WO2011024411A1 - Magnetron sputtering electrode and sputtering device - Google Patents

Magnetron sputtering electrode and sputtering device Download PDF

Info

Publication number
WO2011024411A1
WO2011024411A1 PCT/JP2010/005114 JP2010005114W WO2011024411A1 WO 2011024411 A1 WO2011024411 A1 WO 2011024411A1 JP 2010005114 W JP2010005114 W JP 2010005114W WO 2011024411 A1 WO2011024411 A1 WO 2011024411A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
sputtering
magnet unit
magnet
starting point
Prior art date
Application number
PCT/JP2010/005114
Other languages
French (fr)
Japanese (ja)
Inventor
遙平 大野
敬臣 倉田
真 新井
淳也 清田
暁 石橋
久三 中村
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2011528633A priority Critical patent/JPWO2011024411A1/en
Publication of WO2011024411A1 publication Critical patent/WO2011024411A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3435Target holders (includes backing plates and endblocks)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3455Movable magnets

Definitions

  • the present invention relates to a magnetron sputtering electrode and a sputtering apparatus.
  • a magnetron type sputtering (hereinafter referred to as “sputtering”) apparatus has a magnetron sputtering electrode, and the magnetron sputtering electrode is disposed so as to face a substrate to be processed, and a side of the target facing the substrate. And a magnetron cathode unit having a magnet unit which is disposed below the target and forms a tunnel-like magnetic flux above the target.
  • the electrons ionized in front of the target by the magnetic flux and secondary electrons generated by sputtering are captured to increase the electron density above the target.
  • the plasma density is increased by increasing the probability of collision between these electrons and the gas molecules of the rare gas introduced into the vacuum chamber. According to this sputtering apparatus, for example, there is an advantage that the film forming speed can be improved without significantly increasing the temperature of the processing substrate.
  • a transparent conductive film is formed in a manufacturing process of a large area flat panel display. Widely used.
  • Patent Literature 1 discloses a configuration in which a central magnet is disposed and peripheral magnets having different polarities on the target side are disposed over the entire periphery of the upper surface of the support plate so as to surround the central magnet.
  • the magnetic flux density in the peripheral region of the upper surface (the surface to be sputtered) of the target is locally increased. That is, when looking at the magnetic field profile along the extension line of the central magnet, the vertical component of the magnetic field has one peak at a position closer to the inside from both longitudinal ends of the central magnet. For this reason, the sputtering rate in the peripheral region of the sputtering surface is increased, and a substantially uniform thin film is obtained over the entire surface of the substrate, but the target is eroded intensively in that region (that is, the target is preferentially sputtered). Area). In this case, there arises a problem that the utilization efficiency of the target is lowered.
  • the present invention provides a magnetron sputtering electrode and a sputtering apparatus that do not cause a local erosion region in the target even when the magnet unit and the target are moved relative to each other at the time of sputtering, and have high target utilization efficiency.
  • the task is to do.
  • the magnetron sputtering electrode of the present invention is disposed below the target with the target disposed opposite to the substrate to be processed in the sputtering chamber and the side facing the substrate of the target as the upper side.
  • a magnetic shunt for locally lowering the magnetic field strength at a position where the staying time of the part having a high magnetic flux density becomes long in one cycle is provided in addition to the magnet unit.
  • the magnetic shunt has locally reduced the magnetic field strength at the position where the stay time of the portion having a high magnetic flux density is long, so that the occurrence of a local erosion region on the target is suppressed, and the target lifetime is reduced. Can be long.
  • the relative utilization of the magnet unit and the target during sputtering can increase the target utilization efficiency in combination with the ability to expand the target erosion area.
  • the position where the residence time of the portion with a high magnetic flux density becomes long is the process condition (pressure in the vacuum chamber, for example, the gas introduced into the vacuum chamber).
  • the flow rate may vary.
  • the present invention employs a configuration in which the magnetic shunt is provided in addition to the magnet unit, so that it is not necessary to change the configuration of the magnet unit itself, which is advantageous.
  • the magnetic shunt is affixed to the lower surface of the backing plate joined to the target, the magnetic field strength can be locally reduced by a simple operation even after the magnetron sputtering electrode of the present invention is installed in the sputtering apparatus. It is possible to realize a configuration that can be reduced. In such a case, sputtering may be performed while relatively moving the target and the magnet unit to identify a local erosion region in the target surface, and a magnetic shunt may be attached at that position.
  • the target has a rectangular shape in plan view
  • the magnet unit has a different polarity on the target side provided so as to surround the central magnet and the central magnet.
  • the moving means reciprocates the magnet unit on the same plane in at least one of the width direction and the longitudinal direction of the target.
  • a sputtering apparatus of the present invention includes a magnetron sputtering electrode according to any one of claims 1 to 3, a vacuum chamber capable of maintaining a vacuum state, A gas introduction means for introducing a predetermined gas into the vacuum chamber and a sputtering power source that enables power supply to the target are provided.
  • FIG. 6B is a cross-sectional view taken along line BB in FIG.
  • FIG. 4C is a cross-sectional view taken along the line CC in FIG. 3A, schematically illustrating target erosion.
  • a magnetron sputtering according to the present invention will be described by taking as an example a case where a glass substrate used for manufacturing a flat panel display is used as a substrate S to be processed and a predetermined thin film such as Al is formed on the surface thereof.
  • a sputtering apparatus SM having the electrode C will be described.
  • the sputtering apparatus SM is, for example, an in-line type, and includes a sputtering chamber 1 that can be maintained at a predetermined degree of vacuum via a vacuum exhaust means (not shown) such as a rotary pump or a turbo molecular pump.
  • a vacuum exhaust means such as a rotary pump or a turbo molecular pump.
  • a substrate transfer means 2 is provided in the upper space of the sputtering chamber 1.
  • the substrate transport unit 2 has a known structure, for example, has a carrier 21 on which the substrate S is mounted, and can intermittently drive the drive unit to sequentially transport the substrate S to a position facing a target to be described later. It has become.
  • a gas introducing means 3 is provided in the sputter chamber 1.
  • the gas introduction means 3 communicates with a gas source 33 through a gas pipe 32 provided with a mass flow controller 31 so that a sputtering gas composed of a rare gas such as argon or a reactive gas used in reactive sputtering is constant in the sputtering chamber 1. It can be introduced at a flow rate of.
  • the reaction gas is selected according to the composition of the thin film to be formed on the processing substrate S, and gas containing oxygen, nitrogen, carbon, hydrogen, ozone, water, hydrogen peroxide, or a mixed gas thereof is used. .
  • a magnetron sputtering electrode C is disposed below the sputtering chamber 1.
  • the magnetron sputtering electrode C includes a target 41 and a magnet unit 5 that are substantially rectangular parallelepiped (planar view rectangle) provided to face the sputtering chamber 1.
  • the direction from the target 41 toward the substrate S is “upper”, and the direction from the substrate S toward the target 41 is “lower”.
  • the width direction of the target is the X direction and the longitudinal direction of the target 41 orthogonal to the width direction is the Y direction.
  • the target 41 is produced by a known method according to the composition of a thin film to be formed on the processing substrate S such as Al alloy, Mo, or ITO.
  • the area of the sputtering surface 411 that is the upper surface of the target 41 is set larger than the outer dimension of the processing substrate S.
  • a backing plate 42 that cools the target 41 during sputtering is bonded to the lower surface of the target 41 via a bonding material such as indium or tin. Then, with the target 41 bonded to the backing plate 42, it is mounted on the frame 44 through the insulating plate 43.
  • a shield 45 serving as an anode grounded to ground is attached around the sputtering surface 411 of the target 41.
  • an output terminal from a sputtering power source E having a known structure is connected to the target so that a negative DC voltage or a high-frequency voltage is applied.
  • the magnet unit 5 includes a support plate (yoke) 51 that is provided in parallel to the sputtering surface 411 of the target 41 and is configured of a flat plate made of a magnetic material that amplifies the magnet's attractive force.
  • a central magnet 52 disposed on the center line extending in the longitudinal direction of the support plate 51 and an annular shape along the outer periphery of the upper surface of the support plate 51 so as to surround the center magnet 52.
  • the arranged peripheral magnet 53 is provided with the polarity on the target side changed.
  • the central magnet 52 and the peripheral magnet 53 are known ones such as neodymium magnets, and the central magnet 52 and the peripheral magnet 53 may be integrated, or may be configured by arranging a plurality of magnet pieces having a predetermined volume. Good.
