JP5089962B2 - Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode - Google Patents

Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode Download PDF

Info

Publication number
JP5089962B2
JP5089962B2 JP2006311624A JP2006311624A JP5089962B2 JP 5089962 B2 JP5089962 B2 JP 5089962B2 JP 2006311624 A JP2006311624 A JP 2006311624A JP 2006311624 A JP2006311624 A JP 2006311624A JP 5089962 B2 JP5089962 B2 JP 5089962B2
Authority
JP
Japan
Prior art keywords
magnet
target
sputtering
central
central magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006311624A
Other languages
Japanese (ja)
Other versions
JP2008127602A (en
Inventor
泰彦 赤松
辰徳 磯部
新井  真
淳也 清田
孝 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2006311624A priority Critical patent/JP5089962B2/en
Priority to TW96142861A priority patent/TWI470102B/en
Priority to KR1020097009762A priority patent/KR101117105B1/en
Priority to CN2007800426411A priority patent/CN101589170B/en
Priority to PCT/JP2007/071965 priority patent/WO2008059814A1/en
Priority to US12/514,513 priority patent/US8172993B2/en
Publication of JP2008127602A publication Critical patent/JP2008127602A/en
Application granted granted Critical
Publication of JP5089962B2 publication Critical patent/JP5089962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は、マグネトロンスパッタリング方式で処理基板上に所定の薄膜を形成するためのマグネトロンスパッタ電極及びこのマグネトロンスパッタ電極を備えたスパッタリング装置に関する。   The present invention relates to a magnetron sputtering electrode for forming a predetermined thin film on a processing substrate by a magnetron sputtering method, and a sputtering apparatus provided with the magnetron sputtering electrode.

この種のスパッタリング装置では、例えば矩形のターゲットの前方(スパッタ面側)にトンネル状の磁束を形成するために磁石組立体が設けられている。そして、ターゲットに負の直流電圧または交流電圧を印加してターゲットをスパッタリングする際、ターゲット前方で電離した電子及びスパッタリングによって生じた二次電子を捕捉してターゲット前方での電子密度を高め、これらの電子と真空チャンバ内に導入される希ガスのガス分子との衝突確率を高めることでプラズマ密度を高めている。これにより、例えば処理基板の著しい温度上昇を伴うことなく成膜速度を向上できる等の利点があり、処理基板上に金属膜等を形成することによく利用されている。   In this type of sputtering apparatus, for example, a magnet assembly is provided to form a tunnel-like magnetic flux in front of a rectangular target (on the sputtering surface side). Then, when sputtering a target by applying a negative DC voltage or an AC voltage to the target, the electrons ionized in front of the target and secondary electrons generated by sputtering are captured to increase the electron density in front of the target, and these The plasma density is increased by increasing the collision probability between electrons and rare gas gas molecules introduced into the vacuum chamber. Thereby, for example, there is an advantage that the film forming speed can be improved without causing a significant temperature rise of the processing substrate, and it is often used for forming a metal film or the like on the processing substrate.

この種のスパッタリング装置に組み込まれる磁石組立体としては、ターゲットに平行に設けた支持板(ヨーク)と、この支持板の上面略中央に、その長手方向に沿って線状に配置した中央磁石と、この中央磁石の周囲を囲うようにターゲット側の極性をかえて配置した周辺磁石とから構成したものが知られている(特許文献1)。
特開2000−248360号公報(例えば、従来技術の欄参照)。
As a magnet assembly incorporated in this type of sputtering apparatus, a support plate (yoke) provided in parallel with the target, a central magnet arranged linearly in the longitudinal direction at the substantially upper center of the support plate, In addition, there is known one constituted by peripheral magnets arranged by changing the polarity on the target side so as to surround the periphery of the central magnet (Patent Document 1).
Japanese Patent Laid-Open No. 2000-248360 (for example, refer to the column of the prior art).

ところで、上記スパッタリング装置を用いてスパッタリングする際、ターゲットの前方にレーストラック状に発生したプラズマ中の電子は、中央磁石と周辺磁石とのターゲット側の極性に応じて、このレーストラックに沿って時計周りまたは半時計回りに運動している。そして、ターゲットの端部まで来ると、電磁場によって曲げられて向きを変えるが、向きを変える際に惰性的な運動が残ることから、電子がターゲット端側に飛び出す。   By the way, when sputtering using the above sputtering apparatus, electrons in the plasma generated in a racetrack shape in front of the target are watched along the racetrack according to the polarity of the target side of the central magnet and the peripheral magnet. Exercise around or counterclockwise. Then, when it reaches the end of the target, it is bent by the electromagnetic field and changes its direction, but when it changes its direction, inertial motion remains, so electrons jump out to the target end.

