JP4959175B2 - Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode - Google Patents

Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode Download PDF

Info

Publication number
JP4959175B2
JP4959175B2 JP2005325047A JP2005325047A JP4959175B2 JP 4959175 B2 JP4959175 B2 JP 4959175B2 JP 2005325047 A JP2005325047 A JP 2005325047A JP 2005325047 A JP2005325047 A JP 2005325047A JP 4959175 B2 JP4959175 B2 JP 4959175B2
Authority
JP
Japan
Prior art keywords
sputtering
target
magnet
magnet assemblies
processing substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005325047A
Other languages
Japanese (ja)
Other versions
JP2007131895A (en
Inventor
炳和 鄭
孝 小松
肇 中村
新井  真
淳也 清田
典明 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2005325047A priority Critical patent/JP4959175B2/en
Publication of JP2007131895A publication Critical patent/JP2007131895A/en
Application granted granted Critical
Publication of JP4959175B2 publication Critical patent/JP4959175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は、マグネトロンスパッタリング方式で処理基板上に所定の薄膜を形成するマグネトロンスパッタ電極及びこのマグネトロンスパッタ電極を備えたスパッタリング装置に関する。   The present invention relates to a magnetron sputtering electrode for forming a predetermined thin film on a processing substrate by a magnetron sputtering method and a sputtering apparatus provided with the magnetron sputtering electrode.

マグネトロンスパッタリング方式のスパッタリング装置では、ターゲットの後方(スパッタ面と背向する側)に、支持板上に交互に極性を変えて複数の磁石を設けた磁石組立体を配置し、この磁石組立体によってターゲット前方(スパッタ面側)にトンネル状の磁束を形成して、ターゲット前方で電離した電子及びスパッタリングによって生じた二次電子を捕捉することで、ターゲット前方での電子密度を高め、これらの電子と、真空チャンバ内に導入される希ガスのガス分子との衝突確率を高めてプラズマ密度を高くできる。このため、処理基板の著しい温度上昇を伴うことなく、成膜速度を向上できる等の利点があり、処理基板上に所定の薄膜を形成するのによく利用されている。   In a magnetron sputtering type sputtering apparatus, a magnet assembly having a plurality of magnets with alternating polarities is arranged on a support plate behind the target (on the side facing the sputtering surface). By forming a tunnel-like magnetic flux in front of the target (on the sputtering surface side) and capturing the electrons ionized in front of the target and secondary electrons generated by sputtering, the electron density in front of the target is increased, and these electrons and The plasma density can be increased by increasing the probability of collision with rare gas molecules introduced into the vacuum chamber. For this reason, there is an advantage that the film forming speed can be improved without accompanying a significant temperature rise of the processing substrate, and it is often used to form a predetermined thin film on the processing substrate.

ところで、近年では、FPD製造用のガラス基板のように、面積の大きい処理基板に対してマグネトロンスパッタリング方式で薄膜を形成することが多くなり、それに伴って、ターゲットも大面積化している。この場合、大面積の処理基板に対して効率よく成膜するには、大面積のターゲットの後方に、上記構成の磁石組立体を等間隔で複数並設することが知られている(例えば、特許文献1参照)。
特開平8−134640号公報(例えば、図3参照)。
By the way, in recent years, a thin film is often formed by a magnetron sputtering method on a processing substrate having a large area, such as a glass substrate for manufacturing an FPD, and the area of the target is increased accordingly. In this case, in order to efficiently form a film on a large-area processing substrate, it is known that a plurality of magnet assemblies having the above-described configuration are arranged in parallel at regular intervals behind a large-area target (for example, Patent Document 1).
JP-A-8-134640 (see, for example, FIG. 3).

上記のように、ターゲットの後方に等間隔で複数の磁石組立体を並設すれば、ターゲット前方でのプラズマ分布が略均等になり、面積の大きい処理基板に対し成膜する場合でも処理基板面内での膜厚分布を略均一にできる。ところが、例えばアルゴンなどのスパッタガスと共に、酸素などの反応ガスを導入して反応性スパッタリングを行うと、処理基板の中央領域とその外周領域では反応性にむらが生じて処理基板面内で比抵抗値などの膜質が不均一になるという問題があった。   As described above, if a plurality of magnet assemblies are arranged in parallel at equal intervals behind the target, the plasma distribution in front of the target becomes substantially uniform, and even when a film is formed on a processing substrate having a large area, the processing substrate surface The film thickness distribution can be made substantially uniform. However, for example, when reactive sputtering is performed by introducing a reactive gas such as oxygen together with a sputtering gas such as argon, the reactivity is uneven in the central region and the outer peripheral region of the processing substrate, and the specific resistance is increased in the processing substrate surface. There was a problem that the film quality such as value became non-uniform.

そこで、上記点に鑑み、本発明の課題は、処理基板全面に亘って膜厚分布や比抵抗値などの膜質を略均一にできるマグネトロンスパッタ電極及びマグネトロンスパッタ電極を備えたスパッタリング装置を提供することにある。   Therefore, in view of the above points, an object of the present invention is to provide a magnetron sputtering electrode and a sputtering apparatus including the magnetron sputtering electrode that can make film quality such as film thickness distribution and specific resistance value substantially uniform over the entire surface of the processing substrate. It is in.

上記課題を解決するために、請求項1記載のマグネトロンスパッタ電極は、処理基板に対向して設けたターゲットの後方に、このターゲットの前方にトンネル状の磁束を形成すべく中央磁石と周辺磁石とを有する磁石組立体を少なくとも4個並設したマグネトロンスパッタ電極において、並設した磁石組立体のうち処理基板の中央領域に対向する磁石組立体相互の並設方向の間隔を、その両端における磁石組立体相互の間隔より大きく設定したことを特徴とする。   In order to solve the above problems, a magnetron sputter electrode according to claim 1 includes a central magnet and a peripheral magnet to form a tunnel-like magnetic flux in front of the target behind the target provided facing the processing substrate. In the magnetron sputter electrode in which at least four magnet assemblies having the same structure are arranged, the interval between the magnet assemblies facing the central region of the processing substrate among the magnet assemblies arranged in parallel is set to the magnet assembly at both ends thereof. It is characterized in that it is set larger than the space between solids.

これによれば、処理基板の中央領域に対向する磁石組立体相互の並設方向の間隔を、その両端におけるものと比較して大きくすると、処理基板を貫通する磁束線相互の間隔が、磁石組立体の並設方向に沿って拡がることで、反応性スパッタリングにより成膜する際に、処理基板前方での反応がその全面に亘って略均一になる。その結果、処理基板面内で比抵抗値などの膜質を均一にできる。   According to this, when the interval in the parallel arrangement direction of the magnet assemblies facing the central region of the processing substrate is made larger than that at the both ends, the interval between the magnetic flux lines penetrating the processing substrate is increased. By spreading along the three-dimensional juxtaposed direction, the reaction in front of the processing substrate becomes substantially uniform over the entire surface when the film is formed by reactive sputtering. As a result, the film quality such as the specific resistance can be made uniform in the processing substrate surface.

