JP5049561B2 - Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode - Google Patents

Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode Download PDF

Info

Publication number
JP5049561B2
JP5049561B2 JP2006311623A JP2006311623A JP5049561B2 JP 5049561 B2 JP5049561 B2 JP 5049561B2 JP 2006311623 A JP2006311623 A JP 2006311623A JP 2006311623 A JP2006311623 A JP 2006311623A JP 5049561 B2 JP5049561 B2 JP 5049561B2
Authority
JP
Japan
Prior art keywords
magnet
target
sputtering
magnet assembly
central
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006311623A
Other languages
Japanese (ja)
Other versions
JP2008127601A (en
Inventor
泰彦 赤松
辰徳 磯部
新井  真
淳也 清田
孝 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2006311623A priority Critical patent/JP5049561B2/en
Priority to KR1020097009762A priority patent/KR101117105B1/en
Priority to CN2007800426411A priority patent/CN101589170B/en
Priority to TW96142861A priority patent/TWI470102B/en
Priority to PCT/JP2007/071965 priority patent/WO2008059814A1/en
Priority to US12/514,513 priority patent/US8172993B2/en
Publication of JP2008127601A publication Critical patent/JP2008127601A/en
Application granted granted Critical
Publication of JP5049561B2 publication Critical patent/JP5049561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は、マグネトロンスパッタリング方式で処理基板上に所定の薄膜を形成するためのマグネトロンスパッタ電極及びこのマグネトロンスパッタ電極を備えたスパッタリング装置に関する。   The present invention relates to a magnetron sputtering electrode for forming a predetermined thin film on a processing substrate by a magnetron sputtering method, and a sputtering apparatus provided with the magnetron sputtering electrode.

この種のスパッタリング装置では、例えば矩形のターゲットの前方(スパッタ面側)にトンネル状の磁束を形成するために磁石組立体が設けられている。そして、ターゲットに負の直流電圧または交流電圧を印加してターゲットをスパッタリングする際、ターゲット前方で電離した電子及びスパッタリングによって生じた二次電子を捕捉してターゲット前方での電子密度を高め、これらの電子と真空チャンバ内に導入される希ガスのガス分子との衝突確率を高めることでプラズマ密度を高めている。これにより、例えば処理基板の著しい温度上昇を伴うことなく成膜速度を向上できる等の利点があり、処理基板上に金属膜等を形成することによく利用されている。   In this type of sputtering apparatus, for example, a magnet assembly is provided to form a tunnel-like magnetic flux in front of a rectangular target (on the sputtering surface side). Then, when sputtering a target by applying a negative DC voltage or an AC voltage to the target, the electrons ionized in front of the target and secondary electrons generated by sputtering are captured to increase the electron density in front of the target, and these The plasma density is increased by increasing the collision probability between electrons and rare gas gas molecules introduced into the vacuum chamber. Thereby, for example, there is an advantage that the film forming speed can be improved without causing a significant temperature rise of the processing substrate, and it is often used for forming a metal film or the like on the processing substrate.

この種のスパッタリング装置に組み込まれる磁石組立体としては、ターゲットに平行に設けた支持板(ヨーク)と、この支持板の上面略中央に、その長手方向に沿って線状に配置した中央磁石と、この中央磁石の周囲を囲うようにターゲット側の極性をかえて配置した周辺磁石とから構成したものが知られている(特許文献1)。
特開2000‐248360号公報(例えば、従来技術の欄参照)。
As a magnet assembly incorporated in this type of sputtering apparatus, a support plate (yoke) provided in parallel with the target, a central magnet arranged linearly in the longitudinal direction at the substantially upper center of the support plate, In addition, there is known one constituted by peripheral magnets arranged by changing the polarity on the target side so as to surround the periphery of the central magnet (Patent Document 1).
Japanese Unexamined Patent Publication No. 2000-248360 (for example, refer to the column of the prior art).

ところで、上記スパッタリング装置を用いてスパッタリングする際、ターゲットの前方にレーストラック状に発生したプラズマ中の電子は、中央磁石と周辺磁石とのターゲット側の極性に応じて、このレーストラックに沿って時計周りまたは半時計回りに運動している。そして、ターゲットの端部まで来ると、電磁場によって曲げられて向きを変えるが、向きを変える際に惰性的な運動が残ることから、電子がターゲット端側に飛び出す。   By the way, when sputtering using the above sputtering apparatus, electrons in the plasma generated in a racetrack shape in front of the target are watched along the racetrack according to the polarity of the target side of the central magnet and the peripheral magnet. Exercise around or counterclockwise. Then, when it reaches the end of the target, it is bent by the electromagnetic field and changes its direction, but when it changes its direction, inertial motion remains, so electrons jump out to the target end.

この惰性的な運動によってターゲット端側に電子が飛び出すと、プラズマが局所的に拡がってターゲットの侵食領域がターゲット端側に延びることで、放電が不安定になって良好な薄膜形成が阻害される虞がある。また、スパッタリングの進行に伴うターゲットの侵食領域を均一にするために、磁石組立体をターゲットに沿って水平に往復動させる場合、上記電子の飛び出しを考慮すると、磁石組立体の大きさや移動量を小さくする必要があり、これでは、却って非侵食領域が大きくなってターゲットの利用効率が悪くなる。   When electrons jump out to the target end side due to this inertial movement, the plasma spreads locally and the target erosion region extends to the target end side, so that the discharge becomes unstable and favorable thin film formation is inhibited. There is a fear. In addition, when the magnet assembly is reciprocated horizontally along the target in order to make the erosion area of the target as the sputtering progresses, the size and amount of movement of the magnet assembly can be reduced in consideration of the jumping out of the electrons. In this case, the non-erodible area becomes larger and the target utilization efficiency becomes worse.

そこで、上記点に鑑み、本発明の課題は、ターゲットの外周縁部を均等に侵食でき、良好な薄膜形成が可能であり、その上、ターゲットの利用効率を高くできるマグネトロンスパッタ電極及びマグネトロンスパッタ電極を備えたスパッタリング装置を提供することにある。   Therefore, in view of the above points, an object of the present invention is to provide a magnetron sputter electrode and a magnetron sputter electrode that can uniformly erode the outer peripheral edge of the target, can form a good thin film, and can increase the utilization efficiency of the target. It is providing the sputtering device provided with.