この惰性的な運動によってターゲット端側に電子が飛び出すと、プラズマが局所的に拡がってターゲットの侵食領域がターゲット端側に延びることで、放電が不安定になって良好な薄膜形成が阻害される虞がある。また、スパッタリングの進行に伴うターゲットの侵食領域を均一にするために、磁石組立体をターゲットに沿って水平に往復動させる場合、上記電子の飛び出しを考慮すると、磁石組立体の大きさや移動量を小さくする必要があり、これでは、却って非侵食領域が大きくなってターゲットの利用効率が悪くなる。   When electrons jump out to the target end side due to this inertial movement, the plasma spreads locally and the target erosion region extends to the target end side, so that the discharge becomes unstable and favorable thin film formation is inhibited. There is a fear. In addition, when the magnet assembly is reciprocated horizontally along the target in order to make the erosion area of the target as the sputtering progresses, the size and amount of movement of the magnet assembly can be reduced in consideration of the jumping out of the electrons. In this case, the non-erodible area becomes larger and the target utilization efficiency becomes worse.

そこで、上記点に鑑み、本発明の課題は、ターゲットの外周縁部を均等に侵食でき、良好な薄膜形成が可能であり、その上、ターゲットの利用効率を高くできるマグネトロンスパッタ電極及びマグネトロンスパッタ電極を備えたスパッタリング装置を提供することにある。   Therefore, in view of the above points, an object of the present invention is to provide a magnetron sputter electrode and a magnetron sputter electrode that can uniformly erode the outer peripheral edge of the target, can form a good thin film, and can increase the utilization efficiency of the target. It is providing the sputtering device provided with.

上記課題を解決するために、本発明のマグネトロンスパッタ電極は、理基板に対向して配置されるターゲットと、処理基板と背向するターゲットの後方に配置される磁石組立体を備え、前記磁石組立体は、線状に配置された中央磁石と、この中央磁石の周囲を囲うように、ターゲット側の極性をかえて配置された周辺磁石とから構成され、中央磁石が線状に延びる方向を長手方向として、中央磁石と周辺磁石とはそれぞれの長手方向の両側で平行に延びる直線部を有し、 中央磁石と周辺磁石の直線部との間でトンネル状に発生する磁束の磁場の垂直成分が0となる位置を、磁石組立体の長手方向端部において、磁石組立体の中央部よりも一定の範囲で中央磁石側にシフトさせ、電子のターゲット端側への飛び出しを防止するように構成したことを特徴とする。
In order to solve the above problem, a magnetron sputtering electrode of the present invention comprises a target disposed opposite sense substrate, and a magnet assembly disposed behind the target to substrate and facing away, the magnet the assembly includes a central magnet disposed linearly, this so as to surround the periphery of the central magnet, is composed of a peripheral magnet disposed changing the polarity of the data Getto side, the direction in which the central magnet extends linearly as longitudinally, it has a straight portion extending parallel to the central magnet and the peripheral magnets on both sides of the respective longitudinal, vertical magnetic field of the magnetic flux generated in the tunnel-shaped with the straight portion of the central magnet and the peripheral magnet The position where the component becomes 0 is shifted to the central magnet side within a certain range from the central part of the magnet assembly at the longitudinal end part of the magnet assembly so as to prevent the electrons from jumping out to the target end side. construction was And wherein the door.

本発明によれば、磁場の垂直成分が0となる位置を、一定の範囲で中央磁石側に局所的にシフトさせたため、この前記磁場の垂直成分が0となる位置をシフトさせた範囲を、電子の飛び出しが生じる箇所に対応させておけば、電子がターゲットの端部まで来て電磁場で曲げられて向きを変えるときに惰性的な運動が残っても、ターゲット端側に飛び出さず、プラズマが局所的に拡がることが防止される。その結果、スパッタリングの際に安定して放電させることができ、良好な薄膜形成が可能になる。   According to the present invention, since the position where the vertical component of the magnetic field is 0 is locally shifted to the central magnet side within a certain range, the range where the position where the vertical component of the magnetic field is 0 is shifted, If it corresponds to the location where electrons jump out, even if an inertial movement remains when the electrons come to the end of the target and bend in the electromagnetic field and change its direction, the plasma does not jump out to the target end. Is prevented from spreading locally. As a result, it is possible to stably discharge during sputtering and to form a good thin film.

前記磁場の垂直成分が0となる位置をシフトさせた範囲は、中央磁石の一側にかつこの中央磁石の両端で互い違いに位置させておけばよい。これにより、例えば、磁石組立体を往復動させる場合に、その往復動方向で惰性的な運動によってターゲット端側に電子が飛び出す箇所のみ磁場の垂直成分が0となる位置を電子の飛び出し方向と反対側にシフトさせ、ターゲットの外周縁部でのスパッタリングの進行に伴うターゲットの侵食領域を均一にでき、磁石組立体の移動距離を大きくできる。   The range in which the position where the vertical component of the magnetic field becomes 0 may be shifted to one side of the central magnet and alternately at both ends of the central magnet. Thereby, for example, when the magnet assembly is reciprocated, the position where the vertical component of the magnetic field becomes 0 only at the position where the electrons are ejected to the target end side by inertial movement in the reciprocating direction is opposite to the electron ejecting direction. The target erosion area can be made uniform with the progress of sputtering at the outer peripheral edge of the target, and the moving distance of the magnet assembly can be increased.

尚、前記磁場の垂直成分が0となる位置を一定の範囲でシフトさせるには、例えば、中央磁石または周辺磁石の少なくとも一方の磁力を局所的に強弱させればよい。   In order to shift the position where the vertical component of the magnetic field becomes 0 within a certain range, for example, the magnetic force of at least one of the central magnet and the peripheral magnet may be locally increased or decreased.

