JP5048596B2 - Sample stand, sample rotating holder, sample stand preparation method, and sample analysis method - Google Patents

Sample stand, sample rotating holder, sample stand preparation method, and sample analysis method Download PDF

Info

Publication number
JP5048596B2
JP5048596B2 JP2008163141A JP2008163141A JP5048596B2 JP 5048596 B2 JP5048596 B2 JP 5048596B2 JP 2008163141 A JP2008163141 A JP 2008163141A JP 2008163141 A JP2008163141 A JP 2008163141A JP 5048596 B2 JP5048596 B2 JP 5048596B2
Authority
JP
Japan
Prior art keywords
sample
rotation
stage
charged particle
particle beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008163141A
Other languages
Japanese (ja)
Other versions
JP2010003617A (en
Inventor
紀恵 矢口
武夫 上野
康平 長久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2008163141A priority Critical patent/JP5048596B2/en
Publication of JP2010003617A publication Critical patent/JP2010003617A/en
Application granted granted Critical
Publication of JP5048596B2 publication Critical patent/JP5048596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、透過電子顕微鏡又は走査透過電子顕微鏡を用い、微小試料の回転投影像シリーズから三次元構造を再構成するトモグラフィー法に適用される試料台,試料回転ホルダ,試料台作製方法,及び試料分析方法に関する。   The present invention relates to a sample table, a sample rotation holder, a sample table preparation method, and a sample that are applied to a tomography method for reconstructing a three-dimensional structure from a series of rotational projection images of a micro sample using a transmission electron microscope or a scanning transmission electron microscope. It relates to the analysis method.

TEM(transmission electron microscope:透過電子顕微鏡)やSTEM(scanning transmission electron microscope:走査透過電子顕微鏡)を用いて、本来、微小試料が有する三次元の構造を観察するニーズが高まってきている。   There is a growing need for observing the three-dimensional structure of a micro sample by using a transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM).

微小試料の三次元構造の観察方法では、観察対象のマイクロサンプリングした試料は試料台に搭載され、電子顕微鏡によりその観察が行われる。   In the method of observing a three-dimensional structure of a micro sample, a micro sampled object to be observed is mounted on a sample stage and observed by an electron microscope.

電子顕微鏡用の試料台は、試料の種類や観察目的等に合わせて種々のものがある。例えば、観察対象が生物切片や粒子状試料である場合に多く使用され、厚さが数100μmの金属製円盤で内部がメッシュ状になった試料台や、観察対象が各種材料系である場合に使用され、薄膜試料を接着剤等で固定した厚さが数100μmの金属製リング状試料台がある。これ以外にも、特開2004−199969号公報,特開2007−18944号公報に記載の、試料回転ホルダ用ニードル型試料台等がある。   There are various types of sample tables for electron microscopes according to the type of sample and the purpose of observation. For example, it is often used when the observation target is a biological section or a particulate sample, and when the sample base is a metal disk with a thickness of several hundreds of micrometers and the inside is a mesh, or when the observation target is a variety of material systems There is a metal ring-shaped sample stage having a thickness of several hundreds μm in which a thin film sample is fixed with an adhesive or the like. In addition to this, there are needle-type sample stands for sample rotation holders described in JP-A-2004-199969 and JP-A-2007-18944.

試料が搭載された試料台は、電子顕微鏡用試料ホルダに装着されて、電子顕微鏡の試料室に挿入される。この試料室内では、試料台を数度(1〜5°)ステップで最大傾斜角度範囲を試料傾斜(回動)させながら、各試料傾斜位置(各回動位置)毎に、試料台をその回転軸を中心に回転して、回転位置に応じた試料の透過像を記録していく。なお、この透過像の記録時には、試料台の回転時における試料の位置ずれを抑えるため、試料を試料台の回転軸中心に搭載しておく必要がある。   The sample stage on which the sample is mounted is mounted on an electron microscope sample holder and inserted into the sample chamber of the electron microscope. In the sample chamber, the sample stage is rotated at its rotation axis in each sample tilt position (each rotation position) while the sample stage is tilted (rotated) within the maximum tilt angle range in steps of several degrees (1 to 5 °). And a transmission image of the sample corresponding to the rotational position is recorded. When recording the transmission image, it is necessary to mount the sample at the center of the rotation axis of the sample stage in order to suppress the positional deviation of the sample when the sample stage is rotated.

その後、試料台の試料傾斜位置(試料台の回動位置)並びに試料台の回転位置に応じて記録した試料の各画像データについて、画像データ間の位置ずれを補正し、各画像データを画像相互間で座標合わせをした共通座標に基づく画像データに変換する。なお、このデータ変換における画像データの位置合わせの精度は、試料の三次元構造の再構成の精度に直接関連し、画素単位の精度が要求される。   After that, for each sample image data recorded in accordance with the sample tilt position of the sample stage (rotation position of the sample stage) and the rotation position of the sample stage, the positional deviation between the image data is corrected, and the image data are converted to each other. The image data is converted into image data based on the common coordinates obtained by matching the coordinates. Note that the accuracy of the image data alignment in this data conversion is directly related to the accuracy of the reconstruction of the three-dimensional structure of the sample, and accuracy in units of pixels is required.

そして、この画像相互間で座標合わせをした試料の回転位置に対応した投影像を基に、試料の三次元構造の再構成を行い、構築した試料の三次元構造を表示する。   The three-dimensional structure of the sample is reconstructed based on the projection image corresponding to the rotational position of the sample, which is coordinated between the images, and the three-dimensional structure of the constructed sample is displayed.

この三次元構造の再構成は、例えば特開平3−110126号公報に記載されているように、投影切断面定理を用いて各2次元断面を再構成し、それらを積み重ねて三次元構造を構築することによって行われる。   This three-dimensional structure is reconstructed by, for example, reconstructing each two-dimensional section using the projected cutting plane theorem and stacking them to construct a three-dimensional structure, as described in JP-A-3-110126. Is done by doing.

ところで、このような試料の三次元構造の観察方法では、その画像相互間の位置合わせの方法として、マーカ法と位置相関法との2つの方法が知られている(社団法人日本顕微鏡学会発行 「顕微鏡」 Vol.39, No.1(2004)p.11-14 参照)。   By the way, in such a method for observing the three-dimensional structure of a sample, two methods, a marker method and a position correlation method, are known as methods for positioning the images (published by the Japanese Society of Microscopy, “ Microscope "Vol.39, No.1 (2004) p.11-14).

マーカ法を用いる場合は、一般的に試料作製時に試料に直径10nmから15nmの金微粒子を付着(蒸着)させてから観察を行い、その後、金微粒子の位置から各回転像の位置合わせを行うようになっている(社団法人日本顕微鏡学会発行 「顕微鏡」Vol.39,No.1(2004), p.15-17 参照)。   When using the marker method, generally, observation is performed after depositing (depositing) gold fine particles having a diameter of 10 nm to 15 nm on a sample at the time of sample preparation, and thereafter, each rotational image is aligned from the position of the gold fine particles. (Refer to “Microscope” Vol.39, No.1 (2004), p.15-17 published by the Japanese Society of Microscopy).

これに対し、試料自体にマーカを付すことなく、試料を観察する場合、画像データの位置合わせの精度向上のためには、試料台の回転軸中心に試料を搭載する必要がある。しかしながら、実際には、試料台の回転軸中心に正確に試料を搭載することは困難である。   On the other hand, when observing a sample without attaching a marker to the sample itself, it is necessary to mount the sample at the center of the rotation axis of the sample stage in order to improve the accuracy of image data alignment. However, in practice, it is difficult to accurately mount the sample at the center of the rotation axis of the sample table.

試料が粒子状である場合は、粒子状の試料を、試料台上に直接降り掛けたり、アルコール等に分散させてからその液滴を試料台上に滴下したりするため、試料台上における試料位置を制御することは困難である。   When the sample is in the form of particles, the sample on the sample table is used to drop the particle sample directly on the sample table or to disperse the droplets on the sample table after being dispersed in alcohol or the like. It is difficult to control the position.

さらに、試料に付すマーカとは異なるマーカとして、特開2007−18944号公報に記載のように、柱状試料台上の面部に、目印となる回転角目盛りを設けたものがある。   Further, as a marker different from the marker attached to the sample, there is one provided with a rotation angle scale serving as a mark on a surface portion on a columnar sample stage as described in JP-A-2007-18944.

特開2004−199969号公報Japanese Patent Laid-Open No. 2004-199969 特開2007−18944号公報JP 2007-18944 A 特開平3−110126号公報JP-A-3-110126 「顕微鏡」 Vol.39, No.1(2004)p.11-14`` Microscope '' Vol.39, No.1 (2004) p.11-14 「顕微鏡」Vol.39,No.1(2004), p.15-17`` Microscope '' Vol.39, No.1 (2004), p.15-17

しかしながら、上述した従来技術においては、次のような問題点がある。
まず、金微粒子を使ったマーカ法の場合、試料に付着した金微粒子が試料本来の構造観察の邪魔になるばかりか、またX線分析時には試料由来ではない金の特性X線が検出され易い。そのため、X線分析時には、金(Au)の特性X線のエネルギー(Mα:9.7eV)に近い特性X線のエネルギーを有する試料中の元素(例えば、白金の特性X線エネルギーはMα:9.4eV)の判別がし難くなる。これは、一般的に特性X線を測定するエネルギー分散型X線分析(EDX:Energy dispersive X-ray analysis)装置のエネルギー分解能が130eV〜150eV程度であることに起因する。
However, the above-described prior art has the following problems.
First, in the case of the marker method using gold fine particles, the gold fine particles attached to the sample not only interfere with the observation of the original structure of the sample, but also characteristic X-rays of gold not derived from the sample are easily detected during X-ray analysis. Therefore, at the time of X-ray analysis, an element in a sample having a characteristic X-ray energy close to the characteristic X-ray energy (Mα: 9.7 eV) of gold (Au) (for example, the characteristic X-ray energy of platinum is Mα: 9 .4 eV) is difficult to discriminate. This is because the energy resolution of an energy dispersive X-ray analysis (EDX) apparatus that measures characteristic X-rays is generally about 130 eV to 150 eV.

また、メッシュ状又はリング状試料台を用い、試料台を大きく傾斜させた状態で試料を観察する場合は、その試料や薄膜試料が試料傾斜軸を中心に試料台ごと傾斜された状態になっており、電子線は試料傾斜軸に垂直な所定方向から入射するため、その状態で試料台を回転させると、試料台が影になったり、試料の厚みが見かけ上、厚くなり、試料台のメッシュやリングの形状も変化してしまうため、マーカとなる部位を見失ってしまう等の問題がある。   Also, when using a mesh or ring sample stage and observing the sample with the sample stage tilted significantly, the sample or thin film sample is tilted with the sample stage about the sample tilt axis. Since the electron beam is incident from a predetermined direction perpendicular to the sample tilt axis, if the sample stage is rotated in that state, the sample stage becomes shadowed or the thickness of the sample is apparently increased, resulting in a mesh of the sample stage. Since the shape of the ring and the ring also change, there is a problem that the part that becomes the marker is lost.