  • the substrate S is transported to a position facing the target 41 by the substrate transport means 2, a predetermined sputtering gas or reaction gas is introduced via the gas introduction means 3, and then a negative DC voltage or A high frequency voltage is applied to the target 41. Thereby, an electric field perpendicular to the substrate S and the target 41 is formed, plasma is generated above the target 41, and the target 41 is sputtered, whereby a predetermined thin film is formed on the surface of the substrate S.
  • the vertical component of the magnetic field is at a position closer to the inside from both longitudinal ends of the central magnet 52. It has one peak.
  • a substantially uniform thin film can be formed over the entire surface of the substrate S.
  • the sputtering rate in the peripheral region of the sputtering surface 411 is locally increased, the target 41 is eroded intensively in that region.
  • the outer dimension of the support plate 51 is formed to be slightly smaller than the target, and a moving means 6 is attached to the support plate 51, and during sputtering, the magnet unit 5 is moved at a predetermined speed on the same plane in the X direction and the Y direction. It is reciprocated at a constant stroke (X direction: D1). In this case, the movement in the X direction and the Y direction may be performed separately, and the movement in the X direction and the Y direction may be synchronized (in this case, the magnet unit 5 is indicated by a solid line in FIG. 1). From the position shown, it moves so as to draw a predetermined elliptical arc, reaches the position shown by the alternate long and short dash line in FIG. 1, moves so as to draw an arc, and returns to position A). The moving unit 6 repeatedly moves the magnet unit 5 relative to the target 41 from a predetermined starting point and returns it to the starting point.
  • the moving means 6 includes a pair of left and right rail members 62R, 62L provided horizontally on the flat upper surface of the base plate 61 over the entire length in the longitudinal direction of the target 41, and wider than the width of the target 41, and rail members 62R, A slider 63 slidably engaged with 62L and provided with a drive motor (not shown) and a feed screw 64 having a drive motor M provided to be supported by both sliders 63 and 63 are provided. A nut member 65 suspended from the center of the lower surface of the support plate 51 is screwed into the feed screw 64.
  • the staying time of the part having a high magnetic flux density among the magnetic fluxes M1 and M2 formed by the magnet unit 5 is A portion (so-called cross point CP: see FIG. 3A) that is longer than the portion is generated.
  • the target 41 is substantially uniformly eroded in the longitudinal direction in the longitudinal direction (see FIG. 3B), but the erosion amount of the target 41 is locally increased at the portion where the stay time is long. This increases the life of the target 41 (see FIG. 3C).
  • the magnetic shunt 7 only needs to be a material having a high maximum magnetic permeability and rigidity.
  • the magnetic shunt 7 only needs to be a material having a high maximum magnetic permeability and rigidity.
  • stainless steel having magnetism such as SUS430, metal such as pure iron and nickel that can enhance the attenuation effect of the magnetic field, permalloy, supermalloy, etc.
  • An alloy having a high magnetic permeability can be used.
  • the thickness of the magnetic shunt is appropriately set in the range of 1.0 to 5.0 mm in consideration of the material and the amount of erosion of the target 41 at the cross point.
  • the magnetic shunt 7 locally reduces the magnetic field strength at the position where the stay time of the portion having a high magnetic flux density is long. It is suppressed and the target life can be extended. As a result, the relative utilization of the magnet unit 5 and the target 41 during sputtering can increase the utilization efficiency of the target 41 in combination with the fact that the erosion area of the target 41 can be expanded.
  • the position where the residence time of the portion with a high magnetic flux density becomes long varies depending on the process conditions (pressure in the vacuum chamber, for example, the flow rate of the gas introduced into the vacuum chamber), etc., even if the same magnet unit 5 is used.
  • the configuration in which the magnetic shunt 7 is provided in addition to the magnet unit 5 is adopted, there is no need to change the configuration of the magnet unit 5 itself, which is advantageous.
  • Al was used as the target 41 and formed into a substantially rectangular shape in plan view of 218 mm ⁇ 3400 mm ⁇ thickness 16 mm by a known method, and joined to the backing plate 42. Further, as the support plate 51 of the magnet assembly, one having an outer dimension of 100 mm ⁇ 3390 mm is used. On each support plate 51, a rod-shaped central magnet 52 along the longitudinal direction of the target 41, and the outer periphery of the support plate 51 A peripheral magnet 53 is provided along the line. At this time, the vertical component of the magnetic field has one peak P (about 210 G) at a position of about 51 mm from both ends in the longitudinal direction of the target 41.
  • a mass flow controller is used so that a glass substrate having an outer dimension of about 3100 mm ⁇ 2900 mm is used as the substrate S, and the sputtering chamber 1 is evacuated to a pressure of 0.3 Pa as a sputtering condition.
  • 31 was controlled to introduce argon as a sputtering gas into the sputtering chamber 1.
  • the distance between the target 41 and the glass substrate was 210 mm, the input power (DC voltage) to the target 41 was 76 kW, and sputtering was performed until it reached 6300 kWh.
  • the magnet unit 5 was reciprocated in the X direction at a speed of 15 mm / sec and a stroke of 70 mm.
  • the amount of erosion of the target 41 at the center in the width direction of the target and at a position 120 mm from the longitudinal end of the target is about 170% as compared with the surrounding area. It was confirmed that it was deeply eroded. Therefore, a magnetic shunt 7 made of SUS430 having a thickness of 120 ⁇ 50 mm and a thickness of 2 mm is attached to the center of the lower surface of the backing plate 42 at a position 80 mm from the longitudinal end of the target.
  • sputtering was performed under the same conditions as described above, it was confirmed that local target erosion was prevented and the target could be eroded almost uniformly over substantially the entire surface thereof.
  • Al was used as the target 41 and formed into a substantially rectangular shape in a plan view of 180 mm ⁇ 950 mm ⁇ thickness 16 mm by a known method, and joined to the backing plate 42.
  • the support plate 51 of the magnet assembly one having an outer dimension of 100 mm ⁇ 880 mm is used.
  • a rod-shaped central magnet 52 along the longitudinal direction of the target 41, and the outer periphery of the support plate 51 A peripheral magnet 53 is provided along the line.
  • the vertical component of the magnetic field has one peak P (about 136 G) at a position of about 61 mm from both ends in the longitudinal direction of the target 41.
  • the mass flow controller 31 is controlled to introduce argon as a sputtering gas into the sputtering chamber 1 so that the pressure in the sputtering chamber 1 being evacuated is maintained at 0.5 Pa, and the target 41
  • the input power (DC voltage) to 13.6 kW was 13.6 kW and sputtered until it reached 2600 kWh.
  • the transfer speed of the magnet unit 5 is set to 15 mm / sec, the stroke in the X direction is set to 60 mm, and the stroke in the Y direction is set to 50 mm.
  • the magnet unit 5 is moved relative to the target 41 from a predetermined starting point and returns to the starting point. Were moved in the X and Y directions.
  • the amount of erosion of the target 41 at the center in the width direction of the target 41 and at a position of 100 mm from the end in the longitudinal direction of the target is about 170 compared with the surrounding area. % Erosion was confirmed. Therefore, a magnetic shunt 7 made of SUS430 having a thickness of 120 ⁇ 50 mm and a thickness of 2 mm was attached to the center of the lower surface of the backing plate 42 at a position 55 mm from the longitudinal end of the target.
  • the present invention is not limited to the above-described embodiment.
  • the target is a rectangular in plan view, and the magnet unit 5 is driven in synchronization with the X direction and the Y direction.
  • the present invention is not limited to this.
  • the present invention can be applied to improve the utilization efficiency of the target.
  • the sputtering is performed while moving the magnet unit 5 relative to the target, the cross point is specified, and the magnetic shunt 7 attached to the backing plate 42 is described as an example.
  • the magnetic shunt 7 may be provided other than the magnet unit 5 and may be interposed between the target 41 and the magnet unit 5 by a support member (not shown).
  • the cross point can also be specified from the simulation of the magnetic flux change when the magnet unit 5 is moved. In such a case, a recess for attaching the magnetic shunt 7 is formed in advance on the lower surface of the backing plate 42. Alternatively, it may be screwed.
  • SM sputtering apparatus
  • C magnetron sputtering electrode, 1 ... sputtering chamber, 41 ... target, 42 ... backing plate, 5 ... magnet unit, 52 ... central magnet, 53 ... peripheral magnet, 6 ... moving means, 7 ... magnetic shunt, 3 ... Gas introduction means, E ... Sputtering power source, S ... Substrate, M1, M2 ... Magnetic flux

Abstract

Disclosed is a magnetron sputtering electrode whereby a target can be used efficiently, with no localized erosion regions arising in the target even if a magnet unit and the target are moved relative to one another during sputtering. The disclosed magnetron sputtering electrode (C) is provided with: a target (41) disposed, inside a sputtering chamber (1), opposite a substrate (S) to be treated; a magnet unit (5) that is disposed below the target, where the side of the target facing the substrate is considered "up," and that forms a magnetic flux (M1, M2) in the shape of a tunnel above the target; and a movement means (6) that repeatedly moves the magnet unit relative to the target, from a prescribed starting point and then back to the starting point. A backing plate (42) is provided with a magnetic shunt (7) at a prescribed location. Said magnetic shunt locally reduces the magnetic field intensity at a location (CP) at which the magnetic flux density is high and in which the dwell time of the target is long over the course of one movement cycle, said movement cycle ending when the magnet unit returns to the aforementioned starting point.