この場合、前記中央磁石のうち長手方向両側部の側面に所定の長さの磁気シャントを取付ければ、中央磁石のうち磁気シャントを設けた範囲の磁力が局所的に弱まって、磁石組立体自体の形態を変更することなく、上記電子の飛び出し方向と反対側に磁場の垂直成分が0となる位置を一定の範囲でシフトさせることができてよい。   In this case, if a magnetic shunt having a predetermined length is attached to the side surfaces of both sides in the longitudinal direction of the central magnet, the magnetic force in the range where the magnetic shunt is provided in the central magnet is locally weakened, and the magnet assembly itself Without changing the form, the position where the vertical component of the magnetic field becomes 0 may be shifted within a certain range to the side opposite to the electron emission direction.

前記磁石組立体を、ターゲットの裏面に沿って平行に往復動させる駆動手段を備えておけば、ターゲットの外周縁部でのスパッタリングの進行に伴うターゲットの侵食領域を均一にできることから、磁石組立体の移動距離を大きくでき、その結果、ターゲットの高い利用効率が達成できる。   If drive means for reciprocating the magnet assembly in parallel along the back surface of the target is provided, the target erosion area can be made uniform as sputtering proceeds at the outer peripheral edge of the target. As a result, a high utilization efficiency of the target can be achieved.

また、上記課題を解決するために、本発明のスパッタリング装置は上記したいずれかのマグネトロンスパッタ電極を真空排気可能なスパッタ室内に配置し、スパッタ室内に所定のガスを導入するガス導入手段と、ターゲットへの電力投入を可能とするスパッタ電源とを設けたことを特徴とする。

In order to solve the above-described problem, the sputtering apparatus of the present invention includes any one of the above-described magnetron sputtering electrodes disposed in a sputtering chamber that can be evacuated, and gas introduction means for introducing a predetermined gas into the sputtering chamber; A sputtering power supply that enables power supply to the target is provided.

以上説明したように、本発明のマグネトロンスパッタ電極及びこのマグネトロンスパッタ電極を備えたスパッタリング装置では、ターゲットの外周縁部を均等に侵食できてターゲットの利用効率が高く、その上、放電を安定させて良好な薄膜形成が可能になるという効果を奏する。   As described above, in the magnetron sputtering electrode of the present invention and the sputtering apparatus equipped with this magnetron sputtering electrode, the outer peripheral edge of the target can be evenly eroded, the target utilization efficiency is high, and the discharge is stabilized. There is an effect that a good thin film can be formed.

図1を参照して説明すれば、1は、本発明のマグネトロンスパッタ電極Cを有するマグネトロン方式のスパッタリング装置(以下、「スパッタ装置」という)である。スパッタ装置1は、例えばインライン式のものであり、ロータリーポンプ、ターボ分子ポンプなどの真空排気手段(図示せず)を介して所定の真空度に保持できるスパッタ室11を有する。スパッタ室11の上部空間には基板搬送手段2が設けられている。基板搬送手段2は、公知の構造を有し、例えば、処理基板Sが装着されるキャリア21を有し、駆動手段を間欠駆動させて、後述するターゲットと対向した位置に処理基板Sを順次搬送できる。   Referring to FIG. 1, 1 is a magnetron type sputtering apparatus (hereinafter referred to as “sputtering apparatus”) having a magnetron sputtering electrode C of the present invention. The sputtering apparatus 1 is, for example, an in-line type, and includes a sputtering chamber 11 that can be maintained at a predetermined degree of vacuum through vacuum exhausting means (not shown) such as a rotary pump or a turbo molecular pump. A substrate transfer means 2 is provided in the upper space of the sputtering chamber 11. The substrate transport unit 2 has a known structure, for example, has a carrier 21 on which the processing substrate S is mounted, and intermittently drives the driving unit to sequentially transport the processing substrate S to a position facing a target described later. it can.

スパッタ室11にはガス導入手段3が設けられている。ガス導入手段3は、マスフローコントローラ31を介設したガス管32を通じてガス源33に連通し、アルゴンなどのスパッタガスや反応性スパッタリングの際に用いる反応ガスがスパッタ室11内に一定の流量で導入できる。反応ガスとしては、処理基板S上に成膜しようとする薄膜の組成に応じて選択され、酸素、窒素、炭素、水素を含むガス、オゾン、水若しくは過酸化水素またはこれらの混合ガスなどが用いられる。スパッタ室11の下側には、マグネトロンスパッタ電極Cが配置されている。   A gas introducing means 3 is provided in the sputtering chamber 11. The gas introducing means 3 communicates with a gas source 33 through a gas pipe 32 provided with a mass flow controller 31, and introduces a sputtering gas such as argon or a reactive gas used in reactive sputtering into the sputtering chamber 11 at a constant flow rate. it can. The reaction gas is selected according to the composition of the thin film to be formed on the processing substrate S, and oxygen, nitrogen, carbon, hydrogen-containing gas, ozone, water, hydrogen peroxide, or a mixed gas thereof is used. It is done. A magnetron sputtering electrode C is disposed below the sputtering chamber 11.

