JP6982597B2 - Sputtering equipment - Google Patents

Sputtering equipment Download PDF

Info

Publication number
JP6982597B2
JP6982597B2 JP2019118165A JP2019118165A JP6982597B2 JP 6982597 B2 JP6982597 B2 JP 6982597B2 JP 2019118165 A JP2019118165 A JP 2019118165A JP 2019118165 A JP2019118165 A JP 2019118165A JP 6982597 B2 JP6982597 B2 JP 6982597B2
Authority
JP
Japan
Prior art keywords
target
substrate
vacuum chamber
magnet
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019118165A
Other languages
Japanese (ja)
Other versions
JP2021004390A (en
Inventor
裕夫 大久保
大士 小林
貴裕 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2019118165A priority Critical patent/JP6982597B2/en
Priority to TW109105168A priority patent/TWI762872B/en
Priority to KR1020200040402A priority patent/KR102478616B1/en
Priority to CN202010542198.1A priority patent/CN112144026B/en
Publication of JP2021004390A publication Critical patent/JP2021004390A/en
Application granted granted Critical
Publication of JP6982597B2 publication Critical patent/JP6982597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3423Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus

Description

本発明は、スパッタリング技術にかかり、特に、金属薄膜の面内の特性分布を均一にするスパッタリング技術に関する。 The present invention relates to a sputtering technique, and more particularly to a sputtering technique for making the in-plane characteristic distribution of a metal thin film uniform.

スパッタリング方法による薄膜形成は広く用いられている技術であり、近年では大型基板に薄膜を形成するために、大面積基板に特性分布が均一な薄膜を形成する技術が求められている。 Thin film formation by a sputtering method is a widely used technique, and in recent years, in order to form a thin film on a large substrate, a technique for forming a thin film having a uniform characteristic distribution on a large area substrate has been required.

図9(平面図とE−E線、F−F線截断断面図)のプラズマ装置102は、カソード電極112の表面にターゲット113が配置され、裏面に外周磁石125と内側磁石126とがヨーク127に配置された複数の磁石装置1151〜1154が設けられており、ターゲット113がスパッタされると、ターゲット113と対面して基板配置部114上に配置された基板116の表面に薄膜が形成される。 In the plasma device 102 of FIG. 9 (plan view, EE line, and FF line cross-sectional view), the target 113 is arranged on the front surface of the cathode electrode 112, and the outer peripheral magnet 125 and the inner magnet 126 are yoke 127 on the back surface. A plurality of magnet devices 115 1 to 115 4 arranged in the above are provided, and when the target 113 is sputtered, a thin film is formed on the surface of the substrate 116 arranged on the substrate arrangement portion 114 facing the target 113. Will be done.

基板116の外周上には、アノード電極117が配置されており、ターゲット113表面に形成されるプラズマが均一になるようにされている。 An anode electrode 117 is arranged on the outer periphery of the substrate 116 so that the plasma formed on the surface of the target 113 becomes uniform.

しかしながら基板116が一層大型化し、それに連れてターゲット113や磁石装置1151〜1154が大型化してきたところ、基板116の短辺に近い領域と、その間の中央の部分とでは、形成される薄膜の特性の差が大きくなってきた。 However the substrate 116 is further large, thin film take it targets 113 and magnet apparatus 115 1 to 115 4 was been large, and the area close to the short side of the substrate 116, in the meantime the central portion, which is formed The difference in the characteristics of is getting bigger.

短辺部分の薄膜の抵抗値と中央部分の薄膜の抵抗値とが大きく異なると、基板表面に形成される発光層の発光分布が異なってしまい、不均一な明るさの画面となる。 If the resistance value of the thin film in the short side portion and the resistance value of the thin film in the central portion are significantly different, the emission distribution of the light emitting layer formed on the substrate surface will be different, resulting in a screen having uneven brightness.

下記特許文献には、移動可能なマグネトロンプラズマに連動した接地電位電極を配置して膜質や膜厚の均一化を図った大型基板対応のマグネトロンスパッタ装置が記載されている。 The following patent document describes a magnetron sputtering apparatus for large substrates in which a ground potential electrode linked to a movable magnetron plasma is arranged to make the film quality and film thickness uniform.

特開平07−331433号公報Japanese Unexamined Patent Publication No. 07-331433

本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、大型基板表面に形成される薄膜の特性分布を均一にすることにあり、特に、細長のマグネトロン磁石の端部に近い基板の縁付近の領域の薄膜特性と、基板の中央付近の領域の薄膜特性との差を小さくすることにある。 The present invention has been created to solve the above-mentioned inconveniences of the prior art, and an object thereof is to make the characteristic distribution of a thin film formed on the surface of a large substrate uniform, and particularly for an elongated magnetron magnet. The purpose is to reduce the difference between the thin film characteristics in the region near the edge of the substrate near the edges and the thin film characteristics in the region near the center of the substrate.

また、本発明の目的は、基板側真空槽の重量を軽くし、容易な作業で真空槽の開閉を行うことができるようにすることにある。 Further, an object of the present invention is to reduce the weight of the vacuum chamber on the substrate side so that the vacuum chamber can be opened and closed easily.

上記課題を解決するために本発明は、真空槽と、前記真空槽の内部に配置されたターゲットと、前記ターゲットの裏面側に配置されスパッタ電源に接続されるカソード電極と、前記カソード電極の裏面側に配置された複数の磁石装置と、基板が配置される基板配置部と、接地電位に接続され前記基板の外周上を覆うリング形形状のアノード電極と、を有し、各前記磁石装置には細長のリング形形状の外周磁石とその内側に配置された内側磁石とが設けられ、前記ターゲットの表面には前記外周磁石とその内側の前記内側磁石との間で形成される磁束が漏洩され、前記ターゲットがスパッタリングされて前記基板表面に薄膜が形成されるスパッタリング装置であって、前記外周磁石とその内側の前記内側磁石とは離間され、前記外周磁石とその内側の前記内側磁石との間の領域であるプラズマ領域は細長のリング形形状にされ、前記プラズマ領域の両端と前記基板の表面が位置する平面との間には、接地電位に接続された電極板が配置され、前記アノード電極の表面と前記ターゲットの表面との間のTA距離よりも、前記電極板の表面と前記ターゲットの表面との間のTB距離の方が短くされ、前記ターゲットの前記プラズマ領域の両端に沿って位置する二辺上には、前記電極板が配置されたスパッタリング装置である。
本発明は、前記真空槽は、内部に前記ターゲットが配置されたターゲット側真空槽と、内部に前記アノード電極が配置された基板側真空槽とに分離できるようにされ、前記ターゲット側真空槽と前記基板側真空槽とが密着して接続された状態では、前記ターゲットと前記アノード電極とは鉛直に配置され、前記電極板の重量は、前記ターゲット側真空槽によって支持されており、前記ターゲット側真空槽と前記基板側真空槽とを分離させる際には、前記ターゲット側真空槽が静止した状態で、前記基板側真空槽が移動するようにされたスパッタリング装置である。
本発明は、前記TB距離は、前記ターゲットの表面と前記基板配置部に配置された前記基板の表面との間のTS距離の10%より大きく、90%より小さくされたスパッタリング装置である。
本発明は、前記ターゲットは平板状の金属モリブデン板であり、前記薄膜は金属モリブデン薄膜であるスパッタリング装置である。
In order to solve the above problems, the present invention comprises a vacuum chamber, a target arranged inside the vacuum chamber, a cathode electrode arranged on the back surface side of the target and connected to a sputtering power supply, and a back surface of the cathode electrode. Each of the magnet devices has a plurality of magnet devices arranged on the side, a substrate arrangement portion on which the substrate is arranged, and a ring-shaped anode electrode connected to a ground potential and covering the outer periphery of the substrate. Is provided with an elongated ring-shaped outer peripheral magnet and an inner magnet arranged inside the outer peripheral magnet, and the magnetic flux formed between the outer peripheral magnet and the inner magnet inside the outer peripheral magnet leaks to the surface of the target. In a sputtering device in which the target is sputtered to form a thin film on the surface of the substrate, the outer peripheral magnet and the inner magnet inside the sputtering apparatus are separated from each other, and between the outer peripheral magnet and the inner magnet inside the outer peripheral magnet. The plasma region, which is a region of the above, is formed into an elongated ring shape, and an electrode plate connected to the ground potential is arranged between both ends of the plasma region and the plane on which the surface of the substrate is located, and the anode electrode The TB distance between the surface of the electrode plate and the surface of the target is shorter than the TA distance between the surface of the target and the surface of the target, and is located along both ends of the plasma region of the target. It is a sputtering device in which the electrode plate is arranged on the two sides.
In the present invention, the vacuum chamber can be separated into a target-side vacuum chamber in which the target is arranged and a substrate-side vacuum chamber in which the anode electrode is arranged inside. In a state where the substrate-side vacuum chamber is in close contact and connected, the target and the anode electrode are arranged vertically, and the weight of the electrode plate is supported by the target-side vacuum chamber, and the target-side is supported. When the vacuum chamber and the substrate-side vacuum chamber are separated, the sputtering apparatus is such that the substrate-side vacuum chamber moves while the target-side vacuum chamber is stationary.
The present invention is a sputtering apparatus in which the TB distance is larger than 10% and smaller than 90% of the TS distance between the surface of the target and the surface of the substrate arranged on the substrate arrangement portion.
In the present invention, the target is a flat metal molybdenum plate, and the thin film is a metal molybdenum thin film, which is a sputtering apparatus.