ここで、並設する磁石組立体の数が多い(例えば8個以上)場合、前記磁石組立体相互の間隔を、この磁石組立体の並設方向に沿ってその両端から中央に向かうに従い段階的に大きくすれば、磁場プロファイルに沿ってプラズマの斜め成分が改善され、処理基板前方での反応がその全面に亘って略均一にできてよい。   Here, when the number of magnet assemblies arranged in parallel is large (for example, 8 or more), the interval between the magnet assemblies is gradually increased from both ends toward the center along the magnet assembly direction. If it is made larger, the oblique component of the plasma is improved along the magnetic field profile, and the reaction in front of the processing substrate may be made substantially uniform over the entire surface.

また、前記処理基板の中央領域に対向する磁石組立体相互の間隔を一定にしておけば、特に大面積のターゲットをその全面に亘って略一定に侵食させることができ、また、処理基板全面に亘って膜厚分布を略均一にできてよい。   Further, if the interval between the magnet assemblies facing the central region of the processing substrate is made constant, a target having a large area can be eroded substantially uniformly over the entire surface, and the entire surface of the processing substrate can be eroded. The film thickness distribution may be made substantially uniform.

前記各磁石組立体を、ターゲットの裏面に沿って一体かつ平行に往復動させる駆動手段を設けておけば、磁石組立体の二次元的な往復動によって、ターゲットのさらに高い利用効率が達成できる。   If drive means for reciprocating the magnet assemblies integrally and in parallel along the rear surface of the target is provided, higher utilization efficiency of the target can be achieved by two-dimensional reciprocation of the magnet assembly.

請求項5記載のスパッタリング装置は、請求項1乃至請求項4のいずれかに記載のマグネトロンスパッタ電極を真空排気可能なスパッタ室内に配置し、スパッタ室内に所定のガスを導入するガス導入手段と、ターゲットへのスパッタ電力の投入を可能とするスパッタ電源を設けたことを特徴とする。 A sputtering apparatus according to claim 5, wherein the magnetron sputtering electrode according to any one of claims 1 to 4 is disposed in a sputtering chamber capable of being evacuated, and gas introduction means for introducing a predetermined gas into the sputtering chamber; A sputtering power source is provided which enables the sputtering power to be applied to the target.

以上説明したように、本発明のマグネトロンスパッタ電極及びこのマグネトロンスパッタ電極を備えたスパッタリング装置では、反応性スパッタリングする場合でも、処理基板全面に亘って膜厚分布を略均一にできるだけでなく、比抵抗値などの膜質を略均一にできるという効果を奏する。   As described above, the magnetron sputtering electrode of the present invention and the sputtering apparatus equipped with this magnetron sputtering electrode can not only make the film thickness distribution substantially uniform over the entire surface of the processing substrate, but also have a specific resistance even when reactive sputtering is performed. The film quality such as the value can be made substantially uniform.

図1及び図2を参照して説明すれば、1は、本発明のマグネトロンスパッタ電極Cを有するマグネトロン方式のスパッタリング装置(以下、「スパッタ装置」という)である。スパッタ装置1は、インライン式のものであり、ロータリーポンプ、ターボ分子ポンプなどの真空排気手段(図示せず)を介して所定の真空度に保持できるスパッタ室11を有する。スパッタ室11の上部空間には、図示しない基板搬送手段が設けられている。この基板搬送手段は、公知の構造を有し、例えば、処理基板Sが装着されるキャリアを有し、駆動手段を間欠駆動させて、後述するターゲットと対向した位置に処理基板Sを順次搬送できる。   Referring to FIGS. 1 and 2, 1 is a magnetron type sputtering apparatus (hereinafter referred to as “sputtering apparatus”) having a magnetron sputtering electrode C of the present invention. The sputtering apparatus 1 is of an in-line type and has a sputtering chamber 11 that can be maintained at a predetermined degree of vacuum through vacuum exhaust means (not shown) such as a rotary pump or a turbo molecular pump. A substrate transfer means (not shown) is provided in the upper space of the sputtering chamber 11. This substrate transport means has a known structure, for example, has a carrier on which the process substrate S is mounted, and can drive the drive means intermittently to sequentially transport the process substrate S to a position facing a target described later. .

また、スパッタ室11にはガス導入手段2が設けられている。ガス導入手段2は、マスフローコントローラ21を介設したガス管22を介してガス源23に連通しており、アルゴンなどのスパッタガスや反応性スパッタリングの際に用いる反応ガスがスパッタ室11内に一定の流量で導入できる。反応ガスとしては、処理基板S上に成膜しようする薄膜の組成に応じて選択され、酸素、窒素、炭素、水素を含むガス、オゾン、水若しくは過酸化水素またはこれらの混合ガスなどが用いられる。スパッタ室11の下側には、マグネトロンスパッタ電極Cが配置されている。   The sputter chamber 11 is provided with gas introduction means 2. The gas introduction means 2 communicates with a gas source 23 via a gas pipe 22 provided with a mass flow controller 21, and a sputtering gas such as argon or a reactive gas used in reactive sputtering is constant in the sputtering chamber 11. It can be introduced at a flow rate of. The reaction gas is selected according to the composition of the thin film to be formed on the processing substrate S, and gas containing oxygen, nitrogen, carbon, hydrogen, ozone, water, hydrogen peroxide, or a mixed gas thereof is used. . A magnetron sputtering electrode C is disposed below the sputtering chamber 11.

マグネトロンスパッタ電極Cは、略直方体(上面視で長方形)のターゲット31を有している。ターゲット31は、Al合金、MoやITOなど処理基板S上に成膜しようする薄膜の組成に応じて公知の方法でそれぞれ作製され、スパッタリング中、ターゲット31を冷却するバッキングプレート32に、インジウムやスズなどのボンディング材を介して接合され、絶縁板33を介してマグネトロンスパッタ電極Cのフレーム34に取付けられている。この場合、ターゲット31は、処理基板Sの外形寸法より大きくなるように設定される。このため、FPD製造用のガラス基板のように、面積の大きい処理基板Sに対して成膜する場合、ターゲット31のスパッタ面311の表面積も大きくなる。   The magnetron sputter electrode C has a target 31 that is substantially rectangular parallelepiped (rectangular in top view). The target 31 is prepared by a known method according to the composition of a thin film to be formed on the processing substrate S such as Al alloy, Mo, or ITO, and indium or tin is applied to a backing plate 32 that cools the target 31 during sputtering. Are attached to the frame 34 of the magnetron sputter electrode C via an insulating plate 33. In this case, the target 31 is set to be larger than the outer dimension of the processing substrate S. For this reason, when forming a film on the processing substrate S having a large area, such as a glass substrate for FPD production, the surface area of the sputtering surface 311 of the target 31 is also increased.