マグネトロンスパッタ電極Cは、スパッタ室11を臨むように設けた略直方体(上面視で長方形)の一枚のターゲット41を有する。ターゲット41は、Al合金、MoやITOなど処理基板S上に成膜しようとする薄膜の組成に応じて公知の方法でそれぞれ作製され、スパッタ面411の面積が処理基板Sの外形寸法より大きく設定されている。ターゲット41はまた、スパッタリング中、ターゲット41を冷却するバッキングプレート42にインジウムやスズなどのボンディング材を介して接合され、バッキングプレート42にターゲット41を接合した状態で、ターゲット41のスパッタ面411を処理基板Sと対向するように絶縁板43を介してマグネトロンスパッタ電極Cのフレーム44に装着される。ターゲット41を装着したとき、ターゲット41の周囲には、グランド接地されたアノードとしての役割を果たすシールド(図示せず)が取付けられる。   The magnetron sputtering electrode C has a single target 41 having a substantially rectangular parallelepiped shape (rectangular in top view) provided so as to face the sputtering chamber 11. The target 41 is produced by a known method according to the composition of a thin film to be formed on the processing substrate S such as Al alloy, Mo, or ITO, and the area of the sputter surface 411 is set larger than the outer dimension of the processing substrate S. Has been. The target 41 is also bonded to a backing plate 42 that cools the target 41 through a bonding material such as indium or tin during sputtering, and the sputtering surface 411 of the target 41 is treated with the target 41 bonded to the backing plate 42. It is attached to the frame 44 of the magnetron sputtering electrode C through the insulating plate 43 so as to face the substrate S. When the target 41 is mounted, a shield (not shown) serving as an anode grounded to the ground is attached around the target 41.

マグネトロンスパッタ電極Cは、ターゲット41の後方(スパッタ面411と反対側)に位置して磁石組立体5を有する。磁石組立体5は、ターゲット41の長手方向に沿ってその両側に延出するように形成した支持板(ヨーク)51を有する。支持板51は、磁石の吸着力を増幅する磁性材料製の平板から構成される。また、支持板51上には、支持板51の長手方向に延びる中心線上に位置させて配置した中央磁石52(例えば、ターゲット41側の極性がS)と、この中央磁石52の周囲を囲うように、支持板51の上面外周に沿って環状に配置した周辺磁石53(ターゲット41側の極性がN)とがターゲット41側の極性をかえて設けられている。   The magnetron sputtering electrode C has a magnet assembly 5 located behind the target 41 (on the side opposite to the sputtering surface 411). The magnet assembly 5 includes a support plate (yoke) 51 formed so as to extend on both sides of the target 41 along the longitudinal direction. The support plate 51 is composed of a flat plate made of a magnetic material that amplifies the attractive force of the magnet. Further, on the support plate 51, a central magnet 52 (for example, the polarity on the target 41 side is S) arranged on the center line extending in the longitudinal direction of the support plate 51 and the periphery of the central magnet 52 are surrounded. In addition, a peripheral magnet 53 (the polarity on the target 41 side is N) arranged in an annular shape along the outer periphery of the upper surface of the support plate 51 is provided with the polarity on the target 41 side changed.

周辺磁石53は、中央磁石52に沿って平行に延びる直線部53a、53bと、両直線部53a、53bの相互間を橋し渡す長手方向両側の各折り返し部53cとから構成されている。この場合、中央磁石52と両直線部53a、53bとの間の間隔は一定であり、また、中央磁石52の同磁化に換算したときの体積をその周囲を囲う周辺磁石53の同磁化に換算したときの体積の和(周辺磁石:中心磁石:周辺磁石=1:2:1(図1参照))程度になるように設計される。これにより、ターゲット41の前方(スパッタ面411側)に、釣り合った閉ループのトンネル状の磁束がそれぞれ形成され、ターゲット41の前方で電離した電子及びスパッタリングによって生じた二次電子を捕捉することで、ターゲット41前方での電子密度を高くしてプラズマ密度を高くできる。   The peripheral magnet 53 includes straight portions 53a and 53b extending in parallel along the central magnet 52, and folded portions 53c on both sides in the longitudinal direction that bridge between the straight portions 53a and 53b. In this case, the distance between the central magnet 52 and the linear portions 53a and 53b is constant, and the volume when converted to the same magnetization of the central magnet 52 is converted to the same magnetization of the peripheral magnet 53 surrounding the periphery. The volume is designed to be about the sum of the volume (peripheral magnet: center magnet: peripheral magnet = 1: 2: 1 (see FIG. 1)). Thereby, a balanced closed-loop tunnel-shaped magnetic flux is formed in front of the target 41 (on the sputtering surface 411 side), and the ions ionized in front of the target 41 and the secondary electrons generated by sputtering are captured. The plasma density can be increased by increasing the electron density in front of the target 41.