基板表面のうち、細長のマグネトロン磁石の端部に近い場所と基板の中央の場所との薄膜特性の差が小さくなり、その結果、長方形基板に形成する薄膜の特性について、短辺付近の領域の特性と、その領域で挟まれる中央付近の領域の特性とが均一になる。 On the surface of the substrate, the difference in thin film characteristics between the location near the end of the elongated magnetron magnet and the location in the center of the substrate becomes smaller, and as a result, the characteristics of the thin film formed on the rectangular substrate are in the region near the short side. The characteristics and the characteristics of the region near the center sandwiched between the regions become uniform.

電極板と支持部材がターゲット側真空槽で支持され、基板側真空槽の内部が軽量化されているので、基板側真空槽を移動させて真空槽を開閉する際に、開閉作業が容易になる。 Since the electrode plate and the support member are supported by the vacuum chamber on the target side and the inside of the vacuum chamber on the substrate side is lightened, the opening and closing work becomes easy when the vacuum chamber on the substrate side is moved to open and close the vacuum chamber. ..

本発明のスパッタリング装置Sputtering apparatus of the present invention 本発明のスパッタリング装置の内部構造を説明するための平面図とそのA−A線截断断面図とB−B線截断断面図A plan view for explaining the internal structure of the sputtering apparatus of the present invention, a cross-sectional view taken along the line AA, and a cross-sectional view taken along the line BB. 本発明に用いられる磁石装置を説明するための平面図とC−C線截断断面図とD−D線截断断面図A plan view, a CC line cut section, and a DD line cut section for explaining the magnet device used in the present invention. (a)〜(c):その磁石装置の動作を説明するための断面図(a)-(c): Cross-sectional view for explaining the operation of the magnet device. 本発明の他の例を説明するための図The figure for demonstrating another example of this invention. 本発明のスパッタリング装置の概略斜視図Schematic perspective view of the sputtering apparatus of the present invention 基板の温度分布を比較するための棒グラフBar graph for comparing substrate temperature distribution 電極板がアノード電極に取り付けられたスパッタリング装置Sputtering device with electrode plate attached to anode electrode 従来技術のスパッタリング装置を説明するための図The figure for demonstrating the prior art sputtering apparatus.

図1の符号2は、本発明のスパッタリング装置であり、真空槽11を有している。図2は、後述するアノード電極17の外周よりも内側の部分の平面図と、そのA−A線截断断面図とB−B線截断断面図である。 Reference numeral 2 in FIG. 1 is a sputtering apparatus of the present invention, which has a vacuum chamber 11. FIG. 2 is a plan view of a portion inside the outer periphery of the anode electrode 17, which will be described later, and a cross-sectional view taken along the line AA and a cross-sectional view taken along the line BB.

真空槽11の内部には、長方形形状のターゲット13が配置されており、そのターゲット13の裏面側には、カソード電極12が配置されている。 A rectangular target 13 is arranged inside the vacuum chamber 11, and a cathode electrode 12 is arranged on the back surface side of the target 13.

カソード電極12の表面はターゲット13の裏面に接触されている。 The front surface of the cathode electrode 12 is in contact with the back surface of the target 13.

カソード電極12の裏面側には、磁石ケース51が配置されており、磁石ケース51の内部には複数個(ここでは4個)の磁石装置151〜154が配置されている。磁石装置151〜154はマグネトロン磁石と呼ばれている。 On the back side of the cathode electrode 12 is disposed magnet case 51, the magnet device 15 1 to 15 4 a plurality of (four in this case) is disposed in the interior of the magnet case 51. Magnet device 15 1 to 15 4 is called magnetron magnet.

カソード電極12の裏面側に配置された磁石装置151〜154は、基本的に同じ形状、同じ大きさであり、図3に、1個の磁石装置151〜154の平面図と、そのC−C線截断断面図とD−D線截断断面図とを示す。 Magnet device 15 1 to 15 4 disposed on the back side of the cathode electrode 12 is basically the same shape, the same size, in FIG. 3, a plan view of one magnet device 15 1 to 15 4, A cross-sectional view taken along the line CC and a cross-sectional view taken along the line DD are shown.

磁石装置151〜154はリング形形状の外周磁石25と、外周磁石25の中に配置された直線形形状の内側磁石26とを有しており、外周磁石25と内側磁石26とはそれぞれ細長にされており、各磁石装置151〜154は細長になり、それぞれ長手方向を有している。 Magnet device 15 1 to 15 4 and the outer peripheral magnet 25 of ring shape, it has an inner magnet 26 arranged linear shape in the peripheral magnet 25, respectively to the outer peripheral magnet 25 and inner magnet 26 are elongated, each magnet device 15 1 to 15 4 become elongated, each have a longitudinal direction.

ここでは、各磁石装置151〜154の外周磁石25とターゲット13の裏面との間の距離は等しくされており、また、各磁石装置151〜154の内側磁石26とターゲット13の裏面との間の距離も等しくされているが、本発明はそれに限定されるものではなく、膜厚の分布や膜質の分布を均一にするために、磁石装置151〜154とターゲット13の裏面との間の距離が異なっていたり、磁石装置151〜154とターゲット13の裏面との間が非平行に配置されていてもよい。 Here, the distance between the back surface of the peripheral magnet 25 and the target 13 of each magnet device 15 1 to 15 4 are equal, also the rear surface of each magnet device 15 1 to 15 4 of the inner magnet 26 and the target 13 has also been equally the distance between the, present invention is not limited thereto, in order to ensure uniform distribution of the film thickness distribution and the film quality, the back side of the magnet device 15 1 to 15 4 and the target 13 or distance are different between, between the back surface of the magnet device 15 1 to 15 4 and the target 13 may be arranged non-parallel.

また、ここでは、各磁石装置151〜154の外周磁石25とターゲット13の裏面との間の距離と、内側磁石26とターゲット13の裏面との間の距離とも等しくされているが、各磁石装置151〜154の中で、内側磁石26とターゲット13の裏面との間の距離が異なる磁石装置151〜154や、外周磁石25とターゲット13の裏面との間の距離が異なる磁石装置151〜154が含まれていてもよい。 Further, here, the distance between the back surface of the peripheral magnet 25 and the target 13 of each magnet device 15 1 to 15 4 have been equal the distance between the rear surface of the inner magnet 26 and the target 13, the among the magnet device 15 1 to 15 4, the or different magnet device 15 1 to 15 4 distanced from the back surface of the inner magnet 26 and the target 13, the distance between the rear surface of the outer peripheral magnet 25 and the target 13 different magnet device 15 1 to 15 4 may be included.