また、特開2004−199969号公報、特開2007−18944号公報に記載の試料回転ホルダ用ニードル型試料台の場合、例えば特開2007−18944号公報の図3には、試料台の試料が搭載される先端部を先端が鋭角に形成した針状の試料台が示されている。しかしながら、試料台を大きく傾斜させた状態で試料を観察する場合は、前述した従来技術の場合と同様に、試料台の先端部が影になったり、試料台の傾斜状態でその先端部の見かけ上の形状も変化してしまうので、依然としてマーカとなる部位を見失ってしまう等の問題がある。   Further, in the case of the needle-type sample stage for the sample rotating holder described in JP-A-2004-199969 and JP-A-2007-18944, for example, FIG. A needle-like sample stage is shown in which the tip to be mounted is formed with a sharp tip. However, when observing a sample with the sample table tilted greatly, the tip of the sample table becomes a shadow or the tip of the sample table appears in an inclined state as in the case of the prior art described above. Since the upper shape also changes, there are still problems such as losing sight of a marker portion.

本発明は、上述した従来の問題点を鑑みなされたものであって、試料を試料台の回転軸上に容易に搭載でき、全回転角において、観察・分析を正確に行うことができるとともに、集束イオンビームで試料を追加工する際にも試料を汚すおそれのない試料台,試料回転ホルダ,試料台作製方法,及び試料分析方法を提供すること目的とする。   The present invention has been made in view of the above-described conventional problems, and the sample can be easily mounted on the rotation axis of the sample stage, and can be accurately observed and analyzed at all rotation angles. It is an object of the present invention to provide a sample table, a sample rotating holder, a sample table preparation method, and a sample analysis method that do not cause the sample to be contaminated when a sample is additionally processed with a focused ion beam.

本発明は、試料を回転させながら収集した2次元画像を基に試料の3次元再構成像を得る際に、取得画像の位置合わせが容易な試料台,試料回転ホルダ,試料台作製方法,及び試料分析方法を提供すること目的とする。   The present invention provides a sample table, a sample rotating holder, a sample table preparation method, and a sample table that can be easily aligned when obtaining a three-dimensional reconstruction image of a sample based on a two-dimensional image collected while rotating the sample. It is an object to provide a sample analysis method.

上記した目的を達成するために、本発明は、試料を搭載するための試料台の、試料の回転軸と同軸の先端に、球体部又は半球体部を設けたことを特徴とする。   In order to achieve the above-described object, the present invention is characterized in that a sphere portion or a hemisphere portion is provided at the tip of the sample stage for mounting the sample, which is coaxial with the rotation axis of the sample.

本発明は、電子顕微鏡等といった荷電粒子線装置の試料回転ホルダに備えられた試料台にあって、試料台の回転軸線方向の試料搭載側の端面球体部又は半球体部による球面形状にして当該回転軸線の直交面に対し凸設するようにし、粉体試料である場合でも、試料を効率よく試料台の回転軸の軸心上に搭載でき、試料回転ホルダを回動させたり試料台を回転させたりしても、試料に照射される電子線を極力遮ることがないようにして、様々な方向から試料の電子顕微鏡像(投影像)を取得でき、その位置合わせを正確に行うことができるようにしたことを特徴とする。
The present invention, in the sample stage provided in the specimen rotation holder of the charged particle beam apparatus such as an electron microscope or the like, an end surface of the sample mounting side of the sample stage rotation axis direction in the spherical shape due to the spherical portion or a semi-spherical portion Projecting to the plane orthogonal to the rotation axis, even in the case of a powder sample, the sample can be efficiently mounted on the axis of the rotation axis of the sample table, and the sample rotation holder can be rotated or the sample table can be mounted. Even if it is rotated, the electron microscope image (projected image) of the sample can be acquired from various directions so that the electron beam irradiated to the sample is not blocked as much as possible, and the alignment can be performed accurately. It is possible to do it.

本発明は、電子顕微鏡等といった荷電粒子線装置の試料回転ホルダに備えられた、試料が搭載される試料台の先端を、マイクロサンプリング法により球体部又は半球体部にすることにより、試料を試料台の球体部又は半球体部の球面上に搭載すれば、実質的に試料台の回転軸に試料を搭載した場合と同様にして、三次元再構成の際の各像の位置合わせを容易かつ正確に行えるようにしたことを特徴とする。   The present invention provides a sample to a sample by changing the tip of a sample stage mounted on a sample rotation holder of a charged particle beam apparatus such as an electron microscope to a sphere or hemisphere by a microsampling method. When mounted on the spherical surface of the sphere part or hemisphere part of the stage, the positioning of each image during three-dimensional reconstruction can be easily and substantially the same as when the specimen is mounted on the rotation axis of the specimen stage. It is characterized by being able to perform accurately.

本発明は、試料台の先端を球体部又は半球体部にすることによって、この球体部又は半球体部に試料を搭載しさえすれば、試料はこの球体部又は半球体部の軸線上(回転軸上)に搭載されていることになり、この球体部又は半球体部を三次元再構成の際の各像の中心位置合わせに用いることよって、三次元再構成の際の各像の位置合わせを容易かつ正確にし、三次元再構成の忠実度を向上させたことを特徴とする。   In the present invention, the sample is placed on the axis of the sphere or hemisphere by rotating the tip of the sample stage into a sphere or hemisphere, as long as the sample is mounted on the sphere or hemisphere. By using this sphere or hemisphere for center alignment of each image during three-dimensional reconstruction, each image is aligned during three-dimensional reconstruction. It is easy and accurate, and the fidelity of three-dimensional reconstruction is improved.

また、本発明では、この試料台の先端に設けた球体部又は半球体部の材質には、試料と異なる任意の材質、又は集束イオンビームを用いた追加工時にもスパッタされにくい材質が選択されていることを特徴とする。   In the present invention, the material of the sphere or hemisphere provided at the tip of the sample stage is selected from an arbitrary material different from the sample or a material that is not easily sputtered during additional processing using a focused ion beam. It is characterized by.

また、本発明の試料台の作製は、FIB装置(focused ion beam system:集束イオンビーム装置)又はFIB−SEM(scanning electron microscope:走査電子顕微鏡)等に設けられた、球体部又は半球体部を取り扱うことが可能なマニュピレータによって行われることを特徴とする。   In addition, the sample stage of the present invention is manufactured by using a sphere or hemisphere provided in a FIB apparatus (focused ion beam system) or FIB-SEM (scanning electron microscope). It is performed by a manipulator capable of handling.

また、本発明では、試料の三次元構造の再構成時における、試料の回転位置に対応した複数の二次元の投影像の位置合わせは、投影像に含まれる試料台の球体部又は半球体部の形状自体が、マーカとして用いられることを特徴とする。   In the present invention, the alignment of the plurality of two-dimensional projection images corresponding to the rotation position of the sample at the time of reconstruction of the three-dimensional structure of the sample is performed by the spherical part or hemispherical part of the sample stage included in the projection image. The shape itself is used as a marker.

本発明によれば、試料台の回転中心に試料を容易に搭載可能で、試料の形状によらず、取得画像の位置合わせを任意の試料台の回転角に対し正確に行うことができ、さらに画像や分析結果に影響を与えない、忠実度の高い、三次元再構成像を得ることが可能になる。   According to the present invention, the sample can be easily mounted at the rotation center of the sample stage, and the alignment of the acquired image can be accurately performed with respect to the rotation angle of any sample stage regardless of the shape of the sample. It is possible to obtain a three-dimensional reconstructed image with high fidelity that does not affect the image or the analysis result.

以下、図面を参照して本発明について説明する。   The present invention will be described below with reference to the drawings.

<試料台>
図1は、本発明の一実施の形態としての試料台の要部の構成図である。
試料台1は、断面円形の試料台本体10を有し、試料台本体10の軸線方向一端側の試料搭載側は、外径側に対して内径側が試料台本体10の軸方向に突出した環状テーパ面部11と、この環状テーパ面部11の内方の軸側端面部12とを有する形状になっている。そして、軸側端面部12には、球体部13がその中心を試料台本体10の軸線上に位置させて、試料台本体10に対して同軸に装着されている。これにより、球体部13の一部表面部(露出球面部)14は、環状テーパ面部11の内周側よりもさらに試料台本体10の軸線方向に突出するようになっている。
<Sample stage>
FIG. 1 is a configuration diagram of a main part of a sample table as an embodiment of the present invention.
The sample stage 1 has a sample stage body 10 having a circular cross section, and the sample mounting side on one end side in the axial direction of the sample stage body 10 has an annular shape in which the inner diameter side protrudes in the axial direction of the sample stage body 10 with respect to the outer diameter side. It has a shape having a tapered surface portion 11 and an axial end surface portion 12 inside the annular tapered surface portion 11. The spherical end portion 13 is mounted on the shaft side end surface portion 12 coaxially with the sample stage main body 10 with its center positioned on the axis of the sample stage main body 10. As a result, the partial surface portion (exposed spherical surface portion) 14 of the spherical body portion 13 protrudes further in the axial direction of the sample stage main body 10 than the inner peripheral side of the annular tapered surface portion 11.

図1(a),(c)は、環状テーパ面部11の内径よりも小径の直径を有する球体部13を、試料台本体10の軸側端面部12に装着した実施例を示したものである。この場合、球体部13の露出球面部14は、試料台本体10の軸線と垂直な方向(試料台本体10の径方向)に、環状テーパ面部11の内径側からテーパ面に突出しないようになっている。   FIGS. 1A and 1C show an embodiment in which a spherical body portion 13 having a diameter smaller than the inner diameter of the annular tapered surface portion 11 is mounted on the shaft side end surface portion 12 of the sample stage main body 10. . In this case, the exposed spherical surface portion 14 of the spherical body portion 13 does not protrude from the inner diameter side of the annular tapered surface portion 11 to the tapered surface in the direction perpendicular to the axis of the sample table body 10 (the radial direction of the sample table body 10). ing.

これに対し、図1(b),(d)は、環状テーパ面部11の内径以上の大きさの直径を有する球体部13を、試料台本体10の軸側端面部12に装着した実施例を示したものである。この場合、球体部13の露出球面部14は、試料台本体10の軸線と垂直な方向(試料台本体10の径方向)に、環状テーパ面部11の内径側からテーパ面に対して突出できるようになる。   On the other hand, FIGS. 1B and 1D show an embodiment in which a spherical body portion 13 having a diameter larger than the inner diameter of the annular tapered surface portion 11 is attached to the shaft side end surface portion 12 of the sample stage main body 10. It is shown. In this case, the exposed spherical surface portion 14 of the spherical body portion 13 can protrude from the inner diameter side of the annular tapered surface portion 11 with respect to the tapered surface in a direction perpendicular to the axis of the sample table main body 10 (radial direction of the sample table main body 10). become.