そして、処理基板Sを、ターゲット41と対向した位置に搬送し、ガス導入手段3を介して所定のスパッタガスや反応ガスを導入した後、ターゲット41に接続したスパッタ電源(図示せず)を介して、負の直流電圧または高周波電圧を印加すると、処理基板S及びターゲット41に垂直な電界が形成され、ターゲット41の前方に、レーストラック状のプラズマが発生してターゲット41がスパッタリングされることで処理基板S上に所定の薄膜が形成される。   Then, the processing substrate S is transported to a position facing the target 41, a predetermined sputtering gas or reaction gas is introduced through the gas introducing means 3, and then the sputtering substrate is connected to the target 41 through a sputtering power source (not shown). Then, when a negative DC voltage or a high frequency voltage is applied, an electric field perpendicular to the processing substrate S and the target 41 is formed, and a racetrack-like plasma is generated in front of the target 41 and the target 41 is sputtered. A predetermined thin film is formed on the processing substrate S.

上記のように磁石組立体5を設けた場合、中央磁石52や周辺磁石53の上方におけるプラズマ密度は低くなり、その周辺と比較して、スパッタリングの進行に伴うターゲット41の侵食量が少なくなる。このため、支持板51の横幅をターゲット41の幅より小さく定寸すると共に、エアーシリンダやモータなどの駆動手段6を設け、駆動手段6の駆動軸61に磁石組立体5を取付けた。そして、スパッタリング中、ターゲット41の幅方向(中央磁石52の長手方向と直角な方向)に沿った水平な2箇所の位置で磁石組立体5を平行に往復動させてトンネル状の磁束の位置を変えるようにしている。これにより、ターゲット41の外周縁部を含むその全面に亘って略均等に侵食でき、さらには二次元的な往復動によってターゲット41の利用効率をさらに高めることができる。   When the magnet assembly 5 is provided as described above, the plasma density above the central magnet 52 and the peripheral magnet 53 is low, and the amount of erosion of the target 41 accompanying the progress of sputtering is reduced as compared with the periphery. Therefore, the lateral width of the support plate 51 is made smaller than the width of the target 41, and driving means 6 such as an air cylinder or a motor is provided, and the magnet assembly 5 is attached to the driving shaft 61 of the driving means 6. Then, during sputtering, the magnet assembly 5 is reciprocated in parallel at two horizontal positions along the width direction of the target 41 (direction perpendicular to the longitudinal direction of the central magnet 52), so that the position of the tunnel-like magnetic flux is determined. I try to change it. Thereby, the entire surface including the outer peripheral edge portion of the target 41 can be eroded almost uniformly, and the utilization efficiency of the target 41 can be further enhanced by two-dimensional reciprocation.

ところで、図2に示すように、磁石組立体5を構成し、ターゲット41の前方にレーストラック状のプラズマを発生させたとき、中央磁石52のターゲット41側の極性をS、周辺磁石53のターゲット41側の極性をNとすると、プラズマ中の電子は、ターゲット41の裏側から見た場合、レーストラックT1に沿って時計周りに運動している。そして、ターゲット41の端部まで来ると、電磁場によって曲げられて向きを変えるが、向きを変える際に惰性的な運動が残ることから、電子がターゲット41端側に飛び出し、レーストラック状のプラズマの一部が局所的にターゲット41端側に拡がる(図2(a)に示すように、例えばターゲット41の左下側では下方向(X方向)に飛び出し、他方、図示しないターゲット41の右上側では上方向に飛び出すようになる)。   By the way, as shown in FIG. 2, when the magnet assembly 5 is configured and a racetrack-like plasma is generated in front of the target 41, the polarity of the central magnet 52 on the target 41 side is S, and the target of the peripheral magnet 53 is When the polarity on the 41 side is N, the electrons in the plasma are moving clockwise along the race track T1 when viewed from the back side of the target 41. And when it reaches the end of the target 41, it is bent by the electromagnetic field and changes its direction, but since inertial motion remains when changing the direction, electrons jump out to the end of the target 41 and the racetrack-like plasma is generated. A portion locally expands to the end side of the target 41 (as shown in FIG. 2A, for example, the lower left side of the target 41 protrudes downward (X direction), while the upper right side of the target 41 (not shown) Jump out in the direction).

このような状態で磁石組立体5を往復動させた場合、ターゲット41の侵食領域E1の一部が、局所的にターゲット41端側まで延び(図2(b)で符号Rで示す領域)、放電が不安定になって良好な薄膜形成が阻害される。このような電子の飛び出しを考慮すると、磁石組立体5の大きさや移動量を小さくすることが考えられるが、これでは、却って非侵食領域が大きくなり、ターゲット41の利用効率が悪くなる。   When the magnet assembly 5 is reciprocated in such a state, a part of the erosion region E1 of the target 41 locally extends to the end side of the target 41 (region indicated by reference sign R in FIG. 2B). Discharge becomes unstable and good thin film formation is hindered. Considering such jumping out of electrons, it is conceivable to reduce the size and moving amount of the magnet assembly 5, but in this case, the non-erosion area becomes larger and the utilization efficiency of the target 41 becomes worse.