外周磁石25の二個の磁極のうち、一方の磁極がカソード電極12に向けて配置され、他方の磁極がカソード電極12とは反対側に向けられて、ヨーク27の表面と接触して配置されており、また、内側磁石26の二個の磁極のうち、一方の磁極がカソード電極12に向けて配置され、他方の磁極がカソード電極12とは反対側に向けられて、ヨーク27の表面と接触して配置されている。 Of the two magnetic poles of the outer peripheral magnet 25, one magnetic pole is arranged toward the cathode electrode 12, the other magnetic pole is directed toward the opposite side of the cathode electrode 12, and is arranged in contact with the surface of the yoke 27. Of the two magnetic poles of the inner magnet 26, one magnetic pole is arranged toward the cathode electrode 12, and the other magnetic pole is directed to the side opposite to the cathode electrode 12 with respect to the surface of the yoke 27. They are placed in contact with each other.

外周磁石25のカソード電極12に向けられた磁極と、内側磁石26のカソード電極12に向けられた磁極は一方がN極であり、他方がS極であり、カソード電極12に向けられた磁極間で形成される磁束はターゲット13の表面に漏洩され、アーチ形形状に湾曲されており、ターゲット13表面の電子密度を増加させるようになっている。 One of the magnetic poles directed toward the cathode electrode 12 of the outer peripheral magnet 25 and the magnetic pole directed toward the cathode electrode 12 of the inner magnet 26 are N poles and the other is S poles, and between the magnetic poles directed toward the cathode electrode 12. The magnetic flux formed in the above is leaked to the surface of the target 13 and is curved in an arch shape to increase the electron density on the surface of the target 13.

真空槽11内のターゲット13の表面と対面する位置には台54が配置されており、台54上には基板配置部14が配置されている。 A table 54 is arranged at a position facing the surface of the target 13 in the vacuum chamber 11, and a substrate arrangement portion 14 is arranged on the table 54.

基板配置部14は長方形形状であり、基板配置部14の上には成膜対象である長方形の基板16が配置されている。 The substrate arranging portion 14 has a rectangular shape, and a rectangular substrate 16 to be formed is arranged on the substrate arranging portion 14.

基板16はターゲット13よりも小さくなっており、以下、基板配置部14上の基板16の表面が位置する平面に投影した場合の位置関係で内側と外側を決めるものとすると、基板16の外周はターゲット13の外周よりも内側に配置されている。 The substrate 16 is smaller than the target 13, and it is assumed that the inside and the outside are determined by the positional relationship when the surface of the substrate 16 on the substrate arrangement portion 14 is projected onto the plane where the surface is located. It is arranged inside the outer circumference of the target 13.

ターゲット13と基板16とは、ターゲット13の長辺と基板16の長辺とは平行になるように配置されており、ターゲット13の表面と基板16の表面とも平行になるように配置されている。 The target 13 and the substrate 16 are arranged so that the long side of the target 13 and the long side of the substrate 16 are parallel to each other, and the surface of the target 13 and the surface of the substrate 16 are also parallel to each other. ..

磁石装置151〜154の長手方向の長さは、ターゲット13の長手方向の長さとほぼ同じ長さであり、基板16の長辺はターゲット13の長手方向の長さよりも短くされ、また、基板16の長辺は磁石装置151〜154の長手方向の長さよりも短くされている。 Length in the longitudinal direction of the magnet device 15 1 to 15 4 is substantially the same length as the longitudinal length of the target 13, the long sides of the substrate 16 is shorter than the longitudinal length of the target 13, also, the long side of the substrate 16 is shorter than the longitudinal length of the magnet device 15 1 to 15 4.

各磁石装置151〜154は、ヨーク27の裏面側が移動板52に接触した状態で移動板52上に配置されている。 Each magnet assembly 15 1-15 4, the back side of the yoke 27 is disposed on the moving plate 52 in contact with the movable plate 52.

各磁石装置151〜154は、長手方向が互いに平行にされて、ターゲット13と基板16の長辺と平行にされて、短辺が伸びる方向に一列に並べられている。 Each magnet assembly 15 1-15 4 longitudinal direction are parallel to one another, are parallel to the long sides of the target 13 and the substrate 16, they are arranged in a line in the direction of the short side extends.

真空槽11の外部には移動装置53が配置されており、移動装置53が動作すると移動板52はターゲット13の裏面側でターゲット13の表面に沿って移動し、各磁石装置151〜154は移動板52と一緒に移動する。 A moving device 53 is arranged outside the vacuum chamber 11, and when the moving device 53 operates, the moving plate 52 moves along the front surface of the target 13 on the back surface side of the target 13, and each magnet device 15 1 to 15 4 Moves with the moving plate 52.

ターゲット13の表面に漏洩した磁束は、磁石装置151〜154の移動と共に移動する。 Flux leaking to the surface of the target 13 is moved with the movement of the magnet device 15 1 to 15 4.

移動の際に各磁石装置151〜154は、外周磁石25とターゲット13の裏面との間の距離に変化はなく一定距離が維持される。また、内側磁石26とターゲット13の裏面との間の距離に変化はなく一定距離が維持される。 Each magnet assembly 15 1-15 4 during the movement, the change in distance between the back surface of the peripheral magnet 25 and the target 13 fixed distance rather is maintained. Further, the distance between the inner magnet 26 and the back surface of the target 13 does not change, and a constant distance is maintained.

従って、各磁石装置151〜154は移動板52の移動と共に、一緒にターゲット13の裏面と平行な平面内を移動する。図4(a)は、各磁石装置151〜154のそれぞれが移動する範囲の中央に各磁石装置151〜154が位置する状態を示し、同図(b)は、図面右端に位置する状態、同図(c)は図面左端に位置する状態を示しており、同図(b)の状態と同図(c)の状態の間を繰り返し移動する。 Thus, each magnet 15 1-15 4 with the movement of the moving plate 52, together to move the back surface parallel to the plane of the target 13. 4 (a) shows a state in which each of the magnet device 15 1 to 15 4 are each magnet device 15 1 to 15 4 are located in the center of the range of movement, Fig. (B) is located in the drawing right end The state shown in the figure (c) is located at the left end of the drawing, and the state is repeatedly moved between the state shown in the figure (b) and the state shown in the figure (c).

次に、基板16とターゲット13との間には、接地電位に接続されたアノード電極17が配置されている。 Next, an anode electrode 17 connected to the ground potential is arranged between the substrate 16 and the target 13.

アノード電極17は四角リング形形状であり、中央に開口19が形成されている。アノード電極17の外周と内周とは長方形形状であり、アノード電極17の外周は基板配置部14に配置された基板16の外周よりも外側に位置するようにされている。 The anode electrode 17 has a square ring shape, and an opening 19 is formed in the center. The outer circumference and the inner circumference of the anode electrode 17 have a rectangular shape, and the outer circumference of the anode electrode 17 is located outside the outer circumference of the substrate 16 arranged in the substrate arrangement portion 14.

この例では、アノード電極17の内周は基板16の外周よりも内側に位置するようにされており、アノード電極17の四角リング形形状の二本の長辺部分は基板16の長辺上に配置され、二本の短辺部分は基板16の短辺上に配置され、基板配置部14上の基板16の外周はアノード電極17によって覆われて開口19の底面には、基板16の外周よりも内側の部分が露出されている。 In this example, the inner circumference of the anode electrode 17 is located inside the outer circumference of the substrate 16, and the two long sides of the square ring shape of the anode electrode 17 are on the long sides of the substrate 16. The two short sides are arranged on the short sides of the substrate 16, the outer periphery of the substrate 16 on the substrate arrangement portion 14 is covered by the anode electrode 17, and the bottom surface of the opening 19 is from the outer periphery of the substrate 16. The inner part is exposed.