また、試料台本体10の軸側端面部12に球体部13装着する際の位置決めのために、図1(a),(b)に示した実施例では、試料台本体10の軸側端面部12には、球体部13の一部表面部が当接係合して球体部13の一部が軸側端面部12に埋設されるように、曲率半径が球体部13の半径と略等しい球面凹部15が、試料台本体10の軸線と同軸に形成されている。この球面凹部15の軸方向深さ(球体部13の軸側端面部12への埋設深さ)は、球体部13の球面における露出球面部14の度合いに応じて適宜形成され、この球面凹部15の軸方向深さが球体部13の半径に比して小さい程、球体部13の球面における露出球面部14の面積の度合いは大きくなる。そして、環状テーパ面部11の内径よりも球体部13の直径が大きい上で、この球面凹部15の軸方向深さが球体部13の半径に比して小さくなる程、露出球面部14の環状テーパ面部11のテーパ面側に向く部分が拡大する。   In addition, in the embodiment shown in FIGS. 1 (a) and 1 (b), the axial end surface portion of the sample stage main body 10 is used for positioning when the spherical body portion 13 is mounted on the axial side end face portion 12 of the sample stage main body 10. 12, a spherical surface whose radius of curvature is substantially equal to the radius of the spherical portion 13 so that a partial surface portion of the spherical portion 13 abuts and engages, and a portion of the spherical portion 13 is embedded in the axial end surface portion 12. A recess 15 is formed coaxially with the axis of the sample stage main body 10. The depth in the axial direction of the spherical recess 15 (the embedding depth of the spherical portion 13 in the axial end surface portion 12) is appropriately formed according to the degree of the exposed spherical portion 14 in the spherical surface of the spherical portion 13, and the spherical recess 15 The smaller the axial depth of the sphere portion 13 is, the smaller the degree of the area of the exposed spherical portion 14 in the spherical surface of the sphere portion 13 becomes. Further, as the diameter of the spherical portion 13 is larger than the inner diameter of the annular tapered surface portion 11 and the axial depth of the spherical concave portion 15 becomes smaller than the radius of the spherical portion 13, the annular tapered shape of the exposed spherical portion 14 is increased. A portion of the surface portion 11 facing the tapered surface side is enlarged.

これに対し、図1(c),(d)に示した実施例では、上述した球面凹部15に代え、球体部13の一部が軸側端面部12に埋没されるように、球体部13の露出球面部14と非露出球面部との境界部における球体部断面の直径と略同径の円形開口部16を有する孔17が、試料台本体10の軸線に沿って、軸側端面部12から内方に向かって延設されている。なお、孔17の形状は、その孔径が軸方向位置にかかわらず一定の円筒形状であってもよいし、その孔径が、図1(c),(d)に図示されているように環状テーパ面部11のテーパ面に沿って拡径する等、軸線方向位置に応じて変化している孔形状であってもよい。さらに、その孔17は、有底孔であっても、貫通孔であってもよい。そして、この図1(c),(d)に示した実施例の場合は、円形開口部16の直径寸法が球体部13の半径に比して小さい程、球体部13の球面における露出球面部14の面積の度合いは大きくなる。   On the other hand, in the embodiment shown in FIGS. 1C and 1D, the spherical body portion 13 is replaced so that a part of the spherical body portion 13 is buried in the shaft side end surface portion 12 instead of the spherical concave portion 15 described above. A hole 17 having a circular opening 16 having a diameter substantially the same as the diameter of the sphere section at the boundary between the exposed spherical surface portion 14 and the non-exposed spherical surface portion along the axis of the sample table main body 10. It extends from the inside to the inside. The shape of the hole 17 may be a constant cylindrical shape regardless of the axial position, and the hole diameter may be an annular taper as illustrated in FIGS. 1 (c) and 1 (d). The hole shape may be changed according to the position in the axial direction, such as expanding the diameter along the tapered surface of the surface portion 11. Further, the hole 17 may be a bottomed hole or a through hole. In the case of the embodiment shown in FIGS. 1C and 1D, the exposed spherical surface portion of the spherical surface of the spherical portion 13 is smaller as the diameter of the circular opening 16 is smaller than the radius of the spherical portion 13. The degree of the area of 14 becomes large.

球体部13や、この球体部13の球面における露出球面部14の大きさは、試料の大きさ又は形状等に合わせて、予め適宜設定されている。   The size of the spherical portion 13 and the exposed spherical portion 14 on the spherical surface of the spherical portion 13 are appropriately set in advance according to the size or shape of the sample.

図2は、図1に示した本発明の一実施の形態としての試料台の要部の変形例の構成図である。   FIG. 2 is a configuration diagram of a modified example of the main part of the sample stage as an embodiment of the present invention shown in FIG.

図2(a)は、図1(a),(b)に示した実施例が、球体部13の半球部分表面よりも少ない球面部が球面凹部15に埋没される構成であったのに対して、それよりも球面凹部15の軸方向深さを深くして、球体部13の球面における露出球面部14の度合いを小さくした実施例を示したものである。   FIG. 2A shows that the embodiment shown in FIGS. 1A and 1B has a configuration in which a spherical portion smaller than the surface of the hemispherical portion of the spherical portion 13 is buried in the spherical concave portion 15. In this embodiment, the depth of the spherical concave portion 15 in the axial direction is made deeper to reduce the degree of the exposed spherical portion 14 in the spherical surface of the spherical portion 13.

図2(b)は、図1(c),(d)に示した実施例が、球体部13の半球部分表面よりも少ない球面部が球体部13の直径よりも小さな直径の円形開口部16を有する孔17に埋設される構成であったのに対して、球体部13の直径と孔17の円形開口部16の直径とを略等しくして、球体部13の球面における露出球面部14の度合いを小さくした実施例を示したものである。   FIG. 2B shows a circular opening 16 in which the embodiment shown in FIGS. 1C and 1D has a spherical portion having a smaller spherical surface than the diameter of the spherical portion 13 with a smaller spherical portion than the surface of the hemispherical portion of the spherical portion 13. The diameter of the spherical portion 13 and the diameter of the circular opening 16 of the hole 17 are made substantially equal to each other so that the exposed spherical portion 14 of the spherical portion 13 has a spherical surface. An embodiment with a reduced degree is shown.

図3は、本発明の別の実施の形態の試料台の要部の構成図である。
図1及び図2に示した試料台1が、試料台本体10の軸線方向一端側の試料搭載側に、環状テーパ面部11と、軸側端面部12とを形成し、その軸方向端面部12に、別途作製された球体部13を装着した構成であったのに対し、図3に示した試料台1は、試料台本体10の軸線方向一端側の試料搭載側を機械加工又はレーザー加工等によって直接加工し、軸方向端面部12自体を球体部13に形成したものである。
FIG. 3 is a configuration diagram of a main part of a sample stage according to another embodiment of the present invention.
The sample stage 1 shown in FIG. 1 and FIG. 2 forms an annular taper surface part 11 and an axial end face part 12 on the sample mounting side on one end side in the axial direction of the sample base body 10, and the axial end face part 12 thereof. In addition, the sample stage 1 shown in FIG. 3 has a configuration in which a separately prepared sphere portion 13 is mounted, whereas the sample mounting side at one end in the axial direction of the sample stage body 10 is machined or laser processed. The axial end face 12 itself is formed in the sphere 13 by direct machining.

図3(a)に示した試料台1は、球体部13としての球体状の軸方向端面部12の露出球面部14と環状テーパ面部11のテーパ面とが、その境界部分で一体的に連続する稜線形状になっている。そのために、露出球面部14の試料台本体10の軸線に垂直な最大断面部分の直径は、環状テーパ面部11の内径と同径になっている。   In the sample table 1 shown in FIG. 3A, the exposed spherical surface portion 14 of the spherical axial end surface portion 12 as the spherical portion 13 and the tapered surface of the annular tapered surface portion 11 are integrally continuous at the boundary portion. It has a ridgeline shape. Therefore, the diameter of the maximum cross section perpendicular to the axis of the sample table main body 10 of the exposed spherical surface portion 14 is the same as the inner diameter of the annular tapered surface portion 11.

これに対し、図3(b)に示した試料台1は、球体部13としての球体状の軸方向端面部12の露出球面部14と環状テーパ面部11のテーパ面との境界部分が縊れ形状になっており、露出球面部14には環状テーパ面部11のテーパ面側に向く部分14aが含まれている。   On the other hand, in the sample table 1 shown in FIG. 3B, the boundary portion between the exposed spherical portion 14 of the spherical axial end surface portion 12 as the spherical portion 13 and the tapered surface of the annular tapered surface portion 11 is curled. The exposed spherical surface portion 14 includes a portion 14 a facing the tapered surface side of the annular tapered surface portion 11.

そのために、露出球面部14の試料台本体10の軸線に垂直な最大断面部分の直径は、環状テーパ面部11の内径よりも大きく、環状テーパ面部11の内径は、この最大断面部分よりも断面積が小さい、露出球面部14の断面直径と同径になっている。   Therefore, the diameter of the maximum cross-sectional portion perpendicular to the axis of the sample base body 10 of the exposed spherical surface portion 14 is larger than the inner diameter of the annular tapered surface portion 11, and the inner diameter of the annular tapered surface portion 11 is larger than the cross-sectional area than this maximum sectional portion. Is the same diameter as the cross-sectional diameter of the exposed spherical surface portion 14.

また、図1〜図3に示した試料台1において、環状テーパ面部11及び球体部13が形成された試料台本体10の少なくとも軸線方向一端側の材質は、試料のエネルギー分散型X線分析時に、電子線照射された試料台1から発生するX線(システムピーク)が試料の分析結果に影響を及ぼさない材質によって形成され、試料の高精度の組成分析が可能になっている。そのため、環状テーパ面部11及び球体部13が形成された試料台本体10の少なくとも軸線方向一端側の材質は、予め試料から想定される構成元素や確認したい構成元素に合わせて、適宜選択されるようになっている。   In addition, in the sample table 1 shown in FIGS. 1 to 3, the material on at least one axial end side of the sample table main body 10 on which the annular tapered surface portion 11 and the spherical body portion 13 are formed is used during the energy dispersion X-ray analysis of the sample. The X-rays (system peaks) generated from the sample stage 1 irradiated with the electron beam are formed of a material that does not affect the analysis result of the sample, thereby enabling highly accurate composition analysis of the sample. Therefore, the material on at least one axial end side of the sample table main body 10 on which the annular tapered surface portion 11 and the sphere portion 13 are formed may be appropriately selected in accordance with the constituent element assumed from the sample and the constituent element to be confirmed. It has become.