本実施の形態では、図3(a)に示すように、中央磁石52の両端部のうち、電子の飛び出し方向Xに位置する側面に板状の磁気シャント7を設けることとした(つまり、中央磁石の両端部の互い違いの側面に磁気シャント7が取付けられる)。この場合、例えば、ターゲット41が200×2500mmの寸法を有するとき、ターゲット41端から100〜250mmの範囲の位置で、最大20mm程度の電子の飛び出しが発生することから、このような場合には、中央磁石52の両端から所定の長さ(磁石組立体5の長手方向両端から350mmまでの長さ)で磁気シャント7を設ければよい。   In the present embodiment, as shown in FIG. 3A, the plate-like magnetic shunt 7 is provided on the side surface of the center magnet 52 that is located in the electron jump-out direction X (that is, at the center). Magnetic shunts 7 are attached to the staggered sides at both ends of the magnet). In this case, for example, when the target 41 has a size of 200 × 2500 mm, electrons jump up to about 20 mm at a position in the range of 100 to 250 mm from the end of the target 41, and in such a case, The magnetic shunt 7 may be provided with a predetermined length from both ends of the central magnet 52 (length from both ends in the longitudinal direction of the magnet assembly 5 to 350 mm).

磁気シャント7としては、最大透磁率が高くかつ剛性を有する材料であればよく、例えば、SUS430などの磁性を有するステンレス、磁場の減衰効果を高められる純鉄、ニッケルなどの金属、パーマロイ、スーパーマロイなどの透磁率の高いアロイを用いることができ、その厚さは、1.0〜5.0mmの範囲に設定される。   The magnetic shunt 7 may be any material having a high maximum magnetic permeability and rigidity. For example, stainless steel having magnetism such as SUS430, metals such as pure iron and nickel that can enhance the magnetic field attenuation effect, permalloy, supermalloy An alloy having a high magnetic permeability such as can be used, and the thickness thereof is set in the range of 1.0 to 5.0 mm.

これにより、中央磁石52のうち磁気シャント7を設けた範囲の磁力が局所的に弱まることで、磁石組立体5自体の形態を変更することなく、中央磁石52と周辺磁石53との間でトンネル状に発生した各磁束のうち、磁気シャント7を設けた中央磁石52と一方の直線部53aとの間の領域に位置するものの磁場の垂直成分が0となる位置(最もプラズマが密度が高くなり、ターゲットのスパッタに寄与する位置)が、磁気シャント7の長さの範囲で中央磁石52側に局所的にシフトする。即ち、磁場の垂直成分が0となる位置をそれぞれ通るトラック状の線L1を見ると、この線L1のうち、中央磁石52の一側にかつこの中央磁石52の両端で互い違いに位置する部分が、中央磁石52側に局所的にシフトし、図3(b)に示すような線L1となる。このため、ターゲット41前方にプラズマを発生させた場合、電子がターゲット41の端部まで来て電磁場で曲げられて向きを変えるときに惰性的な運動が残っても、ターゲット41端側に飛び出すことが防止され、プラズマが局所的に拡がることはない。   Thereby, the magnetic force in the range where the magnetic shunt 7 is provided in the central magnet 52 is locally weakened, so that the tunnel between the central magnet 52 and the peripheral magnet 53 is not changed without changing the form of the magnet assembly 5 itself. Among the magnetic fluxes generated in the shape of the magnetic field, the position where the vertical component of the magnetic field is zero although it is located in the region between the central magnet 52 provided with the magnetic shunt 7 and one linear portion 53a (the plasma has the highest density). , A position contributing to sputtering of the target) is locally shifted toward the central magnet 52 within the range of the length of the magnetic shunt 7. That is, when the track-like lines L1 that respectively pass through the positions where the vertical component of the magnetic field is 0, portions that are alternately positioned on one side of the central magnet 52 and at both ends of the central magnet 52 are shown. , And shifts locally to the central magnet 52 side, resulting in a line L1 as shown in FIG. For this reason, when plasma is generated in front of the target 41, even if an inertial movement remains when electrons come to the end of the target 41 and are bent by an electromagnetic field and change its direction, they jump out to the end of the target 41. Is prevented, and the plasma does not spread locally.

その結果、ターゲット41の外周縁部でのスパッタリングの進行に伴うターゲットの侵食領域E2をターゲット41の長手方向に沿って略線状にできると共に(図3(c)参照)、スパッタリングの際に安定して放電させることができ、良好な薄膜形成が可能になる。また、スパッタリング中、ターゲット41の幅方向に沿って磁石組立体5を往復動させても、磁石組立体5のターゲットの移動距離を大きくできるため、ターゲット41の外周縁部を含むその全面に亘って略均等に侵食でき、ターゲット41の利用効率をさらに高めることができる。   As a result, the erosion region E2 of the target accompanying the progress of sputtering at the outer peripheral edge of the target 41 can be made substantially linear along the longitudinal direction of the target 41 (see FIG. 3C) and stable during sputtering. Can be discharged and a good thin film can be formed. Further, even if the magnet assembly 5 is reciprocated along the width direction of the target 41 during sputtering, the moving distance of the target of the magnet assembly 5 can be increased, so that the entire surface including the outer peripheral edge of the target 41 is covered. Therefore, the use efficiency of the target 41 can be further increased.