真空槽11には真空排気装置21とガス導入装置23とが接続されており、真空槽11は真空排気装置21によって真空排気され、真空槽11の内部には真空雰囲気が形成されている。 A vacuum exhaust device 21 and a gas introduction device 23 are connected to the vacuum tank 11, the vacuum tank 11 is evacuated by the vacuum exhaust device 21, and a vacuum atmosphere is formed inside the vacuum tank 11.

真空槽11の外部にはカソード電極12に電気的に接続されたスパッタ電源22が設けられており、真空雰囲気が形成された真空槽11の内部にガス導入装置23からスパッタリングガスを導入し、内部が所定圧力で安定したところでスパッタ電源22からカソード電極12にスパッタリング電圧を印加する。 A sputtering power supply 22 electrically connected to the cathode electrode 12 is provided outside the vacuum chamber 11, and a sputtering gas is introduced from the gas introduction device 23 into the inside of the vacuum chamber 11 in which a vacuum atmosphere is formed. Is stabilized at a predetermined pressure, and a sputtering voltage is applied from the sputtering power supply 22 to the cathode electrode 12.

ターゲット13は金属が板状に成形された平板状ターゲットであり、磁石装置151〜154を移動させながらターゲット13の表面近傍にスパッタリングガスのプラズマを形成する。 Target 13 is a plate-shaped target metal is formed into a plate shape, to form a plasma of the sputtering gas in the vicinity of the surface of the target 13 while moving the magnet device 15 1 to 15 4.

プラズマ中のスパッタリングガスの正イオンは加速され、スパッタリングガスの粒子がターゲット13に入射し、ターゲット13はスパッタリングされ、ターゲット13を構成する物質の粒子がスパッタリング粒子としてターゲット13の表面から放出され、基板16に向けて飛行し、基板16の表面に到着して薄膜を成長させる。 The positive ions of the sputtering gas in the plasma are accelerated, the particles of the sputtering gas enter the target 13, the target 13 is sputtered, and the particles of the substance constituting the target 13 are released from the surface of the target 13 as sputtering particles, and the substrate is used. It flies toward 16 and reaches the surface of the substrate 16 to grow a thin film.

基板16の表面に所定膜厚の薄膜が形成されると基板配置部14と基板16とは真空槽11の外部に搬出され、未成膜の基板16が配置された基板配置部14が真空槽11の内部に搬入される。 When a thin film having a predetermined film thickness is formed on the surface of the substrate 16, the substrate arranging portion 14 and the substrate 16 are carried out of the vacuum chamber 11, and the substrate arranging portion 14 on which the undeposited substrate 16 is arranged is the vacuum chamber 11. It is carried inside the.

このように本発明によって基板16の表面に薄膜が形成されるが、大型の基板16表面に形成された金属薄膜の抵抗値は、基板16の位置によって異なることになる。 As described above, the thin film is formed on the surface of the substrate 16 according to the present invention, but the resistance value of the metal thin film formed on the surface of the large substrate 16 differs depending on the position of the substrate 16.

抵抗値の分布はプラズマの強度分布と密接な関連があり、本スパッタリング装置2のプラズマを説明すると、先ず、各磁石装置151〜154の外周磁石25と内側磁石26との間に位置するターゲット13の表面に大きな強度のプラズマが形成される点にマグネトロンスパッタリングの特徴がある。 Distribution of the resistance value is closely related to the intensity distribution of the plasma, when describing the plasma of the sputtering apparatus 2, first, positioned between the outer magnet 25 and inner magnet 26 of the magnet system 15 1-15 4 The feature of magnetron sputtering is that a large intensity plasma is formed on the surface of the target 13.

各磁石装置151〜154の外周磁石25はスパッタリングされるターゲットの面積を大きくするために細長のリング形形状にされており、内側磁石26は直線形形状であるから、外周磁石25と内側磁石26との間の隙間は、細長のリング形形状になる。プラズマは隙間と同じ形状になるから、形成される強度が大きいプラズマも、磁石装置151〜154毎にリング形形状に形成される。 Peripheral magnet 25 of the magnet system 15 1-15 4 is a ring shape elongated in order to increase the area of the target to be sputtered, from the inner magnet 26 is linear in shape, the outer peripheral magnet 25 and the inner The gap between the magnet 26 and the magnet 26 has an elongated ring shape. Since the plasma is the same shape as the gap, the plasma intensity is large to be formed is also formed in a ring shape to the magnet device 15 1 to 15 every 4.

細長のリング形形状のプラズマは直線部分よりも端部の方がプラズマ強度が大きくなることが知られており、特に、各磁石装置151〜154の端部が一直線に配置されており、複数の細長のリング形形状のプラズマの端部が一直線に配置された状態で互いに平行に並べられると、リング形形状のプラズマの端部が並べられた部分のプラズマ強度の方が、リング形形状のプラズマの長辺の部分のプラズマ強度よりも大きくなる。 Plasma ring-shaped elongated shape is towards the end it is known that plasma intensity is greater than the linear portion, in particular, the ends of each magnet device 15 1 to 15 4 are arranged in a straight line, When the ends of a plurality of elongated ring-shaped plasmas are arranged in a straight line and arranged in parallel with each other, the plasma intensity of the portion where the ends of the ring-shaped plasmas are arranged is the ring-shaped shape. It becomes larger than the plasma intensity of the long side part of the plasma.

並べられた端部のプラズマは基板16の短辺の近くに薄膜を成長させ、プラズマの長辺部分は基板16の長辺の近くに薄膜を成長させる場合は、基板16表面の中央と短辺部分と長辺部分とで薄膜の特性が異なってしまう。 When the plasma at the arranged ends grows a thin film near the short side of the substrate 16, and the long side portion of the plasma grows the thin film near the long side of the substrate 16, the center and short sides of the surface of the substrate 16 The characteristics of the thin film differ between the portion and the long side portion.

各磁石装置151〜154の端部が並べられた領域と平行に、アノード電極17の短辺がそれぞれ配置されており、アノード電極17の二個の短辺部分上の、基板16の縁よりも外側には、電極板28a、28bがそれぞれ配置されている。 In parallel with each magnet device 15 1 to 15 4 of the end portion is arranged regions, the short sides of the anode electrode 17 are arranged, on the two short side portions of the anode electrode 17, the edge of the substrate 16 The electrode plates 28a and 28b are arranged on the outer side of the surface, respectively.

スパッタ前の未使用のターゲット13は、カソード電極12と、電極板28a、28bと、アノード電極17とは互いに平行にされている。 The unused target 13 before sputtering has the cathode electrode 12, the electrode plates 28a and 28b, and the anode electrode 17 parallel to each other.

二個の電極板28a、28bは、互いに平行でターゲット13の短辺よりも長く、ターゲット13の短辺33a、33bと、アノード電極17の短辺と、カソード電極12の短辺と平行な二本の縁31a、31b、32a、32bをそれぞれ有している。 The two electrode plates 28a and 28b are parallel to each other and longer than the short side of the target 13, and are parallel to the short sides 33a and 33b of the target 13, the short side of the anode electrode 17, and the short side of the cathode electrode 12. It has edges 31a, 31b, 32a, 32b of the book, respectively.

ターゲット13の短辺33a、33bと平行な各電極板28a、28bの二本の縁31a、31b、32a、32bのうち、一方の縁31a、31bは、ターゲット13の短辺よりも外側に位置し、他方の縁32a、32bは、短辺よりもターゲット13の中心に近い場所に位置している。 Of the two edges 31a, 31b, 32a, 32b of the electrode plates 28a, 28b parallel to the short sides 33a, 33b of the target 13, one of the edges 31a, 31b is located outside the short side of the target 13. However, the other edges 32a and 32b are located closer to the center of the target 13 than the short side.

