JP5052780B2 - 水酸化マグネシウム微粒子分散液の製造方法 - Google Patents

水酸化マグネシウム微粒子分散液の製造方法 Download PDF

Info

Publication number
JP5052780B2
JP5052780B2 JP2005330690A JP2005330690A JP5052780B2 JP 5052780 B2 JP5052780 B2 JP 5052780B2 JP 2005330690 A JP2005330690 A JP 2005330690A JP 2005330690 A JP2005330690 A JP 2005330690A JP 5052780 B2 JP5052780 B2 JP 5052780B2
Authority
JP
Japan
Prior art keywords
dispersion
magnesium hydroxide
fine particle
solvent
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005330690A
Other languages
English (en)
Other versions
JP2007137694A (ja
Inventor
洋 在田
誠 河野
明 植木
聡 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP2005330690A priority Critical patent/JP5052780B2/ja
Publication of JP2007137694A publication Critical patent/JP2007137694A/ja
Application granted granted Critical
Publication of JP5052780B2 publication Critical patent/JP5052780B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は、水酸化マグネシウム微粒子分散液の製造方法に関するものである。
プラズマディスプレイパネル(以下、PDPという)の誘電体層の保護膜として、酸化マグネシウム薄膜が用いられている。PDPの誘電体層保護用の酸化マグネシウム薄膜の製造方法としては、電子ビーム蒸着法やスパッタ法などの物理的な方法が主流である。しかしながら、これらの製造方法では大規模な製造装置を用いて厳しい製造条件の管理が必要となるなどの問題がある。このため、水酸化マグネシウム微粒子の分散液を誘電体層の上に塗布し、得られた水酸化マグネシウム塗布膜を焼成することによって酸化マグネシウム薄膜を製造する方法(塗布法)の研究が進められている。
特許文献1には、ゾル−ゲル反応を利用して製造した粒子径10nm〜100μmの水酸化マグネシウム微粒子分散液を用いてPDP用の酸化マグネシウム薄膜を製造する方法が開示されている。
特開平8−264125号公報
上記特許文献1に開示されているように、微細な水酸化マグネシウムの分散液を製造する方法としてゾル−ゲル法は有用な方法の一つである。しかしながら、ゾル−ゲル法による水酸化マグネシウム微粒子分散液の製造は、製造コストが高いという問題がある。
本発明の目的は、微粒子の水酸化マグネシウムが分散されている分散液を工業的に安価に製造することができる方法を提供することにある。
本発明は、気相酸化合成法により製造された、平均一次粒子径が5〜80nmの範囲にある酸化マグネシウム微粒子からなる酸化マグネシウム粉末を水蒸気に接触させることにより得られた水酸化マグネシウム粉末を、溶媒に分散させて分散液を調製する工程、そして該分散液に平均粒子径が20〜300μmのセラミック製ビーズにより剪断力を付与することにより、分散液中の水酸化マグネシウム粉末を崩壊させて微粒子の分散液とする工程を含む、D 50 が1〜20nmの範囲にあり、D 10 /D 90 が0.1以上である水酸化マグネシウム微粒子分散液の製造方法にある。