上記課題を解決するために、請求項1記載のマグネトロンスパッタ電極は、処理基板に対向して配置されるターゲットの後方に磁石組立体を備え、この磁石組立体は、長手方向に沿って線状に配置した中央磁石と、中央磁石両側で平行に延びる直線部及び両直線部相互間を橋し渡す折り返し部から構成される周辺磁石とをターゲット側の極性をかえて有し、前記中央磁石と周辺磁石の各直線部とが等間隔で、かつ、前記磁石組立体の長手方向両端部で中央磁石と各直線部との間隔を磁石組立体の中央領域におけるものより狭くしたことを特徴とする。   In order to solve the above problems, the magnetron sputtering electrode according to claim 1 includes a magnet assembly behind a target disposed opposite to the processing substrate, and the magnet assembly is linear along the longitudinal direction. A central magnet arranged in parallel with each other, and a peripheral magnet composed of a linear portion extending in parallel on both sides of the central magnet and a folded portion that bridges between the two linear portions, with the polarity on the target side changed, and the central magnet Each linear part of the peripheral magnet is equidistant, and the distance between the central magnet and each linear part is narrower than that in the central region of the magnet assembly at both longitudinal ends of the magnet assembly. .

本発明によれば、磁石組立体の長手方向の両端部で中央磁石と各直線部との間の間隔を局所的に狭くしたため、中央磁石と周辺磁石との間でトンネル状に発生した各磁束のうち、この間隔を局所的に狭くした領域に位置するものの磁場の垂直成分が0となる位置が、一定の範囲で中央磁石側に局所的にシフトする。このため、ターゲット前方にプラズマを発生させたとき、電子がターゲットの端部まで来て電磁場で曲げられて向きを変えるときに惰性的な運動が残っても、ターゲット端側に飛び出すことが防止され、プラズマが局所的に拡がることが防止される。その結果、スパッタリングの際に安定して放電させることができ、良好な薄膜形成が可能になる。   According to the present invention, since the distance between the central magnet and each linear portion is locally narrowed at both longitudinal ends of the magnet assembly, each magnetic flux generated in a tunnel shape between the central magnet and the peripheral magnets. Among these, the position where the vertical component of the magnetic field is 0, although located in a region where the interval is locally narrowed, is locally shifted to the central magnet side within a certain range. For this reason, when plasma is generated in front of the target, even if an inertial motion remains when electrons come to the end of the target and bend in the electromagnetic field and change direction, it is prevented from jumping out to the target end. The plasma is prevented from spreading locally. As a result, it is possible to stably discharge during sputtering and to form a good thin film.

この場合、ターゲット側の極性に応じて、前記直線部の一方及び中央磁石の両端部を、他方の直線部側に移動させて前記間隔を狭くし、前記両端部が回転対称であれば、磁石組立体を往復動させる場合に、その往復動方向で惰性的な運動によってターゲット端側に電子が飛び出す箇所のみ、磁場の垂直成分が0となる位置を一定の範囲で電子の飛び出し方向と反対側にシフトさせることができ、ターゲットの外周縁部でのスパッタリングの進行に伴うターゲットの侵食領域を均一にできる。   In this case, depending on the polarity on the target side, one end of the linear portion and both end portions of the central magnet are moved to the other linear portion side to narrow the interval, and if the both end portions are rotationally symmetric, the magnet When the assembly is reciprocated, the position where the vertical component of the magnetic field is 0 is the opposite side of the electron emission direction within a certain range only at the location where electrons are emitted to the target end side by inertial movement in the reciprocating direction. The target erosion area can be made uniform as the sputtering progresses at the outer peripheral edge of the target.

例えば、前記直線部の一方及び中央磁石の両側の一部を他方の直線部側に移動させて前記間隔を狭くした場合、これに起因して、電子の飛び出し方向と反対側に位置する磁場の垂直成分が0となる位置が局所的にターゲット端側にシフトする場合があり、これでは、レーストラック状に発生したプラズマの一部がターゲット端側に拡がる。この場合、前記中央磁石の両端部のうち、他方の直線部側の側面に磁気シャントを設ければ、中央磁石のうち磁気シャントを設けた箇所の磁力が局所的に弱まって、上記電子の飛び出し方向に、磁場の垂直成分が0となる位置を一定の範囲でシフトさせる再補正ができてよい。   For example, when one of the linear portions and a part of both sides of the central magnet are moved to the other linear portion side to narrow the interval, the magnetic field located on the opposite side of the electron jumping direction is caused by this. In some cases, the position where the vertical component becomes 0 is locally shifted to the target end side. In this case, a part of the plasma generated in a racetrack shape spreads to the target end side. In this case, if a magnetic shunt is provided on the side surface of the other linear portion of the both ends of the central magnet, the magnetic force at the location where the magnetic shunt is provided in the central magnet is locally weakened, and the electrons jump out. It may be possible to perform re-correction by shifting the position where the vertical component of the magnetic field becomes 0 in a direction within a certain range.

他方、垂直成分が0となる位置を再補正するために、上記に加えてまたは上記にかえて、前記他方の直線部のうち、磁石組立体の長手方向の両端部に対向する部分の少なくとも一部を、中央磁石側に移動させてもよい。   On the other hand, in order to recorrect the position where the vertical component becomes 0, in addition to or instead of the above, at least one of the portions of the other linear portion facing both ends in the longitudinal direction of the magnet assembly. The part may be moved to the central magnet side.

また、前記他方の直線部のうち、磁石組立体の長手方向の両端部に対向する部分の少なくとも一部の上面に、補助磁石を追加して、周辺磁石の一部の磁力を局所的に強めて、上記電子の飛び出し方向に磁場の垂直成分が0となる位置をシフトさせて再補正するようにしてもよい。   In addition, an auxiliary magnet is added to at least a part of the upper surface of a portion of the other linear portion that faces both ends in the longitudinal direction of the magnet assembly to locally increase the magnetic force of a part of the peripheral magnet. Then, the position where the vertical component of the magnetic field becomes 0 in the electron emission direction may be shifted and re-corrected.