Description

マグネトロンスパッタ電極及びスパッタリング装置Magnetron sputtering electrode and sputtering apparatus
 本発明は、マグネトロンスパッタ電極及びスパッタリング装置に関する。 The present invention relates to a magnetron sputtering electrode and a sputtering apparatus.
 従来、マグネトロン方式のスパッタリング(以下、「スパッタ」という)装置では、マグネトロンスパッタ電極を有し、このマグネトロンスパッタ電極が、処理すべき基板に対向配置されるターゲットと、このターゲットの基板と対向する側を上として、ターゲットの下側に配置されてこのターゲット上方にトンネル状の磁束を形成する磁石ユニットとを有するマグネトロンカソードユニットを備える。 2. Description of the Related Art Conventionally, a magnetron type sputtering (hereinafter referred to as “sputtering”) apparatus has a magnetron sputtering electrode, and the magnetron sputtering electrode is disposed so as to face a substrate to be processed, and a side of the target facing the substrate. And a magnetron cathode unit having a magnet unit which is disposed below the target and forms a tunnel-like magnetic flux above the target.
 そして、ターゲットに負の直流電圧または交流電圧を印加してターゲットをスパッタする際、上記磁束にてターゲット前方で電離した電子及びスパッタリングによって生じた二次電子を捕捉してターゲット上方での電子密度を高め、これらの電子と真空チャンバ内に導入される希ガスのガス分子との衝突確率を高めることでプラズマ密度を高めている。このスパッタ装置によれば、例えば処理基板の著しい温度上昇を伴うことなく成膜速度を向上できる等の利点があり、近年では、大面積のフラットパネルディスプレイの製造工程にて透明電導膜の形成等に広く利用されている。 Then, when sputtering a target by applying a negative DC voltage or an AC voltage to the target, the electrons ionized in front of the target by the magnetic flux and secondary electrons generated by sputtering are captured to increase the electron density above the target. The plasma density is increased by increasing the probability of collision between these electrons and the gas molecules of the rare gas introduced into the vacuum chamber. According to this sputtering apparatus, for example, there is an advantage that the film forming speed can be improved without significantly increasing the temperature of the processing substrate. In recent years, a transparent conductive film is formed in a manufacturing process of a large area flat panel display. Widely used.
 ここで、ターゲットとして平面視略矩形のものを用いる場合、磁石ユニットとしては、ターゲットに平行に配置される平面視略矩形の支持板(ヨーク)上面中央に、その長手方向に沿って線状に中央磁石を配置すると共に、この中央磁石の周囲を囲うように支持板上面の周縁全体に亘ってターゲット側の極性が異なる周辺磁石を配置して構成したものが例えば特許文献1で知られている。 Here, in the case of using a substantially rectangular shape in plan view as the target, the magnet unit is linearly formed along the longitudinal direction at the center of the upper surface of the substantially rectangular support plate (yoke) arranged in parallel with the target. For example, Patent Literature 1 discloses a configuration in which a central magnet is disposed and peripheral magnets having different polarities on the target side are disposed over the entire periphery of the upper surface of the support plate so as to surround the central magnet. .
 上記磁石ユニットでは、ターゲットの上面(スパッタされる面)の周縁領域での磁束密度が局所的に高まる。即ち、中央磁石の延長線上に沿った磁場プロファイルをみると、中央磁石の長手方向両端から内側に寄った位置で磁場の垂直成分が1つのピークをもつようになる。このため、スパッタ面の周縁領域でのスパッタレートが高まり、基板全面に亘って略均一な薄膜が得られるが、その領域でターゲットが集中的に侵食される(つまり、ターゲットが優先的にスパッタされる領域となる)。この場合、ターゲットの利用効率が低くなるという問題が生じる。 In the above magnet unit, the magnetic flux density in the peripheral region of the upper surface (the surface to be sputtered) of the target is locally increased. That is, when looking at the magnetic field profile along the extension line of the central magnet, the vertical component of the magnetic field has one peak at a position closer to the inside from both longitudinal ends of the central magnet. For this reason, the sputtering rate in the peripheral region of the sputtering surface is increased, and a substantially uniform thin film is obtained over the entire surface of the substrate, but the target is eroded intensively in that region (that is, the target is preferentially sputtered). Area). In this case, there arises a problem that the utilization efficiency of the target is lowered.
 そこで、この種のスパッタ装置では、トンネル状の磁束の位置を変えてターゲットを均一に侵食させることが従来から行われている(例えば特許文献2参照)。即ち、支持板の外形寸法をターゲットより一回り小さく形成し、スパッタ中、磁石ユニットをターゲットの幅方向(ターゲットの長手方向に直行する方向)に沿う2点間で同一平面上を所定速度で往復動させる。このとき、幅方向に加えてターゲットの長手方向にも磁石ユニットを往復動させることも考えられている。 Therefore, in this type of sputtering apparatus, it has been conventionally performed to change the position of the tunnel-like magnetic flux to uniformly erode the target (see, for example, Patent Document 2). In other words, the outer dimension of the support plate is made slightly smaller than the target, and during sputtering, the magnet unit reciprocates on the same plane between two points along the width direction of the target (direction perpendicular to the longitudinal direction of the target) at a predetermined speed. Move. At this time, it is also considered that the magnet unit is reciprocated in the longitudinal direction of the target in addition to the width direction.
 然しながら、スパッタ中に磁石ユニットを上記のように往復動すると、ターゲットに局所的な侵食領域が生じることが判明した。これは、磁石ユニットが、一往復する間で、磁束密度の高い部分の滞在時間が比較的長くなる箇所(所謂クロスポイント)が生じるためと考えられる。このようにターゲットに局所的な侵食領域が生じると、結局、ターゲット寿命が著しく短くなり、ターゲットの利用効率を向上させることができないという不具合が生じる。 However, it has been found that when the magnet unit is reciprocated as described above during sputtering, a local erosion region occurs in the target. This is considered to be because a portion (so-called cross point) in which the staying time of the portion where the magnetic flux density is high becomes relatively long occurs during one reciprocation of the magnet unit. Thus, when a local erosion area | region arises in a target, the target lifetime will become remarkably short after all and the malfunction that the utilization efficiency of a target cannot be raised will arise.
特開平7-34244号公報Japanese Patent Laid-Open No. 7-34244 特開2005-290550号公報JP 2005-290550 A
 本発明は、上記点に鑑み、スパッタ時に磁石ユニットとターゲットとを相対移動させても、ターゲットに局所的な侵食領域が生じることがなく、ターゲットの利用効率が良いマグネトロンスパッタ電極及びスパッタリング装置を提供することをその課題とするものである。 In view of the above points, the present invention provides a magnetron sputtering electrode and a sputtering apparatus that do not cause a local erosion region in the target even when the magnet unit and the target are moved relative to each other at the time of sputtering, and have high target utilization efficiency. The task is to do.
 上記課題を解決するために、本発明のマグネトロンスパッタ電極は、スパッタ室内で処理すべき基板に対向配置されるターゲットと、ターゲットの基板と対向する側を上として、ターゲットの下側に配置されてこのターゲットの上方にトンネル状の磁束を形成する磁石ユニットと、磁石ユニットを所定の起点からターゲットに対して相対移動させて前記起点に戻すことを繰り返す移動手段と、を備え、前記起点に戻るまでの1サイクルにて、磁束密度の高い部分の滞在時間が長くなる位置での磁場強度を局所的に低下させる磁気シャントを磁石ユニット以外に設けたことを特徴とする。 In order to solve the above-mentioned problems, the magnetron sputtering electrode of the present invention is disposed below the target with the target disposed opposite to the substrate to be processed in the sputtering chamber and the side facing the substrate of the target as the upper side. A magnet unit that forms a tunnel-like magnetic flux above the target, and a moving unit that repeatedly moves the magnet unit relative to the target from a predetermined starting point and returns the starting point to the starting point, until returning to the starting point. A magnetic shunt for locally lowering the magnetic field strength at a position where the staying time of the part having a high magnetic flux density becomes long in one cycle is provided in addition to the magnet unit.
 本発明によれば、磁気シャントにより磁束密度の高い部分の滞在時間が長くなる位置での磁場強度を局所的に低下させたため、ターゲットに局所的な侵食領域の発生することが抑制され、ターゲット寿命を長くできる。結果として、スパッタ時に磁石ユニットとターゲットとを相対移動させることで、ターゲットの侵食領域を拡げることができることと相俟って、ターゲットの利用効率を向上させることができる。 According to the present invention, the magnetic shunt has locally reduced the magnetic field strength at the position where the stay time of the portion having a high magnetic flux density is long, so that the occurrence of a local erosion region on the target is suppressed, and the target lifetime is reduced. Can be long. As a result, the relative utilization of the magnet unit and the target during sputtering can increase the target utilization efficiency in combination with the ability to expand the target erosion area.
 ここで、磁束密度の高い部分の滞在時間が長くなる位置は、同一の磁石ユニットを用いたとしても、スパッタ装置にて行うプロセス条件(真空チャンバ内の圧力、例えば真空チャンバ内に導入するガスの流量)等により変り得る。このため、上記位置での磁場強度を低下させる場合に、例えば、磁石ユニットの構成を変更して磁束密度を局所的に変更することも考えられるが、これでは、その作業が著しく面倒となる。それに対して、本願発明では、磁気シャントを磁石ユニット以外に設ける構成を採用したため、磁石ユニット自体の構成をかえる必要がなく、有利である。 Here, even if the same magnet unit is used, the position where the residence time of the portion with a high magnetic flux density becomes long is the process condition (pressure in the vacuum chamber, for example, the gas introduced into the vacuum chamber). The flow rate may vary. For this reason, when reducing the magnetic field intensity at the above-mentioned position, for example, it is conceivable to change the magnetic flux density locally by changing the configuration of the magnet unit, but this is extremely troublesome. On the other hand, the present invention employs a configuration in which the magnetic shunt is provided in addition to the magnet unit, so that it is not necessary to change the configuration of the magnet unit itself, which is advantageous.