また、マグネトロンスパッタ電極Cは、ターゲット31の後方に位置して、磁石組立体4a〜4hを装備している。各磁石組立体4a〜4hは、ターゲット31に平行に設けられた支持板(ヨーク)41を有する。同一形状に形成された各支持板41は、ターゲット31の長手方向に沿ってその両側に延出するように形成した長方形状の平板から構成され、磁石の吸着力を増幅する磁性材料製である。また、ターゲット31の後方に所定数の磁石組立体4a〜4fを配置したとき、磁石組立体4a〜4fの並設方向に沿ったターゲットの幅より全体として小さくなるように個々の支持板41の横幅が定寸される。   The magnetron sputter electrode C is located behind the target 31 and is equipped with magnet assemblies 4a to 4h. Each of the magnet assemblies 4 a to 4 h has a support plate (yoke) 41 provided in parallel with the target 31. Each support plate 41 formed in the same shape is composed of a rectangular flat plate formed so as to extend on both sides along the longitudinal direction of the target 31, and is made of a magnetic material that amplifies the attractive force of the magnet. . Further, when a predetermined number of magnet assemblies 4a to 4f are arranged behind the target 31, the individual support plates 41 are arranged so as to become smaller as a whole than the width of the target along the parallel arrangement direction of the magnet assemblies 4a to 4f. The width is fixed.

各支持板41上には、ターゲット31の長手方向に沿った棒状の中央磁石42と支持板41の外周に沿って設けた周辺磁石43とが交互に極性を変えて設けられている。この場合、中央磁石42の同磁化に換算したときの体積を、周辺磁石43の同磁化に換算したときの体積の和(周辺磁石:中心磁石:周辺磁石=1:2:1)程度になるように設計している。   On each support plate 41, a bar-shaped central magnet 42 along the longitudinal direction of the target 31 and a peripheral magnet 43 provided along the outer periphery of the support plate 41 are provided alternately with different polarities. In this case, the volume when converted to the same magnetization of the central magnet 42 is about the sum of the volumes when converted to the same magnetization of the peripheral magnet 43 (peripheral magnet: center magnet: peripheral magnet = 1: 2: 1). Designed to be

これにより、ターゲット31の前方に、釣り合った閉ループのトンネル状の磁束がそれぞれ形成され、ターゲット31の前方で電離した電子及びスパッタリングによって生じた二次電子を捕捉することで、ターゲット31前方での電子密度を高くしてプラズマ密度を高くできる。   As a result, balanced closed-loop tunnel-like magnetic fluxes are formed in front of the target 31, respectively. By capturing electrons ionized in front of the target 31 and secondary electrons generated by sputtering, electrons in front of the target 31 are captured. The plasma density can be increased by increasing the density.

ここで、磁石組立体相互の間隔を一定にした場合、ターゲット31前方でのプラズマ分布が略均等になり、面積の大きい処理基板Sに対して成膜しても、処理基板S面内での膜厚分布が略均一になるものの、酸素などの反応ガスを導入して反応性スパッタリングを行うと、処理基板Sの中央領域とその外周領域では反応性にむらが生じて処理基板S面内で比抵抗値などの膜質が不均一になる場合がある。この場合、一般に中央領域の反応性が劣化する。   Here, when the interval between the magnet assemblies is made constant, the plasma distribution in front of the target 31 becomes substantially uniform, and even if the film is formed on the processing substrate S having a large area, the plasma is distributed within the surface of the processing substrate S. Although the film thickness distribution is substantially uniform, when reactive sputtering is performed by introducing a reactive gas such as oxygen, unevenness in the reactivity occurs in the central region of the processing substrate S and the outer peripheral region thereof, and the processing substrate S is in the plane. The film quality such as the specific resistance value may be non-uniform. In this case, the reactivity of the central region generally deteriorates.

本実施の形態では、並設した磁石組立体4a〜4hのうち処理基板Sの中央領域に対向する磁石組立体4c、4d、4e、4f相互の並設方向の間隔を、その両端における間隔より大きく設定した。即ち、図2に示すように、並設した磁石組立体4a〜4hのうち、処理基板Sの中央領域に対向する磁石組立体4c、4d、4e、4f相互の間隔D1を最大でかつ一定に設定し、その両側の磁石組立体4c、4fと、これに隣接する磁石組立体4b、4gとの相互の間隔D2をD1より小さく設定し、磁石組立体4b、4gと、両端に位置する磁石組立体4a、4hとの相互の間隔D3をD2より小さく設定して、磁石組立体4a〜4h相互の間隔を、その並設方向に沿ってその両端から中央に向かうに従い段階的に大きくした。   In the present embodiment, the distance between the magnet assemblies 4c, 4d, 4e, and 4f facing the central region of the processing substrate S among the magnet assemblies 4a to 4h that are arranged side by side is smaller than the distance between the both ends. Largely set. That is, as shown in FIG. 2, among the magnet assemblies 4a to 4h arranged side by side, the distance D1 between the magnet assemblies 4c, 4d, 4e, and 4f facing the central region of the processing substrate S is maximized and constant. The distance D2 between the magnet assemblies 4c and 4f on both sides thereof and the magnet assemblies 4b and 4g adjacent to the magnet assemblies 4c and 4f is set to be smaller than D1, and the magnet assemblies 4b and 4g and the magnets located at both ends are set. The distance D3 between the assemblies 4a and 4h was set to be smaller than D2, and the distance between the magnet assemblies 4a to 4h was increased stepwise from the both ends toward the center along the parallel arrangement direction.

この場合、処理基板Sを通過する磁束線Mを模擬的に表わして見ると、図3(a)に示すように、磁石組立体相互を等間隔で配置したものと比較して、図3(b)に示すように、上記のように磁石組立体4a〜4h相互の間隔を変えると、中央領域の磁石組立体4c〜4fが形成するターゲット31前方のトンネル状の磁束のアーチがより処理基板Sに近づくようになる。この場合、より処理基板Sに近づいた磁束で捕捉された電子によって形成されるプラズマがより処理基板Sに近づき、このプラズマで、ターゲット31から飛散して処理基板Sに向かうスパッタ粒子が活性化されることで、処理基板Sの中央領域前方での反応性が改善され、その結果、処理基板面S内で比抵抗値などの膜質を均一にできる。   In this case, when the magnetic flux lines M passing through the processing substrate S are represented in a simulated manner, as shown in FIG. 3 (a), as compared with the case where the magnet assemblies are arranged at equal intervals, FIG. As shown in b), when the interval between the magnet assemblies 4a to 4h is changed as described above, the arch of the tunnel-like magnetic flux in front of the target 31 formed by the magnet assemblies 4c to 4f in the central region is more processed substrate. It approaches S. In this case, the plasma formed by the electrons captured by the magnetic flux closer to the processing substrate S is closer to the processing substrate S, and the sputtered particles that are scattered from the target 31 and directed toward the processing substrate S are activated by this plasma. This improves the reactivity in front of the central region of the processing substrate S. As a result, the film quality such as the specific resistance value can be made uniform in the processing substrate surface S.