前記磁石組立体を、ターゲットの裏面に沿って平行に往復動させる駆動手段を備えておけば、ターゲットの外周縁部でのスパッタリングの進行に伴うターゲットの侵食領域を均一にできることから、磁石組立体の移動距離を大きくでき、その結果、ターゲットの高い利用効率が達成できる。   If drive means for reciprocating the magnet assembly in parallel along the back surface of the target is provided, the target erosion area can be made uniform as sputtering proceeds at the outer peripheral edge of the target. As a result, a high utilization efficiency of the target can be achieved.

また、上記課題を解決するために、請求項6記載の発明は、請求項1乃至請求項5記載のマグネトロンスパッタ電極を真空排気可能なスパッタ室内に配置し、スパッタ室内に所定のガスを導入するガス導入手段と、ターゲットへの電力投入を可能とするスパッタ電源とを設けたことを特徴とする。   In order to solve the above-mentioned problems, according to a sixth aspect of the present invention, the magnetron sputter electrode according to the first to fifth aspects is arranged in a sputter chamber that can be evacuated, and a predetermined gas is introduced into the sputter chamber. A gas introduction means and a sputtering power source that enables power supply to the target are provided.

以上説明したように、本発明のマグネトロンスパッタ電極及びこのマグネトロンスパッタ電極を備えたスパッタリング装置では、ターゲットの外周縁部を均等に侵食できてターゲットの利用効率が高く、その上、放電を安定させて良好な薄膜形成が可能になるという効果を奏する。   As described above, in the magnetron sputtering electrode of the present invention and the sputtering apparatus equipped with this magnetron sputtering electrode, the outer peripheral edge of the target can be evenly eroded, the target utilization efficiency is high, and the discharge is stabilized. There is an effect that a good thin film can be formed.

図1を参照して説明すれば、1は、本発明のマグネトロンスパッタ電極Cを有するマグネトロン方式のスパッタリング装置(以下、「スパッタ装置」という)である。スパッタ装置1は、例えばインライン式のものであり、ロータリーポンプ、ターボ分子ポンプなどの真空排気手段(図示せず)を介して所定の真空度に保持できるスパッタ室11を有する。スパッタ室11の上部空間には基板搬送手段2が設けられている。基板搬送手段2は、公知の構造を有し、例えば、処理基板Sが装着されるキャリア21を有し、駆動手段を間欠駆動させて、後述するターゲットと対向した位置に処理基板Sを順次搬送できる。   Referring to FIG. 1, 1 is a magnetron type sputtering apparatus (hereinafter referred to as “sputtering apparatus”) having a magnetron sputtering electrode C of the present invention. The sputtering apparatus 1 is, for example, an in-line type, and includes a sputtering chamber 11 that can be maintained at a predetermined degree of vacuum through vacuum exhausting means (not shown) such as a rotary pump or a turbo molecular pump. A substrate transfer means 2 is provided in the upper space of the sputtering chamber 11. The substrate transport unit 2 has a known structure, for example, has a carrier 21 on which the processing substrate S is mounted, and intermittently drives the driving unit to sequentially transport the processing substrate S to a position facing a target described later. it can.

スパッタ室11にはガス導入手段3が設けられている。ガス導入手段3は、マスフローコントローラ31を介設したガス管32を通じてガス源33に連通し、アルゴンなどのスパッタガスや反応性スパッタリングの際に用いる反応ガスがスパッタ室11内に一定の流量で導入できる。反応ガスとしては、処理基板S上に成膜しようする薄膜の組成に応じて選択され、酸素、窒素、炭素、水素を含むガス、オゾン、水若しくは過酸化水素またはこれらの混合ガスなどが用いられる。スパッタ室11の下側には、マグネトロンスパッタ電極Cが配置されている。   A gas introducing means 3 is provided in the sputtering chamber 11. The gas introducing means 3 communicates with a gas source 33 through a gas pipe 32 provided with a mass flow controller 31, and introduces a sputtering gas such as argon or a reactive gas used in reactive sputtering into the sputtering chamber 11 at a constant flow rate. it can. The reaction gas is selected according to the composition of the thin film to be formed on the processing substrate S, and gas containing oxygen, nitrogen, carbon, hydrogen, ozone, water, hydrogen peroxide, or a mixed gas thereof is used. . A magnetron sputtering electrode C is disposed below the sputtering chamber 11.

マグネトロンスパッタ電極Cは、スパッタ室11を臨むように設けた略直方体(上面視で長方形)の一枚のターゲット41を有する。ターゲット41は、Al合金、MoやITOなど処理基板S上に成膜しようする薄膜の組成に応じて公知の方法でそれぞれ作製され、スパッタ面411の面積が処理基板Sの外形寸法より大きく設定されている。ターゲット41はまた、スパッタリング中、ターゲット41を冷却するバッキングプレート42にインジウムやスズなどのボンディング材を介して接合され、バッキングプレート42にターゲット41を接合した状態で、ターゲット41のスパッタ面411を処理基板Sと対向するように絶縁板43を介してマグネトロンスパッタ電極Cのフレーム44に装着される。ターゲット41を装着したとき、ターゲット41の周囲には、グランド接地されたアノードとしての役割を果たすシールド(図示せず)が取付けられる。   The magnetron sputtering electrode C has a single target 41 having a substantially rectangular parallelepiped shape (rectangular in top view) provided so as to face the sputtering chamber 11. The target 41 is produced by a known method according to the composition of a thin film to be formed on the processing substrate S such as Al alloy, Mo, or ITO, and the area of the sputtering surface 411 is set larger than the outer dimension of the processing substrate S. ing. The target 41 is also bonded to a backing plate 42 that cools the target 41 through a bonding material such as indium or tin during sputtering, and the sputtering surface 411 of the target 41 is treated with the target 41 bonded to the backing plate 42. It is attached to the frame 44 of the magnetron sputtering electrode C through the insulating plate 43 so as to face the substrate S. When the target 41 is mounted, a shield (not shown) serving as an anode grounded to the ground is attached around the target 41.