従って、ターゲット13の短辺33a、33b付近は、電極板28a、28bによって短辺33a、33bから内側に一定距離Cだけ覆われている。 Therefore, the vicinity of the short sides 33a and 33b of the target 13 is covered inward by the electrode plates 28a and 28b by a certain distance C from the short sides 33a and 33b.

カソード電極12は真空槽11の壁面に、絶縁板24を介して固定され絶縁板24によってカソード電極12と真空槽11は絶縁されている。真空槽11の壁面にはリング形形状の防着リング36が設けられており、ターゲット13は防着リング36の内側に配置されている。ターゲット13の外周面は、防着リング36の内周面とは所定距離を開けて配置されている。 The cathode electrode 12 is fixed to the wall surface of the vacuum chamber 11 via an insulating plate 24, and the cathode electrode 12 and the vacuum chamber 11 are insulated by the insulating plate 24. A ring-shaped protective ring 36 is provided on the wall surface of the vacuum chamber 11, and the target 13 is arranged inside the protective ring 36. The outer peripheral surface of the target 13 is arranged at a predetermined distance from the inner peripheral surface of the adhesive ring 36.

防着リング36のうち、側面が、ターゲット13の短辺33a、33bが位置する側面と対面する部分の表面上に支持体29a、29bが取り付けられており、電極板28a、28bは、支持体29a、29bに取り付けられている。 The supports 29a and 29b are attached to the surface of the portion of the anti-adhesion ring 36 whose side surface faces the side surface where the short sides 33a and 33b of the target 13 are located, and the electrode plates 28a and 28b are the supports. It is attached to 29a and 29b.

電極板28a、28bと、防着リング36と、支持体29a、29bとは導電性を有しており、電極板28a、28bは支持体29a、29bを介して防着リング36に電気的に接続されている。 The electrode plates 28a and 28b, the adhesive ring 36, and the supports 29a and 29b have conductivity, and the electrode plates 28a and 28b electrically attach to the adhesive ring 36 via the supports 29a and 29b. It is connected.

真空槽11は接地電位に接続されており、防着リング36は真空槽11に接触し、接地電位に接続されており、従って、電極板28a、28bは接地電位に接続されている。アノード電極17も接地電位に接続されている。 The vacuum chamber 11 is connected to the ground potential, the adhesion ring 36 is in contact with the vacuum chamber 11 and is connected to the ground potential, and therefore the electrode plates 28a and 28b are connected to the ground potential. The anode electrode 17 is also connected to the ground potential.

各磁石装置151〜154の外周磁石25とその内側に位置する内側磁石26との間の領域を、それぞれ磁石装置151〜154のプラズマ領域10とすると、各磁石装置151〜154の外周磁石25の両端は半円形に湾曲されており、それに伴ってプラズマ領域10の両端も半円形にされ、その結果、外周磁石25とプラズマ領域10とはそれぞれトラック形形状になっている。 The area between the outer peripheral magnet 25 of the magnet system 15 from 1 to 15 4 and the inner magnet 26 located inside and respectively the plasma region 10 of the magnet device 15 1 to 15 4, each magnet 15 1-15 Both ends of the outer peripheral magnet 25 of 4 are curved in a semicircular shape, and both ends of the plasma region 10 are also made semicircular accordingly. As a result, the outer peripheral magnet 25 and the plasma region 10 each have a track shape. ..

各磁石装置15〜15のプラズマ領域10の長手方向の長さは等しくされており、各プラズマ領域10はアノード電極17が位置する平面との間の距離が等しくされ、各プラズマ領域10の両端の湾曲した部分のうちの一方の端部の湾曲した部分は横一列に並び、反対側の端部の湾曲した部分も横一列に並ぶようにされている。 Longitudinal length of the plasma region 10 of each magnet device 15 1 to 15 4 are equal, the plasma region 10 is the distance between the plane in which the anode electrode 17 is positioned to be equal, each plasma region 10 The curved portion of one end of the curved portions at both ends is arranged in a horizontal row, and the curved portion of the opposite end is also arranged in a horizontal row.

各プラズマ領域10の両端の湾曲した部分のうち、一方の端部であって横一列に並んだ湾曲した部分と基板16の表面が位置する平面との間に一枚の電極板28aが配置されており、反対側の端部であって横一列に並んだ湾曲した部分と基板16の表面が位置する平面との間には、他の一枚の電極板28bが配置されている。 Of the curved portions at both ends of each plasma region 10, one electrode plate 28a is arranged between the curved portions that are arranged in a horizontal row at one end and the plane on which the surface of the substrate 16 is located. Another electrode plate 28b is arranged between the curved portion which is the opposite end portion and is lined up in a horizontal row and the plane where the surface of the substrate 16 is located.

ターゲット13の表面は、アノード電極17の長辺部分上ではアノード電極17の長辺部分と向き合っており、アノード電極17の短辺部分上では電極板28a、28bの表面と向き合っている。 The surface of the target 13 faces the long side portion of the anode electrode 17 on the long side portion of the anode electrode 17, and faces the surfaces of the electrode plates 28a and 28b on the short side portion of the anode electrode 17.

ターゲット13表面と基板16表面との間の距離をTS距離、ターゲット13表面とアノード電極17の長辺部分の表面との間の距離をTA距離、ターゲット13の表面と電極板28a、28bの表面との間の距離をTB距離とすると、次の三式がなりたつ。
TA<TS,TB<TS,TB<TA
The distance between the surface of the target 13 and the surface of the substrate 16 is the TS distance, the distance between the surface of the target 13 and the surface of the long side portion of the anode electrode 17 is the TA distance, and the surface of the target 13 and the surfaces of the electrode plates 28a and 28b. Assuming that the distance between and is the TB distance, the following three equations are obtained.
TA <TS, TB <TS, TB <TA

基板16の長辺の真横位置ではターゲット13に最も近い接地電位の部材はアノード電極17のターゲット13に対面する表面であり、基板16の長辺の真横位置ではターゲット13とターゲット13に最も近い接地電位の部材の表面との間はTA距離だけ離間されている。 The member having the ground potential closest to the target 13 at the position directly beside the long side of the substrate 16 is the surface of the anode electrode 17 facing the target 13, and the member having the ground potential closest to the target 13 and the target 13 at the position directly beside the long side of the substrate 16. It is separated from the surface of the potential member by the TA distance.

基板16の短辺の真横位置ではターゲット13に最も近い接地電位の部材は電極板28a、28bのターゲット13に対面する表面であり、基板16の短辺の真横位置ではターゲット13とターゲット13に最も近い接地電位の部材の表面との間はTB距離だけ離間されている。 The member having the ground potential closest to the target 13 at the position just beside the short side of the substrate 16 is the surface of the electrode plates 28a and 28b facing the target 13, and the member having the ground potential closest to the target 13 and the target 13 at the position just beside the short side of the substrate 16. It is separated from the surface of a member having a close ground potential by a TB distance.

従って、ターゲット13とターゲット13に最も近い接地電位の部材の表面との間の距離は、基板16の長辺の真横位置よりも短辺の真横位置の方が短くされている。 Therefore, the distance between the target 13 and the surface of the member having the ground potential closest to the target 13 is shorter in the sideways position on the short side than in the sideways position on the long side of the substrate 16.