そして、処理基板Sを、ターゲット31と対向した位置に搬送し、ガス導入手段2を介して所定のスパッタガスや反応ガスを導入した後、ターゲット31に接続したスパッタ電源5を介して、負の直流電圧または高周波電圧を印加すると、処理基板S及びターゲット31に垂直な電界が形成され、ターゲット31の前方にプラズマが発生してターゲット31がスパッタリングされることで処理基板S上に成膜される。   Then, the processing substrate S is transported to a position facing the target 31, a predetermined sputtering gas or reaction gas is introduced through the gas introduction means 2, and then negative through a sputtering power source 5 connected to the target 31. When a DC voltage or a high frequency voltage is applied, an electric field perpendicular to the processing substrate S and the target 31 is formed, plasma is generated in front of the target 31, and the target 31 is sputtered to form a film on the processing substrate S. .

これにより、反応性スパッタリングにより成膜する際に、処理基板S前方での反応がその全面に亘って略均一になる。その結果、膜厚分布を略一定にでき、また、処理基板面内で比抵抗値などの膜質を略均一にできる。   Thereby, when forming a film by reactive sputtering, the reaction in front of the processing substrate S becomes substantially uniform over the entire surface. As a result, the film thickness distribution can be made substantially constant, and the film quality such as the specific resistance value can be made substantially uniform within the processing substrate surface.

ところで、上記のように各磁石組立体4a〜4hを構成した場合、中央磁石42や周辺磁石43の上方におけるプラズマ密度は低くなり、その周辺と比較して、スパッタリングの進行に伴うターゲット31の侵食量が少なくなる。このため、図示しないエアーシリンダなどの駆動手段を設け、その駆動軸に、各磁石組立体4a〜4hを取付け、ターゲット31の並設方向に沿った水平な2箇所の位置で磁石組立体4a〜4hを一体に平行に往復動させてトンネル状の磁束の位置を変えるようにしてもよい。これにより、ターゲット31の外周縁部を含むその全面に亘って略均等に侵食でき、さらには二次元的な往復動によってターゲット31の利用効率をさらに高めることができてよい。   By the way, when each magnet assembly 4a-4h is comprised as mentioned above, the plasma density above the central magnet 42 or the peripheral magnet 43 becomes low, and compared with the periphery, the erosion of the target 31 accompanying the progress of sputtering. The amount is reduced. For this reason, driving means such as an air cylinder (not shown) is provided, and the magnet assemblies 4a to 4h are attached to the driving shaft, and the magnet assemblies 4a to 4h are arranged at two horizontal positions along the parallel direction of the target 31. The position of the tunnel-like magnetic flux may be changed by reciprocally moving 4h in parallel. Thereby, the entire surface including the outer peripheral edge portion of the target 31 can be eroded almost uniformly, and the utilization efficiency of the target 31 can be further enhanced by two-dimensional reciprocation.

磁石組立体4a〜4h相互の間隔D1、D2、D3は、支持板41の大きさや支持板41上に設けた中央磁石42、周辺磁石43の磁場強度などを考慮して適宜設定され、また、上記のようにターゲット31の利用効率を高めるために、磁石組立体4a〜4hを2点間で往復動させる場合、特に、ターゲット31の表面の中央領域に非侵食領域が残らないことを考慮して設定されるが、間隔D1、D2、D3を、所定値を超えて大きく設定すると、処理基板Sでの膜厚分布を略均一にできない。   The distances D1, D2, and D3 between the magnet assemblies 4a to 4h are appropriately set in consideration of the size of the support plate 41, the magnetic strength of the central magnet 42 and the peripheral magnet 43 provided on the support plate 41, and the like. In order to increase the utilization efficiency of the target 31 as described above, when the magnet assemblies 4a to 4h are reciprocated between two points, in particular, it is considered that no non-eroding region remains in the central region of the surface of the target 31. However, if the intervals D1, D2, and D3 are set larger than a predetermined value, the film thickness distribution on the processing substrate S cannot be made substantially uniform.

例えば、ターゲット31として、1200mm×1400mmの外形寸法のものを用い、支持板41として、75mm×1440mmの外形寸法を有するものを用い、支持板41上に、ターゲット31の長手方向に沿って棒状の中央磁石42と、支持板41の外周に沿って周辺磁石43とを設け、120mmの範囲で並設方向に沿って8個の磁石組立体4a〜4hを往復動させる場合には、D1を90mmとしたとき、D2が65〜75mm、D3が35〜40mmの範囲に設定される。   For example, a target having an outer dimension of 1200 mm × 1400 mm is used as the target 31, and a support plate 41 having an outer dimension of 75 mm × 1440 mm is used, and a rod-like shape is formed on the support plate 41 along the longitudinal direction of the target 31. When the central magnet 42 and the peripheral magnet 43 are provided along the outer periphery of the support plate 41 and the eight magnet assemblies 4a to 4h are reciprocated along the parallel direction within a range of 120 mm, D1 is set to 90 mm. In this case, D2 is set to a range of 65 to 75 mm, and D3 is set to a range of 35 to 40 mm.

尚、本実施の形態では、8個の磁石組立体4a〜4hを、相互の間隔D1〜D3を変えて並設したものについて説明したが、磁石組立体の個数や相互の間隔はこれに限定されるものではなく、並設した磁石組立体のうち処理基板の中央領域に対向する磁石組立体相互の並設方向の間隔を、その両端における間隔より大きく設定しておけば、上記と同様の効果が得られる。   In this embodiment, the eight magnet assemblies 4a to 4h are arranged in parallel with the mutual distances D1 to D3 being changed. However, the number of magnet assemblies and the mutual distance are limited to this. However, if the interval between the magnet assemblies facing the central region of the processing substrate among the magnet assemblies arranged side by side is set larger than the interval at both ends, the same as above An effect is obtained.