マグネトロンスパッタ電極Cは、ターゲット41の後方(スパッタ面411と反対側)に位置して磁石組立体5を有する。磁石組立体5は、ターゲット41の長手方向に沿ってその両側に延出するように形成した支持板(ヨーク)51を有する。支持板51は、磁石の吸着力を増幅する磁性材料製の平板から構成される。また、支持板51上には、支持板51の長手方向に延びる中心線上に位置させて配置した中央磁石52(例えば、ターゲット41側の極性がS)と、この中央磁石52の周囲を囲うように、支持板51の上面外周に沿って環状に配置した周辺磁石53(ターゲット41側の極性がN)とがターゲット41側の極性をかえて設けられている。   The magnetron sputtering electrode C has a magnet assembly 5 located behind the target 41 (on the side opposite to the sputtering surface 411). The magnet assembly 5 includes a support plate (yoke) 51 formed so as to extend on both sides of the target 41 along the longitudinal direction. The support plate 51 is composed of a flat plate made of a magnetic material that amplifies the attractive force of the magnet. Further, on the support plate 51, a central magnet 52 (for example, the polarity on the target 41 side is S) arranged on the center line extending in the longitudinal direction of the support plate 51 and the periphery of the central magnet 52 are surrounded. In addition, a peripheral magnet 53 (the polarity on the target 41 side is N) arranged in an annular shape along the outer periphery of the upper surface of the support plate 51 is provided with the polarity on the target 41 side changed.

周辺磁石53は、中央磁石52に沿って平行に延びる直線部53a、53bと、両直線部53a、53bの相互間を橋し渡す長手方向両側の各折り返し部53cとから構成されている。この場合、中央磁石52と両直線部53a、53bとの間の間隔は一定であり、また、中央磁石52の同磁化に換算したときの体積をその周囲を囲う周辺磁石53の同磁化に換算したときの体積の和(周辺磁石:中心磁石:周辺磁石=1:2:1(図1参照))程度になるように設計される。これにより、ターゲット41の前方(スパッタ面411側)に、釣り合った閉ループのトンネル状の磁束がそれぞれ形成され、ターゲット41の前方で電離した電子及びスパッタリングによって生じた二次電子を捕捉することで、ターゲット41前方での電子密度を高くしてプラズマ密度を高くできる。   The peripheral magnet 53 includes straight portions 53a and 53b extending in parallel along the central magnet 52, and folded portions 53c on both sides in the longitudinal direction that bridge between the straight portions 53a and 53b. In this case, the distance between the central magnet 52 and the linear portions 53a and 53b is constant, and the volume when converted to the same magnetization of the central magnet 52 is converted to the same magnetization of the peripheral magnet 53 surrounding the periphery. The volume is designed to be about the sum of the volume (peripheral magnet: center magnet: peripheral magnet = 1: 2: 1 (see FIG. 1)). Thereby, a balanced closed-loop tunnel-shaped magnetic flux is formed in front of the target 41 (on the sputtering surface 411 side), and the ions ionized in front of the target 41 and the secondary electrons generated by sputtering are captured. The plasma density can be increased by increasing the electron density in front of the target 41.

そして、処理基板Sを、ターゲット41と対向した位置に搬送し、ガス導入手段3を介して所定のスパッタガスや反応ガスを導入した後、ターゲット41に接続したスパッタ電源(図示せず)を介して、負の直流電圧または高周波電圧を印加すると、処理基板S及びターゲット41に垂直な電界が形成され、ターゲット41の前方に、レーストラック状のプラズマが発生してターゲット41がスパッタリングされることで処理基板S上に所定の薄膜が形成される。   Then, the processing substrate S is transported to a position facing the target 41, a predetermined sputtering gas or reaction gas is introduced through the gas introducing means 3, and then the sputtering substrate is connected to the target 41 through a sputtering power source (not shown). Then, when a negative DC voltage or a high frequency voltage is applied, an electric field perpendicular to the processing substrate S and the target 41 is formed, and a racetrack-like plasma is generated in front of the target 41 and the target 41 is sputtered. A predetermined thin film is formed on the processing substrate S.

上記のように磁石組立体5を設けた場合、中央磁石52や周辺磁石53の上方におけるプラズマ密度は低くなり、その周辺と比較して、スパッタリングの進行に伴うターゲット41の侵食量が少なくなる。このため、支持板51の横幅をターゲット41の幅より小さく定寸すると共に、エアーシリンダやモータなどの駆動手段6を設け、駆動手段6の駆動軸61に磁石組立体5を取付けた。そして、スパッタリング中、ターゲット41の幅方向(中央磁石52の長手方向と直角な方向)に沿った水平な2箇所の位置で磁石組立体5を平行に往復動させてトンネル状の磁束の位置を変えるようにしている。これにより、ターゲット41の外周縁部を含むその全面に亘って略均等に侵食でき、さらには二次元的な往復動によってターゲット41の利用効率をさらに高めることができる。   When the magnet assembly 5 is provided as described above, the plasma density above the central magnet 52 and the peripheral magnet 53 is low, and the amount of erosion of the target 41 accompanying the progress of sputtering is reduced as compared with the periphery. Therefore, the lateral width of the support plate 51 is made smaller than the width of the target 41, and driving means 6 such as an air cylinder or a motor is provided, and the magnet assembly 5 is attached to the driving shaft 61 of the driving means 6. Then, during sputtering, the magnet assembly 5 is reciprocated in parallel at two horizontal positions along the width direction of the target 41 (direction perpendicular to the longitudinal direction of the central magnet 52), so that the position of the tunnel-like magnetic flux is determined. I try to change it. Thereby, the entire surface including the outer peripheral edge portion of the target 41 can be eroded almost uniformly, and the utilization efficiency of the target 41 can be further enhanced by two-dimensional reciprocation.

ところで、図2に示すように、従来技術のように磁石組立体5を構成し、ターゲット41の前方にレーストラック状のプラズマを発生させたとき、中央磁石52のターゲット41側の極性をS、周辺磁石53のターゲット41側の極性をNとすると、プラズマ中の電子は、ターゲット41の裏側から見た場合、レーストラックT1に沿って時計周りに運動している。そして、ターゲット41の端部まで来ると、電磁場によって曲げられて向きを変えるが、向きを変える際に惰性的な運動が残ることから、電子がターゲット41端側に飛び出し、レーストラック状のプラズマの一部が局所的にターゲット41端側に拡がる(図2(a)に示すように、例えばターゲット41の左下側では下方向(X方向)に飛び出し、他方、図示しないターゲット41の右上側では上方向に飛び出すようになる)。   By the way, as shown in FIG. 2, when the magnet assembly 5 is configured as in the prior art and a racetrack-like plasma is generated in front of the target 41, the polarity of the central magnet 52 on the target 41 side is S, Assuming that the polarity of the peripheral magnet 53 on the target 41 side is N, electrons in the plasma are moving clockwise along the race track T1 when viewed from the back side of the target 41. And when it reaches the end of the target 41, it is bent by the electromagnetic field and changes its direction, but since inertial motion remains when changing the direction, electrons jump out to the end of the target 41 and the racetrack-like plasma is generated. A portion locally expands to the end side of the target 41 (as shown in FIG. 2A, for example, the lower left side of the target 41 protrudes downward (X direction), while the upper right side of the target 41 (not shown) Jump out in the direction).