尚、本実施の形態では、磁石組立体5自体の形態を変更せず、中央磁石52または周辺磁石53の少なくとも一方の磁力を局所的に強弱させるために、中央磁石52の側面に磁気シャント7を設けたものについて説明したが、これに限定されるものではなく、周辺磁石53の一方の直線部53aのうち、磁気シャント7を設ける位置に対向する部分のみを、磁力の強い磁石に変更したり、または、その部分の上面に追加の磁石を取付けるようにして、局所的に周辺磁石53の磁力を強くしてもよい。   In the present embodiment, the shape of the magnet assembly 5 itself is not changed, and the magnetic shunt 7 is provided on the side surface of the central magnet 52 in order to locally increase or decrease the magnetic force of at least one of the central magnet 52 or the peripheral magnet 53. However, the present invention is not limited to this, and only the portion of the one linear portion 53a of the peripheral magnet 53 that faces the position where the magnetic shunt 7 is provided is changed to a magnet having a strong magnetic force. Alternatively, an additional magnet may be attached to the upper surface of the portion, and the magnetic force of the peripheral magnet 53 may be locally increased.

また、本実施の形態では、一枚のターゲット41を配置したマグネトロンスパッタ電極Cについて説明したが、これに限定されるものではなく、処理基板Sに対し複数枚のターゲット41を並設したものについて本発明を適用できる。複数枚のターゲット41を並設した場合、惰性的な運動によって電子がターゲット端から外側に飛び出すと、隣接するターゲットに電子が飛び移って放電を不安定にするが、本発明を適用することで、電子の飛び移りが防止され、放電を安定させて良好な薄膜形成が可能になる。   In the present embodiment, the magnetron sputter electrode C in which one target 41 is arranged has been described. However, the present invention is not limited to this, and a plurality of targets 41 arranged in parallel to the processing substrate S. The present invention can be applied. When a plurality of targets 41 are arranged side by side, if electrons jump out of the target end due to inertial movement, the electrons jump to the adjacent target to make the discharge unstable. By applying the present invention, Electron jumping is prevented, and discharge can be stabilized to form a good thin film.

本発明のスパッタリング装置を模式的に説明する図。The figure which illustrates typically the sputtering device of this invention. (a)は、磁石組立体の構成を説明する図。(b)は、電子の飛び出しを説明する図。(A) is a figure explaining the structure of a magnet assembly. (B) is a diagram for explaining the jumping out of electrons. (a)は、本発明に係る磁石組立体の構成を説明する図。(b)は、磁場垂直成分が0となる位置を通るレーストラック状の線を説明する図。(c)は、スパッタリングの進行に伴うターゲットの侵食領域を説明する図。(A) is a figure explaining the structure of the magnet assembly which concerns on this invention. FIG. 6B is a diagram for explaining a racetrack-like line passing through a position where the magnetic field vertical component becomes zero. (C) is a figure explaining the erosion area | region of the target accompanying progress of sputtering.

符号の説明Explanation of symbols

1 マグネトロンスパッタリング装置
41 ターゲット
5 磁石組立体
52 中心磁石
53 周辺磁石
53a、53b 直線部
53c 折り返し部
C マグネトロンスパッタ電極
S 処理基板
DESCRIPTION OF SYMBOLS 1 Magnetron sputtering apparatus 41 Target 5 Magnet assembly 52 Center magnet 53 Peripheral magnet 53a, 53b Linear part 53c Fold-up part C Magnetron sputter electrode S Processing substrate

Claims (6)