特に、電極板28a、28bにより、基板16の縁よりも外側では、ターゲット13と接地電位との間の距離が短くなり、電極板28a、28bが基板16の縁よりも内側のプラズマを引きつけるので、基板16の縁よりも外側では、電極板28a、28bが位置する基板16の短辺の外側のプラズマ強度が強まり、その結果、基板16の短辺に近い基板16上のプラズマ強度は小さくなる。要するに電極板28a、28bが無い場合は基板16上のプラズマ領域10の長手方向の両端に近い部分のプラズマは基板16上の他の部分のプラズマよりも強度が大きくなるが、電極板28a、28bが設けられたことにより、基板16上のプラズマ領域10の長手方向の両端に近い部分のプラズマ強度が小さくなり、その結果、基板16上のプラズマ強度が均一化され、形成される薄膜の特性分布が均一化される。 In particular, the electrode plates 28a and 28b shorten the distance between the target 13 and the ground potential outside the edge of the substrate 16, and the electrode plates 28a and 28b attract plasma inside the edge of the substrate 16. On the outside of the edge of the substrate 16, the plasma intensity outside the short side of the substrate 16 on which the electrode plates 28a and 28b are located is increased, and as a result, the plasma intensity on the substrate 16 near the short side of the substrate 16 is decreased. .. In short, in the absence of the electrode plates 28a and 28b, the plasma in the portion near both ends of the plasma region 10 in the longitudinal direction on the substrate 16 has a higher intensity than the plasma in the other portions on the substrate 16, but the electrode plates 28a and 28b By providing Is homogenized.

TB距離は、ターゲット13の表面と基板配置部14に配置された基板16の表面との間のTS距離の10%より大きくしないと却って特性分布が悪化し、90%より小さくしないと効果が薄くなることが確認されている。 If the TB distance is not larger than 10% of the TS distance between the surface of the target 13 and the surface of the substrate 16 arranged on the substrate arrangement portion 14, the characteristic distribution is rather deteriorated, and if it is not smaller than 90%, the effect is weak. It has been confirmed that it will be.

プラズマ領域10の両端である湾曲した部分の上に電極板28a、28bが設けられ、ターゲット13表面に対面すると接地電位の部材との間の距離は、電極板28a、28bとターゲット13との間が最も短くなっている。上述したように電極板28a、28b上のプラズマ強度が増大する。 The electrode plates 28a and 28b are provided on the curved portions at both ends of the plasma region 10, and the distance between the members of the ground potential when facing the surface of the target 13 is between the electrode plates 28a and 28b and the target 13. Is the shortest. As described above, the plasma intensity on the electrode plates 28a and 28b increases.

電極板28a、28bは基板16よりも外側に配置されており、基板16の外側のプラズマ強度が増大した結果、基板16上のうち、電極板28a、28bが近接する基板16の縁付近ではプラズマ強度が減少するため、基板16上のプラズマ強度が均一化され、基板16の表面内の抵抗値分布が均一になっている。 The electrode plates 28a and 28b are arranged outside the substrate 16, and as a result of the increase in plasma intensity outside the substrate 16, plasma is generated near the edge of the substrate 16 on the substrate 16 where the electrode plates 28a and 28b are close to each other. Since the intensity is reduced, the plasma intensity on the substrate 16 is made uniform, and the resistance value distribution in the surface of the substrate 16 is made uniform.

次に、本発明の真空槽11を説明すると、本発明の真空槽11は、ターゲット側真空槽11aと基板側真空槽11bとで構成されている。 Next, the vacuum chamber 11 of the present invention will be described. The vacuum chamber 11 of the present invention is composed of a target-side vacuum chamber 11a and a substrate-side vacuum chamber 11b.

本発明では、カソード電極12と、ターゲット13と、防着リング36と、アノード電極17とは鉛直にされており、カソード電極12は、ターゲット側真空槽11aの鉛直にされた壁面に、鉛直な絶縁板24を介して取り付けられている。防着リング36は同じ壁面に取り付けられている。 In the present invention, the cathode electrode 12, the target 13, the anticorrosion ring 36, and the anode electrode 17 are vertically arranged, and the cathode electrode 12 is vertically attached to the vertical wall surface of the target-side vacuum chamber 11a. It is attached via the insulating plate 24. The protective ring 36 is attached to the same wall surface.

ターゲット13はカソード電極12の絶縁板24に接触する面とは反対側の面に設けられて防着リング36の内周に位置している。 The target 13 is provided on a surface of the cathode electrode 12 opposite to the surface of the cathode electrode 12 in contact with the insulating plate 24, and is located on the inner circumference of the adhesive ring 36.

電極板28a、28bも、支持体29a、29bと防着リング36を介して、カソード電極12と、ターゲット13と、防着リング36とが固定された壁面に取り付けられている。従って、電極板28a、28bの重量は、ターゲット側真空槽11aによって支持されている。 The electrode plates 28a and 28b are also attached to the wall surface to which the cathode electrode 12, the target 13 and the adhesion ring 36 are fixed via the supports 29a and 29b and the adhesion ring 36. Therefore, the weights of the electrode plates 28a and 28b are supported by the target-side vacuum chamber 11a.

スパッタリングの際には、ターゲット側真空槽11aと基板側真空槽11bとは気密に接続され、基板側真空槽11bの内部には、鉛直にされたアノード電極17が設けられおり、基板配置部14と、基板配置部14に配置された基板16とが、鉛直にされた状態で真空槽11の外部から内部に搬入され、アノード電極17と基板側真空槽11bの鉛直にされた壁面との間に配置される。 During sputtering, the target-side vacuum chamber 11a and the substrate-side vacuum chamber 11b are airtightly connected, and a vertical anode electrode 17 is provided inside the substrate-side vacuum chamber 11b, and the substrate arrangement portion 14 is provided. And the substrate 16 arranged in the substrate arranging portion 14 are carried into the inside from the outside of the vacuum chamber 11 in a vertically formed state, and are between the anode electrode 17 and the vertical wall surface of the substrate side vacuum chamber 11b. Is placed in.

メンテナンスの際に、真空槽11の内部が常圧にされ、図6の概略斜視図のように、ターゲット側真空槽11aと基板側真空槽11bとが分離される。 At the time of maintenance, the inside of the vacuum chamber 11 is set to normal pressure, and the target-side vacuum chamber 11a and the substrate-side vacuum chamber 11b are separated as shown in the schematic perspective view of FIG.

図6の符号55は台座であり、ターゲット側真空槽11aは台座55に設けられ、床面に対して固定されている。それに対して基板側真空槽11bは台座55には設けられておらず、ターゲット側真空槽11aに気密に取り付けられている。図6では、支持体29a、29bは省略されている。 Reference numeral 55 in FIG. 6 is a pedestal, and the target-side vacuum chamber 11a is provided on the pedestal 55 and is fixed to the floor surface. On the other hand, the substrate-side vacuum chamber 11b is not provided on the pedestal 55, but is airtightly attached to the target-side vacuum chamber 11a. In FIG. 6, the supports 29a and 29b are omitted.

この図6は、ターゲット側真空槽11aは移動させずに基板側真空槽11bを移動させてターゲット側真空槽11aと基板側真空槽11bとを分離させた状態であり、支持体29a、29bと電極板28a、28bとは重量がターゲット側真空槽11aを介して台座55に支持されている。 FIG. 6 shows a state in which the substrate-side vacuum chamber 11b is moved without moving the target-side vacuum chamber 11a to separate the target-side vacuum chamber 11a and the substrate-side vacuum chamber 11b, and the supports 29a and 29b. The weights of the electrode plates 28a and 28b are supported by the pedestal 55 via the target-side vacuum chamber 11a.

図8は、本発明の電極板28a、28bと支持体29a、29bを真空槽11の壁面から除去し、支持体39a、39bによって電極板18a、18bをアノード電極17上に設けた場合のスパッタリング装置132である。 FIG. 8 shows sputtering when the electrode plates 28a and 28b and the supports 29a and 29b of the present invention are removed from the wall surface of the vacuum chamber 11 and the electrode plates 18a and 18b are provided on the anode electrodes 17 by the supports 39a and 39b. Device 132.

本発明のスパッタリング装置2と、この図8のスパッタリング装置132との基板面内の複数の同じ場所で温度を測定した。測定結果を図7のグラフに示す。温度分布はほぼ同じと言える。 The temperature of the sputtering apparatus 2 of the present invention and the sputtering apparatus 132 of FIG. 8 was measured at a plurality of the same locations on the substrate surface. The measurement results are shown in the graph of FIG. It can be said that the temperature distribution is almost the same.