このような状態で磁石組立体5を往復動させた場合、ターゲット41端側に(またはターゲット41端の外側まで)電子が飛び出すと、ターゲット41の侵食領域E1の一部が、局所的にターゲット41端側まで延び(図2(b)で符号Rで示す領域)、放電が不安定になって良好な薄膜形成が阻害される。このような電子の飛び出しを考慮すると、磁石組立体5の大きさや移動量を小さくすることが考えられるが、これでは、却って非侵食領域が大きくなり、ターゲット41の利用効率が悪くなる。   When the magnet assembly 5 is reciprocated in such a state, a part of the erosion region E1 of the target 41 locally becomes a target when electrons jump out to the end side of the target 41 (or to the outside of the end of the target 41). 41 extends to the end side (a region indicated by symbol R in FIG. 2B), and the discharge becomes unstable, thereby preventing good thin film formation. Considering such jumping out of electrons, it is conceivable to reduce the size and moving amount of the magnet assembly 5, but in this case, the non-erosion area becomes larger and the utilization efficiency of the target 41 becomes worse.

図3に示すように、本実施の形態では、磁石組立体5の長手方向の両端部において、中央磁石52と周辺磁石53の両直線部53a、53bとの間の間隔を一定に保持しつつ中央磁石52と各直線部53a、53bとの間隔が、磁石組立体5の中央領域におけるものより狭くなると共に、この間隔を狭くした磁石組立体5の長手方向の両端部が回転対称となるように磁石組立体5を構成した。即ち、中央磁石52のうち両端部521、522と、一方の直線部53a(中央磁石の他端では他方の直線部53b)の両端部531、532とを、電子の飛び出し方向Xと反対側に位置する他方の直線部53b(中央磁石の他端では一方の直線部53a)側に段階的に移動させ、磁石組立体5の中央領域での間隔D1より、その長手方向両側に向かうに従い間隔D2、D3が狭くなるようにした。   As shown in FIG. 3, in the present embodiment, the distance between the central magnet 52 and the linear portions 53a and 53b of the peripheral magnet 53 is kept constant at both ends in the longitudinal direction of the magnet assembly 5. The interval between the central magnet 52 and each linear portion 53a, 53b is narrower than that in the central region of the magnet assembly 5, and both end portions in the longitudinal direction of the magnet assembly 5 with this interval narrowed are rotationally symmetric. A magnet assembly 5 was constructed. That is, both end portions 521 and 522 of the central magnet 52 and both end portions 531 and 532 of one linear portion 53a (the other linear portion 53b at the other end of the central magnet) are placed on the opposite side to the electron projecting direction X. It is moved stepwise toward the other linear portion 53b (one linear portion 53a at the other end of the central magnet), and the distance D2 from the distance D1 in the central region of the magnet assembly 5 toward the both sides in the longitudinal direction. D3 was made narrower.

例えば、ターゲット41が200×2500mmの寸法を有するとき、ターゲット41端から100〜250mmの範囲の位置で、最大20mm程度の電子の飛び出しが発生することから、このような場合には、磁石組立体5の長手方向両端から350mm程度の範囲を、磁石組立体5の長手方向の両端部とし、この両端部において電子の飛び出し距離に応じた幅(例えば、30mm以下)で間隔D2、D3を狭くする。この場合、長手方向の両端からの距離が350mmより長くなると、非侵食領域が広がってしまう。   For example, when the target 41 has a size of 200 × 2500 mm, a maximum of about 20 mm of electrons are emitted at a position in the range of 100 to 250 mm from the end of the target 41. The range of about 350 mm from both ends in the longitudinal direction of 5 is defined as both ends in the longitudinal direction of the magnet assembly 5, and the distances D2 and D3 are narrowed by a width (for example, 30 mm or less) corresponding to the electron jump-out distance. . In this case, when the distance from both ends in the longitudinal direction is longer than 350 mm, the non-erodible region is expanded.

これにより、中央磁石52と周辺磁石53との間でトンネル状に発生した各磁束のうち、この間隔を局所的に狭くした領域に位置するものの磁場の垂直成分が0となる位置(最もプラズマが密度が高くなり、ターゲットのスパッタに寄与する位置)が一定の範で中央磁石52側に局所的にシフトする。即ち、図3(b)に示すように、磁場の垂直成分が0となる位置をそれぞれ通るトラック状の線L1をみると、中央磁石52の両端部521、522と、一方の直線部53aの両端部531、532とを、電子の飛び出し方向Xと反対側に位置する他方の直線部53b側に移動させることで、この移動させた領域で、線L1のうち一方の直線部53a側に位置するものが中央磁石52側にシフトする。   As a result, among the magnetic fluxes generated in a tunnel shape between the central magnet 52 and the peripheral magnet 53, the position where the vertical component of the magnetic field is zero in the region where the interval is locally narrowed (most plasma is generated). The density increases and the position contributing to sputtering of the target locally shifts to the central magnet 52 side within a certain range. That is, as shown in FIG. 3B, when looking at the track-like lines L1 passing through the positions where the vertical component of the magnetic field is 0, both end portions 521 and 522 of the central magnet 52 and one linear portion 53a By moving both end portions 531 and 532 to the other straight line portion 53b located on the opposite side to the electron jumping direction X, it is located on the one straight line portion 53a side of the line L1 in the moved region. What is to be shifted shifts to the central magnet 52 side.