また、図1〜図3に示した試料台1において、環状テーパ面部11及び球体部13が形成された試料台本体10の少なくとも軸線方向一端側の材質は、各種イオンビームの照射によるスパッタレートの小さい材質であり、試料台1への試料固定後のイオンビームによる追加工時における、試料台1から試料へのスパッタ物の再付着のない材質が選択されるようになっている。   In addition, in the sample table 1 shown in FIGS. 1 to 3, the material of at least one axial end side of the sample table main body 10 on which the annular tapered surface portion 11 and the spherical body portion 13 are formed is a sputtering rate by irradiation with various ion beams. A material that is a small material and that does not reattach the sputtered material from the sample stage 1 to the sample during the additional processing by the ion beam after the sample is fixed to the sample stage 1 is selected.

<試料回転ホルダ>
図4は、本発明の一実施の形態としての試料回転ホルダの先端部の構成図である。
図4(a)は、試料回転ホルダの先端部の断面図を、図4(b)は、図4(a)中に記載したb−b矢視方向に試料回転ホルダの先端部を眺めた外観図を示したものである。
<Sample rotation holder>
FIG. 4 is a configuration diagram of a tip portion of a sample rotation holder as an embodiment of the present invention.
4A is a cross-sectional view of the tip of the sample rotating holder, and FIG. 4B is a view of the tip of the sample rotating holder in the direction of the arrow bb described in FIG. 4A. An external view is shown.

試料回転ホルダ3は、FIB(集束イオンビーム装置)と、電子顕微鏡(SEM,TEM,STEM)との間で共用可能になっており、いずれの装置の場合にも、試料室内に挿入可能なように構成されている。   The sample rotating holder 3 can be shared between an FIB (focused ion beam device) and an electron microscope (SEM, TEM, STEM), and can be inserted into the sample chamber in any case. It is configured.

試料回転ホルダ3は、その先端側のホルダ軸31が、自身の軸線周りに360°回転可能に構成なっており、ホルダ軸31の内部には、ホルダ軸31の回転軸線と同軸に、ホルダ軸31に対して独立して回転自在な試料回転軸32が、ホルダ軸31の基端側から先端側に向けて延設されている。試料回転軸32は、ホルダ軸31の任意の回転位置で、ホルダ軸31とは独立して回転できるように、ホルダ軸31の内部に保持されている。   The sample rotating holder 3 is configured such that the holder shaft 31 on the tip end side thereof can rotate 360 ° around its own axis, and the holder shaft 31 has a holder shaft coaxially with the rotation axis of the holder shaft 31. A sample rotating shaft 32 that is rotatable independently of the shaft 31 extends from the proximal end side of the holder shaft 31 toward the distal end side. The sample rotation shaft 32 is held inside the holder shaft 31 so that the sample rotation shaft 32 can rotate independently of the holder shaft 31 at an arbitrary rotation position of the holder shaft 31.

ホルダ軸31の先端側部分には、試料台1が収容保持される試料台収容室33が形成されており、ホルダ軸31には、試料回転ホルダ3がFIB装置に装着された際に入射するイオンビーム6を遮ることがないように、又、マイクロプローブの先端を試料台収容室33内に挿入できるように、開放部34が形成されている。 図示の例では、この開放部34によって、ホルダ軸31の軸線と交差するように、試料台収容室33は、その試料台搭載面35に対して平行方向及び鉛直方向が開放されている。   A sample stage storage chamber 33 in which the sample stage 1 is accommodated and held is formed at the tip side portion of the holder shaft 31, and enters the holder shaft 31 when the sample rotation holder 3 is mounted on the FIB apparatus. An open portion 34 is formed so that the tip of the microprobe can be inserted into the sample stage storage chamber 33 so as not to block the ion beam 6. In the illustrated example, the sample stage storage chamber 33 is opened in a parallel direction and a vertical direction with respect to the sample stage mounting surface 35 so as to intersect the axis of the holder shaft 31 by the opening 34.

その上で、試料台収容室33には、有底円筒形状の試料台挿入部36が、試料台搭載面35に対して回転可能に、その回転軸としての中心軸線をホルダ軸31の回転軸線と直交させるようにして設けられている。この試料台挿入部36の有底円筒部内には、試料台本体10の試料搭載側とは反対側の、試料台本体10の他端側の円柱形状部分が挿入されて、試料台1は、試料回転ホルダ3に保持される構成になっている。   In addition, in the sample stage storage chamber 33, the bottomed cylindrical sample stage insertion portion 36 is rotatable with respect to the sample stage mounting surface 35, and the central axis as the rotation axis thereof is the rotation axis of the holder shaft 31. And are provided so as to be orthogonal to each other. A cylindrical part on the other end side of the sample stage main body 10 on the opposite side to the sample mounting side of the sample stage main body 10 is inserted into the bottomed cylindrical portion of the sample stage insertion portion 36. It is configured to be held by the sample rotation holder 3.

一方、ホルダ軸31の基端側から先端側に向けて延設され試料回転軸32の先端側は、試料台収容室33内に臨んで試料台挿入部36と係合して、試料回転軸32自身の回転を試料回転ホルダ3に伝達する構成になっている。そのために、試料回転軸32の先端側には、自身の回転を、互いの回転軸線を直交させるように設けられている試料台挿入部36の伝達するための傘歯車37が設けられ、試料台挿入部36の開口側端面にも、この傘歯車37と歯合し、試料台挿入部36を回転させる傘歯車38が設けられている。   On the other hand, the distal end side of the sample rotating shaft 32 that extends from the proximal end side to the distal end side of the holder shaft 31 faces the sample table accommodating chamber 33 and engages with the sample table inserting portion 36, so that the sample rotating shaft The rotation of 32 itself is transmitted to the sample rotation holder 3. For this purpose, a bevel gear 37 is provided on the tip side of the sample rotation shaft 32 to transmit the rotation of the sample rotation shaft 32 to the sample table insertion portion 36 provided so that the rotation axes are orthogonal to each other. A bevel gear 38 that meshes with the bevel gear 37 and rotates the sample stage insertion portion 36 is also provided on the opening-side end surface of the insertion portion 36.

これにより、ホルダ軸31が回転することにより、このホルダ軸31の試料台収容室33に設けられた試料台挿入部36、及びこの試料台挿入部36に挿入配置された試料台1は、ホルダ軸31の回転軸線を中心に360°回動するようになっている。また、このホルダ軸31内の試料回転軸32が回転することにより、このホルダ軸31の試料台収容室33に設けられた試料台挿入部36、及びこの試料台挿入部36に挿入配置された試料台1は、試料台搭載面35上で、試料台本体10の軸線を中心にして360°回転する構成になっている。   Thereby, when the holder shaft 31 rotates, the sample stage insertion part 36 provided in the sample stage accommodation chamber 33 of the holder axis 31 and the sample stage 1 inserted and arranged in the sample stage insertion part 36 are The shaft 31 is rotated 360 ° around the rotation axis. Further, by rotating the sample rotation shaft 32 in the holder shaft 31, the sample table insertion portion 36 provided in the sample table storage chamber 33 of the holder shaft 31 and the sample table insertion portion 36 are inserted and arranged. The sample stage 1 is configured to rotate 360 ° around the axis of the sample stage body 10 on the sample stage mounting surface 35.

試料回転ホルダ3は、図示しない電子顕微鏡鏡筒の側部から、挿入可能なように構成され、イオンビ−ム(FIB)6によって加工された試料の任意の箇所について、透過電子線8を用いた観察が可能となる。   The sample rotating holder 3 is configured so that it can be inserted from the side of an electron microscope barrel (not shown), and a transmission electron beam 8 is used at an arbitrary portion of the sample processed by the ion beam (FIB) 6. Observation becomes possible.

<FIB加工装置>
図5は、本発明の球体部を装備した試料台の作製に用いるFIB加工装置の構成図である。
FIB加工装置(集束イオンビーム装置)5の鏡体50は、イオン銃51,コンデンサーレンズ52,絞り53,走査電極54,対物レンズ55が備えられて構成されている。
<FIB processing equipment>
FIG. 5 is a configuration diagram of an FIB processing apparatus used for manufacturing a sample stage equipped with the sphere portion of the present invention.
The mirror body 50 of the FIB processing apparatus (focused ion beam apparatus) 5 includes an ion gun 51, a condenser lens 52, a diaphragm 53, a scanning electrode 54, and an objective lens 55.

FIB加工装置5の試料室56には、試料9を取り付けた試料回転ホルダ3,その上方に二次電子検出器57,試料9への保護膜の形成及び試料台10への試料9の固定等のために用いられるデポジション銃58,FIB加工により作製した試料の運搬のためのマイクロプローブ59が取り付けられている。   In the sample chamber 56 of the FIB processing apparatus 5, a sample rotating holder 3 to which a sample 9 is attached, a secondary electron detector 57 above it, formation of a protective film on the sample 9, fixation of the sample 9 to the sample stage 10, etc. A deposition gun 58 used for the purpose, and a microprobe 59 for transporting a sample produced by FIB processing are attached.

二次電子検出器57には走査像表示装置60が接続されている。走査像表示装置60は走査電極制御部61を介して走査電極54に接続されている。また、マイクロプローブ59にはマイクロプローブ59の位置制御を行うためのマイクロプローブ制御装置62が接続されている。また、試料回転ホルダ3は、ホルダ制御部63に接続されている。   A scanning image display device 60 is connected to the secondary electron detector 57. The scanning image display device 60 is connected to the scanning electrode 54 via the scanning electrode control unit 61. The microprobe 59 is connected to a microprobe control device 62 for controlling the position of the microprobe 59. The sample rotation holder 3 is connected to a holder control unit 63.

イオン銃51から放出されたイオンビーム6は、コンデンサーレンズ52と絞り53により収束され、対物レンズ55を通過し、試料9上に照射される。対物レンズ55上方の走査電極54は、走査電極制御部61の指示により、試料9に入射するイオンビーム6を偏向し走査させる。イオンビーム6が試料9に照射されると、試料9からは二次電子が発生する。発生した二次電子は、二次電子検出器57により検出され走査像表示装置60に試料像として表示される。   The ion beam 6 emitted from the ion gun 51 is converged by the condenser lens 52 and the diaphragm 53, passes through the objective lens 55, and is irradiated onto the sample 9. The scanning electrode 54 above the objective lens 55 deflects and scans the ion beam 6 incident on the sample 9 according to an instruction from the scanning electrode control unit 61. When the sample 9 is irradiated with the ion beam 6, secondary electrons are generated from the sample 9. The generated secondary electrons are detected by the secondary electron detector 57 and displayed on the scanning image display device 60 as a sample image.

デポジション銃58より試料9等の加工対象方向に放出されたガスは、イオンビーム6の照射により分解され、ガスを構成していた金属が試料9等の面上のイオンビーム6照射領域に堆積する。この堆積膜は、球体部13又は試料9へプローブ59の固定、及びFIB加工前の試料9の表面の保護膜の形成、並びに試料9の試料台球体部13への固定等に用いられる。   The gas emitted from the deposition gun 58 in the direction of the processing object such as the sample 9 is decomposed by the irradiation of the ion beam 6, and the metal constituting the gas is deposited in the irradiation region of the ion beam 6 on the surface of the sample 9 and the like. To do. This deposited film is used for fixing the probe 59 to the sphere portion 13 or the sample 9, forming a protective film on the surface of the sample 9 before FIB processing, fixing the sample 9 to the sample base sphere portion 13, and the like.

加工位置の設定は、試料回転ホルダ3に接続されたホルダ制御部63により、試料回転ホルダ3の位置を移動するか、又はイオンビーム6の走査領域を制御することにより変えることができる。また、試料回転ホルダ3に接続されたホルダ制御部63により試料回転ホルダ3を回転させ、イオンビーム6の光軸上で光軸に対する照射面の角度を変えることが可能で、様々な角度から試料を加工することが可能である。   The setting of the processing position can be changed by moving the position of the sample rotating holder 3 or controlling the scanning region of the ion beam 6 by the holder control unit 63 connected to the sample rotating holder 3. Further, it is possible to change the angle of the irradiation surface with respect to the optical axis on the optical axis of the ion beam 6 by rotating the sample rotating holder 3 by the holder control unit 63 connected to the sample rotating holder 3. Can be processed.

<試料台作製方法>
上述のFIB加工装置5を用い、図1(a),(b)に示した試料台1の作製する場合を例に、試料台1の作製方法について説明する。
<Sample preparation method>
A method for producing the sample stage 1 will be described by taking as an example the case of producing the sample stage 1 shown in FIGS. 1A and 1B using the FIB processing apparatus 5 described above.

図6は、本発明の一実施の形態の試料台作製方法の説明図である。
FIB加工装置5の試料室56に、球体部13をテープ64で固定したFIB用平面試料ホルダ65をセットする。この球体部13の材質は、試料9と異なる任意の材質、又は集束イオンビームを用いた追加工時にもスパッタされにくい材質が選択されている。
FIG. 6 is an explanatory diagram of a sample stage manufacturing method according to an embodiment of the present invention.
In the sample chamber 56 of the FIB processing apparatus 5, a FIB flat sample holder 65 in which the sphere 13 is fixed with a tape 64 is set. As the material of the spherical portion 13, an arbitrary material different from that of the sample 9, or a material that is not easily sputtered even during additional processing using a focused ion beam is selected.

次に、マイクロプローブ(マニュピレータ)59を、FIB用平面試料ホルダ65に載置された球体部13の側面部に接触させてデポジション銃58から放出させ、FIB誘起デポジション(ガスアシストデポジション)によるデポジション膜66で固定する(図6(a))。固定後、マイクロプローブ59を移動させて球体部13をFIB用平面試料ホルダ65から吊り上げ、マイクロプローブ59ごと一旦退避させておく。   Next, the microprobe (manipulator) 59 is released from the deposition gun 58 in contact with the side surface portion of the sphere 13 placed on the FIB flat sample holder 65, and FIB induced deposition (gas assist deposition). It fixes with the deposition film | membrane 66 by (FIG. 6 (a)). After fixing, the microprobe 59 is moved to suspend the sphere 13 from the FIB flat sample holder 65, and the microprobe 59 is temporarily retracted.

試料台1を試料回転ホルダ3に取り付け、FIB加工装置5の試料室56に挿入する(図6(b))。そして、試料台1の軸側端面部12の平坦面をイオンビーム(FIB)6で加工し、球体部13の露出球面部14と非露出球面部との境界部における球体部断面の直径と略同径の大きさ開口を有する、曲率半径が球体部13の半径と略等しい球面凹部15を加工する(図6(c))。   The sample stage 1 is attached to the sample rotation holder 3 and inserted into the sample chamber 56 of the FIB processing apparatus 5 (FIG. 6B). Then, the flat surface of the axial end surface portion 12 of the sample stage 1 is processed with an ion beam (FIB) 6, and the diameter of the cross section of the sphere portion at the boundary portion between the exposed spherical portion 14 and the non-exposed spherical portion of the sphere portion 13 is substantially equal. A spherical concave portion 15 having an opening having the same diameter and having a radius of curvature substantially equal to the radius of the spherical portion 13 is processed (FIG. 6C).

次に、先にマイクロプローブ59ごと退避させていた球体部13を、マイクロプローブ59を移動させて試料台1の球面凹部15に嵌め込み(図6(d))、イオンビーム6によってマイクロプローブ59とデポジション膜66とを切り離す(図6(e))。   Next, the sphere portion 13 previously retracted together with the microprobe 59 is fitted into the spherical concave portion 15 of the sample stage 1 by moving the microprobe 59 (FIG. 6D). The deposition film 66 is separated (FIG. 6E).

本実施の形態の試料台作製方法では、このようにして、試料台本体10の軸線方向一端側の試料搭載側の軸側端面部12に球体部13を設け、試料搭載側の軸線方向端面が露出球面部14となった試料台1が作製される。   In the sample stage manufacturing method of the present embodiment, the sphere part 13 is thus provided on the axis side end surface part 12 on the sample mounting side on one end side in the axial direction of the sample stage main body 10, and the end surface in the axial direction on the sample mounting side is The sample table 1 having the exposed spherical surface portion 14 is produced.

なお、球体部13の試料台1の球面凹部15に対しての装着固定方法は、上記した嵌め込みに限ることなく、他の装着固定方法を用いてもよく、例えば、球体部13の試料台1の球面凹部15に載置した後、試料台1の球体部13の露出球面部14と非露出球面部との境界部をガスアシストデポジションによって装着固定するようにしてもよい。   Note that the mounting and fixing method of the sphere portion 13 with respect to the spherical recess 15 of the sample stage 1 is not limited to the above-described fitting, and other mounting and fixing methods may be used. For example, the sample stage 1 of the sphere portion 13 may be used. Then, the boundary portion between the exposed spherical surface portion 14 and the non-exposed spherical surface portion of the sphere portion 13 of the sample stage 1 may be mounted and fixed by gas assist deposition.

その後の試料台1への試料9の搭載は、例えば、試料9が粒子状試料の場合、球体部13上部から、試料9を振りかけることにより、試料9を試料台1に搭載する(図6(f))。   For example, when the sample 9 is a particulate sample, the sample 9 is mounted on the sample stage 1 by sprinkling the sample 9 from the upper part of the sphere 13 (FIG. 6 ( f)).

また、試料9がFIB加工試料の場合は、別途マイクロプローブ59で試料9を吊り上げ、球体部13の球体面の略中心に試料9を設置し、デポジション銃58からガスを放出し、試料9と球体部13の球体面との接触部にイオンビーム6を走査して照射し、この接触部にデポジション膜を作製することにより試料9を試料台1に固定する。   When the sample 9 is a FIB processed sample, the sample 9 is separately lifted by the microprobe 59, the sample 9 is placed at the approximate center of the sphere surface of the sphere portion 13, the gas is discharged from the deposition gun 58, and the sample 9 The sample 9 is fixed to the sample stage 1 by scanning and irradiating the ion beam 6 to a contact portion between the sphere portion 13 and the sphere surface of the sphere portion 13 and forming a deposition film on the contact portion.

そして、試料の三次元構造の観察では、このようにして試料台1に搭載又は固定した試料9を装填した試料回転ホルダ3ごと、電子顕微鏡7の鏡体試料室76に挿入し、試料9を複数方向から観察する。   In the observation of the three-dimensional structure of the sample, the sample rotating holder 3 loaded with the sample 9 mounted or fixed on the sample stage 1 in this way is inserted into the body sample chamber 76 of the electron microscope 7, and the sample 9 is inserted. Observe from multiple directions.

なお、このような試料台1の作製方法は、マイクロプローブを備え、ガスアシストデポジション機能を備えた電子顕微鏡を用いても可能である。   It should be noted that such a method for producing the sample stage 1 is also possible using an electron microscope that includes a microprobe and has a gas-assisted deposition function.

<電子顕微鏡>
図7は、電子顕微鏡の一実施例である透過電子顕微鏡の構成図である。
透過電子顕微鏡7の鏡体70は、電子銃71、コンデンサーレンズ72、対物レンズ73、投射レンズ74が備えられて構成されている。コンデンサーレンズ72と対物レンズ73との間には、走査コイル75が配置されている。
<Electron microscope>
FIG. 7 is a configuration diagram of a transmission electron microscope which is an embodiment of an electron microscope.
The mirror body 70 of the transmission electron microscope 7 includes an electron gun 71, a condenser lens 72, an objective lens 73, and a projection lens 74. A scanning coil 75 is disposed between the condenser lens 72 and the objective lens 73.

鏡体試料室76には、試料回転ホルダ3が挿入される。試料回転ホルダ3は、試料ホルダ制御部77に接続されており、試料回転ホルダ3に搭載された試料9の回転はこの試料ホルダ制御部77から制御される。   The sample rotating holder 3 is inserted into the mirror sample chamber 76. The sample rotation holder 3 is connected to the sample holder control unit 77, and the rotation of the sample 9 mounted on the sample rotation holder 3 is controlled from the sample holder control unit 77.

試料9上方、走査コイル75の下には、二次電子検出器78が組み込まれている。 二次電子検出器78は、信号増幅器79を介して走査像表示用ディスプレイ80に接続されている。走査コイル75には、走査電源81が接続されており、走査電源81には、走査像表示用ディスプレイ80及び電子顕微鏡用CPU82が接続されている。   A secondary electron detector 78 is incorporated above the sample 9 and below the scanning coil 75. The secondary electron detector 78 is connected to a scanning image display 80 via a signal amplifier 79. A scanning power supply 81 is connected to the scanning coil 75, and a scanning image display display 80 and an electronic microscope CPU 82 are connected to the scanning power supply 81.

投射レンズ74の下方には、暗視野STEM像観察用の円環状検出器83が配置されている。円環状検出器83は、信号増幅器84を介して走査像表示用ディスプレイ80に接続されている。また、円環状検出器83の下方には光軸(電子線軸)からの出し入れが可能な明視野STEM像観察用検出器85が備えられており、信号増幅器86を介し走査像表示用ディスプレイ80に接続されている。   An annular detector 83 for observing dark field STEM images is disposed below the projection lens 74. The annular detector 83 is connected to the scan image display 80 via a signal amplifier 84. A bright field STEM image observation detector 85 that can be taken in and out of the optical axis (electron beam axis) is provided below the annular detector 83, and is connected to a scanning image display display 80 via a signal amplifier 86. It is connected.