本実施例1では、ターゲット31の後方に磁石組立体4a〜4hを8個並設した、図1に示すスパッタ装置1を用いて処理基板SにITO膜を成膜した。この場合、処理基板Sとして、ガラス基板(1200mm×1300mm)を用いると共に、ターゲット31として、InにSnOを10重量%添加したものを用い、公知の方法で、1700mm×1800mmの外形寸法を有するように作製し、バッキングプレート32に接合した。そして、反応性スパッタリングによりガラス基板S上にITO膜を成膜した。 In Example 1, an ITO film was formed on the processing substrate S using the sputtering apparatus 1 shown in FIG. 1 in which eight magnet assemblies 4 a to 4 h were arranged in parallel behind the target 31. In this case, a glass substrate (1200 mm × 1300 mm) is used as the processing substrate S, and an external shape of 1700 mm × 1800 mm is used as a target 31 by using a known method in which SnO 2 is added to In 2 O 3 by 10 wt%. It was made to have dimensions and joined to the backing plate 32. Then, an ITO film was formed on the glass substrate S by reactive sputtering.

また、支持板41として、130mm×1840mmの外形寸法を有するものを用い、支持板41上に、ターゲット41の長手方向に沿った棒状の中央磁石42と、支持板41の外周に沿って周辺磁石43とを設けた。そして、D1を110mm、D2を65mm及びD3を20mmに設定した。   Further, a support plate 41 having an outer dimension of 130 mm × 1840 mm is used. On the support plate 41, a rod-shaped central magnet 42 along the longitudinal direction of the target 41 and a peripheral magnet along the outer periphery of the support plate 41. 43. And D1 was set to 110 mm, D2 was set to 65 mm, and D3 was set to 20 mm.

スパッタリング条件として、真空排気されているスパッタ室11内の圧力が0.67Paに保持されるように、マスフローコントローラ21を制御してスパッタガスであるアルゴン(Ar流量100sccm)と、反応ガスであるHO(HO流量8sccm)及びOを所定流量でスパッタ室11内に導入した。また、ターゲット31への投入電力を65kWとし、スパッタ時間を15秒に設定し、8個の磁石組立体4a〜4hを160mmで一体に往復動させながら成膜した。図4(a)には、上記条件下で反応ガスであるOのガス流量を変化させてガラス基板S上に反応性スパッタリングした後、処理基板を取出し、大気アニール炉で処理温度200℃に設定し、60分間アニール処理を行ったときのガラス基板S面内の所定の測定点(P1、P2、P3(図2参照))の比抵抗値の変化を示す。
(比較例1)
As sputtering conditions, the mass flow controller 21 is controlled so that the pressure in the evacuated sputtering chamber 11 is maintained at 0.67 Pa, and argon (Ar flow rate 100 sccm) as a sputtering gas and H as a reactive gas are used. 2 O (H 2 O flow rate 8 sccm) and O 2 were introduced into the sputtering chamber 11 at a predetermined flow rate. Further, the input power to the target 31 was set to 65 kW, the sputtering time was set to 15 seconds, and the eight magnet assemblies 4a to 4h were formed while reciprocating integrally at 160 mm. FIG. 4 (a) shows that after reactive sputtering is performed on the glass substrate S by changing the gas flow rate of the reaction gas O 2 under the above conditions, the processing substrate is taken out, and the processing temperature is set to 200 ° C. in an atmospheric annealing furnace. The change in the specific resistance value at predetermined measurement points (P1, P2, P3 (see FIG. 2)) in the glass substrate S surface when set and annealed for 60 minutes is shown.
(Comparative Example 1)

比較例1として、図1に示すスパッタ装置1を用いたが、9個の磁石組立体を46mmの等間隔で並設したものを用いた(図3(a)参照)。また、スパッタ条件を上記実施例1と同じとし、実施例1と同じガラス基板Sに反応性スパッタリングによりITO膜を成膜した。図4(b)には、上記条件下で反応ガスであるOのガス流量を変化させてガラス基板S上に反応性スパッタリングし、成膜した後、処理基板を取出し、大気アニール炉で処理温度200℃に設定し、60分間アニール処理を行ったときのガラス基板S面内の所定の測定点(P1、P2、P3(図2参照))の比抵抗値の変化を示す。 As the comparative example 1, the sputtering apparatus 1 shown in FIG. 1 was used, but nine magnet assemblies arranged in parallel at equal intervals of 46 mm were used (see FIG. 3A). Further, the sputtering conditions were the same as in Example 1, and an ITO film was formed on the same glass substrate S as in Example 1 by reactive sputtering. In FIG. 4B, the reactive gas O 2 gas flow rate is changed under the above conditions to perform reactive sputtering on the glass substrate S, and after forming the film, the processing substrate is taken out and processed in an atmospheric annealing furnace. A change in the specific resistance value at predetermined measurement points (P1, P2, P3 (see FIG. 2)) in the surface of the glass substrate S when the temperature is set to 200 ° C. and annealing is performed for 60 minutes is shown.

図4(a)及び図4(b)を参照して説明すれば、比較例1では、Oの流量を変化させても、測定点P1、P2、P3で比抵抗値が略一定となる箇所がなく、また、Oの流量が増えるのに従い、ガラス基板Sの外周領域の測定点P1と、ガラス基板Sの中央領域の測定点P2とでの比抵抗値の差も大きくなり、Oの流量を10sccmに設定した場合には、約400μΩ・cmの差が生じ、ガラス基板S面内での膜質を略均一にできないことが判る。 Referring to explain FIGS. 4 (a) and 4 (b), in Comparative Example 1, even by changing the flow rate of O 2, the resistivity is substantially constant at the measurement point P1, P2, P3 As the flow rate of O 2 increases and the flow rate of O 2 increases, the difference in specific resistance value between the measurement point P1 in the outer peripheral region of the glass substrate S and the measurement point P2 in the central region of the glass substrate S also increases. When the flow rate of 2 is set to 10 sccm, a difference of about 400 μΩ · cm occurs, and it can be seen that the film quality in the surface of the glass substrate S cannot be made substantially uniform.

それに対して、実施例1では、Oの流量を3sccm前後に設定したとき、測定点P1、P2、P3で比抵抗値が略一定となり、また、Oの流量が増えても、外周領域の測定点P1点と、中央領域の測定点P2点とでの比抵抗値の差は大きくならず、Oの流量を10sccmに設定した場合でも、比抵抗値の差は100μΩ・cm以下であった。これにより、ガラス基板S面内で膜質を略均一に保持できたことが判る。 In contrast, Example 1, when setting the flow rate of O 2 in the front and rear 3 sccm, the resistivity is substantially constant at the measurement point P1, P2, P3, also increasing the flow rate of O 2 is, the outer peripheral region The difference in specific resistance value between the measurement point P1 and the measurement point P2 in the central region does not increase, and even when the flow rate of O 2 is set to 10 sccm, the specific resistance value difference is 100 μΩ · cm or less. there were. Thus, it can be seen that the film quality can be kept substantially uniform in the glass substrate S plane.