このため、ターゲット41前方にプラズマを発生させたとき、電子がターゲット41の端部まで来て電磁場で曲げられて向きを変えるときに惰性的な運動が残っても、ターゲット41端側に飛び出すことが防止され、プラズマが局所的に拡がることはない。その結果、ターゲット41の外周縁部でのスパッタリングの進行に伴うターゲットの侵食領域E2をターゲット41の長手方向に沿って略線状にできると共に(図3(c)参照)、スパッタリングの際に安定して放電させることができ、良好な薄膜形成が可能になる。また、スパッタリング中、ターゲット41の幅方向に沿って磁石組立体5を往復動させても、磁石組立体5のターゲットの移動距離を大きくできるため、ターゲット41の外周縁部を含むその全面に亘って略均等に侵食でき、ターゲット41の利用効率をさらに高めることができる。   For this reason, when plasma is generated in front of the target 41, even if an inertial movement remains when electrons come to the end of the target 41 and are bent by an electromagnetic field and change its direction, it jumps out toward the end of the target 41. Is prevented, and the plasma does not spread locally. As a result, the erosion region E2 of the target accompanying the progress of sputtering at the outer peripheral edge of the target 41 can be made substantially linear along the longitudinal direction of the target 41 (see FIG. 3C) and stable during sputtering. Can be discharged and a good thin film can be formed. Further, even if the magnet assembly 5 is reciprocated along the width direction of the target 41 during sputtering, the moving distance of the target of the magnet assembly 5 can be increased, so that the entire surface including the outer peripheral edge of the target 41 is covered. Therefore, the use efficiency of the target 41 can be further increased.

ところで、上記のように磁石組立体5を構成した場合、これに起因して、電子の飛び出し方向と反対側に存する、磁場の垂直成分が0となる位置が一定の範囲で電子の飛び出し方向と反対側に局所的にシフトする場合がある。即ち、図3(b)に示すように、磁場の垂直成分が0となる位置をそれぞれ通るトラック状の線L1をみると、中央磁石52及び一方の直線部53aを移動させた領域で、線L1のうち他方の直線部53b側に位置する範囲Laが、電子の飛び出し方向Xと反対側に膨らむようにシフトする。この場合、レーストラック状に発生したプラズマの一部がターゲット41端側に拡がり、侵食領域E2がターゲット41端方向に若干延びる虞がある。このため、図4(a)に示すように、中央磁石52のうち、他方の直線部53b側に移動させた部分522の側面に磁気シャント7を設けることが好ましい。   By the way, when the magnet assembly 5 is configured as described above, due to this, the position at which the perpendicular component of the magnetic field is 0 on the side opposite to the electron emission direction is within a certain range and the electron emission direction. There may be a local shift to the other side. That is, as shown in FIG. 3 (b), when the track-like lines L1 passing through the positions where the vertical component of the magnetic field is 0 are seen, in the region where the central magnet 52 and one linear portion 53a are moved, A range La located on the other linear portion 53b side of L1 is shifted so as to swell toward the opposite side to the electron projecting direction X. In this case, a part of the plasma generated in a racetrack shape may spread toward the end of the target 41, and the erosion area E2 may extend slightly toward the end of the target 41. Therefore, as shown in FIG. 4A, it is preferable to provide the magnetic shunt 7 on the side surface of the portion 522 of the central magnet 52 that has been moved to the other linear portion 53b side.

これにより、中央磁石52のうち磁気シャント7を設けた箇所の磁力を局所的に弱めて、電子の飛び出し方向に、磁場の垂直成分が0となる位置をシフトさせて上記膨らみが再補正される。つまり、線L1のうち、他方の直線部53bより外側に膨らんだ領域Laが中央磁石52側にシフトし、図4(b)に示すようなレーストラック状の線L2となる。その結果、ターゲット41の外周縁部でのスパッタリングの進行に伴うターゲット41の侵食領域を、ターゲット41の長手方向に沿ってより線状に均一にできる。   This locally weakens the magnetic force of the central magnet 52 where the magnetic shunt 7 is provided, and shifts the position where the vertical component of the magnetic field becomes 0 in the electron ejection direction, thereby recorrecting the bulge. . That is, in the line L1, a region La that swells outward from the other straight line portion 53b is shifted to the central magnet 52 side to form a racetrack-like line L2 as shown in FIG. As a result, the erosion region of the target 41 accompanying the progress of sputtering at the outer peripheral edge of the target 41 can be made more linear along the longitudinal direction of the target 41.

磁気シャント7としては、最大透磁率が高くかつ剛性を有する材料であればよく、例えば、SUS430などの磁性を有するステンレス、磁場の減衰効果を高められる純鉄、ニッケルなどの金属、パーマロイ、スーパーマロイなどの透磁率の高いアロイを用いることができ、その厚さは、1.0〜5.0mmの範囲に設定され、例えば、直線部53b側に移動させた部分522のその全長に亘って取付けられる。   The magnetic shunt 7 may be any material having a high maximum magnetic permeability and rigidity. For example, stainless steel having magnetism such as SUS430, metals such as pure iron and nickel that can enhance the magnetic field attenuation effect, permalloy, supermalloy An alloy having a high magnetic permeability such as, for example, can be used, and its thickness is set in the range of 1.0 to 5.0 mm. For example, it is attached over the entire length of the portion 522 moved to the linear portion 53b side. It is done.

他方で、図5に示すように、レーストラック状の線L1の膨らみを再補正するために、上記に加えてまたは上記にかえて、前記他方の直線部53bのうち、磁石組立体5の長手方向の両端部に対向する部分の少なくとも一部530を、好ましくは、線L1の膨らんだ領域Laに対応する部分を、中央磁石52側に移動させてもよい。これにより、膨らみが中央磁石52方向にシフトして再補正され、図5(b)に示すようなレーストラック状のL3となる。   On the other hand, as shown in FIG. 5, in order to recorrect the bulge of the racetrack-like line L1, in addition to or instead of the above, the length of the magnet assembly 5 in the other linear portion 53b is changed. At least a part 530 of the part facing both ends in the direction, preferably a part corresponding to the swelled area La of the line L1, may be moved to the central magnet 52 side. As a result, the bulge is shifted and corrected again in the direction of the central magnet 52, resulting in a racetrack L3 as shown in FIG.