 本発明においては、前記磁気シャントが、ターゲットに接合されたバッキングプレートの下面に貼付されるようにすれば、スパッタ装置に本発明のマグネトロンスパッタ電極を設置した後でも簡単な作業で磁場強度を局所的に低下させる構成を実現できてよい。このような場合、ターゲットと磁石ユニットとを相対移動させながらスパッタを行い、ターゲット面内における局所的な侵食領域を特定した上で、その位置に磁気シャントを取り付けるようにすればよい。 In the present invention, if the magnetic shunt is affixed to the lower surface of the backing plate joined to the target, the magnetic field strength can be locally reduced by a simple operation even after the magnetron sputtering electrode of the present invention is installed in the sputtering apparatus. It is possible to realize a configuration that can be reduced. In such a case, sputtering may be performed while relatively moving the target and the magnet unit to identify a local erosion region in the target surface, and a magnetic shunt may be attached at that position.
 なお、本発明においては、例えば、前記ターゲットが平面視矩形のものであり、前記磁石ユニットが、線状に配置した中央磁石とこの中央磁石の周囲を囲うように設けたターゲット側の極性が異なる周辺磁石とから構成され、前記移動手段が、磁石ユニットをターゲットの幅方向及び長手方向の少なくとも一方で同一平面上を往復動させるものである。 In the present invention, for example, the target has a rectangular shape in plan view, and the magnet unit has a different polarity on the target side provided so as to surround the central magnet and the central magnet. The moving means reciprocates the magnet unit on the same plane in at least one of the width direction and the longitudinal direction of the target.
 また、上記課題を解決するために、本発明のスパッタ装置は、請求項1乃至請求項3記載のいずれか1項に記載のマグネトロンスパッタ電極と、真空状態の保持が可能な真空チャンバと、この真空チャンバ内に所定のガスを導入するガス導入手段と、ターゲットへの電力投入を可能とするスパッタ電源とを備えたことを特徴とする。 In order to solve the above problems, a sputtering apparatus of the present invention includes a magnetron sputtering electrode according to any one of claims 1 to 3, a vacuum chamber capable of maintaining a vacuum state, A gas introduction means for introducing a predetermined gas into the vacuum chamber and a sputtering power source that enables power supply to the target are provided.
本発明のスパッタ装置を模式的に説明する図。The figure which illustrates the sputtering device of this invention typically. 磁石ユニットを説明する平面図。The top view explaining a magnet unit. (a)は、磁石ユニットをターゲットに対して相対移動させたときの磁束の変化を模式的に説明する図。(b)は、ターゲットの侵食を模式的に説明する、3(a)のB-B線に沿った断面図。(c)は、ターゲットの侵食を模式的に説明する、図3(a)のC-C線に沿った断面図。(A) is a figure which illustrates typically the change of magnetic flux when moving a magnet unit relative to a target. FIG. 6B is a cross-sectional view taken along line BB in FIG. FIG. 4C is a cross-sectional view taken along the line CC in FIG. 3A, schematically illustrating target erosion.
 以下、図面を参照して、処理すべき基板Sとして、フラットパネルディスプレイの製作に用いられるガラス基板を用い、その表面に、Al等の所定の薄膜を形成する場合を例に本発明のマグネトロンスパッタ電極Cを有するスパッタ装置SMを説明する。 Hereinafter, referring to the drawings, a magnetron sputtering according to the present invention will be described by taking as an example a case where a glass substrate used for manufacturing a flat panel display is used as a substrate S to be processed and a predetermined thin film such as Al is formed on the surface thereof. A sputtering apparatus SM having the electrode C will be described.
 図1に示すように、スパッタ装置SMは、例えばインライン式のものであり、ロータリーポンプ、ターボ分子ポンプなどの真空排気手段(図示せず)を介して所定の真空度に保持できるスパッタ室1を備える。スパッタ室1の上部空間には基板搬送手段2が設けられている。基板搬送手段2は、公知の構造を有し、例えば、基板Sが装着されるキャリア21を有し、駆動手段を間欠駆動させて、後述するターゲットと対向した位置に基板Sを順次搬送できるようになっている。 As shown in FIG. 1, the sputtering apparatus SM is, for example, an in-line type, and includes a sputtering chamber 1 that can be maintained at a predetermined degree of vacuum via a vacuum exhaust means (not shown) such as a rotary pump or a turbo molecular pump. Prepare. A substrate transfer means 2 is provided in the upper space of the sputtering chamber 1. The substrate transport unit 2 has a known structure, for example, has a carrier 21 on which the substrate S is mounted, and can intermittently drive the drive unit to sequentially transport the substrate S to a position facing a target to be described later. It has become.
 スパッタ室1にはガス導入手段3が設けられている。ガス導入手段3は、マスフローコントローラ31を介設したガス管32を通じてガス源33に連通し、アルゴン等の希ガスからなるスパッタガスや反応性スパッタリングの際に用いる反応ガスがスパッタ室1内に一定の流量で導入できる。反応ガスとしては、処理基板S上に成膜しようする薄膜の組成に応じて選択され、酸素、窒素、炭素、水素を含むガス、オゾン、水若しくは過酸化水素またはこれらの混合ガスなどが用いられる。スパッタ室1の下側には、マグネトロンスパッタ電極Cが配置されている。 A gas introducing means 3 is provided in the sputter chamber 1. The gas introduction means 3 communicates with a gas source 33 through a gas pipe 32 provided with a mass flow controller 31 so that a sputtering gas composed of a rare gas such as argon or a reactive gas used in reactive sputtering is constant in the sputtering chamber 1. It can be introduced at a flow rate of. The reaction gas is selected according to the composition of the thin film to be formed on the processing substrate S, and gas containing oxygen, nitrogen, carbon, hydrogen, ozone, water, hydrogen peroxide, or a mixed gas thereof is used. . A magnetron sputtering electrode C is disposed below the sputtering chamber 1.
 マグネトロンスパッタ電極Cは、スパッタ室1を臨むように設けた略直方体(平面視矩形)のターゲット41と磁石ユニット5とを備える。以下においては、ターゲット41から基板Sに向かう方向を「上」とし、基板Sからターゲット41に向かう方向を「下」として説明する。また、ターゲットの幅方向をX方向として、この幅方向に直交するターゲット41の長手方向をY方向として説明する。 The magnetron sputtering electrode C includes a target 41 and a magnet unit 5 that are substantially rectangular parallelepiped (planar view rectangle) provided to face the sputtering chamber 1. In the following description, the direction from the target 41 toward the substrate S is “upper”, and the direction from the substrate S toward the target 41 is “lower”. Further, a description will be given assuming that the width direction of the target is the X direction and the longitudinal direction of the target 41 orthogonal to the width direction is the Y direction.
 ターゲット41は、Al合金、MoやITOなど処理基板S上に成膜しようする薄膜の組成に応じて公知の方法でそれぞれ作製されている。ターゲット41の上面たるスパッタ面411の面積は、処理基板Sの外形寸法より大きく設定されている。また、ターゲット41の下面には、スパッタリング中、ターゲット41を冷却するバッキングプレート42がインジウムやスズなどのボンディング材を介して接合されている。そして、バッキングプレート42にターゲット41を接合した状態で、絶縁板43を介してフレーム44に装着される。 The target 41 is produced by a known method according to the composition of a thin film to be formed on the processing substrate S such as Al alloy, Mo, or ITO. The area of the sputtering surface 411 that is the upper surface of the target 41 is set larger than the outer dimension of the processing substrate S. Further, a backing plate 42 that cools the target 41 during sputtering is bonded to the lower surface of the target 41 via a bonding material such as indium or tin. Then, with the target 41 bonded to the backing plate 42, it is mounted on the frame 44 through the insulating plate 43.
 スパッタ室1内にターゲット41を配置した後、ターゲット41のスパッタ面411の周囲には、グランド接地されたアノードとしての役割を果たすシールド45が装着される。また、ターゲットには、公知の構造を有するスパッタ電源Eからの出力端が接続され、負の直流電圧または高周波電圧を印加されるようになっている。 After the target 41 is disposed in the sputtering chamber 1, a shield 45 serving as an anode grounded to ground is attached around the sputtering surface 411 of the target 41. In addition, an output terminal from a sputtering power source E having a known structure is connected to the target so that a negative DC voltage or a high-frequency voltage is applied.
 図2に示すように、磁石ユニット5は、ターゲット41のスパッタ面411に平行に設けられ、磁石の吸着力を増幅する磁性材料製の平板から構成される支持板(ヨーク)51を備える。支持板51上には、支持板51の長手方向にのびる中心線上に位置させて配置した中央磁石52と、この中央磁石52の周囲を囲うように、支持板51の上面外周に沿って環状に配置した周辺磁石53とがターゲット側の極性をかえて設けられている。中央磁石52の同磁化に換算したときの体積をその周囲を囲う周辺磁石53の同磁化に換算したときの体積の和(周辺磁石:中心磁石:周辺磁石=1:2:1(図1参照))程度になるように設計している。これにより、ターゲット41の上方で釣り合ったトンネル状の磁束M1、M2が形成される(図1参照)。中央磁石52及び周辺磁石53は、ネオジム磁石等の公知のものであり、これらの中央磁石52及び周辺磁石53は一体ものでも、または、所定体積の磁石片を複数列設して構成してもよい。 As shown in FIG. 2, the magnet unit 5 includes a support plate (yoke) 51 that is provided in parallel to the sputtering surface 411 of the target 41 and is configured of a flat plate made of a magnetic material that amplifies the magnet's attractive force. On the support plate 51, a central magnet 52 disposed on the center line extending in the longitudinal direction of the support plate 51 and an annular shape along the outer periphery of the upper surface of the support plate 51 so as to surround the center magnet 52. The arranged peripheral magnet 53 is provided with the polarity on the target side changed. The volume when the volume of the central magnet 52 converted to the same magnetization is converted to the same magnetization of the peripheral magnet 53 surrounding the circumference (peripheral magnet: center magnet: peripheral magnet = 1: 2: 1 (see FIG. 1) )) Designed to be about. Thereby, tunnel-like magnetic fluxes M1 and M2 balanced above the target 41 are formed (see FIG. 1). The central magnet 52 and the peripheral magnet 53 are known ones such as neodymium magnets, and the central magnet 52 and the peripheral magnet 53 may be integrated, or may be configured by arranging a plurality of magnet pieces having a predetermined volume. Good.