本発明はまた、気相酸化合成法により製造された、平均一次粒子径が5〜80nmの範囲にある酸化マグネシウム微粒子からなる酸化マグネシウム粉末を水蒸気に接触させることにより得られた水酸化マグネシウム粉末を、溶媒に分散させて分散液を調製する工程、そして該分散液に圧力を付与して分散液噴流を生成させ、次いで該分散液噴流を二以上に分岐させ、各分散液を対向下に衝突させることにより、分散液中の水酸化マグネシウム粉末を崩壊させて微粒子の分散液とする工程を含む、D 50 が30〜200nmの範囲にあり、D 10 /D 90 が0.1以上であって、ジルコニウム、鉄、ニッケル、クロム及びアルミニウムをそれぞれ全体量に対して20質量ppm以上含むことがない水酸化マグネシウム微粒子分散液の製造方法にもある。
上記本発明の水酸化マグネシウム微粒子分散液の製造方法の好ましい態様は次の通りである。
(1)溶媒が、水である。
(2)溶媒が、極性有機溶媒である。
(3)溶媒が、炭素原子数3〜5の一価アルコールである。
本発明の製造方法を利用することによって、水酸化マグネシウム微粒子の分散液を工業的に有利に製造することができる。
本発明の製造方法により得られた水酸化マグネシウム微粒子分散液は、均一な厚さの酸化マグネシウム薄膜を塗布法により形成させるのに有利に用いることができる。
本発明の水酸化マグネシウム微粒子分散液の製造方法においては、水酸化マグネシウム源として、気相酸化合成法により製造された、平均一次粒子径が5〜80nmの範囲にある酸化マグネシウム微粒子の粉末を水蒸気に接触させることにより得られた水酸化マグネシウム粉末を用いる。
気相酸化合成法とは、金属マグネシウム蒸気と酸素とを気相中にて反応させて、酸化マグネシウム粉末を製造する方法である。気相酸化合成法により製造された平均一次粒子径が5〜80nmの範囲にある酸化マグネシウム微粒子の粉末としては、宇部マテリアルズ(株)製の100A(平均一次粒子径:10nm)、500A(平均一次粒子径:50nm)が知られている。気相酸化合成法により製造された酸化マグネシウム粉末は、一次粒子が立方形状の微粒子からなる。
酸化マグネシウム粉末は、水蒸気に接触させることにより、水酸化マグネシウム粉末とすることが重要である。酸化マグネシウム粉末を水蒸気に接触させて、緩やかに水和(消化)させることによって、酸化マグネシウム微粒子の形状を維持したまま、微粒子の水酸化マグネシウムを得ることができる。酸化マグネシウム粉末と水蒸気との接触は、例えば、酸化マグネシウム粉末と水とをそれぞれ直接的に接触しないように、同一の容器に入れて密閉し、10〜100℃の温度、好ましくは20〜50℃の温度に保持することによって行なうことができる。
本発明では、水酸化マグネシウム粉末を、溶媒に分散させて分散液を調製し、そしてその水酸化マグネシウム粉末分散液に平均粒子径が20〜300μmのセラミック製ビーズにより剪断力を付与する剪断分散処理か、あるいは水酸化マグネシウム粉末分散液に圧力を付与して分散液噴流を生成させ、次いでその分散液噴流を二以上に分岐させ、各分散液を対向下に衝突させる衝突分散処理を行なうことにより、分散液中の水酸化マグネシウム粉末を崩壊させて微粒子の分散液とする。
溶媒としては、水、極性有機溶媒及びこれらの混合物を用いることができる。極性有機溶媒の例としては、アルコール類及びケトン類を挙げることができる。アルコール類の例としては、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール、イソブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、ペンチルアルコール、イソペンチルアルコールなどの一価アルコールを挙げることができる。ケトン類の例としては、アセトン、エチルメチルケトン、ジエチルケトンを挙げることができる。これらのアルコール類及びケトン類は、二種以上を併用してもよい。
極性有機溶媒は、炭素原子数が3〜5の一価アルコールであることが好ましく、特に好ましいのはイソプロピルアルコール及びブチルアルコール、そしてこれらの混合物であり、さらに好ましいのはブチルアルコールである。
水酸化マグネシウム粉末分散液の水酸化マグネシウム濃度は、分散液の全組成物の質量を基準として0.05〜20質量%の範囲にあることが好ましく、0.5〜15質量%の範囲にあることが特に好ましい。
水酸化マグネシウム粉末分散液の剪断分散処理において用いるビーズ(ボールともいう)は、平均粒子径が20〜150μmの範囲にあることが好ましく、20〜120μmの範囲にあることが特に好ましい。ビーズの材料としては、酸化ジルコニウムなどの公知のセラミックス材料を挙げることができる。