また、本発明のスパッタリング装置2でモリブデン薄膜を形成したときのシート抵抗値Rsは、0.0760Ω/□±18.7%であり、膜厚分布は3915オングストローム±14.6%であった。 Further, the sheet resistance value Rs when the molybdenum thin film was formed by the sputtering apparatus 2 of the present invention was 0.0760Ω / □ ± 18.7%, and the film thickness distribution was 3915 angstrom ± 14.6%.

図8のスパッタリング装置132では0.0804Ω/□±18.2%と同程度であり、膜厚分布は3805オングストローム±14.1%であり、同等の特性である。
膜厚分布を下記表に示す。
In the sputtering apparatus 132 of FIG. 8, it is about the same as 0.0804Ω / □ ± 18.2%, and the film thickness distribution is 3805 angstrom ± 14.1%, which are the same characteristics.
The film thickness distribution is shown in the table below.

Figure 0006982597
Figure 0006982597

Figure 0006982597
Figure 0006982597

しかし、図8のスパッタリング装置132の場合は、電極板18a、18bと支持体39a、39bとは、アノード電極17を介して基板側真空槽に支持されることになるから、ターゲット側真空槽から分離された基板側真空槽の内部の重量は大きくなり、ターゲット側真空槽と基板側真空槽との間の分離が困難な作業になる。 However, in the case of the sputtering apparatus 132 of FIG. 8, since the electrode plates 18a and 18b and the supports 39a and 39b are supported by the substrate side vacuum chamber via the anode electrode 17, the target side vacuum chamber is used. The weight inside the separated substrate-side vacuum chamber becomes large, which makes it difficult to separate the target-side vacuum chamber and the substrate-side vacuum chamber.

なお、二個の支持体29a、29bは、それぞれ一枚の板であったが、図5に示すスパッタリング装置3のように、一枚の電極板28a、28bをそれぞれ3個の支持体29c、29dで支持するようにしてもよい。 The two supports 29a and 29b were each one plate, but as in the sputtering apparatus 3 shown in FIG. 5, one electrode plate 28a and 28b were each formed into three supports 29c and 29b. It may be supported by 29d.

また、プラズマ領域10は、無端状、リング形形状であればよく、外周磁石25の両端が方形である場合や楕円形である場合も本発明に含まれる。 Further, the plasma region 10 may have an endless shape or a ring shape, and the case where both ends of the outer peripheral magnet 25 are square or elliptical is also included in the present invention.

また、各磁石装置151〜154の端部を同一直線上に配置しない場合や、各磁石装置151〜154の端部とカソード電極12との距離を一定にしない場合も本発明に含まれる。 Further, and if not disposed ends of each magnet device 15 1 to 15 4 on the same straight line, the The present invention is also not the distance between the end portion and the cathode electrode 12 of each magnet device 15 1 to 15 4 constant included.

なお、上記電極板28a、28bは、アノード電極17の辺上に位置し、平行な二辺のうちの一辺が基板16の辺よりも外側であって、他の一辺がターゲット13の辺よりも内側に位置している。 The electrode plates 28a and 28b are located on the sides of the anode electrode 17, one of the two parallel sides is outside the side of the substrate 16, and the other side is more than the side of the target 13. It is located inside.

二個の電極板28a、28bはそれぞれ平行な二辺を有する形状であり、電極板28a、28bは、例えば長方形形状である。 The two electrode plates 28a and 28b each have a shape having two parallel sides, and the electrode plates 28a and 28b have a rectangular shape, for example.

プラズマ領域10の両端のうち、プラズマ領域10の一方の端部の一列に並んだ湾曲した部分と基板16の表面が位置する平面との間に一枚の電極板28aが配置され、プラズマ領域10の反対側の端部の一列に並んだ湾曲した部分と基板16の表面が位置する平面との間に他の一枚の電極板28bが配置されている。 Of both ends of the plasma region 10, one electrode plate 28a is arranged between a curved portion arranged in a row at one end of the plasma region 10 and a plane on which the surface of the substrate 16 is located, and the plasma region 10 is arranged. Another electrode plate 28b is arranged between the curved portions arranged in a row at the opposite end of the substrate 16 and the plane on which the surface of the substrate 16 is located.

また、電極板28a、28bの二辺のうち、ターゲット13の中心から遠い方の辺は、プラズマ領域10の湾曲した部分の外側にはみ出し、ターゲット13の中心から近い方の辺は、プラズマ領域10の湾曲した部分の内側にはみ出していてもよい。更にまた、両方からはみ出していてもよい。 Further, of the two sides of the electrode plates 28a and 28b, the side far from the center of the target 13 protrudes to the outside of the curved portion of the plasma region 10, and the side closer to the center of the target 13 is the plasma region 10. It may protrude inside the curved portion of the plasma. Furthermore, it may protrude from both.

なお、上記ターゲット13は金属モリブデンであったが、本発明は金属モリブデンに限定されるものではなく、本発明のスパッタリング装置2は、金属チタン、モリブデン合金、アルミニウム、アルミニウム合金、金属タングステン、純銅、銅合金、タンタル等の金属から成るターゲット13に対して本発明の効果を奏することができる。 Although the target 13 is metallic molybdenum, the present invention is not limited to metallic molybdenum, and the sputtering apparatus 2 of the present invention includes metallic titanium, molybdenum alloy, aluminum, aluminum alloy, metallic tungsten, pure copper, and the like. The effect of the present invention can be exerted on the target 13 made of a metal such as a copper alloy or tantalum.

2……スパッタリング装置
10……プラズマ領域
11……真空槽
11a……ターゲット側真空槽
11b……基板側真空槽
13……ターゲット
14……基板配置部
151〜154……磁石装置
16……基板
17……アノード電極
28a、28b……電極板
22……スパッタ電源
2 …… Sputtering device 10 …… Plasma region 11 …… Vacuum tank 11a …… Target side vacuum tub 11b …… Substrate side vacuum tub 13 …… Target 14 …… Board arrangement part 15 1 to 15 4 …… Magnet device 16 …… ... Substrate 17 ... Anode electrodes 28a, 28b ... Electrode plate 22 ... Spatter power supply

Claims (3)