明視野STEM像観察用検出器85の下方には、回折像観察用TVカメラ87が配置されている。回折像観察用TVカメラ87は、TV制御部88を介してTVモニタ89に接続されている。回折像観察用TV制御部88は電子顕微鏡用電子線装置用CPU82に接続されている。   A diffraction image observation TV camera 87 is arranged below the bright field STEM image observation detector 85. The diffraction image observation TV camera 87 is connected to a TV monitor 89 via a TV control unit 88. The diffraction image observation TV controller 88 is connected to an electron beam apparatus CPU 82 for an electron microscope.

試料9上方にはEDX検出器90が備えられており、EDX制御部91を介してEDXスペクトル及びマップ表示部92に表示される。   An EDX detector 90 is provided above the sample 9 and is displayed on the EDX spectrum and map display unit 92 via the EDX control unit 91.

電子線8は、コンデンサーレンズ72及び対物レンズ73により、試料9の試料面上でスポット状に収束され、走査コイル75によって試料9の試料面上を走査する。走査コイル75には、鋸歯状波電流が流される。   The electron beam 8 is focused in a spot shape on the sample surface of the sample 9 by the condenser lens 72 and the objective lens 73, and is scanned on the sample surface of the sample 9 by the scanning coil 75. A sawtooth current flows through the scanning coil 75.

電子線8の電子線束の試料9面上での走査幅は、この電流の大きさによって変化させる。同期した鋸歯状波信号は、走査像表示用ディスプレイ80の偏向コイルにも送られ、走査像表示用ディスプレイ80の走査表示電子線は、それぞれの画面を一杯に走査する。   The scanning width of the electron beam bundle of the electron beam 8 on the surface of the sample 9 is changed according to the magnitude of this current. The synchronized sawtooth wave signal is also sent to the deflection coil of the scanning image display 80, and the scanning display electron beam of the scanning image display 80 scans the respective screens.

二次電子検出器78は、電子線8の照射によって、試料9から放出される二次電子を検出して、信号増幅器79がその信号を増幅し、その信号で、走査像表示用ディスプレイ80の輝度変調が行われる。   The secondary electron detector 78 detects secondary electrons emitted from the sample 9 by irradiation of the electron beam 8, and the signal amplifier 79 amplifies the signal. Brightness modulation is performed.

明視野STEM像観察用検出器85では、試料9から角度が半角約50mrad以内で散乱を受けた透過電子を検出して、信号増幅器86がその信号を増幅し、その信号で、走査像表示用ディスプレイ80の輝度変調が行われる。   The bright field STEM image observation detector 85 detects transmitted electrons scattered from the sample 9 within a half angle of about 50 mrad, and the signal amplifier 86 amplifies the signal, and the signal is used for scanning image display. The brightness of the display 80 is modulated.

円環状検出器83についても同様であり、電子線8の照射によって、試料9から散乱角度が半角約80〜500mradの範囲で散乱した電子(弾性散乱電子)を検出し、信号増幅器84がその信号を増幅し、その信号で、走査像表示用ディスプレイ80の輝度変調が行われる。   The same applies to the annular detector 83, and the electrons (elastically scattered electrons) scattered from the sample 9 within the range of a half angle of about 80 to 500 mrad by the irradiation of the electron beam 8 are detected, and the signal amplifier 84 detects the signal. And the luminance modulation of the scanning image display 80 is performed with the signal.

この場合、像は、試料9の平均原子番号を反映したコントラストをもつ。これらにより試料9の形状や結晶構造観察を行う。   In this case, the image has a contrast reflecting the average atomic number of the sample 9. With these, the shape and crystal structure of the sample 9 are observed.

また、電子線8が試料9に照射した際に発生する特性X線は、EDX検出器90にて検出し、EDX制御部91により各エネルギー値に対応するシグナル強度を表示するよう表示部92に信号を送る。   Further, characteristic X-rays generated when the sample 9 is irradiated with the electron beam 8 are detected by the EDX detector 90, and the display unit 92 displays the signal intensity corresponding to each energy value by the EDX control unit 91. Send a signal.

試料9は、試料回転ホルダ3に接続された試料ホルダ制御部77により、試料回転ホルダ3及び試料台1を回転させることにより、電子線光軸上で角度を変えることが可能で、様々な角度から二次電子像,走査透過像,透過電子像を観察することが可能である。   The angle of the sample 9 can be changed on the electron beam optical axis by rotating the sample rotating holder 3 and the sample stage 1 by the sample holder control unit 77 connected to the sample rotating holder 3. Thus, it is possible to observe a secondary electron image, a scanning transmission image, and a transmission electron image.

<TEMトモグラフィー取得手順>
このようにして、透過電子顕微鏡7によって観察された試料の回転投影像シリーズから三次元構造を再構成するTEMトモグラフィー取得手順について説明する。
<Procedure for TEM tomography>
A TEM tomography acquisition procedure for reconstructing a three-dimensional structure from a rotation projection image series of a sample observed with the transmission electron microscope 7 will be described.

図8は本発明の一実施の形態によるTEMトモグラフィー取得手順の説明図である。
(1) まず、試料回転ホルダ3の試料台1の球体部13上に試料9を搭載し、この試料回転ホルダ3を透過電子顕微鏡7の試料室76に装填する(ステップS1)。
(2) 次に、試料9に係る回転シリーズ像の取得を行う。
FIG. 8 is an explanatory diagram of a TEM tomography acquisition procedure according to an embodiment of the present invention.
(1) First, the sample 9 is mounted on the sphere portion 13 of the sample stage 1 of the sample rotating holder 3, and the sample rotating holder 3 is loaded into the sample chamber 76 of the transmission electron microscope 7 (step S1).
(2) Next, a rotation series image related to the sample 9 is acquired.

試料9に係る回転シリーズ像の取得は、試料回転ホルダ3及び試料回転ホルダ3の試料台1を独立に回転変位させながら、様々な角度から二次電子像,走査透過像,透過電子像を取得することによって行う。   Acquisition of a rotation series image related to the sample 9 is obtained by acquiring a secondary electron image, a scanning transmission image, and a transmission electron image from various angles while rotating and displacing the sample rotation holder 3 and the sample stage 1 of the sample rotation holder 3 independently. By doing.

具体的には、試料ホルダ制御部77により、予め定められた方向から試料9の一部若しくは全部の所望の投影像を取得できるように、試料回転ホルダ3をその軸線を中心にして回転変位させ、試料台1,球体部13,及び球体部13に搭載された試料9を試料ホルダ3の軸線を中心にして回動変位させた状態で、試料回転ホルダ3の試料台挿入部36が例えば1回転するように試料回転軸32を所定量ずつ回転するように制御し、この際における試料台1の所定量(1〜5°)毎の回転位置に対応させて、様々な角度からの試料9の二次電子像,走査透過像,透過電子像といった投影像を取得することにより行われる。   Specifically, the sample rotation holder 3 is rotationally displaced about its axis so that the sample holder control unit 77 can obtain a desired projection image of a part or all of the sample 9 from a predetermined direction. In the state where the sample stage 1, the sphere part 13, and the sample 9 mounted on the sphere part 13 are rotationally displaced about the axis of the sample holder 3, the sample stage insertion part 36 of the sample rotation holder 3 is, for example, 1 The sample rotation shaft 32 is controlled to rotate by a predetermined amount so as to rotate, and the sample 9 from various angles is corresponded to the rotation position of the sample stage 1 at a predetermined amount (1 to 5 °) at this time. This is performed by acquiring projection images such as secondary electron images, scanning transmission images, and transmission electron images.

この一定角度ステップ(1〜5°) で試料9を回転変位させながら、二次電子検出器78,円環状検出器83,明視野STEM像観察用検出器85,EDX検出器90等からの各種信号を取り込み、これら検出器からの出力に基づく試料9の観察画像を記録する(ステップS2)。   Various rotations from the secondary electron detector 78, the annular detector 83, the bright field STEM image observation detector 85, the EDX detector 90, etc., while rotating and displacing the sample 9 at this constant angle step (1 to 5 °). A signal is taken in and an observation image of the sample 9 based on the output from these detectors is recorded (step S2).

(3) 次に取得した各画像の位置合わせを、各投影像中の球体部13を目印とし行い、共通座標に変換する(ステップS3)。  (3) Next, alignment of each acquired image is performed using the spherical portion 13 in each projection image as a mark, and converted into common coordinates (step S3).

この際、各投影像中において、試料回転ホルダ3及び試料台1がどのように回転して試料9の観察方向が各投影像間で変化していても、試料台1の球体部13は各投影像間で変わりない球体又は球面で表れているので、各画像の位置合わせを容易に行うことができ、共通座標への変換も迅速かつ正確に行うことができる。   At this time, in each projected image, no matter how the sample rotating holder 3 and the sample stage 1 rotate and the observation direction of the sample 9 changes between the projected images, Since it appears as a sphere or a spherical surface that does not change between the projected images, each image can be easily aligned, and conversion to common coordinates can also be performed quickly and accurately.

(4) この共通座標に変換された、試料9を様々な方向から観察した投影像シリーズから、試料9の三次元構造を電子顕微鏡用CPU82とは別のコンピュータを用いて再構成する(ステップS4)。 (4) From the projection image series obtained by observing the sample 9 from various directions converted into the common coordinates, the three-dimensional structure of the sample 9 is reconstructed using a computer different from the electron microscope CPU 82 (step S4). ).

(5) 再構成された試料9の三次元像はこの別のコンピュータによって所定のディスプレイ装置に表示される(ステップS5)。 (5) The reconstructed three-dimensional image of the sample 9 is displayed on a predetermined display device by this other computer (step S5).

以上のとおり、本発明では、試料の三次元構造の再構成時における、試料の回転位置に対応した複数の二次元の投影像の位置合わせは、投影像に含まれる試料台の球体部又は半球体部の形状自体がマーカとして用いられることによって、試料台の回転中心(試料台の軸心)からずれて試料が試料台に搭載されても、試料台の露出球面部上であれば、試料の形状によらず、取得画像の位置合わせを任意の試料台の回転角に対し正確に行い得、さらに画像や分析結果に影響を与えない忠実度の高い、三次元再構成像を得ることが可能となる。   As described above, in the present invention, the alignment of a plurality of two-dimensional projection images corresponding to the rotation position of the sample at the time of reconstruction of the three-dimensional structure of the sample is performed by using the sphere or hemisphere of the sample stage included in the projection image. Since the shape of the body itself is used as a marker, even if the sample is mounted on the sample stage and deviated from the center of rotation of the sample stage (the axis of the sample stage) Regardless of the shape of the image, it is possible to accurately align the acquired image with respect to the rotation angle of any sample stage, and to obtain a high-fidelity three-dimensional reconstructed image that does not affect the image or analysis results. It becomes possible.