本実施例2では、ターゲット31の後方に磁石組立体4a〜4hを8個並設した、図1に示すスパッタ装置1を用いて処理基板SにMoN膜を成膜した。この場合、処理基板Sとして、ガラス基板(1200mm×1300mm)を用いると共に、ターゲット31として、Mo(99.95%)のものを用い、公知の方法で、1700mm×1800mmの外形寸法を有するように作製し、バッキングプレート32に接合した。そして、反応性スパッタリングによりガラス基板S上にMoN膜を成膜した。   In Example 2, a MoN film was formed on the processing substrate S using the sputtering apparatus 1 shown in FIG. 1 in which eight magnet assemblies 4 a to 4 h were arranged in parallel behind the target 31. In this case, a glass substrate (1200 mm × 1300 mm) is used as the processing substrate S, and a target (Mo (99.95%)) is used as the target 31 so as to have an external dimension of 1700 mm × 1800 mm by a known method. Fabricated and joined to backing plate 32. Then, a MoN film was formed on the glass substrate S by reactive sputtering.

また、支持板41として、130mm×1840mmの外形寸法を有するものを用い、支持板41上に、ターゲット41の長手方向に沿った棒状の中央磁石42と、支持板41の外周に沿って周辺磁石43とを設けた。そして、D1を110mm、D2を65mm及びD3を20mmに設定した。   Further, a support plate 41 having an outer dimension of 130 mm × 1840 mm is used. On the support plate 41, a rod-shaped central magnet 42 along the longitudinal direction of the target 41 and a peripheral magnet along the outer periphery of the support plate 41. 43. And D1 was set to 110 mm, D2 was set to 65 mm, and D3 was set to 20 mm.

スパッタリング条件として、真空排気されているスパッタ室11内の圧力が0.3Paに保持されるように、マスフローコントローラ21を制御してスパッタガスであるアルゴン(Ar流量200sccm)と、反応ガスであるNを所定流量でスパッタ室11内に導入した。また、ターゲット31への投入電力を110kWとし、スパッタ時間を40秒に設定した。図5(a)には、上記条件下で反応ガスであるNのガス流量を変化させてガラス基板S上に反応性スパッタリングしたときのガラス基板S面内の所定の測定点(P1、P2、P3(図2参照)))の比抵抗値の変化を示す。
(比較例2)
As sputtering conditions, the mass flow controller 21 is controlled so that the pressure in the sputter chamber 11 being evacuated is maintained at 0.3 Pa, and argon (Ar flow rate: 200 sccm) as a sputtering gas and N as a reaction gas. 2 was introduced into the sputtering chamber 11 at a predetermined flow rate. Moreover, the input power to the target 31 was set to 110 kW, and the sputtering time was set to 40 seconds. FIG. 5A shows predetermined measurement points (P1, P2) in the surface of the glass substrate S when reactive gas sputtering is performed on the glass substrate S by changing the gas flow rate of the reaction gas N 2 under the above conditions. , P3 (see FIG. 2))).
(Comparative Example 2)

比較例2として、図1に示すスパッタ装置1を用いたが、9個の磁石組立体の46mmの等間隔で並設定したものを用いた(図3(a)参照)。また、スパッタ条件を上記実施例2と同じとし、実施例2と同じガラス基板Sに反応性スパッタリングによりMoN膜を成膜した。図5(b)には、上記条件下で反応ガスであるNのガス流量を変化させてガラス基板S上に反応性スパッタリングしたときのガラス基板S面内での所定の測定点(P1、P2、P3(図2参照)))の比抵抗値の変化を示す。 As the comparative example 2, the sputtering apparatus 1 shown in FIG. 1 was used, but nine magnet assemblies set in parallel at equal intervals of 46 mm were used (see FIG. 3A). Further, the sputtering conditions were the same as in Example 2, and a MoN film was formed on the same glass substrate S as in Example 2 by reactive sputtering. FIG. 5 (b) shows predetermined measurement points (P1, P2) in the surface of the glass substrate S when reactive sputtering is performed on the glass substrate S by changing the gas flow rate of the reaction gas N 2 under the above conditions. P2 and P3 (see FIG. 2))) are shown.

図5(a)及び図5(b)を参照して説明すれば、比較例2では、反応ガスであるNを添加するだけで、ガラス基板Sの外周領域の測定点P1と、ガラス基板Sの中央領域の測定点P2とでの比抵抗値に差が生じ、Nの流量が増えるのに従い、測定点P1とP2とでの比抵抗値の差が大きくなり、Nの流量を200sccmに設定した場合には、約100μΩ・cmの差が生じ、ガラス基板S面内での膜質を略均一にできないことが判る。 Referring to explain FIGS. 5 (a) and 5 (b), in Comparative Example 2, only the addition of N 2 is the reaction gas, and the measurement point P1 of the outer peripheral region of the glass substrate S, a glass substrate A difference occurs in the specific resistance value at the measurement point P2 in the central region of S, and as the flow rate of N 2 increases, the difference in specific resistance value at the measurement points P1 and P2 increases, and the flow rate of N 2 increases. When it is set to 200 sccm, a difference of about 100 μΩ · cm occurs, and it can be seen that the film quality in the surface of the glass substrate S cannot be made substantially uniform.

それに対して、実施例2では、Nの流量が50sccm以下の場合には、測定点P1、P2、P3で比抵抗値が略一定であり、Nの流量が増えると、外周領域の測定点P1と、中央領域の測定点P2とで比抵抗値に差が生じるが、Nの流量を200sccmに設定した場合でも、比抵抗値の差は25μΩ・cm以下であった。これにより、ガラス基板S面内で膜質を略均一に保持できたことが判る。 In contrast, Example 2, when the flow rate of N 2 is 50sccm less, the specific resistance value at the measurement point P1, P2, P3 are substantially constant, the flow rate of N 2 is increased, the measurement of the outer peripheral region Although there is a difference in specific resistance value between the point P1 and the measurement point P2 in the central region, even when the N 2 flow rate was set to 200 sccm, the specific resistance value difference was 25 μΩ · cm or less. Thus, it can be seen that the film quality can be kept substantially uniform in the glass substrate S plane.

本実施例3では、図1に示すスパッタ装置1を用いたが、磁石組立体として、図6(a)に示すように、磁石組立体を5個並設したものを用いた。この場合、処理基板Sとして、ガラス基板(550mm×650mm)を用いると共に、ターゲット31として、InにSnOを10重量%添加したものを用い、公知の方法で、910mm×880mmの外形寸法を有するように作製し、バッキングプレート32に接合した。 In Example 3, the sputtering apparatus 1 shown in FIG. 1 was used. As the magnet assembly, as shown in FIG. 6A, a magnet assembly having five magnet assemblies arranged in parallel was used. In this case, a glass substrate (550 mm × 650 mm) is used as the processing substrate S, and an outer shape of 910 mm × 880 mm is used by a known method using a target 31 in which 10% by weight of SnO 2 is added to In 2 O 3. It was made to have dimensions and joined to the backing plate 32.