さらに、図6に示すように、レーストラック状の線L1の膨らみを再補正するために、上記に加えてまたは上記にかえて、他方の直線部53bのうち、磁石組立体の長手方向の両端部に対向する部分の少なくとも一部、好ましくは、線L1の膨らんだ領域Laに対応する部分の上面に、補助磁石8を追加してもよい。これにより、補助磁石8を設けた箇所の磁力を局所的に強めて、磁場の垂直成分が0となる位置をシフトさせて上記膨らみが再補正される。   Further, as shown in FIG. 6, in order to recorrect the bulge of the racetrack-like line L1, in addition to or instead of the above, both ends in the longitudinal direction of the magnet assembly of the other linear portion 53b. The auxiliary magnet 8 may be added to at least a part of the part facing the part, preferably the upper surface of the part corresponding to the swelled area La of the line L1. Thereby, the magnetic force of the location where the auxiliary magnet 8 is provided is locally increased, the position where the vertical component of the magnetic field becomes 0 is shifted, and the bulge is corrected again.

尚、本実施の形態では、磁石組立体5の作製を考慮して、中央磁石52のうち両端部521、522と、一方の直線部53aの両端部531、532とを他方の直線部53b側に段階的で移動させたものについて説明したが、これに限定されるものではなく、電子の飛び出し幅に応じて、磁石組立体5の長手方向両端に向かうに従い、間隔が連続して変化するようにしてもよい。   In the present embodiment, considering the production of the magnet assembly 5, both ends 521 and 522 of the central magnet 52 and both ends 531 and 532 of one linear portion 53a are connected to the other linear portion 53b side. However, the present invention is not limited to this, and the interval changes continuously as it goes to both ends in the longitudinal direction of the magnet assembly 5 according to the jumping width of the electrons. It may be.

また、本実施の形態では、一枚のターゲット41を配置したマグネトロンスパッタ電極Cについて説明したが、これに限定されるものではなく、処理基板Sに対し複数枚のターゲット41を並設したものについて本発明を適用できる。複数枚のターゲット41を並設した場合、惰性的な運動によって電子がターゲット端から外側に飛び出すと、隣接するターゲットに電子が飛び移って放電を不安定にするが、本発明を適用することで、電子の飛び移りが防止され、放電を安定させて良好な薄膜形成が可能になる。   In the present embodiment, the magnetron sputter electrode C in which one target 41 is arranged has been described. However, the present invention is not limited to this, and a plurality of targets 41 arranged in parallel to the processing substrate S. The present invention can be applied. When a plurality of targets 41 are arranged side by side, if electrons jump out of the target end due to inertial movement, the electrons jump to the adjacent target to make the discharge unstable. By applying the present invention, Electron jumping is prevented, and discharge can be stabilized to form a good thin film.

本発明のスパッタリング装置を模式的に説明する図。The figure which illustrates typically the sputtering device of this invention. (a)は、従来技術に係る磁石組立体の構成を説明する図。(b)は、電子の飛び出しを説明する図。(A) is a figure explaining the structure of the magnet assembly based on a prior art. (B) is a diagram for explaining the jumping out of electrons. (a)は、本発明に係る磁石組立体の構成を説明する図。(b)は、レーストラックの補正を説明する図。(c)は、スパッタリングの進行に伴うターゲットの侵食領域を説明する図。(A) is a figure explaining the structure of the magnet assembly which concerns on this invention. (B) is a diagram for explaining the correction of the race track. (C) is a figure explaining the erosion area | region of the target accompanying progress of sputtering. (a)は、本発明の他の形態に係る磁石組立体の構成を説明する図。(b)は、磁場垂直成分が0となる位置を通るレーストラック状の線の位置の補正を説明する図。(A) is a figure explaining the structure of the magnet assembly which concerns on the other form of this invention. (B) is a diagram for explaining the correction of the position of the racetrack-like line passing through the position where the magnetic field vertical component becomes zero. (a)は、本発明の他の形態に係る磁石組立体の構成を説明する図。(b)は、磁場垂直成分が0となる位置を通るレーストラック状の線の位置の補正を説明する図。(A) is a figure explaining the structure of the magnet assembly which concerns on the other form of this invention. (B) is a diagram for explaining the correction of the position of the racetrack-like line passing through the position where the magnetic field vertical component becomes zero. (a)及び(b)は、本発明の他の形態に係る磁石組立体の構成を説明する図。(A) And (b) is a figure explaining the structure of the magnet assembly which concerns on the other form of this invention.

符号の説明Explanation of symbols

1 マグネトロンスパッタリング装置
41 ターゲット
5 磁石組立体
52 中心磁石
53 周辺磁石
53a、53b 直線部
53c 折り返し部
C マグネトロンスパッタ電極
S 処理基板
DESCRIPTION OF SYMBOLS 1 Magnetron sputtering apparatus 41 Target 5 Magnet assembly 52 Center magnet 53 Peripheral magnet 53a, 53b Linear part 53c Fold-up part C Magnetron sputter electrode S Processing substrate

Claims (7)

処理基板に対向して配置されるターゲットの後方に磁石組立体を備え、この磁石組立体は、長手方向に沿って線状に配置した中央磁石と、中央磁石両側で平行に延びる直線部及び両直線部相互間を橋し渡す折り返し部から構成される周辺磁石とをターゲット側の極性をかえて有し、前記中央磁石と周辺磁石の各直線部とが等間隔で、かつ、前記磁石組立体の長手方向両端部で中央磁石と各直線部との間隔を磁石組立体の中央領域におけるものより狭くしたことを特徴とするマグネトロンスパッタ電極。 A magnet assembly is provided behind a target disposed opposite to the processing substrate. The magnet assembly includes a central magnet arranged linearly along the longitudinal direction, linear portions extending in parallel on both sides of the central magnet, and both. The magnet assembly has a peripheral magnet composed of a folded portion that bridges between the straight portions and changes the polarity on the target side, and the central magnet and each linear portion of the peripheral magnet are equally spaced. A magnetron sputter electrode, characterized in that the distance between the central magnet and each linear portion is narrower than that in the central region of the magnet assembly at both longitudinal ends of the magnet assembly. 前記直線部の一方及び中央磁石の両端部を、他方の直線部側に移動させて前記間隔を狭くし、前記両端部が回転対称であることを特徴とする請求項1記載のマグネトロンスパッタ電極。 2. The magnetron sputter electrode according to claim 1, wherein one end of the linear portion and both ends of the central magnet are moved toward the other linear portion to narrow the interval, and the both end portions are rotationally symmetric. 前記中央磁石の両端部のうち、他方の直線部側の側面に磁気シャントを設けたことを特徴とする請求項2記載のマグネトロンスパッタ電極。 The magnetron sputter electrode according to claim 2, wherein a magnetic shunt is provided on a side surface on the other straight portion side of both ends of the central magnet. 前記他方の直線部のうち、磁石組立体の長手方向の両端部に対向する部分の少なくとも一部を、中央磁石側に移動させたことを特徴とする請求項2または請求項3記載のマグネトロンスパッタ電極。 4. The magnetron sputtering according to claim 2, wherein at least a part of a portion of the other straight portion facing both ends in the longitudinal direction of the magnet assembly is moved to the center magnet side. electrode. 前記他方の直線部のうち、磁石組立体の長手方向の両端部に対向する部分の少なくとも一部の上面に、補助磁石を追加したことを特徴とする請求項2乃至請求項4のいずれかに記載のマグネトロンスパッタ電極。 5. The auxiliary magnet is added to at least a part of the upper surface of a portion of the other linear portion facing both ends in the longitudinal direction of the magnet assembly. The magnetron sputter electrode as described. 前記磁石組立体を、ターゲットの裏面に沿って平行に往復動させる駆動手段を備えたことを特徴とする請求項1乃至請求項5のいずれかに記載のマグネトロンスパッタ電極。 6. The magnetron sputter electrode according to claim 1, further comprising driving means for reciprocating the magnet assembly in parallel along the back surface of the target. 請求項1乃至請求項6記載のマグネトロンスパッタ電極を真空排気可能なスパッタ室内に配置し、スパッタ室内に所定のガスを導入するガス導入手段と、ターゲットへの電力投入を可能とするスパッタ電源とを設けたことを特徴とするスパッタリング装置。