この結果、試料が例えば粉体試料である場合でも、実質的な試料台の回転軸中心に容易に試料を装着可能であって、忠実性の高い三次元再構成像を得ることができる。   As a result, even when the sample is, for example, a powder sample, the sample can be easily attached to the substantial rotation axis center of the sample stage, and a highly faithful three-dimensional reconstruction image can be obtained.

本発明の一実施の形態としての試料台の要部の構成図である。It is a block diagram of the principal part of the sample stand as one embodiment of this invention. 図1に示した本発明の一実施の形態としての試料台の変形例の要部の構成図である。It is a block diagram of the principal part of the modification of the sample stand as one embodiment of this invention shown in FIG. 本発明の別の実施の形態の試料台の要部の構成図である。It is a block diagram of the principal part of the sample stand of another embodiment of this invention. 本発明の一実施の形態としての試料回転ホルダの先端部の構成図である。It is a block diagram of the front-end | tip part of the sample rotation holder as one embodiment of this invention. 本発明の球体部を装備した試料台の作製に用いるFIB加工装置の構成図である。It is a block diagram of the FIB processing apparatus used for preparation of the sample stand equipped with the sphere part of the present invention. 本発明の一実施の形態の試料台作製方法の説明図である。It is explanatory drawing of the sample stand preparation method of one embodiment of this invention. 電子顕微鏡の一実施例である透過電子顕微鏡の構成図である。It is a block diagram of the transmission electron microscope which is one Example of an electron microscope. 本発明の一実施の形態によるTEMトモグラフィー取得手順の説明図である。It is explanatory drawing of the TEM tomography acquisition procedure by one embodiment of this invention.

符号の説明Explanation of symbols

1 試料台、 3 試料回転ホルダ、 5 FIB加工装置(集束イオンビーム装置)
6 イオンビーム(FIB)、 7 電子顕微鏡、 8 電子線、 9 試料、
10 試料台本体、 11 環状テーパ面部、 12 軸側端面部、 13 球体部、
14 露出球面部、 15 球面凹部、 16 開口部、 17 孔、
31 ホルダ軸、 32 試料回転軸、 33 試料台収容室、 34 開放部、
35 試料台搭載面、 36 試料台挿入部、 37,38 傘歯車、
50 鏡体、 51 イオン銃、 52 コンデンサーレンズ、 53 絞り、
54 走査電極、 55 対物レンズ、 56 試料室、 57 二次電子検出器、
58 デポジション銃、 59 マイクロプローブ、 60 走査像表示装置、
61 走査電極制御部、 62 マイクロプローブ制御装置、 63 ホルダ制御部、
64 テープ、 65 FIB用平面試料ホルダ、 66 デポジション膜、
70 鏡体、 71 電子銃、 72 コンデンサーレンズ、 73 対物レンズ、
74 投射レンズ、 75 走査コイル、 76 試料室、
77 試料ホルダ制御部、 78 二次電子検出器、 79 信号増幅器、
80 走査像表示用ディスプレイ、 81 走査電源、 82 電子顕微鏡用CPU、
83 円環状検出器、 84 信号増幅器、 85 明視野STEM像観察用検出器、
86 信号増幅器、 87 回折像観察用TVカメラ、 88 TV制御部、
89 TVモニタ、 90 EDX検出器、 91 EDX制御部、
92 EDXスペクトル及びマップ表示部
1 Sample stand 3 Sample rotation holder 5 FIB processing device (focused ion beam device)
6 ion beam (FIB), 7 electron microscope, 8 electron beam, 9 sample,
10 sample base body, 11 annular taper surface part, 12 shaft side end face part, 13 sphere part,
14 exposed spherical surface portion, 15 spherical concave portion, 16 opening portion, 17 hole,
31 holder shaft, 32 sample rotation shaft, 33 sample stage storage chamber, 34 open part,
35 Sample table mounting surface, 36 Sample table insertion part, 37, 38 Bevel gear,
50 mirror body, 51 ion gun, 52 condenser lens, 53 aperture,
54 scanning electrode, 55 objective lens, 56 sample chamber, 57 secondary electron detector,
58 deposition gun, 59 microprobe, 60 scan image display device,
61 scanning electrode control unit, 62 microprobe control device, 63 holder control unit,
64 tapes, 65 FIB flat sample holder, 66 deposition film,
70 mirror body, 71 electron gun, 72 condenser lens, 73 objective lens,
74 projection lens, 75 scanning coil, 76 sample chamber,
77 Sample holder control unit, 78 Secondary electron detector, 79 Signal amplifier,
80 Scanning image display, 81 Scanning power supply, 82 Electron microscope CPU,
83 annular detector, 84 signal amplifier, 85 bright field STEM image observation detector,
86 signal amplifier, 87 TV camera for diffracted image observation, 88 TV control unit,
89 TV monitor, 90 EDX detector, 91 EDX controller,
92 EDX spectrum and map display

Claims (13)

荷電粒子線が照射される箇所で、荷電粒子線の照射対象である試料を荷電粒子線の光軸方向に対して可変に保持する試料回転ホルダに回転可能に備えられ、試料が搭載される試料台であって、
前記試料台の回転軸線方向の試料搭載側の端面が、当該回転軸線上に中心を有する球体部又は半球体部によって当該回転軸線の直交面に対し凸設形成されている
ことを特徴とする試料台。
A sample on which a sample is mounted so that it can be rotated in a sample rotation holder that variably holds a sample to be irradiated with a charged particle beam with respect to the optical axis direction of the charged particle beam at a location where the charged particle beam is irradiated. A stand,
Samples end surface of the sample mounting side of the sample stage of the rotation axis direction, characterized in that it is projectingly formed to the orthogonal plane of the axis of rotation by the spherical portion or a semi-spherical portion having its center on the rotational axis Stand.
請求項1記載の試料台において、
前記試料台の回転軸線方向の試料搭載側の材質は、エネルギー分散型X線分析時に、電子線照射された前記試料台の試料搭載側から発生するX線(システムピーク)が試料の分析結果に影響を及ぼさない材質によって形成されている
ことを特徴とする試料台。
The sample stage according to claim 1,
The material on the sample mounting side in the rotation axis direction of the sample stage is X-rays (system peaks) generated from the sample mounting side of the sample stage irradiated with the electron beam during the energy dispersive X-ray analysis. A sample stage characterized by being made of a material that does not affect the sample base.
請求項1記載の試料台において、
前記試料台の回転軸線方向の試料搭載側の材質は、各種イオンビームによるスパッタレートの小さい材質であり、試料台への試料固定後のイオンビームによる追加工時に、前記試料台から試料へのスパッタ物の再付着を抑制した材質によって形成されている
ことを特徴とする試料台。
The sample stage according to claim 1,
The material on the sample mounting side in the direction of the rotation axis of the sample table is a material with a low sputter rate by various ion beams. Sputtering from the sample table to the sample is performed at the time of additional processing by the ion beam after fixing the sample to the sample table. A sample stage characterized by being formed of a material that suppresses reattachment of an object.
請求項1記載の試料台において、
前記試料台の回転軸線方向の試料搭載側の球体部又は半球体部の大きさは、荷電粒子線の対象の試料の大きさ又は形状に合わせて設定されている
ことを特徴とする試料台。
The sample stage according to claim 1,
The sample stage, wherein the size of the sphere or hemisphere on the sample mounting side in the rotation axis direction of the sample stage is set according to the size or shape of the target sample of the charged particle beam.
荷電粒子線が照射される箇所で、荷電粒子線の照射対象である試料を荷電粒子線の光軸方向に対して可変に保持する試料回転ホルダに回転可能に備えられ、試料が搭載される試料台であって、
前記試料台の回転軸線方向の試料搭載側の端面が、当該回転軸線上に中心を有する所定の曲率半径を有する球体面によって当該回転軸線の直交面に対し凸設形成されている
ことを特徴とする試料台。
A sample on which a sample is mounted so that it can be rotated in a sample rotation holder that variably holds a sample to be irradiated with a charged particle beam with respect to the optical axis direction of the charged particle beam at a location where the charged particle beam is irradiated. A stand,
And wherein the end surface of the sample mounting side of the sample stage rotation axis direction are projectingly formed to the orthogonal plane of the axis of rotation by a sphere surface having a predetermined radius of curvature having a center on the rotational axis The sample stage.
請求項5記載の試料台において、
前記試料台の回転軸線方向の試料搭載側の材質は、エネルギー分散型X線分析時に、電子線照射された前記試料台の試料搭載側から発生するX線(システムピーク)が試料の分析結果に影響を及ぼさない材質によって形成されている
ことを特徴とする試料台。
In the sample stage according to claim 5,
The material on the sample mounting side in the rotation axis direction of the sample stage is X-rays (system peaks) generated from the sample mounting side of the sample stage irradiated with the electron beam during the energy dispersive X-ray analysis. A sample stage characterized by being made of a material that does not affect the sample base.
請求項5記載の試料台において、
前記試料台の回転軸線方向の試料搭載側の材質は、各種イオンビームによるスパッタレートの小さい材質であり、試料台への試料固定後のイオンビームによる追加工時に、前記試料台から試料へのスパッタ物の再付着を抑制した材質によって形成されている
ことを特徴とする試料台。
In the sample stage according to claim 5,
The material on the sample mounting side in the direction of the rotation axis of the sample table is a material with a low sputter rate by various ion beams. Sputtering from the sample table to the sample is performed at the time of additional processing by the ion beam after fixing the sample to the sample table. A sample stage characterized by being formed of a material that suppresses reattachment of an object.
請求項5記載の試料台において、
前記試料台の回転軸線方向の試料搭載側の球体面の大きさは、荷電粒子線の対象の試料の大きさ又は形状に合わせて設定されている
ことを特徴とする試料台。
In the sample stage according to claim 5,
The sample stage in which the size of the spherical surface on the sample mounting side in the rotation axis direction of the sample stage is set according to the size or shape of the target sample of the charged particle beam.
荷電粒子線が照射される箇所で、荷電粒子線の照射対象である試料を荷電粒子線の光軸方向に対して可変に保持する試料回転ホルダであって、
球体部又は半球体部によって自身の回転軸線の直交面に対し凸設形成された試料搭載側の端面を有する試料台が、当該回転軸線を当該試料回転ホルダの軸線の延設方向と交差させるようにして、回転可能に設けられている
ことを特徴とする試料回転ホルダ。
A sample rotating holder that variably holds a sample to be irradiated with a charged particle beam with respect to the optical axis direction of the charged particle beam at a location where the charged particle beam is irradiated,
Sample table having an end face of the spherical portion or a semi-spherical portion protrusively formed sample mounting side with respect to the orthogonal plane of its rotational axis by the intersection of those 該回 rolling axis and the extension direction of the axis of the sample rotating holder A sample rotation holder characterized in that the sample rotation holder is rotatably provided.
荷電粒子線が照射される箇所で、荷電粒子線の照射対象である試料を荷電粒子線の光軸方向に対して可変に保持する試料回転ホルダであって、
自身の回転軸線の直交面に対し凸設する球体面からなる試料搭載側の端面を有する試料台が、当該回転軸線を当該試料回転ホルダの軸線の延設方向と交差させるようにして、回転可能に設けられている
ことを特徴とする試料回転ホルダ。
A sample rotating holder that variably holds a sample to be irradiated with a charged particle beam with respect to the optical axis direction of the charged particle beam at a location where the charged particle beam is irradiated,
Sample table having an end face of the sample mounting side consisting of spherical surfaces of convexly relative to a plane orthogonal to its axis of rotation, an equivalent 該回 rolling axis so as to intersect the extending direction of the axis of the sample rotating holder, A sample rotation holder provided so as to be rotatable.
荷電粒子線が照射される箇所で、荷電粒子線の照射対象である試料を荷電粒子線の光軸方向に対して可変に保持する試料回転ホルダに回転可能に備えられ、試料が搭載される試料台の作製方法であって、
回転軸線方向の試料搭載側の端面が自身の回転軸線上に中心を有する球体部又は半球体部によって当該回転軸線の直交面に対し凸設形成されている前記試料台の作製を、マニュピレータを備えた荷電粒子線装置による集束イオンビームのガスアシストデポジション機能を用い、試料台の回転軸線方向の試料搭載側の端面に当該球体部又は半球体部を形成する
ことを特徴とする試料台の作製方法。
A sample on which a sample is mounted so that it can be rotated in a sample rotation holder that variably holds a sample to be irradiated with a charged particle beam with respect to the optical axis direction of the charged particle beam at a location where the charged particle beam is irradiated. A method for making a table,
A manipulator is provided for producing the sample stage in which the end surface on the sample mounting side in the rotation axis direction is formed so as to protrude from the orthogonal surface of the rotation axis by a sphere or hemisphere having a center on its own rotation axis. A sample stage characterized in that the spherical or hemispherical part is formed on the end surface of the specimen stage on the side of the sample mounting in the direction of the axis of rotation of the specimen stage using the gas-assisted deposition function of the focused ion beam by the charged particle beam device Method.
荷電粒子線が照射される箇所で、荷電粒子線の照射対象である試料を荷電粒子線の光軸方向に対して可変に保持する試料回転ホルダに回転可能に備えられ、試料が搭載される試料台の作製方法であって、
回転軸線方向の試料搭載側の端面が自身の回転軸線上に中心を有する所定の曲率半径を有する球体面によって当該回転軸線の直交面に対し凸設形成されている前記試料台の作製を、当該回転軸線方向の試料搭載側の端面を機械加工又はレーザー加工を用い、試料台の回転軸線方向の試料搭載側の端面に当該球体面を形成する
ことを特徴とする試料台の作製方法。
A sample on which a sample is mounted so that it can be rotated in a sample rotation holder that variably holds a sample to be irradiated with a charged particle beam with respect to the optical axis direction of the charged particle beam at a location where the charged particle beam is irradiated. A method for making a table,
Preparation of the sample stage in which the end surface on the sample mounting side in the rotation axis direction is formed so as to protrude from the orthogonal surface of the rotation axis by a spherical surface having a predetermined radius of curvature centered on the rotation axis of the sample table. A method for producing a sample stage, comprising: forming a spherical surface on an end face on the sample mounting side in the rotation axis direction of the sample stage by using machining or laser processing on the end face on the sample mounting side in the rotation axis direction.
試料を回転することにより得られる試料の回転位置に応じた複数の二次元の投影像からなる回転投影像シリーズから三次元構造を再構成するトモグラフィー法に用いた試料分析方法であって、
前記試料の回転位置に応じた複数の二次元の投影像の取得を、回転軸線方向の試料搭載側の端面が自身の回転軸線上に中心を有する所定の曲率半径を有する球体面によって当該回転軸線の直交面に対し凸設形成されている試料台に搭載して行い、各投影像を共通座標に変換する際に、当該試料台の球体面を位置補正のマーカとして用いる
ことを特徴とする試料分析方法。
A sample analysis method used in a tomography method for reconstructing a three-dimensional structure from a rotation projection image series composed of a plurality of two-dimensional projection images corresponding to a rotation position of a sample obtained by rotating a sample,
Acquisition of a plurality of two-dimensional projection images according to the rotation position of the sample is performed by using a spherical surface having a predetermined radius of curvature whose end surface on the sample mounting side in the direction of the rotation axis is centered on its own rotation axis. A sample characterized in that the spherical surface of the sample stage is used as a position correction marker when each projection image is converted into common coordinates by mounting it on a sample stage that is convexly formed with respect to the orthogonal plane of Analysis method.
JP2008163141A 2008-06-23 2008-06-23 Sample stand, sample rotating holder, sample stand preparation method, and sample analysis method Active JP5048596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008163141A JP5048596B2 (en) 2008-06-23 2008-06-23 Sample stand, sample rotating holder, sample stand preparation method, and sample analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008163141A JP5048596B2 (en) 2008-06-23 2008-06-23 Sample stand, sample rotating holder, sample stand preparation method, and sample analysis method