処理基板に対向して配置されるターゲットと、処理基板と背向するターゲットの後方に配置される磁石組立体を備え、
前記磁石組立体は、線状に配置された中央磁石と、この中央磁石の周囲を囲うように、ターゲット側の極性をかえて配置された周辺磁石とから構成され、
中央磁石が線状に延びる方向を長手方向として、中央磁石と周辺磁石とはそれぞれの長手方向の両側で平行に延びる直線部を有し、
中央磁石と周辺磁石の直線部との間でトンネル状に発生する磁束の磁場の垂直成分が0となる位置を、磁石組立体の長手方向端部において、磁石組立体の中央部よりも一定の範囲で中央磁石側にシフトさせ、電子のターゲット端側への飛び出しを防止するように構成したことを特徴とするマグネトロンスパッタ電極。
Comprising a target arranged opposite to the handle substrate, and a magnet assembly disposed behind the target to substrate and facing away,
The magnet assembly includes a central magnet arranged linearly, this so as to surround the periphery of the central magnet, is composed of a peripheral magnet disposed changing the polarity of the data Getto side,
With the direction in which the central magnet extends linearly as the longitudinal direction, the central magnet and the peripheral magnet have straight portions extending in parallel on both sides in the longitudinal direction,
The position where the vertical component of the magnetic field of the magnetic flux generated in a tunnel shape between the central magnet and the linear portion of the peripheral magnet becomes zero is more constant at the longitudinal end of the magnet assembly than the central portion of the magnet assembly . A magnetron sputter electrode, wherein the magnetron sputter electrode is configured to shift to the center magnet side within a range to prevent electrons from jumping out to the target end side .
前記磁場の垂直成分が0となる位置をシフトさせた範囲は、中央磁石の一側でかつこの中央磁石の両端部で互い違いに存することを特徴とする請求項1記載のマグネトロンスパッタ電極。   2. The magnetron sputter electrode according to claim 1, wherein the range where the position where the vertical component of the magnetic field is 0 is shifted alternately at one side of the central magnet and at both ends of the central magnet. 中央磁石または周辺磁石の少なくとも一方の磁力を局所的に強弱させることを特徴とする請求項1または請求項2記載のマグネトロンスパッタ電極。   3. The magnetron sputter electrode according to claim 1, wherein the magnetic force of at least one of the central magnet and the peripheral magnet is locally increased or decreased. 前記中央磁石のうち長手方向両端部の側面に所定の長さの磁気シャントを取付けたことを特徴とする請求項3記載のマグネトロンスパッタ電極。   4. A magnetron sputter electrode according to claim 3, wherein a magnetic shunt having a predetermined length is attached to side surfaces of both end portions in the longitudinal direction of the central magnet. 前記磁石組立体を、ターゲットの裏面に沿って平行に往復動させる駆動手段を備えたことを特徴とする請求項1〜請求項4のいずれか1項に記載のマグネトロンスパッタ電極。 The magnetron sputter electrode according to any one of claims 1 to 4, further comprising drive means for reciprocating the magnet assembly in parallel along the back surface of the target. 請求項1〜5のいずれか1項に記載のマグネトロンスパッタ電極を真空排気可能なスパッタ室内に配置し、スパッタ室内に所定のガスを導入するガス導入手段と、ターゲットへの電力投入を可能とするスパッタ電源とを設けたことを特徴とするスパッタリング装置。
The magnetron sputtering electrode according to any one of claims 1 to 5 is arranged in a sputtering chamber capable of being evacuated, and gas introduction means for introducing a predetermined gas into the sputtering chamber and power supply to a target can be made possible. A sputtering apparatus comprising a sputtering power source.
JP2006311624A 2006-11-17 2006-11-17 Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode Active JP5089962B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006311624A JP5089962B2 (en) 2006-11-17 2006-11-17 Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode
TW96142861A TWI470102B (en) 2006-11-17 2007-11-13 Magnetron sputtering electrode and sputtering device with magnetron sputtering electrode
KR1020097009762A KR101117105B1 (en) 2006-11-17 2007-11-13 Magnetron sputter electrode, and sputtering device having the magnetron sputter electrode
CN2007800426411A CN101589170B (en) 2006-11-17 2007-11-13 Magnetron sputter electrode, and sputtering device having the magnetron sputter electrode
PCT/JP2007/071965 WO2008059814A1 (en) 2006-11-17 2007-11-13 Magnetron sputter electrode, and sputtering device having the magnetron sputter electrode
US12/514,513 US8172993B2 (en) 2006-11-17 2007-11-13 Magnetron sputtering electrode, and sputtering apparatus provided with magnetron sputtering electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006311624A JP5089962B2 (en) 2006-11-17 2006-11-17 Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode

Publications (2)

Publication Number Publication Date
JP2008127602A JP2008127602A (en) 2008-06-05
JP5089962B2 true JP5089962B2 (en) 2012-12-05

Family

ID=39553748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006311624A Active JP5089962B2 (en) 2006-11-17 2006-11-17 Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode

Country Status (1)

Country Link
JP (1) JP5089962B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111349903B (en) * 2020-05-08 2023-09-05 台玻太仓工程玻璃有限公司 Magnetic conduction plate for improving target utilization rate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3590460B2 (en) * 1995-07-04 2004-11-17 アネルバ株式会社 Cathode electrode for magnetron sputtering
JP3686540B2 (en) * 1998-12-22 2005-08-24 株式会社ルネサステクノロジ Manufacturing method of electronic device
JP4533499B2 (en) * 2000-03-24 2010-09-01 株式会社アルバック Magnetic neutral wire discharge sputtering equipment
JP2004115841A (en) * 2002-09-25 2004-04-15 Shin Meiwa Ind Co Ltd Magnetron sputtering electrode, film deposition system, and film deposition method
JP2006037127A (en) * 2004-07-23 2006-02-09 Cyg Gijutsu Kenkyusho Kk Sputter electrode structure

Also Published As

Publication number Publication date
JP2008127602A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
KR101196650B1 (en) Sputtering apparatus
KR101135389B1 (en) Sputtering method and sputtering apparatus
TWI470102B (en) Magnetron sputtering electrode and sputtering device with magnetron sputtering electrode
WO2008050618A1 (en) Thin film forming method and thin film forming device
KR101050121B1 (en) Sputtering Device and Sputtering Method
JP5049561B2 (en) Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode
JP4990521B2 (en) Magnetron sputtering electrode and sputtering apparatus using magnetron sputtering electrode
JPWO2009025258A1 (en) Sputtering method and sputtering apparatus
KR20170064527A (en) Magnet unit for magnetron sputter electrode and sputtering apparutus
JP4959118B2 (en) Sputtering apparatus and target for sputtering apparatus
JP5903217B2 (en) Magnetron sputtering electrode and sputtering apparatus
WO2011024411A1 (en) Magnetron sputtering electrode and sputtering device
JP5089962B2 (en) Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode
JP4959175B2 (en) Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode
JP4713853B2 (en) Magnetron cathode electrode and sputtering method using magnetron cathode electrode
JP5077752B2 (en) Magnetron sputtering equipment
JP5025334B2 (en) Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode
JP2002256431A (en) Magnetron sputtering device
JP2009057616A (en) Magnetron sputtering apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5089962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250