真空槽と、
前記真空槽の内部に配置されたターゲットと、
前記ターゲットの裏面側に配置されスパッタ電源に接続されるカソード電極と、
前記カソード電極の裏面側に配置された複数の磁石装置と、
基板が配置される基板配置部と、
接地電位に接続され前記基板の外周上を覆うリング形形状のアノード電極と、
を有し、
各前記磁石装置には細長のリング形形状の外周磁石とその内側に配置された内側磁石とが設けられ、
前記ターゲットの表面には前記外周磁石とその内側の前記内側磁石との間で形成される磁束が漏洩され、前記ターゲットがスパッタリングされて前記基板表面に薄膜が形成されるスパッタリング装置であって、
前記外周磁石とその内側の前記内側磁石とは離間され、前記外周磁石とその内側の前記内側磁石との間の領域であるプラズマ領域は細長のリング形形状にされ、
前記プラズマ領域の前記細長のリン形形状の短辺の両端と前記基板の表面が位置する平面との間には、接地電位に接続された電極板が配置され、
前記アノード電極の表面と前記ターゲットの表面との間のTA距離よりも、前記電極板の表面と前記ターゲットの表面との間のTB距離の方が短くされ、
前記ターゲットの前記プラズマ領域の前記短辺側の両端に沿って位置する二辺上にのみ、前記電極板が配置され、
前記真空槽は、内部に前記ターゲットが配置されたターゲット側真空槽と、内部に前記アノード電極が配置された基板側真空槽とに分離できるようにされ、
前記ターゲット側真空槽と前記基板側真空槽とが密着して接続された状態では、前記ターゲットと前記アノード電極とは鉛直に配置され、前記電極板の重量は、前記ターゲット側真空槽によって支持されており、
前記ターゲット側真空槽と前記基板側真空槽とを分離させる際には、前記ターゲット側真空槽が静止した状態で、前記基板側真空槽が移動するようにされたスパッタリング装置。
With a vacuum tank,
With the target placed inside the vacuum chamber,
A cathode electrode arranged on the back surface side of the target and connected to a sputtering power supply,
A plurality of magnet devices arranged on the back surface side of the cathode electrode, and
The board placement part where the board is placed and
A ring-shaped anode electrode connected to the ground potential and covering the outer periphery of the substrate, and
Have,
Each of the magnet devices is provided with an elongated ring-shaped outer peripheral magnet and an inner magnet arranged inside the outer peripheral magnet.
A sputtering device in which a magnetic flux formed between the outer peripheral magnet and the inner magnet inside the target is leaked to the surface of the target, and the target is sputtered to form a thin film on the surface of the substrate.
The outer peripheral magnet and the inner magnet inside the outer magnet are separated from each other, and the plasma region, which is a region between the outer peripheral magnet and the inner magnet inside the outer peripheral magnet, is formed into an elongated ring shape.
Wherein between the short side ends a plane surface is positioned in the substrate of-ring shape of the elongate plasma region, it is arranged connected to the electrode plate to a ground potential,
The TB distance between the surface of the electrode plate and the surface of the target is shorter than the TA distance between the surface of the anode electrode and the surface of the target.
The electrode plate is arranged only on two sides of the target located along both ends of the short side of the plasma region.
The vacuum chamber is configured to be separable into a target-side vacuum chamber in which the target is arranged and a substrate-side vacuum chamber in which the anode electrode is arranged inside.
In a state where the target-side vacuum chamber and the substrate-side vacuum chamber are in close contact with each other, the target and the anode electrode are arranged vertically, and the weight of the electrode plate is supported by the target-side vacuum chamber. And
A sputtering apparatus in which the substrate-side vacuum chamber moves while the target-side vacuum chamber is stationary when the target-side vacuum chamber and the substrate-side vacuum chamber are separated.
前記TB距離は、前記ターゲットの表面と前記基板配置部に配置された前記基板の表面との間のTS距離の10%より大きく、90%より小さくされた請求項1記載のスパッタリング装置。 The sputtering apparatus according to claim 1, wherein the TB distance is larger than 10% and smaller than 90% of the TS distance between the surface of the target and the surface of the substrate arranged on the substrate arrangement portion. 前記ターゲットは平板状の金属モリブデン板であり、前記薄膜は金属モリブデン薄膜である請求項1乃至請求項2のいずれか1項記載のスパッタリング装置。 The sputtering apparatus according to any one of claims 1 to 2, wherein the target is a flat metal molybdenum plate, and the thin film is a metal molybdenum thin film.
JP2019118165A 2019-06-26 2019-06-26 Sputtering equipment Active JP6982597B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019118165A JP6982597B2 (en) 2019-06-26 2019-06-26 Sputtering equipment
TW109105168A TWI762872B (en) 2019-06-26 2020-02-18 Sputtering apparatus
KR1020200040402A KR102478616B1 (en) 2019-06-26 2020-04-02 Sputtering apparatus
CN202010542198.1A CN112144026B (en) 2019-06-26 2020-06-15 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019118165A JP6982597B2 (en) 2019-06-26 2019-06-26 Sputtering equipment

Publications (2)

Publication Number Publication Date
JP2021004390A JP2021004390A (en) 2021-01-14
JP6982597B2 true JP6982597B2 (en) 2021-12-17

Family

ID=73891899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019118165A Active JP6982597B2 (en) 2019-06-26 2019-06-26 Sputtering equipment

Country Status (4)

Country Link
JP (1) JP6982597B2 (en)
KR (1) KR102478616B1 (en)
CN (1) CN112144026B (en)
TW (1) TWI762872B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113481478A (en) * 2021-06-23 2021-10-08 合肥联顿恪智能科技有限公司 Sputtering coating device and film forming method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331433A (en) * 1994-06-07 1995-12-19 Hitachi Ltd Sputtering device
JPH09111448A (en) * 1995-10-16 1997-04-28 Ulvac Japan Ltd Sputtering device
JPH1192927A (en) * 1997-09-17 1999-04-06 Hitachi Ltd Magnetron sputtering device
JP3649933B2 (en) * 1999-03-01 2005-05-18 シャープ株式会社 Magnetron sputtering equipment
JP2000273628A (en) * 1999-03-29 2000-10-03 Matsushita Electric Ind Co Ltd Sputtering method and its device
JP2001335930A (en) * 2000-05-25 2001-12-07 Matsushita Electric Ind Co Ltd Thin film deposition system
JP4246547B2 (en) * 2003-05-23 2009-04-02 株式会社アルバック Sputtering apparatus and sputtering method
JP4713853B2 (en) * 2004-07-07 2011-06-29 株式会社アルバック Magnetron cathode electrode and sputtering method using magnetron cathode electrode
JP5049561B2 (en) * 2006-11-17 2012-10-17 株式会社アルバック Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode
JP5286351B2 (en) * 2008-03-17 2013-09-11 株式会社アルバック Magnetron sputtering apparatus and magnetron sputtering method
JP5301021B2 (en) * 2011-09-06 2013-09-25 出光興産株式会社 Sputtering target
WO2017221821A1 (en) * 2016-06-21 2017-12-28 株式会社アルバック Target device and sputtering apparatus
WO2019049472A1 (en) * 2017-09-07 2019-03-14 株式会社アルバック Sputtering device

Also Published As

Publication number Publication date
KR20210001904A (en) 2021-01-06
KR102478616B1 (en) 2022-12-16
JP2021004390A (en) 2021-01-14
CN112144026A (en) 2020-12-29
CN112144026B (en) 2022-09-09
TWI762872B (en) 2022-05-01
TW202100780A (en) 2021-01-01

Similar Documents

Publication Publication Date Title
JPS5996269A (en) Magnetic target for use of sputter coating device
US20140216928A1 (en) Thin-film formation sputtering device
US9928997B2 (en) Apparatus for PVD dielectric deposition
JP2009041115A (en) Sputtering source, sputtering apparatus and sputtering method
JP6982597B2 (en) Sputtering equipment
KR20110033362A (en) Sputter gun having discharge anode for high uniformity film fabrication
CA2023092A1 (en) Method and device for sputtering of films
KR101669497B1 (en) Control of erosion profile on a dielectric rf sputter target
JP4553476B2 (en) Sputtering method and sputtering apparatus
JP7082552B2 (en) Sputtering equipment, thin film manufacturing method
JP3686540B2 (en) Manufacturing method of electronic device
KR20190116078A (en) Sputtering apparatus
CN106367724A (en) Sputtering device
JP5213739B2 (en) Equipment for processing substrates
JP6948126B2 (en) Sputtering device and electrode film manufacturing method
JP7320371B2 (en) Sputtering device, thin film manufacturing method
JP2789251B2 (en) Sputtering equipment using dipole ring type magnetic circuit
TWI659445B (en) Radio frequency (rf) – sputter deposition source, deposition apparatus and method of assembling thereof
JP6986674B2 (en) Plasma sputtering film forming equipment
JP2019178367A (en) Sputtering apparatus
JP2023169645A (en) Film deposition apparatus
JP2018127711A (en) Sputtering apparatus
KR20220125474A (en) Sputtering apparatus and sputtering method using the same
CN112219255A (en) Method and apparatus for magnetron assembly in semiconductor processing chamber
KR101086480B1 (en) Sputtering Apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200123

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200123

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200727

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211004

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211119

R150 Certificate of patent or registration of utility model

Ref document number: 6982597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150