剪断分散処理に用いる装置としては、転動ミル(回転ミル)、振動ミル、揺動ミル(ロッキングミル)、遊星ミル、CFミル(遠心流動化ミル)、アニュラーミル(転動攪拌ミル)などのミル容器を駆動することによってビーズにエネルギーを伝達するビーズミル、ミル容器内に充填したビーズをミル容器中に挿入されている攪拌機にて攪拌することによってビーズにエネルギーを伝達する攪拌ミルを挙げることができる。これらの中で好ましいのは、揺動ミル及び攪拌ミルである。
剪断分散処理では、ビーズによる強力な剪断力により、分散液中の水酸化マグネシウム粉末を崩壊させて微粒子の分散液とする。このため剪断分散処理を利用すると、粒子径が比較的揃った、すなわち粒度分布の幅の狭い水酸化マグネシウム微粒子分散液を得ることができる。例えば、動的光散乱法によって測定されたD50(累積通過分布の50%に相当する粒子径)が1〜20nmの範囲にあり、動的光散乱法によって測定されたD10(累積通過分布の10%に相当する粒子径)とD90(累積通過分布の90%に相当する粒子径)との比(D10/D90)が0.1以上、より好ましくは0.3以上の水酸化マグネシウム微粒子分散液を得ることができる。
水酸化マグネシウム粉末分散液の衝突分散処理において、水分散液噴流の圧力は、100〜250MPaの範囲にあることが好ましく、130〜230MPaの範囲にあることが特に好ましい。衝突分散処理工程は、複数回行なってもよい。衝突分散処理の回数は、1〜1000回の範囲にあることが好ましい。
衝突分散処理では、分散液の金属壁への衝突によるものではなく、分散液同士の衝突により、分散液中の水酸化マグネシウム粉末を崩壊させて微粒子の分散液とする。このため衝突分散処理を利用すると、動的光散乱法によって測定されたD50は剪断分散処理により得られた水酸化マグネシウム微粒子分散液と比べて大きくなるが、重金属の混入が少ない水酸化マグネシウム微粒子分散液を得ることができる。例えば、動的光散乱法によって測定されたD50が30〜200nmの範囲にあり、D10/D90が0.1以上であって、ジルコニウム、鉄、ニッケル、クロム及びアルミニウムについては、それぞれ全体量に対して20質量ppm以上含むことがない高純度の水酸化マグネシウム微粒子分散液を得ることができる。
本発明の製造方法により得られる水酸化マグネシウム微粒子分散液は、PDPの酸化マグネシウム薄膜形成用の塗布液として有利に用いることができる。酸化マグネシウム薄膜は、基体(誘電体層)の上に水酸化マグネシウム微粒子分散液を塗布し、次いで、得られた塗布膜を焼成することによって製造することができる。塗布法としては、スピンコート法、スプレーコート法、スクリーン印刷法、グラビア印刷法、ディップ法、ドクタブレード法等の公知の方法を挙げることができる。塗布膜の焼成温度は、400〜800℃の範囲であり、焼成時間は0.5〜6時間の範囲である。
本発明の製造方法により得られる水酸化マグネシウム微粒子分散液はまた、粉体や液体に容易に混合分散させることができるため、食品、医薬あるいは化粧品のpH調製剤、高分子安定剤、各種セラミックス材料の原料及び焼結助剤としても利用することができる。また、ジルコニウム、鉄、ニッケル、クロム及びアルミニウムの混入量の少ない高純度の水酸化マグネシウム微粒子分散液は、電子材料、医薬品原料、飲食料品の添加剤としても利用することができる。
[実施例1]
(1)水酸化マグネシウム粉末の製造
平均一次粒子径が50nmの酸化マグネシウム粉末(500A、宇部マテリアルズ(株)製)36gと、水24gとを、それぞれ互いが接触しないようにガラス製容器に入れて、容量20Lのステンレス製容器内に設置した。ステンレス製容器を密閉した後、温度35℃の環境下にて150時間静置して、酸化マグネシウム粉末を水和させた。そして、ステンレス製容器から取り出し、水酸化マグネシウム粉末を得た。
(2)水酸化マグネシウム微粒子分散液の製造
上記(1)にて製造した水酸化マグネシウム微粒子10gを、ブチルアルコール90gに投入して濃度10質量%の水酸化マグネシウム粉末の分散液を得た。この水酸化マグネシウム粉末の分散液を、ロッキングミル(ミル容器の容量:100mL、RM−01、(株)セイワ技研製)を用いて、ビーズ:平均粒子径100μmの酸化ジルコニウム製ビーズ、ミル容器内のビーズ充填率:60体積%、ミル容器の振動速度:500rpm、処理時間:120分の条件にて剪断分散処理を行なった。