Publications (2)

Publication Number Publication Date
JP2010003617A JP2010003617A (en) 2010-01-07
JP5048596B2 true JP5048596B2 (en) 2012-10-17

Family

ID=41585165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008163141A Active JP5048596B2 (en) 2008-06-23 2008-06-23 Sample stand, sample rotating holder, sample stand preparation method, and sample analysis method

Country Status (1)

Country Link
JP (1) JP5048596B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5292326B2 (en) * 2010-01-29 2013-09-18 株式会社日立ハイテクノロジーズ Standard sample preparation method and standard sample
JP5321918B2 (en) * 2010-06-15 2013-10-23 独立行政法人産業技術総合研究所 Sample preparation method for electron microscope
JP5555653B2 (en) * 2011-03-29 2014-07-23 日本電子株式会社 Electron microscope and three-dimensional image construction method
JP5883658B2 (en) * 2012-01-20 2016-03-15 株式会社日立ハイテクノロジーズ Charged particle beam microscope, charged particle beam microscope sample holder, and charged particle beam microscope method
WO2014195998A1 (en) * 2013-06-03 2014-12-11 株式会社日立製作所 Charged particle microscope, sample holder for charged particle microscope and charged particle microscopy method
JP2016062658A (en) * 2014-09-14 2016-04-25 サンユー電子株式会社 Stereoscopic image construction system for electron microscope image, and stereoscopic image construction method
JP6383650B2 (en) * 2014-11-28 2018-08-29 株式会社日立ハイテクノロジーズ Charged particle beam equipment
CN105973918B (en) * 2016-07-08 2024-06-14 丹东华日理学电气有限公司 3D ball testing platform for industrial CT
CN109709116B (en) * 2018-11-23 2021-11-02 中国石油天然气股份有限公司 Stepping rotating sample table, and micro-particle three-dimensional surface imaging method and system
CN111257359B (en) * 2018-11-30 2021-03-02 浙江大学 Method for adjusting sample to align with axis of rotating shaft
CN110890257A (en) * 2019-12-23 2020-03-17 安徽泽攸科技有限公司 In-situ transmission electron microscope optical sample rod
US11257656B2 (en) 2020-04-08 2022-02-22 Fei Company Rotating sample holder for random angle sampling in tomography
CZ309943B6 (en) * 2020-08-07 2024-02-21 Tescan Group, A.S. Method of operation of an equipment with a beam of charged particles
CN113188720B (en) * 2021-03-19 2024-04-23 南京环科试验设备有限公司 Sample rotating table for rain test box and use method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3677895B2 (en) * 1996-10-04 2005-08-03 株式会社日立製作所 Sample preparation apparatus for three-dimensional structure observation, electron microscope and method thereof
JP3886874B2 (en) * 2002-09-20 2007-02-28 株式会社東芝 Polishing jig for physical analysis and physical analysis method
JP2005221426A (en) * 2004-02-06 2005-08-18 Sii Nanotechnology Inc Rotary holder for supporting micro-fine sample, and ct system capable of coping with nano biotechnology using the holder
JP4654018B2 (en) * 2004-12-17 2011-03-16 株式会社日立ハイテクノロジーズ Focused ion beam processing apparatus, sample stage, and sample observation method
JP4988175B2 (en) * 2005-07-11 2012-08-01 株式会社日立ハイテクノロジーズ Sample table for charged particle equipment

Also Published As

Publication number Publication date
JP2010003617A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP5048596B2 (en) Sample stand, sample rotating holder, sample stand preparation method, and sample analysis method
US7863564B2 (en) Electric charged particle beam microscope and microscopy
US8963102B2 (en) Charged particle beam microscope, sample holder for charged particle beam microscope, and charged particle beam microscopy
JP2008270056A (en) Scanning transmission electron microscope
JP2010033725A (en) Charged corpuscular ray apparatus
JP4654216B2 (en) Sample holder for charged particle beam equipment
US10890545B2 (en) Apparatus for combined stem and EDS tomography
JP2009152120A (en) Electron beam tomography method, and electron beam tomography device
US20080073521A1 (en) Standard specimen for a charged particle beam apparatus, specimen preparation method thereof, and charged particle beam apparatus
JP4433092B2 (en) Three-dimensional structure observation method
JP3677895B2 (en) Sample preparation apparatus for three-dimensional structure observation, electron microscope and method thereof
JP2006173027A (en) Scanning transmission electron microscope, aberration measuring method, and aberration correction method
WO2014195998A1 (en) Charged particle microscope, sample holder for charged particle microscope and charged particle microscopy method
JP2004087214A (en) Sample holder for charged particle beam device
JP2011222426A (en) Composite charged particle beam device
JP4988175B2 (en) Sample table for charged particle equipment
JP2005235665A (en) Dark field scanning transmission electron microscope and observation method
US20230298855A1 (en) Method and apparatus for micromachining a sample using a focused ion beam
JP4393352B2 (en) electronic microscope
JP5939627B2 (en) Sample for electron microscope, electron microscope image forming method, and electron microscope apparatus
US11837434B2 (en) Setting position of a particle beam device component
JP4232848B2 (en) Sample preparation apparatus for three-dimensional structure observation, electron microscope and method thereof
JP2006040768A (en) Electron microscope
JP2009070604A (en) Sample support stage for observing three-dimensional structure, protractor and three-dimensional structure observing method
JP2008117664A (en) Sample stage for electron beam device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5048596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350