また、支持板41として、130mm×900mmの外形寸法を有するものを用い、支持板41上に、ターゲット41の長手方向に沿った棒状の中央磁石42と、支持板41の外周に沿って周辺磁石43とを設けた。両端の磁石組立体相互の間隔D4を20mmに設定し、ガラス基板の中央領域に対向する磁石組立体相互の間隔をD5を65mmに設定した(図6(a)参照)。   In addition, a support plate 41 having an outer dimension of 130 mm × 900 mm is used, a rod-shaped central magnet 42 along the longitudinal direction of the target 41 on the support plate 41, and a peripheral magnet along the outer periphery of the support plate 41. 43. The distance D4 between the magnet assemblies at both ends was set to 20 mm, and the distance between the magnet assemblies facing the central region of the glass substrate was set to 65 mm (see FIG. 6A).

そして、上記実施例1と同条件で反応性スパッタリングによりガラス基板S上にITO膜を200℃で成膜した。成膜中、磁石組立体を100mmで一体に往復動させた。図7(a)には、上記条件下で反応ガスであるOのガス流量を変化させてガラス基板S上に反応性スパッタリングしたときのガラス基板S面内での所定の測定点(P1、P2、P3(図2参照))の比抵抗値の変化を示す。
(比較例3)
Then, an ITO film was formed on the glass substrate S at 200 ° C. by reactive sputtering under the same conditions as in Example 1. During film formation, the magnet assembly was reciprocated integrally at 100 mm. In FIG. 7A, a predetermined measurement point (P1, P2) in the glass substrate S surface when reactive sputtering is performed on the glass substrate S by changing the gas flow rate of the reaction gas O 2 under the above conditions. Changes in the specific resistance values of P2 and P3 (see FIG. 2) are shown.
(Comparative Example 3)

比較例3として、図1に示すスパッタ装置1を用いたが、磁石組立体として、図6(b)に示すように、磁石組立体を5個等間隔で並設したものを用いた。この場合、磁石組立体相互の間隔D6を43mmに設定した(図6(b)参照)。また、スパッタ条件を上記実施例3と同じとし、実施例3と同じガラス基板Sに反応性スパッタリングによりITO膜を成膜した。図7(b)には、上記条件下で反応ガスであるOのガス流量を変化させてガラス基板S上に反応性スパッタリングしたときのガラス基板S面内での所定の測定点(P1、P2、P3(図2参照))の比抵抗値の変化を示す。 As Comparative Example 3, the sputtering apparatus 1 shown in FIG. 1 was used. As the magnet assembly, as shown in FIG. 6B, a magnet assembly having five magnet assemblies arranged at equal intervals was used. In this case, the distance D6 between the magnet assemblies was set to 43 mm (see FIG. 6B). Further, the sputtering conditions were the same as in Example 3, and an ITO film was formed on the same glass substrate S as in Example 3 by reactive sputtering. In FIG. 7B, a predetermined measurement point (P1, P2) in the glass substrate S surface when reactive sputtering is performed on the glass substrate S by changing the gas flow rate of the reaction gas O 2 under the above conditions. Changes in the specific resistance values of P2 and P3 (see FIG. 2) are shown.

図7(a)及び図7(b)を参照して説明すれば、比較例3では、Oの流量が増えるのに従い、ガラス基板Sの外周領域の測定点P1と、ガラス基板Sの中央領域の測定点P2とでの比抵抗値の差も大きくなり、Oの流量を10sccmに設定した場合には、約250μΩ・cmの差が生じ、ガラス基板S面内で膜質を略均一に保持できないことが判る。 Referring to explain FIGS. 7 (a) and 7 (b), in Comparative Example 3, in accordance with the flow rate of O 2 is increased, and the measurement point P1 of the outer peripheral region of the glass substrate S, the center of the glass substrate S The difference in specific resistance value between the measurement point P2 in the region also increases, and when the flow rate of O 2 is set to 10 sccm, a difference of about 250 μΩ · cm occurs, and the film quality is substantially uniform in the glass substrate S plane. It turns out that it cannot hold.

それに対して、実施例3では、Oの流量を増やしても、外周領域の測定点P1と、中央領域の測定点P2とでの比抵抗値の差は大きくならず、Oの流量を10sccmに設定した場合でも、比抵抗値の差は80μΩ・cm以下であった。これにより、ガラス基板S面内で膜質が略均一にできたことが判る。 In contrast, in Example 3, increasing the flow rate of O 2, and the measurement point P1 of the outer peripheral region, the difference between the specific resistance value at the measurement point P2 of the central region does not increase, the flow rate of O 2 Even when set to 10 sccm, the difference in specific resistance value was 80 μΩ · cm or less. Thereby, it turns out that the film quality can be made substantially uniform in the glass substrate S plane.

本発明のスパッタリング装置を模式的に説明する図。The figure which illustrates typically the sputtering device of this invention. 磁石組立体の配置を説明する図。The figure explaining arrangement | positioning of a magnet assembly. (a)は、磁石組立体を等間隔で配置したときの磁束線を模擬的に示す図。(b)は本発明に従い磁石組立体を配置したときの磁束線を模擬的に示す図。(A) is a figure which shows the magnetic flux line when a magnet assembly is arrange | positioned at equal intervals, and simulates. (B) is a figure which shows the magnetic flux line when the magnet assembly is arrange | positioned according to this invention. (a)は、実施例1に従いITO膜を成膜したガラス基板面内の所定点の比抵抗値の変化を示す。(b)は、比較例1に従いITO膜を成膜したガラス基板面内の所定点の比抵抗値の変化を示す。(A) shows the change of the specific resistance value of the predetermined point in the glass substrate surface which formed the ITO film | membrane according to Example 1. FIG. (B) shows the change of the specific resistance value of the predetermined point in the glass substrate surface which formed the ITO film | membrane according to the comparative example 1. FIG. (a)は、実施例2に従いMoN膜を成膜したガラス基板面内の所定点の比抵抗値の変化を示す。(b)は、比較例2に従いMoN膜を成膜したガラス基板面内の所定点の比抵抗値の変化を示す。(A) shows the change of the specific resistance value of the predetermined point in the glass substrate surface which formed the MoN film | membrane according to Example 2. FIG. (B) shows the change of the specific resistance value of the predetermined point in the glass substrate surface which formed the MoN film | membrane according to the comparative example 2. FIG. (a)は、本発明の磁石組立体の配置の変形例を説明する図。(b)は、(a)の比較例である磁石組立体の配置を説明する図(A) is a figure explaining the modification of arrangement | positioning of the magnet assembly of this invention. (B) is a figure explaining arrangement | positioning of the magnet assembly which is a comparative example of (a). (a)は、実施例3に従いITO膜を成膜したガラス基板面内の所定点の比抵抗値の変化を示す。(b)は、比較例3に従いITO膜を成膜したガラス基板面内の所定点の比抵抗値の変化を示す。(A) shows the change of the specific resistance value of the predetermined point in the glass substrate surface which formed the ITO film | membrane according to Example 3. FIG. (B) shows the change of the specific resistance value of the predetermined point in the glass substrate surface which formed the ITO film | membrane according to the comparative example 3. FIG.