 そして、基板搬送手段2により基板Sをターゲット41と対向した位置に搬送し、ガス導入手段3を介して所定のスパッタガスや反応ガスを導入した後、スパッタ電源Eを介して負の直流電圧または高周波電圧をターゲット41に印加する。これにより、基板S及びターゲット41に垂直な電界が形成され、ターゲット41の上方にプラズマが発生してターゲット41がスパッタされることで基板S表面に所定の薄膜が形成される。このとき、磁束M1、M2にてターゲット上方で電離した電子及びスパッタリングによって生じた二次電子を捕捉してターゲット前方での電子密度を高め、これらの電子と真空チャンバ1内に導入されるスパッタガスのガス分子との衝突確率を高めることでターゲット41上方でのプラズマ密度が高まる。 Then, the substrate S is transported to a position facing the target 41 by the substrate transport means 2, a predetermined sputtering gas or reaction gas is introduced via the gas introduction means 3, and then a negative DC voltage or A high frequency voltage is applied to the target 41. Thereby, an electric field perpendicular to the substrate S and the target 41 is formed, plasma is generated above the target 41, and the target 41 is sputtered, whereby a predetermined thin film is formed on the surface of the substrate S. At this time, electrons ionized above the target by the magnetic fluxes M1 and M2 and secondary electrons generated by sputtering are captured to increase the electron density in front of the target, and these electrons and the sputtering gas introduced into the vacuum chamber 1 The plasma density above the target 41 is increased by increasing the probability of collision with the gas molecules.
 ところで、上記磁石ユニット5では、特に図示して説明しないが、中央磁石52の長手方向に沿った磁場プロファイルをみると、中央磁石52の長手方向両端から内側に寄った位置で磁場の垂直成分が1つのピークをもつようになる。この状態にてスパッタにより薄膜を形成すると、基板S全面に亘って略均一な薄膜が形成できる。一方、スパッタ面411の周縁領域でのスパッタレートが局所的に高まることでその領域でターゲット41が集中的に侵食される。 By the way, in the magnet unit 5, although not particularly illustrated and described, when the magnetic field profile along the longitudinal direction of the central magnet 52 is viewed, the vertical component of the magnetic field is at a position closer to the inside from both longitudinal ends of the central magnet 52. It has one peak. When a thin film is formed by sputtering in this state, a substantially uniform thin film can be formed over the entire surface of the substrate S. On the other hand, when the sputtering rate in the peripheral region of the sputtering surface 411 is locally increased, the target 41 is eroded intensively in that region.
 このため、支持板51の外形寸法をターゲットより一回り小さく形成すると共に、支持板51に移動手段6を付設し、スパッタ中、磁石ユニット5をX方向及びY方向で同一平面上を所定速度かつ一定のストローク(X方向:D1)で往復動させている。この場合、X方向及びY方向への移動は別々に行ってもよく、また、X方向及びY方向への移動を同期させてもよい(この場合、磁石ユニット5が、図1中、実線で示す位置から、所定の楕円状の円弧を描くように移動して、図1中、一点鎖線で示す位置に到達し、円弧を描くように移動して位置Aに戻る)。この移動手段6により、磁石ユニット5が所定の起点からターゲット41に対して相対移動されて前記起点に戻されることが繰り返される。 For this reason, the outer dimension of the support plate 51 is formed to be slightly smaller than the target, and a moving means 6 is attached to the support plate 51, and during sputtering, the magnet unit 5 is moved at a predetermined speed on the same plane in the X direction and the Y direction. It is reciprocated at a constant stroke (X direction: D1). In this case, the movement in the X direction and the Y direction may be performed separately, and the movement in the X direction and the Y direction may be synchronized (in this case, the magnet unit 5 is indicated by a solid line in FIG. 1). From the position shown, it moves so as to draw a predetermined elliptical arc, reaches the position shown by the alternate long and short dash line in FIG. 1, moves so as to draw an arc, and returns to position A). The moving unit 6 repeatedly moves the magnet unit 5 relative to the target 41 from a predetermined starting point and returns it to the starting point.
 移動手段6は、ベース板61の平坦な上面でターゲット41の長手方向全長に亘って水平にのびかつターゲット41の幅より広い間隔で設けた左右一対のレール部材62R、62Lと、レール部材62R、62Lに摺動自在に係合し、図示省略の駆動モータを備えたスライダ63と、両スライダ63、63で支持されるように設けられ、駆動モータMを有する送りねじ64とを備える。そして、送りねじ64に、支持板51の下面中央に垂設されたナット部材65が螺合している。 The moving means 6 includes a pair of left and right rail members 62R, 62L provided horizontally on the flat upper surface of the base plate 61 over the entire length in the longitudinal direction of the target 41, and wider than the width of the target 41, and rail members 62R, A slider 63 slidably engaged with 62L and provided with a drive motor (not shown) and a feed screw 64 having a drive motor M provided to be supported by both sliders 63 and 63 are provided. A nut member 65 suspended from the center of the lower surface of the support plate 51 is screwed into the feed screw 64.
 ところで、スパッタ中、磁石ユニット5を移動手段6により移動させた場合、図3に示すように、磁石ユニット5により形成された磁束M1、M2のうち磁束密度の高い部分の滞在時間が、他の箇所と比較して長くなる箇所(所謂クロスポイントCP:図3(a)参照)が生じる。この場合、ターゲット41の長手方向略中央部では、その幅方向で略均等に侵食されるが(図3(b)参照)、滞在時間が長くなる箇所では、ターゲット41の侵食量が局所的に多くなり、これでは、ターゲット41の寿命が短くなる(図3(c)参照)。 By the way, when the magnet unit 5 is moved by the moving means 6 during the sputtering, as shown in FIG. 3, the staying time of the part having a high magnetic flux density among the magnetic fluxes M1 and M2 formed by the magnet unit 5 is A portion (so-called cross point CP: see FIG. 3A) that is longer than the portion is generated. In this case, the target 41 is substantially uniformly eroded in the longitudinal direction in the longitudinal direction (see FIG. 3B), but the erosion amount of the target 41 is locally increased at the portion where the stay time is long. This increases the life of the target 41 (see FIG. 3C).
 そこで、ターゲット41と磁石ユニット5とを相対移動させながらスパッタを行い、ターゲット41面内における局所的な侵食領域を特定した上で、その位置に対応させてバッキングプレート42の下面に所定面積の磁気シャント7を貼付するようにした(図2参照)。磁気シャント7は、最大透磁率が高くかつ剛性を有する材料であればよく、例えば、SUS430などの磁性を有するステンレス、磁場の減衰効果を高められる純鉄、ニッケルなどの金属、パーマロイ、スーパーマロイなどの透磁率の高いアロイを用いることができる。また、磁気シャントの厚さは、その材質やクロスポイントでのターゲット41の侵食量を考慮して1.0~5.0mmの範囲で適宜設定される。 Therefore, sputtering is performed while the target 41 and the magnet unit 5 are moved relative to each other, and a local erosion region in the surface of the target 41 is specified, and then a magnetic field having a predetermined area is formed on the lower surface of the backing plate 42 corresponding to the position. A shunt 7 was attached (see FIG. 2). The magnetic shunt 7 only needs to be a material having a high maximum magnetic permeability and rigidity. For example, stainless steel having magnetism such as SUS430, metal such as pure iron and nickel that can enhance the attenuation effect of the magnetic field, permalloy, supermalloy, etc. An alloy having a high magnetic permeability can be used. The thickness of the magnetic shunt is appropriately set in the range of 1.0 to 5.0 mm in consideration of the material and the amount of erosion of the target 41 at the cross point.
 上記構成のマグネトロンスパッタ電極Cによれば、磁気シャント7により磁束密度の高い部分の滞在時間が長くなる位置での磁場強度を局所的に低下させたため、ターゲット41に局所的な侵食領域の発生が抑制され、ターゲット寿命を長くできる。結果として、スパッタ時に磁石ユニット5とターゲット41とを相対移動させることで、ターゲット41の侵食領域を拡げることができることと相俟って、ターゲット41の利用効率を向上させることができる。 According to the magnetron sputter electrode C having the above-described configuration, the magnetic shunt 7 locally reduces the magnetic field strength at the position where the stay time of the portion having a high magnetic flux density is long. It is suppressed and the target life can be extended. As a result, the relative utilization of the magnet unit 5 and the target 41 during sputtering can increase the utilization efficiency of the target 41 in combination with the fact that the erosion area of the target 41 can be expanded.
 また、磁束密度の高い部分の滞在時間が長くなる位置は、同一の磁石ユニット5を用いたとしても、プロセス条件(真空チャンバ内の圧力、例えば真空チャンバ内に導入するガスの流量)等により変り得るものであるが、磁気シャント7を磁石ユニット5以外に設ける構成を採用したため、磁石ユニット5自体の構成をかえる必要がなく、有利である。また、マグネトロンスパッタ電極Cをスパッタ室1内に設置した後でも簡単な作業で磁場強度を局所的に低下させる構成を実現できる。 Further, the position where the residence time of the portion with a high magnetic flux density becomes long varies depending on the process conditions (pressure in the vacuum chamber, for example, the flow rate of the gas introduced into the vacuum chamber), etc., even if the same magnet unit 5 is used. Although obtained, since the configuration in which the magnetic shunt 7 is provided in addition to the magnet unit 5 is adopted, there is no need to change the configuration of the magnet unit 5 itself, which is advantageous. In addition, even after the magnetron sputtering electrode C is installed in the sputtering chamber 1, it is possible to realize a configuration in which the magnetic field strength is locally reduced by a simple operation.
 以上の効果を確認するため、以下の実験を行った。ターゲット41としてAlを用い、公知の方法で218mm×3400mm×厚さ16mmの平面視略長方形に成形し、バッキングプレート42に接合した。また、磁石組立体の支持板51として、100mm×3390mmの外形寸法を有するものを用い、各支持板51上に、ターゲット41の長手方向に沿った棒状の中央磁石52と、支持板51の外周に沿って周辺磁石53とを設けた。このとき、ターゲット41の長手方向の両端から約51mmの位置で磁場の垂直成分が1つのピークP(約210G)がある。 In order to confirm the above effects, the following experiment was conducted. Al was used as the target 41 and formed into a substantially rectangular shape in plan view of 218 mm × 3400 mm × thickness 16 mm by a known method, and joined to the backing plate 42. Further, as the support plate 51 of the magnet assembly, one having an outer dimension of 100 mm × 3390 mm is used. On each support plate 51, a rod-shaped central magnet 52 along the longitudinal direction of the target 41, and the outer periphery of the support plate 51 A peripheral magnet 53 is provided along the line. At this time, the vertical component of the magnetic field has one peak P (about 210 G) at a position of about 51 mm from both ends in the longitudinal direction of the target 41.