分散処理後の水酸化マグネシウム微粒子分散の粒度分布を下記の方法により測定した。その結果、D10は8.2nm、D50は11.5nm、D90は20.3nmであり、D10/D90は0.404であった。この結果から、剪断分散処理を行なうことによって、微細でかつ粒度分布の幅の狭い水酸化マグネシウム微粒子分散液が得られることが分かる。
[粒度分布の測定方法]
水酸化マグネシウム微粒子分散液を、水酸化マグネシウム微粒子の濃度が3〜4質量%となるように分散媒体にて希釈し、超音波ホモジナイザー(S−150D、ブランソン製)にて、パワー強度8の条件で1分間分散処理を行なう。得られた希釈分散液中の水酸化マグネシウム微粒子の粒度分布を、動的光散乱式粒度分析計(マイクロトラックUPA150、日機装製)を用いて、半導体レーザ(+3B)波長:780nm、3mWの条件にて測定する。測定は5回行い、その平均値を算出する。
(3)酸化マグネシウム薄膜の製造
上記(2)にて製造した水酸化マグネシウム微粒子分散液1gをガラス基板(サイズ:縦40mm×横40mm×厚さ0.5mm)の中心に滴下した後、ガラス基板をその中心を軸として1000rpmの回転速度で60秒、2000rpmの回転速度で20秒、3000rpmの回転速度で20秒の順で回転させる操作を1回行なって、塗布膜を形成した。次いでその塗布膜を550℃の温度で1時間焼成して、酸化マグネシウム薄膜とした。得られた酸化マグネシウム膜の膜厚と波長600nmの光の透光率をガラス基板の中心、中心から右端に15mm、中心から左端に15mmの位置にて測定した。その結果を表1に示す。下記表の結果から、本発明の製造方法を利用して得られた水酸化マグネシウム微粒子分散液を用いることによって、膜厚が均一で、かつ透光率の高い酸化マグネシウム薄膜を製造することができることが分かる。
表1
────────────────────────────────────────
中心から右端 中心 中心から左端
に15mm に15mm
────────────────────────────────────────
膜厚 0.82μm 0.86μm 0.86μm
透光率 ほぼ100% ほぼ100% ほぼ100%
────────────────────────────────────────
[実施例2]
実施例1の(1)にて製造した水酸化マグネシウム微粒子5gを、ブチルアルコール95gに投入して濃度10質量%の水酸化マグネシウム粉末の分散液を得た。この水酸化マグネシウム粉末の分散液を、ナノマイザーシステム(NM2、吉田機械工業(株)製、ノズル径:150μm×170μm)を用いて、分散液噴流の圧力200Mpa、衝突分散処理回数200回の条件にて、衝突分散処理を行なった。
分散処理後の水酸化マグネシウム微粒子分散の粒度分布を実施例1と同様に測定した。その結果、D10は46.4nm、D50は104.4nm、D90は318.8nmであり、D10/D90は0.146であった。また、水酸化マグネシウム微粒子分散液中のジルコニウム、鉄、ニッケル、クロム及びアルミニウムの含有量を測定したところ、いずれの元素についても、その含有量は全体量に対して20質量ppm未満であった。これらの結果から、衝突分散処理を行なうことによって、剪断分散処理と比べてやや粒子径は大きくなるが、高純度の水酸化マグネシウム微粒子分散液が得られることが分かる。
[実施例3]
(1)水酸化マグネシウム粉末の製造
酸化マグネシウム粉末に、平均一次粒子径が10nmの酸化マグネシウム粉末(100A、宇部マテリアルズ(株)製)を用いる以外は、実施例1の(1)と同様にして、水酸化マグネシウム粉末を製造した。
(2)水酸化マグネシウム微粒子分散液の製造
上記(1)にて製造した水酸化マグネシウム微粒子10gを、ブチルアルコール90gに投入して濃度10質量%の水酸化マグネシウム粉末の分散液を得た。この水酸化マグネシウム粉末の分散液を、ロッキングミル(ミル容器の容量:100mL、RM−01、(株)セイワ技研製)を用いて、ビーズ:平均粒子径100μmの酸化ジルコニウム製ビーズ、ミル容器内のビーズ充填率:30体積%、ミル容器の振動速度:500rpm、処理時間:120分の条件にて剪断分散処理を行なった。
分散処理後の水酸化マグネシウム微粒子分散の粒度分布を実施例1と同様に測定した。その結果、D10は3.3nm、D50は3.9nm、D90は5.1nmであり、D10/D90は0.566であった。この結果から、剪断分散処理を行なうことによって、微細でかつ粒度分布の幅の狭い水酸化マグネシウム微粒子分散液が得られることが分かる。