A magnetron sputtering electrode according to claim 1 is disposed in a sputtering chamber capable of being evacuated, a gas introducing means for introducing a predetermined gas into the sputtering chamber, and a sputtering power source capable of supplying power to the target. A sputtering apparatus characterized by being provided.

JP2006311623A 2006-11-17 2006-11-17 Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode Active JP5049561B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006311623A JP5049561B2 (en) 2006-11-17 2006-11-17 Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode
KR1020097009762A KR101117105B1 (en) 2006-11-17 2007-11-13 Magnetron sputter electrode, and sputtering device having the magnetron sputter electrode
CN2007800426411A CN101589170B (en) 2006-11-17 2007-11-13 Magnetron sputtering electrode and sputtering apparatus equipped with the same
TW96142861A TWI470102B (en) 2006-11-17 2007-11-13 Magnetron sputtering electrode and sputtering device with magnetron sputtering electrode
PCT/JP2007/071965 WO2008059814A1 (en) 2006-11-17 2007-11-13 Magnetron sputter electrode, and sputtering device having the magnetron sputter electrode
US12/514,513 US8172993B2 (en) 2006-11-17 2007-11-13 Magnetron sputtering electrode, and sputtering apparatus provided with magnetron sputtering electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006311623A JP5049561B2 (en) 2006-11-17 2006-11-17 Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode

Publications (2)

Publication Number Publication Date
JP2008127601A JP2008127601A (en) 2008-06-05
JP5049561B2 true JP5049561B2 (en) 2012-10-17

Family

ID=39553747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006311623A Active JP5049561B2 (en) 2006-11-17 2006-11-17 Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode

Country Status (2)

Country Link
JP (1) JP5049561B2 (en)
CN (1) CN101589170B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5386329B2 (en) * 2009-12-09 2014-01-15 株式会社アルバック Magnet unit and sputtering apparatus for magnetron sputtering electrode
KR20140126520A (en) * 2013-04-23 2014-10-31 주식회사 아바코 Magnet unit and sputtering apparatus having the same
JP6982597B2 (en) * 2019-06-26 2021-12-17 株式会社アルバック Sputtering equipment
KR20210016189A (en) * 2019-08-01 2021-02-15 삼성디스플레이 주식회사 Sputtering apparatus and sputtering method using the same
CN117044403A (en) 2021-01-19 2023-11-10 株式会社爱发科 Cathode unit for magnetron sputtering device and magnetron sputtering device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3590460B2 (en) * 1995-07-04 2004-11-17 アネルバ株式会社 Cathode electrode for magnetron sputtering
JP3686540B2 (en) * 1998-12-22 2005-08-24 株式会社ルネサステクノロジ Manufacturing method of electronic device
JP4533499B2 (en) * 2000-03-24 2010-09-01 株式会社アルバック Magnetic neutral wire discharge sputtering equipment
JP2004115841A (en) * 2002-09-25 2004-04-15 Shin Meiwa Ind Co Ltd Magnetron sputtering electrode, film deposition system, and film deposition method
JP2006037127A (en) * 2004-07-23 2006-02-09 Cyg Gijutsu Kenkyusho Kk Sputter electrode structure

Also Published As

Publication number Publication date
JP2008127601A (en) 2008-06-05
CN101589170A (en) 2009-11-25
CN101589170B (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP5291907B2 (en) Sputtering equipment
JP4580781B2 (en) Sputtering method and apparatus
TWI470102B (en) Magnetron sputtering electrode and sputtering device with magnetron sputtering electrode
JP5049561B2 (en) Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode
JP4707693B2 (en) Sputtering apparatus and sputtering method
JP4990521B2 (en) Magnetron sputtering electrode and sputtering apparatus using magnetron sputtering electrode
JP5322234B2 (en) Sputtering method and sputtering apparatus
KR20170064527A (en) Magnet unit for magnetron sputter electrode and sputtering apparutus
JP4939009B2 (en) Target assembly and sputtering apparatus provided with the target assembly
WO2011024411A1 (en) Magnetron sputtering electrode and sputtering device
JP4912980B2 (en) Deposition method
JP5089962B2 (en) Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode
JP2012201910A (en) Magnetron sputtering electrode and sputtering apparatus
JP5322235B2 (en) Sputtering method
JP4959175B2 (en) Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode
JP4713853B2 (en) Magnetron cathode electrode and sputtering method using magnetron cathode electrode
JP5025334B2 (en) Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode
JP2009127109A (en) Magnetron sputtering device
JPH11350130A (en) Thin film forming apparatus
JP2002256431A (en) Magnetron sputtering device
JP2009057616A (en) Magnetron sputtering apparatus
CN117044403A (en) Cathode unit for magnetron sputtering device and magnetron sputtering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5049561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250