 そして、基板Sとして、約3100mm×2900mmの外形寸法を有するガラス基板を用い、また、スパッタリング条件として、真空排気されているスパッタ室1内の圧力が0.3Paに保持されるように、マスフローコントローラ31を制御してスパッタガスであるアルゴンをスパッタ室1内に導入した。ターゲット41とガラス基板との間の距離は210mm、ターゲット41への投入電力(直流電圧)は76kWとし、6300kWhに達するまでスパッタした。磁石ユニット5をX方向に15mm/secの速度でかつ70mmのストロークで往復動させた。 A mass flow controller is used so that a glass substrate having an outer dimension of about 3100 mm × 2900 mm is used as the substrate S, and the sputtering chamber 1 is evacuated to a pressure of 0.3 Pa as a sputtering condition. 31 was controlled to introduce argon as a sputtering gas into the sputtering chamber 1. The distance between the target 41 and the glass substrate was 210 mm, the input power (DC voltage) to the target 41 was 76 kW, and sputtering was performed until it reached 6300 kWh. The magnet unit 5 was reciprocated in the X direction at a speed of 15 mm / sec and a stroke of 70 mm.
 上記条件で基板表面にAl膜を形成すると、ターゲットの幅方向中央でかつターゲットの長手方向端部から120mmの位置でのターゲット41の侵食量をみると、その周辺と比較して、約170%深く侵食されていることが確認された。そこで、バッキングプレート42の下面中央で、120×50mmで厚さ2mmのSUS430製の磁気シャント7をターゲットの長手方向端部から80mmの位置に貼付した。そして、上記と同一条件でスパッタを行ったところ、局所的なターゲットの侵食が防止され、ターゲットをその略全面に亘って略均等に侵食できることが確認された。 When the Al film is formed on the substrate surface under the above conditions, the amount of erosion of the target 41 at the center in the width direction of the target and at a position 120 mm from the longitudinal end of the target is about 170% as compared with the surrounding area. It was confirmed that it was deeply eroded. Therefore, a magnetic shunt 7 made of SUS430 having a thickness of 120 × 50 mm and a thickness of 2 mm is attached to the center of the lower surface of the backing plate 42 at a position 80 mm from the longitudinal end of the target. When sputtering was performed under the same conditions as described above, it was confirmed that local target erosion was prevented and the target could be eroded almost uniformly over substantially the entire surface thereof.
 次に、ターゲット41としてAlを用い、公知の方法で180mm×950mm×厚さ16mmの平面視略長方形に成形し、バッキングプレート42に接合した。また、磁石組立体の支持板51として、100mm×880mmの外形寸法を有するものを用い、各支持板51上に、ターゲット41の長手方向に沿った棒状の中央磁石52と、支持板51の外周に沿って周辺磁石53とを設けた。このとき、ターゲット41の長手方向の両端から約61mmの位置で磁場の垂直成分が1つのピークP(約136G)がある。 Next, Al was used as the target 41 and formed into a substantially rectangular shape in a plan view of 180 mm × 950 mm × thickness 16 mm by a known method, and joined to the backing plate 42. Further, as the support plate 51 of the magnet assembly, one having an outer dimension of 100 mm × 880 mm is used. On each support plate 51, a rod-shaped central magnet 52 along the longitudinal direction of the target 41, and the outer periphery of the support plate 51 A peripheral magnet 53 is provided along the line. At this time, the vertical component of the magnetic field has one peak P (about 136 G) at a position of about 61 mm from both ends in the longitudinal direction of the target 41.
 スパッタリング条件として、真空排気されているスパッタ室1内の圧力が0.5Paに保持されるように、マスフローコントローラ31を制御してスパッタガスであるアルゴンをスパッタ室1内に導入すると共に、ターゲット41への投入電力(直流電圧)は13.6kWとし、2600kWhに達するまでスパッタした。磁石ユニット5の移送速度を15mm/sec、X方向のストロークを60mm、Y方向のストロークを50mmに夫々設定し、磁石ユニット5が所定の起点からターゲット41に対して相対移動されて前記起点に戻るようにX方向及びY方向に移動させた。 As a sputtering condition, the mass flow controller 31 is controlled to introduce argon as a sputtering gas into the sputtering chamber 1 so that the pressure in the sputtering chamber 1 being evacuated is maintained at 0.5 Pa, and the target 41 The input power (DC voltage) to 13.6 kW was 13.6 kW and sputtered until it reached 2600 kWh. The transfer speed of the magnet unit 5 is set to 15 mm / sec, the stroke in the X direction is set to 60 mm, and the stroke in the Y direction is set to 50 mm. The magnet unit 5 is moved relative to the target 41 from a predetermined starting point and returns to the starting point. Were moved in the X and Y directions.
 上記条件で基板表面にAl膜を形成すると、ターゲット41の幅方向中央でかつターゲットの長手方向端部から100mmの位置でのターゲット41の侵食量をみると、その周辺と比較して、約170%深く侵食されていることが確認された。そこで、バッキングプレート42の下面中央で、120×50mmで厚さ2mmのSUS430製の磁気シャント7をターゲットの長手方向端部から55mmの位置に貼付した。そして、上記と同一条件でスパッタを行ったところ、ターゲット41の幅方向中央でかつターゲットの長手方向端部から100mmの位置でのターゲット41の侵食量をみると、その周辺と比較して、約110%であり、X方向及びY方向に移動させた場合でも、局所的なターゲットの侵食が防止され、ターゲットをその略全面に亘って略均等に侵食できることが確認された。 When an Al film is formed on the substrate surface under the above conditions, the amount of erosion of the target 41 at the center in the width direction of the target 41 and at a position of 100 mm from the end in the longitudinal direction of the target is about 170 compared with the surrounding area. % Erosion was confirmed. Therefore, a magnetic shunt 7 made of SUS430 having a thickness of 120 × 50 mm and a thickness of 2 mm was attached to the center of the lower surface of the backing plate 42 at a position 55 mm from the longitudinal end of the target. And when sputter | spatter was carried out on the same conditions as the above, when the amount of erosion of the target 41 in the center of the width direction of the target 41 and the position of 100 mm from the longitudinal direction edge part of a target is seen, compared with the periphery, It was 110%, and even when moved in the X direction and the Y direction, it was confirmed that local target erosion was prevented and the target could be eroded almost uniformly over substantially the entire surface thereof.
 以上、本発明の実施形態のマグネトロンスパッタ電極Cを備えたスパッタ装置SMについて説明したが、本発明は、上記の形態のものに限定されるものではない。上記実施形態では、ターゲットを平面視矩形とし、磁石ユニット5をX方向及びY方向に同期して駆動するものを例に説明したが、これに限定されるものではない。例えば円形のターゲットを用い、ターゲットから偏心した位置を回転中心として磁石ユニットを回転駆動しながらスパッタする場合のように、所定の起点からターゲットに対して相対移動させて前記起点に戻すことを繰り返すべく磁石ユニット5を移動したときに磁束密度の高い部分の滞在時間が長くなる位置が生じるものであれば、本発明を適用してターゲットの利用効率を向上できる。 As mentioned above, although the sputtering apparatus SM provided with the magnetron sputtering electrode C of the embodiment of the present invention has been described, the present invention is not limited to the above-described embodiment. In the above embodiment, the target is a rectangular in plan view, and the magnet unit 5 is driven in synchronization with the X direction and the Y direction. However, the present invention is not limited to this. For example, in the case where sputtering is performed while using a circular target and the magnet unit is rotationally driven with the position eccentric from the target as the rotation center, the relative movement from the predetermined starting point to the target and returning to the starting point should be repeated. If the position where the staying time of the part where the magnetic flux density is high becomes long when the magnet unit 5 is moved, the present invention can be applied to improve the utilization efficiency of the target.
 また、上記実施形態では、1枚のターゲットの下方に1個の磁石ユニット5を設けたものを例に説明したが、これに限定されるものでなく、1枚のターゲットの下方に複数個の磁石ユニット5を設けた場合や複数枚のターゲットの下方に1個の磁石ユニット5を設けた場合等であっても本発明を適用できる。 Moreover, although the said embodiment demonstrated to the example what provided the one magnet unit 5 under the target of 1 sheet, it is not limited to this, A plurality of targets are provided under the target of 1 sheet. The present invention can be applied even when the magnet unit 5 is provided, or when one magnet unit 5 is provided below a plurality of targets.
 さらに、上記実施形態では、磁石ユニット5をターゲットに対して相対移動させながらスパッタを行い、クロスポイントを特定し、バッキングプレート42に磁気シャント7を貼付したものを例に説明したが、これに限定されるものではい。磁気シャント7は、磁石ユニット5以外に設けられていればよく、図示省略の支持部材でターゲット41と磁石ユニット5との間に介設されるようにしてもよい。他方、クロスポイントは、磁石ユニット5を移動させたときの磁束変化のシュミレーションから特定することもでき、このような場合に、バッキングプレート42の下面に予め磁気シャント7取付用の凹部を形成しておき、ねじ止めするようにしてもよい。 Furthermore, in the above-described embodiment, the sputtering is performed while moving the magnet unit 5 relative to the target, the cross point is specified, and the magnetic shunt 7 attached to the backing plate 42 is described as an example. Yes. The magnetic shunt 7 may be provided other than the magnet unit 5 and may be interposed between the target 41 and the magnet unit 5 by a support member (not shown). On the other hand, the cross point can also be specified from the simulation of the magnetic flux change when the magnet unit 5 is moved. In such a case, a recess for attaching the magnetic shunt 7 is formed in advance on the lower surface of the backing plate 42. Alternatively, it may be screwed.
 SM…スパッタリング装置、C…マグネトロンスパッタ電極、1…スパッタ室、41…ターゲット、42…バッキングプレート、5…磁石ユニット、52…中央磁石、53…周辺磁石、6…移動手段、7…磁気シャント、3…ガス導入手段、E…スパッタ電源、S…基板、M1、M2…磁束 SM: sputtering apparatus, C: magnetron sputtering electrode, 1 ... sputtering chamber, 41 ... target, 42 ... backing plate, 5 ... magnet unit, 52 ... central magnet, 53 ... peripheral magnet, 6 ... moving means, 7 ... magnetic shunt, 3 ... Gas introduction means, E ... Sputtering power source, S ... Substrate, M1, M2 ... Magnetic flux