符号の説明Explanation of symbols

1 マグネトロンスパッタリング装置
31 ターゲット
4a〜4h 磁石組立体
42 中心磁石
43 周辺磁石
5 スパッタ電源
C マグネトロンスパッタ電極
S 処理基板
DESCRIPTION OF SYMBOLS 1 Magnetron sputtering apparatus 31 Target 4a-4h Magnet assembly 42 Central magnet 43 Peripheral magnet 5 Sputtering power supply C Magnetron sputter electrode S Processing substrate

Claims (5)

処理基板に対向して設けたターゲットの後方に、このターゲットの前方にトンネル状の磁束を形成すべく中央磁石と周辺磁石とを有する磁石組立体を少なくとも4個並設したマグネトロンスパッタ電極において、並設した磁石組立体のうち処理基板の中央領域に対向する磁石組立体相互の並設方向の間隔を、その両端における磁石組立体相互の間隔より大きく設定したことを特徴とするマグネトロンスパッタ電極。 In a magnetron sputter electrode in which at least four magnet assemblies having a central magnet and peripheral magnets are arranged in parallel behind a target provided opposite to the processing substrate in order to form a tunnel-like magnetic flux in front of the target. A magnetron sputter electrode, characterized in that, in the magnet assembly provided, the interval between the magnet assemblies facing the central region of the processing substrate is set larger than the interval between the magnet assemblies at both ends thereof. 前記磁石組立体相互の間隔を、この磁石組立体の並設方向に沿ってその両端から中央に向かうに従い段階的に大きくしたことを特徴とする請求項1記載のマグネトロンスパッタ電極。 2. The magnetron sputter electrode according to claim 1, wherein the interval between the magnet assemblies is increased stepwise from both ends toward the center along the direction in which the magnet assemblies are arranged side by side. 前記処理基板の中央領域に対向する磁石組立体相互の間隔を一定にしたことを特徴とする請求項1または請求項2記載のマグネトロンスパッタ電極。 3. The magnetron sputter electrode according to claim 1, wherein a distance between magnet assemblies facing the central region of the processing substrate is constant. 前記各磁石組立体を、ターゲットの裏面に沿って一体かつ平行に往復動させる駆動手段を設けたことを特徴とする請求項1乃至請求項3のいずれかに記載のマグネトロンスパッタ電極。 The magnetron sputter electrode according to any one of claims 1 to 3, further comprising driving means for reciprocating the magnet assemblies integrally and in parallel along the rear surface of the target. 請求項1乃至請求項4のいずれかに記載のマグネトロンスパッタ電極を真空排気可能なスパッタ室内に配置し、スパッタ室内に所定のガスを導入するガス導入手段と、ターゲットへのスパッタ電力の投入を可能とするスパッタ電源を設けたことを特徴とするスパッタリング装置。 The magnetron sputter electrode according to any one of claims 1 to 4 is disposed in a sputtering chamber that can be evacuated, and gas introduction means for introducing a predetermined gas into the sputtering chamber and sputtering power can be input to the target. A sputtering apparatus comprising a sputtering power source.
JP2005325047A 2005-11-09 2005-11-09 Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode Active JP4959175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005325047A JP4959175B2 (en) 2005-11-09 2005-11-09 Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005325047A JP4959175B2 (en) 2005-11-09 2005-11-09 Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode

Publications (2)

Publication Number Publication Date
JP2007131895A JP2007131895A (en) 2007-05-31
JP4959175B2 true JP4959175B2 (en) 2012-06-20

Family

ID=38153789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005325047A Active JP4959175B2 (en) 2005-11-09 2005-11-09 Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode

Country Status (1)

Country Link
JP (1) JP4959175B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057715A1 (en) * 2007-10-31 2009-05-07 Canon Anelva Corporation Magnetron unit, magnetron sputtering apparatus and method for manufacturing electronic device
CN201162043Y (en) 2008-03-21 2008-12-10 北京京东方光电科技有限公司 Magnetron sputtering target structure and equipment
KR102301176B1 (en) * 2019-12-27 2021-09-14 주식회사 에이치앤이루자 Cathode Device for Sputtering Apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121666A (en) * 1997-07-02 1999-01-26 Anelva Corp Magnetron cathode for sputtering device
JP3649933B2 (en) * 1999-03-01 2005-05-18 シャープ株式会社 Magnetron sputtering equipment
JP4592852B2 (en) * 1999-11-12 2010-12-08 キヤノンアネルバ株式会社 Magnetron cathode of sputtering equipment
JP2004115841A (en) * 2002-09-25 2004-04-15 Shin Meiwa Ind Co Ltd Magnetron sputtering electrode, film deposition system, and film deposition method

Also Published As

Publication number Publication date
JP2007131895A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
JP5145325B2 (en) Thin film forming method and thin film forming apparatus
JP4780972B2 (en) Sputtering equipment
KR101135389B1 (en) Sputtering method and sputtering apparatus
KR101196650B1 (en) Sputtering apparatus
JP4922581B2 (en) Sputtering apparatus and sputtering method
JP4707693B2 (en) Sputtering apparatus and sputtering method
JPWO2008050618A1 (en) Thin film forming method and thin film forming apparatus
TWI383061B (en) Magnetron sputtering electrode and sputtering device using magnetron sputtering electrode
TWI470102B (en) Magnetron sputtering electrode and sputtering device with magnetron sputtering electrode
JP4959175B2 (en) Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode
JP5903217B2 (en) Magnetron sputtering electrode and sputtering apparatus
KR20170064527A (en) Magnet unit for magnetron sputter electrode and sputtering apparutus
JP5049561B2 (en) Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode
TWI393797B (en) Sputtering electrodes and sputtering devices with sputtering electrodes
JPWO2011024411A1 (en) Magnetron sputtering electrode and sputtering apparatus
JP4999602B2 (en) Deposition equipment
JP4713853B2 (en) Magnetron cathode electrode and sputtering method using magnetron cathode electrode
JP5025334B2 (en) Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode
JP5089962B2 (en) Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode
JP2002256431A (en) Magnetron sputtering device
JP2000273627A (en) Magnetron sputtering method
KR20070021919A (en) Sputter electrode and sputtering apparutus having the sputter electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4959175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250