JP4939009B2 - Target assembly and sputtering apparatus provided with the target assembly - Google Patents

Target assembly and sputtering apparatus provided with the target assembly Download PDF

Info

Publication number
JP4939009B2
JP4939009B2 JP2005235130A JP2005235130A JP4939009B2 JP 4939009 B2 JP4939009 B2 JP 4939009B2 JP 2005235130 A JP2005235130 A JP 2005235130A JP 2005235130 A JP2005235130 A JP 2005235130A JP 4939009 B2 JP4939009 B2 JP 4939009B2
Authority
JP
Japan
Prior art keywords
target
targets
sputtering
backing plate
sputtering apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005235130A
Other languages
Japanese (ja)
Other versions
JP2007051308A (en
JP2007051308A5 (en
Inventor
祐一 大石
孝 小松
肇 中村
新井  真
淳也 清田
典明 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2005235130A priority Critical patent/JP4939009B2/en
Priority to TW095125489A priority patent/TWI381062B/en
Priority to KR1020060076093A priority patent/KR101330651B1/en
Priority to CN2006101155202A priority patent/CN1916232B/en
Publication of JP2007051308A publication Critical patent/JP2007051308A/en
Publication of JP2007051308A5 publication Critical patent/JP2007051308A5/ja
Application granted granted Critical
Publication of JP4939009B2 publication Critical patent/JP4939009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、ターゲットとバッキングプレートとを接合してなるターゲット組立体及びこのターゲット組立体を備えたスパッタリング装置に関する。   The present invention relates to a target assembly formed by joining a target and a backing plate, and a sputtering apparatus including the target assembly.

スパッタリング法では、プラズマ中のイオンを、処理基板表面に成膜しようする膜の組成に応じて所定形状に作製されたターゲットに向けて加速させて衝撃させ、ターゲット原子を飛散させて処理基板表面に薄膜を形成する。この場合、ターゲットは、イオン衝撃を受けて高温となることから、ターゲットが融解したり、割れたりする虞がある。   In the sputtering method, ions in plasma are accelerated and bombarded toward a target formed in a predetermined shape according to the composition of the film to be formed on the surface of the processing substrate, and target atoms are scattered to the surface of the processing substrate. A thin film is formed. In this case, since the target is subjected to ion bombardment and becomes high temperature, the target may be melted or cracked.

このことから、ターゲットを、インジウムやスズなどの熱伝導率が高い材料からなるボンディング材を介して、例えば銅製のバッキングプレートにボンディングしてターゲット組立体とし、この状態でスパッタリングカソードに取付け、スパッタリング中、バッキングプレートを冷却水(冷媒)により冷却することで、ターゲットが間接的に除熱される構造としている。   For this reason, the target is bonded to a copper backing plate, for example, via a bonding material made of a material having high thermal conductivity such as indium or tin to form a target assembly. The target is indirectly removed by cooling the backing plate with cooling water (refrigerant).

この場合、従来のターゲット組立体では、ターゲットの冷却効率を高めると共に、ボルトなどの固定手段によるスパッタリングカソードへの組付けを考慮して、バッキングプレートの外形をターゲットの外形より大きく設定し、ターゲットの外周より外側に突出した部分でスパッタリングカソードに固定していた(特許文献1)。
特開平7−26375号公報(例えば、図1参照)。
In this case, in the conventional target assembly, the outer shape of the backing plate is set larger than the outer shape of the target in consideration of increasing the cooling efficiency of the target and considering the mounting to the sputtering cathode by a fixing means such as a bolt. The portion protruding outward from the outer periphery was fixed to the sputtering cathode (Patent Document 1).
JP-A-7-26375 (see, for example, FIG. 1).

ところで、近年では、FPD製造用のガラス基板のように、面積の大きい基板に対し、スパッタリング法により薄膜を形成することが多くなっている。この場合、大面積の基板に対して、膜厚分布や反応性スパッタリングを行う場合の膜質分布の均一性を高く保持したまま成膜できるように、スパッタリング装置を次のように構成することが提案されている。   By the way, in recent years, a thin film is frequently formed by a sputtering method on a substrate having a large area such as a glass substrate for manufacturing an FPD. In this case, it is proposed that the sputtering apparatus be configured as follows so that the film thickness distribution and the uniformity of the film quality distribution when performing reactive sputtering can be kept high on a large-area substrate. Has been.

即ち、基板に対向して、直方体など同形状に形成した複数枚のターゲットを並設すると共に、相互に隣接する2個のターゲットに1個の交流電源を割当てて接続し、この交流電源を介して、いずれか一方のターゲットに負の電位を印加すると共に、他方のターゲットを接地電位または正の電位を印加するようにし、この接地電位または正の電位が印加されたターゲットがアノードの役割を果すことで、負の電位が印加されたターゲットをスパッタリングし、交流電源の周波数に応じて、ターゲットの電位を交互に切り替えて各ターゲットを順次スパッタリングする(特願2004−69413号の明細書参照)。この場合、ターゲットを相互に近接して設置するため、バッキングプレートの並設方向に沿った横幅を、ターゲットの並設方向の幅に一致させている。   That is, a plurality of targets formed in the same shape, such as a rectangular parallelepiped, are arranged in parallel to face the substrate, and one AC power source is allocated and connected to two targets adjacent to each other via the AC power source. In addition, a negative potential is applied to one of the targets and a ground potential or a positive potential is applied to the other target, and the target to which the ground potential or the positive potential is applied serves as an anode. Thus, the target to which a negative potential is applied is sputtered, and each target is sequentially sputtered by alternately switching the target potential according to the frequency of the AC power supply (see the specification of Japanese Patent Application No. 2004-69413). In this case, in order to install the targets close to each other, the lateral width of the backing plates in the parallel arrangement direction is made to coincide with the width of the targets in the parallel arrangement direction.

上記のようにスパッタリング装置を構成すれば、ターゲット相互の間にはアノードやシールドなどの構成部品を何ら設ける必要がないため、スパッタ粒子が放出されない空間を可能な限り小さくでき(ターゲット相互の間の間隔を小さくでき、膜厚分布、膜質分布の均一性を高く保持したまま大面積の基板に対して成膜できるという利点がある。   If the sputtering apparatus is configured as described above, it is not necessary to provide any components such as an anode or a shield between the targets, so that the space where the sputtered particles are not emitted can be made as small as possible (between the targets). There is an advantage that the interval can be reduced, and the film can be formed on a substrate having a large area while maintaining high uniformity of film thickness distribution and film quality distribution.