Claims (4)

  1.  スパッタ室で処理すべき基板に対向配置されるターゲットと、
     ターゲットの基板と対向する側を上として、ターゲットの下側に配置されてこのターゲットの上方にトンネル状の磁束を形成する磁石ユニットと、
     磁石ユニットを所定の起点からターゲットに対して相対移動させて前記起点に戻すことを繰り返す移動手段と、を備え、
     前記起点に戻るまでの1サイクルにて、磁束密度の高い部分の滞在時間が長くなる位置での磁場強度を局所的に低下させる磁気シャントを磁石ユニット以外に設けたことを特徴とするマグネトロンスパッタ電極。
    A target disposed opposite the substrate to be processed in the sputtering chamber;
    A magnet unit that is arranged on the lower side of the target and forms a tunnel-like magnetic flux above the target, with the side facing the substrate of the target as the upper side,
    Moving means for repeatedly moving the magnet unit relative to the target from a predetermined starting point and returning it to the starting point; and
    A magnetron sputter electrode comprising a magnetic shunt other than the magnet unit for locally reducing the magnetic field strength at a position where the staying time of the portion having a high magnetic flux density becomes long in one cycle until returning to the starting point .
  2.  前記磁気シャントが、ターゲットに接合されたバッキングプレートの下面に貼付されることを特徴とする請求項1記載のマグネトロンスパッタ電極。 The magnetron sputter electrode according to claim 1, wherein the magnetic shunt is attached to a lower surface of a backing plate joined to a target.
  3.  前記ターゲットが平面視矩形のものであり、前記磁石ユニットが、線状に配置した中央磁石とこの中央磁石の周囲を囲うように設けたターゲット側の極性が異なる周辺磁石とから構成され、前記移動手段が、磁石ユニットをターゲットの幅方向及び長手方向の少なくとも一方で同一平面上を往復動させるものであることを特徴とする請求項1または請求項2記載のマグネトロンスパッタ電極。 The target is rectangular in plan view, and the magnet unit is composed of a central magnet arranged in a line and peripheral magnets having different polarities on the target side so as to surround the periphery of the central magnet. The magnetron sputter electrode according to claim 1 or 2, wherein the means reciprocates the magnet unit on the same plane in at least one of the width direction and the longitudinal direction of the target.
  4.  請求項1乃至請求項3記載のいずれか1項に記載のマグネトロンスパッタ電極と、真空状態の保持が可能な真空チャンバと、この真空チャンバ内に所定のガスを導入するガス導入手段と、ターゲットへの電力投入を可能とするスパッタ電源とを備えたことを特徴とするスパッタリング装置。 The magnetron sputtering electrode according to any one of claims 1 to 3, a vacuum chamber capable of maintaining a vacuum state, a gas introduction means for introducing a predetermined gas into the vacuum chamber, and a target A sputtering apparatus comprising: a sputtering power source that enables power to be supplied.
PCT/JP2010/005114 2009-08-28 2010-08-19 Magnetron sputtering electrode and sputtering device WO2011024411A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011528633A JPWO2011024411A1 (en) 2009-08-28 2010-08-19 Magnetron sputtering electrode and sputtering apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-198042 2009-08-28
JP2009198042 2009-08-28