Claims (5)

  1. 気相酸化合成法により製造された、平均一次粒子径が5〜80nmの範囲にある酸化マグネシウム微粒子からなる酸化マグネシウム粉末を水蒸気に接触させることにより得られた水酸化マグネシウム粉末を、溶媒に分散させて分散液を調製する工程、そして該分散液に平均粒子径が20〜300μmのセラミック製ビーズにより剪断力を付与することにより、分散液中の水酸化マグネシウム粉末を崩壊させて微粒子の分散液とする工程を含む、D 50 が1〜20nmの範囲にあり、D 10 /D 90 が0.1以上である水酸化マグネシウム微粒子分散液の製造方法。
  2. 気相酸化合成法により製造された、平均一次粒子径が5〜80nmの範囲にある酸化マグネシウム微粒子からなる酸化マグネシウム粉末を水蒸気に接触させることにより得られた水酸化マグネシウム粉末を、溶媒に分散させて分散液を調製する工程、そして該分散液に圧力を付与して分散液噴流を生成させ、次いで該分散液噴流を二以上に分岐させ、各分散液を対向下に衝突させることにより、分散液中の水酸化マグネシウム粉末を崩壊させて微粒子の分散液とする工程を含む、D 50 が30〜200nmの範囲にあり、D 10 /D 90 が0.1以上であって、ジルコニウム、鉄、ニッケル、クロム及びアルミニウムをそれぞれ全体量に対して20質量ppm以上含むことがない水酸化マグネシウム微粒子分散液の製造方法。
  3. 溶媒が、水である請求項1もしくは2に記載の水酸化マグネシウム微粒子分散液の製造方法。
  4. 溶媒が、極性有機溶媒である請求項1もしくは2に記載の水酸化マグネシウム微粒子分散液の製造方法。
  5. 溶媒が、炭素原子数3〜5の一価アルコールである請求項1もしくは2に記載の水酸化マグネシウム微粒子分散液の製造方法。
JP2005330690A 2005-11-15 2005-11-15 水酸化マグネシウム微粒子分散液の製造方法 Active JP5052780B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005330690A JP5052780B2 (ja) 2005-11-15 2005-11-15 水酸化マグネシウム微粒子分散液の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005330690A JP5052780B2 (ja) 2005-11-15 2005-11-15 水酸化マグネシウム微粒子分散液の製造方法

Publications (2)

Publication Number Publication Date
JP2007137694A JP2007137694A (ja) 2007-06-07
JP5052780B2 true JP5052780B2 (ja) 2012-10-17