ところが、上記スパッタリング装置において、各ターゲットの利用効率を高めるため、ターゲットの後方に磁石組立体を設け、磁石組立体をターゲットの並設方向に沿って往復動させると、ターゲット前方に発生させたプラズマが各ターゲット組立体相互の間に回り込み、ターゲットとバッキングプレートとの接合面がプラズマに曝されてボンディング材が融解し、しみだす虞があった。ボンディング材がしみだすと、スパッタリング中に異常放電を誘発し、良好な成膜ができない。   However, in the above sputtering apparatus, in order to increase the utilization efficiency of each target, a magnet assembly is provided behind the target, and when the magnet assembly is reciprocated along the parallel direction of the target, plasma generated in front of the target is generated. However, there is a possibility that the bonding surface of the target and the backing plate is exposed to the plasma and the bonding material melts and oozes out between the target assemblies. If the bonding material oozes out, abnormal discharge is induced during sputtering, and good film formation cannot be performed.

そこで、本発明は、上記点に鑑み、各ターゲット組立体を並設した状態でスパッタリングする場合でも、ターゲットとバッキングプレートとの接合面がプラズマに曝されることがなく、ひいては、スパッタリング中の異常放電の誘発を防止できるターゲット組立体及びこのターゲット組立体を備えたスパッタリング装置を提供することを目的とする。   Therefore, in view of the above points, the present invention does not expose the joint surface between the target and the backing plate to the plasma even when sputtering is performed in a state where the target assemblies are arranged side by side. It is an object of the present invention to provide a target assembly capable of preventing the induction of electric discharge and a sputtering apparatus including the target assembly.

上記課題を解決するために、本発明のスパッタリング装置は、平面視矩形のスパッタリング用のターゲットとこのターゲットのスパッタ面の背面側にボンディング材を介して接合された平面視矩形のバッキングプレートとを備えるターゲット組立体であって、真空チャンバ内に前記ターゲット組立体の複数が所定の間隔を置いて並設されるものと、並設される各ターゲットのうち対をなす少なくとも2枚のものに交流電圧を夫々印加する交流電源と、ターゲットのスパッタ面側を前、その背面側を後として、バッキングプレートの後方に配置されて各ターゲットのスパッタ面前方に磁束を夫々形成する、複数個の磁石から構成される磁石組立体と、磁束がターゲットの並設方向で当該ターゲットに対して平行移動自在であるように磁石組立体を駆動する駆動手段とを備えるスパッタリング装置において、相互に隣接するターゲット相互の間の距離と比較して、これらのターゲットに接合されたバッキングプレート相互間の距離を大きく設定することで、前記接合面の面積をターゲットの最大横断面積より小さくしたことを特徴とする。
In order to solve the above problems, a sputtering apparatus according to the present invention includes a sputtering target having a rectangular shape in plan view and a backing plate having a rectangular shape in plan view bonded to the back side of the sputtering surface of the target via a bonding material. a filter Getto assembly, and a plurality of the target assembly in the vacuum chamber is arranged at a predetermined interval, to those of at least two forming an inner pair of each target to be juxtaposed An AC power supply for applying an AC voltage, and a plurality of magnets that are arranged behind the backing plate to form a magnetic flux in front of the sputtering surface of each target, with the sputtering surface side of the target in front and the back surface as the back. And a magnet assembly so that the magnetic flux is movable in parallel with the target in the direction in which the targets are arranged side by side. In a sputtering apparatus comprising a driving means for driving, the distance between the backing plates bonded to these targets is set larger than the distance between the targets adjacent to each other. The area is smaller than the maximum cross-sectional area of the target .

本発明によれば、ターゲットとバッキングプレートとを組付けたターゲット組立体の状態でスパッタリングカソードに取付けられ、スパッタリング中、バッキングプレートを冷媒により冷却することで、ターゲットを間接的に除熱し、ターゲットが融解したり、割れたりすることが防止される。この場合、バッキングプレートのターゲットとの接合面の面積をターゲットの最大横断面積より小さく設定したため、ターゲットとバッキングプレートとの接合面の一部が、ターゲットの一端より内側に位置し、外側に延出したターゲットの側壁によって、その箇所での接合面へのプラズマの回り込みが防止される。   According to the present invention, a target assembly in which a target and a backing plate are assembled is attached to a sputtering cathode, and the target is indirectly removed by cooling the backing plate with a refrigerant during sputtering, It prevents melting and cracking. In this case, since the area of the bonding surface between the backing plate and the target is set smaller than the maximum cross-sectional area of the target, a part of the bonding surface between the target and the backing plate is located inside the one end of the target and extends outward. The target side wall prevents the plasma from wrapping around the bonding surface at that location.

また、前記ターゲットの外形を多角形とした場合、相互に向かい合うターゲットの一辺全体に亘って前記バッキングプレート相互間の距離を大きく設定しておけば、各ターゲットの利用効率を高めるために、ターゲットの後方に磁石組立体を設け、ターゲットの並設方向に沿って往復動させる場合でも、ターゲット前方に発生させたプラズマが、並設したターゲット相互の間から、ターゲットとバッキングプレートとの接合面まで回り込むことはなく、スパッタリング中の異常放電の誘発が防止されて、良好な成膜が可能になる。   In addition, when the outer shape of the target is a polygon, if the distance between the backing plates is set large over the entire side of the target facing each other, in order to increase the use efficiency of each target, Even when a magnet assembly is provided at the rear and reciprocating along the target parallel direction, the plasma generated in front of the target wraps around between the target parallel to the joint surface between the target and the backing plate. However, the induction of abnormal discharge during sputtering is prevented, and favorable film formation becomes possible.

尚、前記ターゲットの端面からバッキングプレートの端面までの間隔を5mm以上としておくことがよい。5mmより小さいと、隣接してターゲットを設置した場合に、プラズマに曝される虞がある。他方、上限については、スパッタリング中、ターゲットを冷却できる範囲であればよい。   The distance from the end surface of the target to the end surface of the backing plate is preferably 5 mm or more. If it is smaller than 5 mm, there is a risk of exposure to plasma when a target is installed adjacently. On the other hand, the upper limit may be within a range in which the target can be cooled during sputtering.

この場合、前記磁束がターゲットに対して平行移動自在であるように各磁石組立体を一体に駆動する駆動手段を設けておけば、各ターゲットの利用効率を高めることができてよい。   In this case, the use efficiency of each target may be improved by providing driving means for integrally driving each magnet assembly so that the magnetic flux is movable in parallel with respect to the target.

以上説明したように、本発明のターゲット組立体及びこのターゲット組立体を備えたスパッタリング装置では、スパッタリング中に、ターゲットとバッキングプレートとの接合面がプラズマに曝されることがなく、ひいては、スパッタリング中の異常放電の誘発を防止でき、良好な成膜が行い得るという効果を奏する。   As described above, in the target assembly of the present invention and the sputtering apparatus including the target assembly, the bonding surface between the target and the backing plate is not exposed to plasma during sputtering, and as a result, during sputtering. Induction of abnormal discharge can be prevented and good film formation can be achieved.

図1乃至図3を参照して説明すれば、1は、本発明のカソード組立体を並設したカソードを有するマグネトロン方式のスパッタリング装置(以下、「スパッタ装置」という)である。スパッタ装置1は、インライン式のものであり、ロータリーポンプ、ターボ分子ポンプなどの真空排気手段(図示せず)を介して所定の真空度に保持できる真空チャンバ11を有する。真空チャンバ11の上部空間には、図示しない基板搬送手段が設けられている。この基板搬送手段は、公知の構造を有し、例えば、処理基板Sが装着されるキャリアを有し、駆動手段を間欠駆動させて、後述する並設したターゲットと対向した位置に処理基板Sを順次搬送できる。   Referring to FIGS. 1 to 3, reference numeral 1 denotes a magnetron type sputtering apparatus (hereinafter referred to as “sputtering apparatus”) having a cathode in which the cathode assembly of the present invention is arranged. The sputtering apparatus 1 is of an in-line type, and has a vacuum chamber 11 that can be maintained at a predetermined degree of vacuum via a vacuum exhaust means (not shown) such as a rotary pump or a turbo molecular pump. A substrate transfer means (not shown) is provided in the upper space of the vacuum chamber 11. This substrate transport means has a known structure, for example, has a carrier on which the processing substrate S is mounted, and intermittently drives the driving means to place the processing substrate S at a position facing a parallel target described later. Can be transported sequentially.

真空チャンバ11にはガス導入手段2が設けられている。ガス導入手段2は、マスフローコントローラ21を介設したガス管22を介してガス源23に連通しており、アルゴンなどのスパッタガスや反応性スパッタリングの際に用いる酸素などの反応ガスがスパッタ室11内に一定の流量で導入できるようになっている。真空チャンバ11の下側にはカソード組立体3が配置されている。   A gas introducing means 2 is provided in the vacuum chamber 11. The gas introduction means 2 communicates with a gas source 23 via a gas pipe 22 provided with a mass flow controller 21, and a sputtering gas such as argon or a reactive gas such as oxygen used in reactive sputtering is supplied to the sputtering chamber 11. It can be introduced at a constant flow rate. A cathode assembly 3 is disposed below the vacuum chamber 11.

カソード組立体3は、略直方体で同一形状に形成した6枚のターゲット31a〜31fを有している。各ターゲット31a〜31fは、Al合金、MoやITOなど処理基板S上に成膜しようする薄膜の組成に応じて公知の方法でそれぞれ作製され、バッキングプレート32a〜32fにボンディング材Boを介して接合してターゲット組立体とし、この状態でカソード組立体3にそれぞれ取付けられている。   The cathode assembly 3 has six targets 31a to 31f formed in a substantially rectangular parallelepiped shape. Each of the targets 31a to 31f is prepared by a known method according to the composition of a thin film to be formed on the processing substrate S such as Al alloy, Mo, or ITO, and bonded to the backing plates 32a to 32f via the bonding material Bo. The target assembly is attached to the cathode assembly 3 in this state.

バッキングプレート32a〜32fは、例えば銅製であり、内部に水路を設けた直方体に形成され、その一側には循環水の入力部と出力部(図示せず)とが設けられている。ボンディング材Boとしては、インジウムやスズなど、熱伝導率が高い公知の材料が用いられている。そして、スパッタリング中、バッキングプレート32a〜32f内に冷却水を循環させてバッキングプレート32a〜32fを冷却することで、ターゲット31a〜31fを間接的に除熱して、スパッタリング時のイオン衝撃によるターゲット31a〜31fの融解や割れを防止している。   The backing plates 32a to 32f are made of, for example, copper and are formed in a rectangular parallelepiped shape having a water channel therein, and an input portion and an output portion (not shown) of circulating water are provided on one side thereof. As the bonding material Bo, a known material having a high thermal conductivity such as indium or tin is used. During sputtering, the cooling water is circulated in the backing plates 32a to 32f to cool the backing plates 32a to 32f, thereby indirectly removing the targets 31a to 31f, and the targets 31a to 31d due to ion bombardment during sputtering. It prevents melting and cracking of 31f.

ターゲット31a〜31fは、その未使時のスパッタ面311が、処理基板Sに平行な同一平面上に位置するように並設され、各ターゲット31a〜31fの向かい合う側面312相互の間には、アノードやシールドなどの構成部品を何ら設けていない。各ターゲット31a〜31fの外形寸法は、各ターゲット31a〜31fを並設した際に処理基板Sの外形寸法より大きくなるように設定している。   The targets 31a to 31f are juxtaposed such that the unused sputtering surface 311 is positioned on the same plane parallel to the processing substrate S, and the anodes 31a to 31f are disposed between the opposing side surfaces 312 between the anodes 31a to 31f. There are no components such as or shields. The external dimensions of the targets 31a to 31f are set to be larger than the external dimensions of the processing substrate S when the targets 31a to 31f are arranged side by side.

ターゲット31a〜31fの後方には、6個の磁石組立体33a〜33fがそれぞれ設けられている。各磁石組立体33a〜33fは同一構造に形成され、ターゲット31a〜31fに平行に設けた磁性材料製で平板状の支持部331を有し、支持部331上には、ターゲット31a〜31fの長手方向に沿った棒状の中央磁石332と、支持部331の外周に沿って設けた周辺磁石333とが設けられている。この場合、中央磁石332の同磁化に換算したときの体積を、各周辺磁石333の同磁化に換算したときの体積の和(周辺磁石:中心磁石:周辺磁石=1:2:1)に等しくなるように設計している。   Six magnet assemblies 33a to 33f are respectively provided behind the targets 31a to 31f. Each magnet assembly 33a to 33f is formed in the same structure, and has a flat plate-like support portion 331 made of a magnetic material provided in parallel to the targets 31a to 31f. On the support portion 331, the lengths of the targets 31a to 31f A bar-shaped central magnet 332 along the direction and a peripheral magnet 333 provided along the outer periphery of the support portion 331 are provided. In this case, the volume when converted to the same magnetization of the central magnet 332 is equal to the sum of the volumes when converted to the same magnetization of the peripheral magnets 333 (peripheral magnet: center magnet: peripheral magnet = 1: 2: 1). It is designed to be.

これにより、各ターゲット31a〜31fの前方に、釣り合った閉ループのトンネル状の磁束がそれぞれ形成され、ターゲット31a〜31fの前方で電離した電子及びスパッタリングによって生じた二次電子を捕捉することで、ターゲット31a〜31fの前方での電子密度を高くしてプラズマ密度を高くできる。   As a result, balanced closed-loop tunnel-shaped magnetic fluxes are formed in front of the targets 31a to 31f, respectively, and the ions ionized in front of the targets 31a to 31f and secondary electrons generated by sputtering are captured. The plasma density can be increased by increasing the electron density in front of 31a to 31f.

各ターゲット31a〜31fには、交流電圧を印加する3個の交流電源E1〜E3が接続されている。この場合、相互に隣接する2個のターゲット(例えば31aと31b)に対して1個の交流電源E1を割当て、一方のターゲット31aに対し負の電位を印加した際に、他のターゲット31bに接地電位または正の電位が印加されるようにしている。   Three AC power supplies E1 to E3 for applying an AC voltage are connected to the targets 31a to 31f. In this case, when one AC power source E1 is assigned to two adjacent targets (for example, 31a and 31b) and a negative potential is applied to one target 31a, the other target 31b is grounded. A potential or a positive potential is applied.

そして、処理基板Sを、並設した各ターゲット31a〜31fと対向した位置に搬送し、ガス導入手段2を介して所定のスパッタガスを導入した後、例えば、各交流電源E1〜E3を介して一方のターゲット31a、31c、31eに負の電位を印加し、他方のターゲット31b、31d、31fに接地電位または正の電位を印加する。この場合、他方のターゲットがアノード31b、31d、31fの役割を果たし、1個の交流電源E1〜E3にそれぞれ接続されたターゲット31a〜31f相互間でプラズマがそれぞれ発生し、負の電位が印加されたターゲット31a、31c、31eがスパッタリングされ、交流電源E1〜E3の周波数に応じて、ターゲット31a〜31dの電位を切替えて、他方のターゲット31b、31d、31fがスパッタリングされることで、各ターゲット31a〜31fが交互にスパッタリングされ、処理基板S表面全体に亘って成膜される。   And after processing substrate S is conveyed to the position facing each target 31a-31f arranged in parallel, and predetermined sputtering gas is introduced via gas introduction means 2, for example, via each AC power supply E1-E3 A negative potential is applied to one target 31a, 31c, 31e, and a ground potential or a positive potential is applied to the other target 31b, 31d, 31f. In this case, the other target serves as the anodes 31b, 31d, and 31f, and plasma is generated between the targets 31a to 31f respectively connected to one AC power source E1 to E3, and a negative potential is applied. The targets 31a, 31c, and 31e are sputtered, the potentials of the targets 31a to 31d are switched according to the frequencies of the AC power supplies E1 to E3, and the other targets 31b, 31d, and 31f are sputtered. .About.31 f are alternately sputtered to form a film over the entire surface of the processing substrate S.

これにより、スパッタ粒子が放出されないターゲット31a〜31f相互間にアノードやシールドなどの構成部品を何ら設ける必要がないため、このスパッタ粒子が放出されない領域を可能な限り小さくできる。その結果、処理基板S面内における膜厚分布を略均一にできる。   Thereby, since it is not necessary to provide any components such as an anode and a shield between the targets 31a to 31f from which the sputtered particles are not emitted, the region where the sputtered particles are not emitted can be made as small as possible. As a result, the film thickness distribution in the processing substrate S surface can be made substantially uniform.

上記のように各磁石組立体33a〜33fを構成した場合、中央磁石332の上方におけるプラズマ密度は低くなり、その周辺と比較して、スパッタリングの進行に伴うターゲット31a〜31fの侵食量が少なくなる。このため、支持部331のターゲット31a〜31fの並設方向に沿った幅を、各ターゲット31a〜31fの並設方向の幅より小さく設定した。そして、カソード組立体3にエアーシリンダ4を設け、その駆動軸41に、各磁石組立体33a〜33fを取付け、各ターゲット31a〜31fの並設方向に沿った水平な2箇所の位置(L点、R点)で磁石組立体33a〜33fを一体に平行に往復動させてトンネル状の磁束Mの位置を変えるようにした。この場合、周辺磁石333がターゲット31a〜31fの並設方向の端部より外側まで移動する。   When each of the magnet assemblies 33a to 33f is configured as described above, the plasma density above the central magnet 332 is low, and the amount of erosion of the targets 31a to 31f accompanying the progress of sputtering is reduced as compared with the surrounding area. . For this reason, the width | variety along the juxtaposition direction of the targets 31a-31f of the support part 331 was set smaller than the width | variety of the juxtaposition direction of each target 31a-31f. The cathode assembly 3 is provided with the air cylinder 4, the magnet shafts 33a to 33f are attached to the drive shaft 41, and two horizontal positions (L point) along the parallel direction of the targets 31a to 31f. , R point), the magnet assemblies 33a to 33f are integrally reciprocated in parallel to change the position of the tunnel-like magnetic flux M. In this case, the peripheral magnet 333 moves to the outside from the end in the direction in which the targets 31a to 31f are arranged in parallel.

異常放電の発生を抑制するには、L点またはR点で磁石組立体33a〜33fを保持するようにし、例えば処理基板Sへの成膜が終了し、ターゲット31a〜31fへの交流電圧の印加を停止し、放電を一旦停止した後、次の処理基板Sをターゲット31a〜31fに対向した位置に搬送する際に、エアーシリンダ4を駆動して磁石組立体33a〜33fを、即ち、トンネル状の磁束を、L点とR点との間で移動させるのが好ましい。これにより、ターゲット31a〜31fの外周縁部を含むその全面に亘って略均等に侵食でき、利用効率が高まる。   In order to suppress the occurrence of abnormal discharge, the magnet assemblies 33a to 33f are held at the L point or the R point. For example, film formation on the processing substrate S is completed, and application of an alternating voltage to the targets 31a to 31f is performed. After stopping the discharge and temporarily stopping the discharge, when the next processing substrate S is transported to the position facing the targets 31a to 31f, the air cylinder 4 is driven to bring the magnet assemblies 33a to 33f into a tunnel shape. It is preferable to move the magnetic flux between the point L and the point R. Thereby, it can erode substantially uniformly over the whole surface including the outer periphery part of the targets 31a-31f, and utilization efficiency increases.

ところで、上記のように磁石組立体33a〜33fを往復動させると、プラズマがターゲット31a〜31fの側面312相互の間の空間から、ターゲット31a〜31fとバッキングプレート32a〜32fとの接合面まで回り込む虞がある。このため、ターゲット31a〜31fとバッキングプレート32a〜32fとの接合面がプラズマに曝されて、ボンディング材が融解し、しみださないようにする必要がある。   By the way, when the magnet assemblies 33a to 33f are reciprocated as described above, the plasma wraps around from the space between the side surfaces 312 of the targets 31a to 31f to the joint surface between the targets 31a to 31f and the backing plates 32a to 32f. There is a fear. For this reason, it is necessary to prevent the bonding surfaces of the targets 31a to 31f and the backing plates 32a to 32f from being exposed to plasma and melting the bonding material.

図3に示すように、本実施の形態では、バッキングプレート32a〜32fのターゲット31a〜31fとの接合面の面積がターゲットの横断面積より小さくなるように、相互に隣接するターゲット31a〜31f相互の間の距離D1(2mm〜10mmの範囲に設定される)と比較して、バッキングプレート相互間の距離D2、D3を大きく設定した。この場合、並設したターゲット31a〜31fのうち中央の4個のターゲット31b、31c、31d、31eに接合される断面長方形のバッキングプレート32b、32c、32d、32eの並設方向に沿った幅Bwcは、ターゲット31b、31c、31d、31eの並設方向に沿った幅Twより小さく定寸され、ターゲット31b、31c、31d、31e裏面の並設方向に沿った両端から等間隔で、バッキングプレート32b、32c、32d、32eの接合面の両端が位置するようにして、バッキングプレート32b、32c、32d、32e相互間の距離D2を略一定にしている。   As shown in FIG. 3, in the present embodiment, the targets 31a to 31f adjacent to each other are arranged such that the area of the bonding surface of the backing plates 32a to 32f with the targets 31a to 31f is smaller than the cross-sectional area of the targets. The distances D2 and D3 between the backing plates were set larger than the distance D1 between them (set in the range of 2 mm to 10 mm). In this case, the width Bwc along the juxtaposed direction of the backing plates 32b, 32c, 32d, 32e having a rectangular cross section joined to the four targets 31b, 31c, 31d, 31e in the center among the juxtaposed targets 31a-31f. Is smaller than the width Tw along the parallel arrangement direction of the targets 31b, 31c, 31d, 31e, and the backing plate 32b is equidistant from both ends along the parallel arrangement direction of the targets 31b, 31c, 31d, 31e. , 32c, 32d, and 32e are positioned at both ends so that the distance D2 between the backing plates 32b, 32c, 32d, and 32e is substantially constant.

両側に位置するターゲット31a、31fに接合されるバッキングプレート32a、32fの並設方向に沿った幅Bweは、隣り合うバッキングプレート32b、32eとの間の距離D3が距離D2に一致すると共に、バッキングプレート32a、32fの外側の端面は、ターゲット31a、31fの外側の端面と面一となるように定寸している。他方で、各バッキングプレート32a〜32fの並設方向と直角な方向(ターゲット31a〜31fの長手方向)は、ターゲット31a〜31fの端面より外側に延出するように形成され、この延出させた箇所でボルトなどの締結手段Tによってカソード組立体3に固定されるようにしている(図2参照)。   The width Bwe along the juxtaposition direction of the backing plates 32a and 32f joined to the targets 31a and 31f located on both sides is equal to the distance D2 between the adjacent backing plates 32b and 32e, and the backing D The outer end surfaces of the plates 32a and 32f are sized so as to be flush with the outer end surfaces of the targets 31a and 31f. On the other hand, the direction (longitudinal direction of the targets 31a to 31f) perpendicular to the parallel arrangement direction of the backing plates 32a to 32f is formed so as to extend outward from the end faces of the targets 31a to 31f. It is made to fix to the cathode assembly 3 by fastening means T, such as a volt | bolt, in the location (refer FIG. 2).

これにより、磁石組立体33a〜33fを上記のようにL点及びR点の間で往復動させても、ターゲット31a〜31fとバッキングプレート32a〜32fとの接合面がターゲット31a〜31fの並設方向に沿った端部より内側に位置し、外側に延出したターゲット31a〜31fの側壁312によって接合面へのプラズマの回り込みが防止でき、ひいては、スパッタリング中に異常放電の誘発を防止して、良好な成膜が可能になる。   Thereby, even if the magnet assemblies 33a to 33f are reciprocated between the L point and the R point as described above, the joint surfaces of the targets 31a to 31f and the backing plates 32a to 32f are arranged in parallel with the targets 31a to 31f. The side walls 312 of the targets 31a to 31f, which are located on the inner side of the end along the direction and extend outward, can prevent the plasma from wrapping around the bonding surface, and thus prevent the induction of abnormal discharge during sputtering, Good film formation becomes possible.

距離D2、D3は、10mm以上(ターゲット31a〜31fの並設方向に沿った端部から5mm以上の間隔を置いてバッキングプレート32a〜32fの並設方向に沿った端部が位置することになる)に設定する。5mmより小さいと、接合面がプラズマに曝される虞がある。また、上限については、ターゲット31a〜31fの融解や割れを防止できるように、スパッタリング中、ターゲットを冷却できる範囲であればよい。   The distances D2 and D3 are 10 mm or more (the ends along the juxtaposed direction of the backing plates 32a to 32f are positioned at an interval of 5 mm or more from the end along the juxtaposed direction of the targets 31a to 31f). ). If it is smaller than 5 mm, the joint surface may be exposed to plasma. Moreover, about an upper limit, what is necessary is just the range which can cool a target during sputtering so that melting and a crack of targets 31a-31f can be prevented.

また、上記のように各ターゲット31a〜31fを相互に近接させて設けた場合、磁石組立体33a〜33f相互の間隔が小さくなる。この場合、各磁石組立体33a〜33fの各磁石332、333の上面から所定の間隔を置いた位置における磁石組立体33a〜33fの並設方向に沿った垂直方向の磁場強度及び水平方向の磁場強度を測定すると、同方向に同一極性の周辺磁石333が近接して磁場干渉が生じ、その箇所での磁束密度が、両端部に位置する磁石組立体33a、33fの周辺磁石333の上方での磁束密度より高くなり、磁場バランスが崩れる。   Further, when the targets 31a to 31f are provided close to each other as described above, the interval between the magnet assemblies 33a to 33f becomes small. In this case, the magnetic field strength in the vertical direction and the magnetic field in the horizontal direction along the juxtaposed direction of the magnet assemblies 33a to 33f at positions spaced apart from the upper surfaces of the magnets 332 and 333 of the magnet assemblies 33a to 33f. When the strength is measured, the peripheral magnets 333 having the same polarity in the same direction come close to each other and magnetic field interference occurs, and the magnetic flux density at the location is above the peripheral magnets 333 of the magnet assemblies 33a and 33f located at both ends. It becomes higher than the magnetic flux density, and the magnetic field balance is lost.

このため、並設した磁石組立体33a〜33fの両側に、棒状の補助磁石5を、隣接する磁石組立体33aの周辺磁石333と磁石組立体33fの周辺磁石333との極性にそれぞれ一致させて設け、補助磁石5を支持する支持部51を、エアーシリンダ4の駆動軸41に取付け、磁石組立体33a〜33fと一体に移動するようにした。これにより、磁石組立体33a〜33fの両端での磁束密度も高くできて磁場バランスが改善され、ひいては処理基板S面内における膜厚分布や反応性スパッタリングを行う場合の膜質分布を略均一にできる。   Therefore, on both sides of the magnet assemblies 33a to 33f arranged side by side, the rod-shaped auxiliary magnets 5 are respectively matched with the polarities of the peripheral magnet 333 of the adjacent magnet assembly 33a and the peripheral magnet 333 of the magnet assembly 33f. The supporting portion 51 provided and supporting the auxiliary magnet 5 is attached to the drive shaft 41 of the air cylinder 4 so as to move integrally with the magnet assemblies 33a to 33f. Thereby, the magnetic flux density at both ends of the magnet assemblies 33a to 33f can be increased, the magnetic field balance is improved, and as a result, the film thickness distribution in the processing substrate S plane and the film quality distribution when reactive sputtering is performed can be made substantially uniform. .

尚、磁石組立体を並設した場合に磁場バランスが図れるものであれば、補助磁石を設けるものに限定されるものではない。例えば、並設した磁石組立体の両外側に位置する周辺磁石のみの幅寸法を大きくしたり、磁石から発生する磁束密度が大きくなる材料に変更して磁束密度補正手段としてもよい。   In addition, as long as a magnetic field balance can be aimed at when a magnet assembly is arranged in parallel, it is not limited to what provides an auxiliary magnet. For example, the width dimension of only the peripheral magnets located on both outer sides of the magnet assemblies arranged side by side may be increased, or the material may be changed to a material that increases the magnetic flux density generated from the magnets.

本実施例では、図1に示すスパッタ装置1を用い、処理基板Sとしてガラス基板(1000mm×1200mm)を用い、このガラス基板を基板搬送手段によってターゲット31a〜31fに対向した位置に搬送した。ターゲット31a〜31fとしてAlを用い、公知の方法で、各ターゲット31a〜31fが200mm×1700mmの外形寸法で10mmの厚さを有する直方体に作製し、バッキングプレート32a〜32fにそれぞれ接合してターゲット組立体とした。   In this example, the sputtering apparatus 1 shown in FIG. 1 was used, a glass substrate (1000 mm × 1200 mm) was used as the processing substrate S, and this glass substrate was transported to a position facing the targets 31a to 31f by the substrate transporting means. Al is used as the targets 31a to 31f, and each target 31a to 31f is formed into a rectangular parallelepiped having an outer dimension of 200 mm × 1700 mm and a thickness of 10 mm by a known method, and bonded to the backing plates 32a to 32f, respectively. Three-dimensional.

この場合、ボンディング材として、Inを用い、カソード組立体3に各ターゲット組立体31、32を取付けたとき、ターゲット31a〜31f相互の間の距離D1が2mm、バッキングプレート相互の間の距離D2、D3が10mmになるように設定した。また、ターゲット31a〜31fとガラス基板との間の距離を160mmに設定した。   In this case, when In is used as the bonding material and each target assembly 31, 32 is attached to the cathode assembly 3, the distance D1 between the targets 31a to 31f is 2 mm, the distance D2 between the backing plates, D3 was set to 10 mm. Further, the distance between the targets 31a to 31f and the glass substrate was set to 160 mm.

スパッタリング条件として、真空排気されている真空チャンバ11内の圧力が0.3Paに保持されるように、ガス導入手段2のマスフローコントローラ21を制御してスパッタガスであるアルゴンを真空チャンバ11内に導入した。また、交流電源E1によるターゲット31a〜31fへの投入電力を40kWとし、周波数を50kHzに設定した。そして、50kHzの周波数で並設した各ターゲット31a〜31fに交互に負電位及び正電位または接地電位のいずれか一方を印加されるように電力投入して、一枚のガラス基板に対してスパッタリングにより成膜した。また、スパッタリング中、磁石組立体33a〜33fは、L点の位置で固定した。   As sputtering conditions, argon, which is a sputtering gas, is introduced into the vacuum chamber 11 by controlling the mass flow controller 21 of the gas introducing means 2 so that the pressure in the vacuum chamber 11 being evacuated is maintained at 0.3 Pa. did. Moreover, the input power to the targets 31a to 31f by the AC power supply E1 was set to 40 kW, and the frequency was set to 50 kHz. Then, power is applied so that any one of a negative potential and a positive potential or a ground potential is alternately applied to each of the targets 31a to 31f arranged in parallel at a frequency of 50 kHz, and sputtering is performed on one glass substrate. A film was formed. During sputtering, the magnet assemblies 33a to 33f were fixed at the position of the L point.

図4に示すグラフには、上記条件でスパッタリングしたときの、積算電力の増加に伴う異常放電(アーク数)の検出回数の推移が線E1で示されている。この場合、所定時間(2分間)内に、スパッタリング時のスパッタ電流、スパッタ電圧のうちいずれか一方が一定の範囲を超えて変動したとき異常放電として検出している。また、積算電力が100kWHに到達したとき一旦スパッタリングを停止し、真空チャンバを一旦大気開放している。
(比較例1)
In the graph shown in FIG. 4, a transition of the number of times of detecting abnormal discharge (number of arcs) with an increase in integrated power when sputtering is performed under the above conditions is indicated by a line E1. In this case, an abnormal discharge is detected when either one of the sputtering current and sputtering voltage during sputtering fluctuates beyond a certain range within a predetermined time (2 minutes). Further, when the integrated power reaches 100 kWh, the sputtering is temporarily stopped and the vacuum chamber is once opened to the atmosphere.
(Comparative Example 1)

比較例1として、スパッタリング条件を上記実施例1と同じとしたが、ターゲット組立体を作製した後、ターゲット組立体の並設方向に沿ったターゲット及びバッキングプレートの側面を溶射加工によって銅で覆ったものを用いた。   As Comparative Example 1, the sputtering conditions were the same as those in Example 1, but after the target assembly was fabricated, the side surfaces of the target and the backing plate along the parallel direction of the target assembly were covered with copper by thermal spraying. Things were used.

図4に示すグラフには、上記条件でスパッタリングしたときの、積算電力の増加に伴う異常放電(アーク数)の検出回数の推移が線C1で示されている。この場合、異常放電の検出は実施例1と同様とし、また、積算電力が100kWHに到達したとき一旦スパッタリングを停止し、真空チャンバを一旦大気開放している。
(比較例2)
In the graph shown in FIG. 4, a transition of the number of times of detecting abnormal discharge (number of arcs) with an increase in accumulated power when sputtering is performed under the above conditions is indicated by a line C1. In this case, the abnormal discharge is detected in the same manner as in Example 1, and when the integrated power reaches 100 kWh, the sputtering is temporarily stopped and the vacuum chamber is once opened to the atmosphere.
(Comparative Example 2)

比較例2として、スパッタリング条件を上記実施例1と同じとしたが、バッキングプレートの並設方向に沿った幅をターゲットの並設方向に沿った幅と同一としたものを用いた。   As Comparative Example 2, the sputtering conditions were the same as in Example 1, but the width along the parallel direction of the backing plate was the same as the width along the parallel direction of the target.

図4に示すグラフには、上記条件でスパッタリングしたときの、積算電力の増加に伴う異常放電(アーク数)の検出回数の推移が線C2で示されている。この場合もまた、異常放電の検出は実施例1と同様とし、また、積算電力が100kWHに到達したとき一旦スパッタリングを停止し、真空チャンバを一旦大気開放している。   In the graph shown in FIG. 4, a transition of the number of times of abnormal discharge (number of arcs) detected with an increase in integrated power when sputtering is performed under the above conditions is indicated by a line C2. Also in this case, the detection of abnormal discharge is the same as in Example 1, and when the integrated power reaches 100 kWh, the sputtering is temporarily stopped and the vacuum chamber is once opened to the atmosphere.

図4を参照して説明すれば、スパッタリング開始当初、ターゲット表面の酸化などの理由から、実施例1、比較例1及び比較例2共、異常放電の検出回数は多い。このことは、真空チャンバを一旦大気開放した後、再度スパッタリングを開始した場合も同様である。ここで、比較例1では、異常放電の検出回数が積算電力の増加に伴って少なくなって安定し、真空チャンバを一旦大気開放した後、銅で覆ったターゲット及びバッキングプレートの側面を目視で確認してもアーク痕は見受けられなかった。   If it demonstrates with reference to FIG. 4, the number of times of the detection of abnormal discharge is large in Example 1, the comparative example 1, and the comparative example 2 for reasons, such as oxidation of a target surface at the beginning of sputtering. This is the same when sputtering is started again after the vacuum chamber is once opened to the atmosphere. Here, in Comparative Example 1, the number of detected abnormal discharges decreases and stabilizes as the integrated power increases, and after the vacuum chamber is once opened to the atmosphere, the target covered with copper and the side surface of the backing plate are visually confirmed. However, no arc marks were found.

ところが、真空チャンバを一旦大気開放した後、ガラス基板をかえて再度スパッタリングを開始すると、積算電力が増加しても異常放電の検出回数は、積算電力が100kWHに到達するまでのように抑制されず、積算電力が約220kWHに到達した後、スパッタリングを停止し、真空チャンバを大気開放して、銅で覆ったターゲット及びバッキングプレートの側面を目視で確認したところ、複数のアーク痕が見受けられた。   However, once the vacuum chamber is opened to the atmosphere, and the sputtering is started again after changing the glass substrate, the number of abnormal discharges detected is not suppressed until the integrated power reaches 100 kWh even if the integrated power increases. After the accumulated power reached about 220 kWh, the sputtering was stopped, the vacuum chamber was opened to the atmosphere, and the target covered with copper and the side surface of the backing plate were visually confirmed, and a plurality of arc marks were observed.

また、比較例2では、異常放電の検出回数は、積算電力の増加しても安定せず、積算電力が100kWHに到達した後、スパッタリングを停止し、真空チャンバを大気開放し、ターゲット及びバッキングプレートの側面を目視で確認したところ、複数のアーク痕が見受けられ、ボンディング材のしみだしも見受けられた。   In Comparative Example 2, the number of detected abnormal discharges is not stable even when the integrated power increases, and after the integrated power reaches 100 kWh, sputtering is stopped, the vacuum chamber is opened to the atmosphere, and the target and backing plate As a result of visual confirmation of the side surface, a plurality of arc marks were observed, and a oozing of the bonding material was also observed.

それに対して、実施例1では、スパッタリング開始当初及び一旦大気開放後、異常放電の検出回数が積算電力の増加に伴って少なくなって安定し、真空チャンバを大気開放する毎に、ターゲット及びバッキングプレートの側面を目視で確認してもアーク痕は見受けられず、ボンディング材のしみだしも見受けられなかった。   On the other hand, in Example 1, after the start of sputtering and once opened to the atmosphere, the number of detected abnormal discharges decreases and stabilizes as the integrated power increases, and each time the vacuum chamber is opened to the atmosphere, the target and backing plate Even when the side surface was visually confirmed, no arc marks were found and no oozing of the bonding material was found.

本発明のスパッタリング装置の構成を概略的に説明する断面図。Sectional drawing which illustrates roughly the structure of the sputtering device of this invention. ターゲット組立体の構成を説明する平面図。The top view explaining the structure of a target assembly. 図1に示すターゲット組立体の一部を拡大して示す断面図。Sectional drawing which expands and shows a part of target assembly shown in FIG. 投入電力と、アーク放電の回数との関係を示すグラフ。The graph which shows the relationship between input electric power and the frequency | count of arc discharge.

符号の説明Explanation of symbols

1 マグネトロンスパッタリング装置
31a〜31f ターゲット
32a〜32f バッキングプレート
33a〜33f 磁石組立体
E1〜E3 交流電源
S 処理基板
DESCRIPTION OF SYMBOLS 1 Magnetron sputtering apparatus 31a-31f Target 32a-32f Backing plate 33a-33f Magnet assembly E1-E3 AC power supply S Processing board

Claims (3)

平面視矩形のスパッタリング用のターゲットとこのターゲットのスパッタ面の背面側にボンディング材を介して接合された平面視矩形のバッキングプレートとを備えるターゲット組立体であって、真空チャンバ内に前記ターゲット組立体の複数が所定の間隔を置いて並設されるものと、
並設される各ターゲットのうち対をなす少なくとも2枚のものに交流電圧を夫々印加する交流電源と、ターゲットのスパッタ面側を前、その背面側を後として、バッキングプレートの後方に配置されて各ターゲットのスパッタ面前方に磁束を夫々形成する、複数個の磁石から構成される磁石組立体と、磁束がターゲットの並設方向で当該ターゲットに対して平行移動自在であるように磁石組立体を駆動する駆動手段とを備えるスパッタリング装置において、
相互に隣接するターゲット相互の間の距離と比較して、これらのターゲットに接合されたバッキングプレート相互間の距離を大きく設定することで、前記接合面の面積をターゲットの最大横断面積より小さくしたことを特徴とするスパッタリング装置。
A filter Getto assembly and a rectangular shape in plan view of the target and backing plate on the back side bonding material a rectangular shape in plan view which is joined through the sputtering surface of the sputtering target, the target within the vacuum chamber A plurality of assemblies arranged in parallel at a predetermined interval;
An AC power supply that applies an AC voltage to at least two pairs of targets arranged in parallel, and a sputtering surface side of the target in front, and a back surface side in the rear, are arranged behind the backing plate. A magnet assembly composed of a plurality of magnets, each of which forms a magnetic flux in front of the sputtering surface of each target, and a magnet assembly so that the magnetic flux can be translated relative to the target in the direction in which the targets are arranged side by side. In a sputtering apparatus comprising a driving means for driving,
By setting the distance between the backing plates joined to these targets larger than the distance between the targets adjacent to each other, the area of the joint surface is made smaller than the maximum cross-sectional area of the target . A sputtering apparatus characterized by that .
前記ターゲットの相互に向かい合うターゲットの一辺全体に亘って前記バッキングプレート相互間の距離を大きく設定したことを特徴とする請求項1記載のスパッタリング装置 Sputtering apparatus according to claim 1, characterized in that set to a large distance between the backing plate each other over one side entire mutually facing targets of the target. 前記ターゲットの端面からバッキングプレートの端面までの間隔を5mm以上としたことを特徴とする請求項1または請求項2記載のスパッタリング装置

The sputtering apparatus according to claim 1 or 2, wherein a distance from an end surface of the target to an end surface of the backing plate is 5 mm or more.

JP2005235130A 2005-08-15 2005-08-15 Target assembly and sputtering apparatus provided with the target assembly Active JP4939009B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005235130A JP4939009B2 (en) 2005-08-15 2005-08-15 Target assembly and sputtering apparatus provided with the target assembly
TW095125489A TWI381062B (en) 2005-08-15 2006-07-12 A target assembly, and a sputtering apparatus provided with the target assembly
KR1020060076093A KR101330651B1 (en) 2005-08-15 2006-08-11 Target assembly and sputtering apparutus having the target assembly
CN2006101155202A CN1916232B (en) 2005-08-15 2006-08-15 Target assembly and sputtering device with target assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005235130A JP4939009B2 (en) 2005-08-15 2005-08-15 Target assembly and sputtering apparatus provided with the target assembly

Publications (3)

Publication Number Publication Date
JP2007051308A JP2007051308A (en) 2007-03-01
JP2007051308A5 JP2007051308A5 (en) 2008-08-14
JP4939009B2 true JP4939009B2 (en) 2012-05-23

Family

ID=37737295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005235130A Active JP4939009B2 (en) 2005-08-15 2005-08-15 Target assembly and sputtering apparatus provided with the target assembly

Country Status (4)

Country Link
JP (1) JP4939009B2 (en)
KR (1) KR101330651B1 (en)
CN (1) CN1916232B (en)
TW (1) TWI381062B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038271A1 (en) * 2008-09-30 2010-04-08 キヤノンアネルバ株式会社 Sputtering apparatus and thin film formation method
US8753921B2 (en) 2010-09-15 2014-06-17 Sharp Kabushiki Kaisha Manufacturing method for semiconductor device
JP5653257B2 (en) * 2011-03-07 2015-01-14 株式会社アルバック Sputtering apparatus and sputtering method
EP2748351A1 (en) * 2011-08-25 2014-07-02 Applied Materials, Inc. Sputtering apparatus and method
CN111719123A (en) * 2019-03-21 2020-09-29 广东太微加速器有限公司 Combined target
KR20210010741A (en) * 2019-07-18 2021-01-28 삼성디스플레이 주식회사 Depositing apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952957B2 (en) * 1980-06-16 1984-12-22 日電アネルバ株式会社 Cathode part of magnetron type sputtering equipment
DE4242079A1 (en) * 1992-12-14 1994-06-16 Leybold Ag Target for a cathode arranged in an evacuable process chamber floodable with a process gas
JP2000239841A (en) * 1999-02-24 2000-09-05 Ulvac Japan Ltd Method and device for sputtering
JP3993721B2 (en) * 1999-06-09 2007-10-17 東ソー株式会社 Sputtering target

Also Published As

Publication number Publication date
TWI381062B (en) 2013-01-01
KR20070020345A (en) 2007-02-21
TW200710249A (en) 2007-03-16
CN1916232B (en) 2011-07-20
CN1916232A (en) 2007-02-21
JP2007051308A (en) 2007-03-01
KR101330651B1 (en) 2013-11-19

Similar Documents

Publication Publication Date Title
JP5145325B2 (en) Thin film forming method and thin film forming apparatus
JP4580781B2 (en) Sputtering method and apparatus
US8460522B2 (en) Method of forming thin film and apparatus for forming thin film
JP4922581B2 (en) Sputtering apparatus and sputtering method
JP4939009B2 (en) Target assembly and sputtering apparatus provided with the target assembly
JP4707693B2 (en) Sputtering apparatus and sputtering method
TWI414621B (en) Sputtering target and sputtering method using the target
JP5322234B2 (en) Sputtering method and sputtering apparatus
KR20170064527A (en) Magnet unit for magnetron sputter electrode and sputtering apparutus
TWI470102B (en) Magnetron sputtering electrode and sputtering device with magnetron sputtering electrode
TWI393797B (en) Sputtering electrodes and sputtering devices with sputtering electrodes
JP5322235B2 (en) Sputtering method
JP2013001943A (en) Sputtering apparatus
JP4071861B2 (en) Thin film forming equipment
JP2013007109A (en) Target for sputtering, and method for sputtering using the same
KR102376098B1 (en) film formation method
KR20230104957A (en) Cathode unit for magnetron sputtering device and magnetron sputtering device
KR20070021919A (en) Sputter electrode and sputtering apparutus having the sputter electrode
JP2008127602A (en) Magnetron sputtering electrode, and sputtering system provided with magnetron sputtering electrode
KR20200041932A (en) Formation method
JP2008291337A (en) Magnetron sputtering electrode and sputtering system equipped with magnetron sputtering electrode

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4939009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250