Publications (1)

Publication Number Publication Date
WO2011024411A1 true WO2011024411A1 (en) 2011-03-03

Family

ID=43627533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005114 WO2011024411A1 (en) 2009-08-28 2010-08-19 Magnetron sputtering electrode and sputtering device

Country Status (3)

Country Link
JP (1) JPWO2011024411A1 (en)
TW (1) TW201127978A (en)
WO (1) WO2011024411A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251233A (en) * 2011-06-07 2012-12-20 Sharp Corp Film-forming device, and light-emitting device
EP3108027A4 (en) * 2014-02-20 2017-08-30 Intevac, Inc. Sputtering system and method for highly magnetic materials
JP6271822B1 (en) * 2016-06-29 2018-01-31 株式会社アルバック Film forming unit for sputtering equipment
CN114921764A (en) * 2022-06-28 2022-08-19 松山湖材料实验室 Device and method for high-power pulse magnetron sputtering

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11532470B2 (en) * 2018-11-27 2022-12-20 Taiwan Semiconductor Manufacturing Company Ltd. Analyzing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246367A (en) * 1985-04-24 1986-11-01 Nec Corp Magnetron type sputtering device
JPS63195263A (en) * 1987-02-06 1988-08-12 Shimadzu Corp Sputtering device
JPH07157874A (en) * 1993-12-06 1995-06-20 Sumitomo Metal Mining Co Ltd Magnetron sputtering device
JPH0920979A (en) * 1995-07-04 1997-01-21 Anelva Corp Cathode electrode for magnetron sputtering
JP2005068468A (en) * 2003-08-21 2005-03-17 Fuji Electric Holdings Co Ltd Target for magnetron sputtering, and magnetron sputtering system
WO2008059814A1 (en) * 2006-11-17 2008-05-22 Ulvac, Inc. Magnetron sputter electrode, and sputtering device having the magnetron sputter electrode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246367A (en) * 1985-04-24 1986-11-01 Nec Corp Magnetron type sputtering device
JPS63195263A (en) * 1987-02-06 1988-08-12 Shimadzu Corp Sputtering device
JPH07157874A (en) * 1993-12-06 1995-06-20 Sumitomo Metal Mining Co Ltd Magnetron sputtering device
JPH0920979A (en) * 1995-07-04 1997-01-21 Anelva Corp Cathode electrode for magnetron sputtering
JP2005068468A (en) * 2003-08-21 2005-03-17 Fuji Electric Holdings Co Ltd Target for magnetron sputtering, and magnetron sputtering system
WO2008059814A1 (en) * 2006-11-17 2008-05-22 Ulvac, Inc. Magnetron sputter electrode, and sputtering device having the magnetron sputter electrode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251233A (en) * 2011-06-07 2012-12-20 Sharp Corp Film-forming device, and light-emitting device
EP3108027A4 (en) * 2014-02-20 2017-08-30 Intevac, Inc. Sputtering system and method for highly magnetic materials
JP6271822B1 (en) * 2016-06-29 2018-01-31 株式会社アルバック Film forming unit for sputtering equipment
TWI659120B (en) * 2016-06-29 2019-05-11 日商愛發科股份有限公司 Film-forming unit for sputtering device
CN114921764A (en) * 2022-06-28 2022-08-19 松山湖材料实验室 Device and method for high-power pulse magnetron sputtering
CN114921764B (en) * 2022-06-28 2023-09-22 松山湖材料实验室 Device and method for high-power pulse magnetron sputtering

Also Published As

Publication number Publication date
JPWO2011024411A1 (en) 2013-01-24
TW201127978A (en) 2011-08-16

Similar Documents

Publication Publication Date Title
KR101135389B1 (en) Sputtering method and sputtering apparatus
KR101108894B1 (en) Target for sputtering and sputtering method using that target
KR101050121B1 (en) Sputtering Device and Sputtering Method
WO2011024411A1 (en) Magnetron sputtering electrode and sputtering device
JP5903217B2 (en) Magnetron sputtering electrode and sputtering apparatus
TWI470102B (en) Magnetron sputtering electrode and sputtering device with magnetron sputtering electrode
KR20170064527A (en) Magnet unit for magnetron sputter electrode and sputtering apparutus
US20110180394A1 (en) Sputtering method and sputtering apparatus
JP2009293089A (en) Sputtering system
TWI393797B (en) Sputtering electrodes and sputtering devices with sputtering electrodes
JP5049561B2 (en) Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode
JP5322235B2 (en) Sputtering method
JPH1143766A (en) Formation of thin film and device therefor
JP4959175B2 (en) Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode
JP4713853B2 (en) Magnetron cathode electrode and sputtering method using magnetron cathode electrode
JP5025334B2 (en) Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode
KR20110122456A (en) Apparatus and method for manufacturing liquid crystal display device
JP5089962B2 (en) Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode
JP2002256431A (en) Magnetron sputtering device
KR20070021919A (en) Sputter electrode and sputtering apparutus having the sputter electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811470

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011528633

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811470

Country of ref document: EP

Kind code of ref document: A1