Family

ID=38201020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005330690A Active JP5052780B2 (ja) 2005-11-15 2005-11-15 水酸化マグネシウム微粒子分散液の製造方法

Country Status (1)

Country Link
JP (1) JP5052780B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106564918B (zh) * 2015-10-13 2018-04-17 黄冈师范学院 一种制备氢氧化镁的方法
CN112777617B (zh) * 2021-02-18 2022-08-12 西部矿业集团有限公司 一种工业级氢氧化镁微波法制备阻燃剂用氢氧化镁的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2944928B2 (ja) * 1995-02-13 1999-09-06 ダイセル網干産業株式会社 水酸化マグネシウムおよびその水懸濁液の製造方法
JPH1059711A (ja) * 1996-08-12 1998-03-03 Daicel Amiboshi Sangyo Kk 水酸化マグネシウムおよびその水懸濁液の製造方法
JP3965270B2 (ja) * 2000-04-19 2007-08-29 宇部マテリアルズ株式会社 高分散性高純度水酸化マグネシウム粉末及びその製造方法、及び水酸化マグネシウムスラリー
JP3770817B2 (ja) * 2000-09-28 2006-04-26 三洋化成工業株式会社 無機質粉末水性分散液

Also Published As

Publication number Publication date
JP2007137694A (ja) 2007-06-07

Similar Documents

Publication Publication Date Title
Varrla et al. Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender
Nacken et al. Delamination of graphite in a high pressure homogenizer
Ogilvie et al. Size selection of liquid-exfoliated 2D nanosheets
JP2022023164A (ja) 金属粉末の噴霧化製造方法
Saleh et al. Dry water: From physico-chemical aspects to process-related parameters
EP2905096B1 (en) Method of making surface energy modified particles and apparatus therefor
JP6035380B2 (ja) シリカゲル系触媒担体
Tohidi et al. A seed-less method for synthesis of ultra-thin gold nanosheets by using a deep eutectic solvent and gum arabic and their electrocatalytic application
Maurath et al. Influence of particle shape on the rheological behavior of three-phase non-brownian suspensions
Yogesh et al. Synthesis of water-soluble fluorescent carbon nanoparticles (CNPs) from nanosecond pulsed laser ablation in ethanol
Nazarenko et al. Characterization of aluminum nanopowders after long-term storage
Fedi et al. A study on the physicochemical properties of hydroalcoholic solutions to improve the direct exfoliation of natural graphite down to few-layers graphene
JP5052780B2 (ja) 水酸化マグネシウム微粒子分散液の製造方法
Hong et al. Fabrication of aluminum flake powder from foil scrap by a wet ball milling process
WO2017209039A1 (ja) 多層グラフェン分散液、熱物性測定用黒化剤および粉末焼結用離型剤・潤滑剤
JP4849807B2 (ja) 酸化マグネシウム微粒子分散液
Bleta et al. Understanding the role of cyclodextrins in the self-assembly, crystallinity, and porosity of titania nanostructures
Habib et al. Synthesis of silver nanoparticles by atmospheric pressure plasma jet
Taden et al. Inorganic films from three different phosphors via a liquid coating route from inverse miniemulsions
JP4914054B2 (ja) 酸化マグネシウム微粒子分散液及びその製造方法
Wang et al. Changes in particle size, structure, and physicochemical properties of potato starch after jet‐milling treatments
Tahara et al. Low-energy bead-milling dispersions of rod-type titania nanoparticles and their optical properties
Rueda et al. Micronization of magnesium acetate by the supercritical antisolvent process as a precursor for the production of magnesium oxide and magnesium hydride
Rahaman et al. An effect of hydrophobicity of cosurfactant on the growth of cerium tetrafluoride hexagonal nanorods in water-in-oil microemulsion template
Yaghoubi et al. The effect of surfactant-free TiO2 surface hydroxyl groups on physicochemical, optical and self-cleaning properties of developed coatings on polycarbonate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120725

R150 Certificate of patent or registration of utility model

Ref document number: 5052780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250