方法および金属の温度測定方法
US6837109B2 (en) * 2002-11-05 2005-01-04 Kawasaki Steel Corporation Material thickness measurement method and apparatus

Also Published As

Publication number Publication date
JP2010025724A (ja) 2010-02-04

Similar Documents

Publication Publication Date Title
US5141331A (en) Ultrasonic temperature measurement and uses in optical spectroscopy and calorimetry
US20160153938A1 (en) Waveguide technique for the simultaneous measurement of temperature dependent properties of materials
US5469742A (en) Acoustic temperature and film thickness monitor and method
US8011827B1 (en) Thermally compensated dual-probe fluorescence decay rate temperature sensor
JP5133108B2 (ja) 温度測定装置,温度測定方法
US6188050B1 (en) System and method for controlling process temperatures for a semi-conductor wafer
JP7477500B2 (ja) 熱伝導率を測定する定常状態サーモリフレクタンス方法およびシステム
US20120084045A1 (en) Temperature measuring method, storage medium, and program
JP6250587B2 (ja) 発熱点検出方法及び発熱点検出装置
JP5061055B2 (ja) 温度測定装置,温度測定方法
US7104683B2 (en) Thermally compensated fluorescence decay rate temperature sensor and method of use
JP4258667B2 (ja) 熱物性測定方法及び装置
KR101910697B1 (ko) 발열점 검출 방법 및 발열점 검출 장치
US20110222581A1 (en) Probe for temperature measurement, temperature measuring system and temperature measuring method using the same
JP2009031180A (ja) 内部温度の測定方法および測定装置
US9846088B2 (en) Differential acoustic time of flight measurement of temperature of semiconductor substrates
CN113514352B (zh) 微纳米材料与结构力热耦合高周疲劳试验方法及试验装置
JP2002131295A (ja) Lsaw伝搬特性測定方法及び測定装置
US20050089077A1 (en) Method of and apparatus for measuring and controlling substrate holder temperature using ultrasonic tomography
Reisinger et al. Ultrasonic Temperature Measurement
JP2019138869A (ja) 熱物性測定方法
Ihara et al. A non-contact temperature sensing with ultrasound and the potential for monitoring heated materials
TW202403264A (zh) 半導體晶圓的厚度的測量方法及測量裝置
JP2022179036A (ja) 測定方法、及び測定装置
Vedantham et al. Laser Induced Stress Wave Thermometry for In-situ Temperature and Thickness Characterization of Single Crystalline Silicon Wafer: Part I—Theory and Apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110315

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110315

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees