JP2008270056A - Scanning transmission electron microscope - Google Patents

Scanning transmission electron microscope Download PDF

Info

Publication number
JP2008270056A
JP2008270056A JP2007113612A JP2007113612A JP2008270056A JP 2008270056 A JP2008270056 A JP 2008270056A JP 2007113612 A JP2007113612 A JP 2007113612A JP 2007113612 A JP2007113612 A JP 2007113612A JP 2008270056 A JP2008270056 A JP 2008270056A
Authority
JP
Japan
Prior art keywords
sample
electron microscope
transmission electron
detector
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007113612A
Other languages
Japanese (ja)
Inventor
Masaki Takeguchi
雅樹 竹口
Masayuki Shimojo
雅幸 下条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007113612A priority Critical patent/JP2008270056A/en
Publication of JP2008270056A publication Critical patent/JP2008270056A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/226Optical arrangements for illuminating the object; optical arrangements for collecting light from the object
    • H01J37/228Optical arrangements for illuminating the object; optical arrangements for collecting light from the object whereby illumination and light collection take place in the same area of the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2803Scanning microscopes characterised by the imaging method
    • H01J2237/2808Cathodoluminescence

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To acquire a high-resolution image of a confocal scanning transmission microscope, to acquire a cross-sectional image, and to acquire confocal STEM imaging of a dark-field image. <P>SOLUTION: This transmission electron microscope allows a sample stage holding a sample to be adjusted to be movable by a nano-drive mechanism in the Z-axis direction being an optical axis direction of an electron beam and X-axis and Y-axis directions (the X-axis and the Y-axis are orthogonal to each other) orthogonal thereto. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電子銃から出た照射電子を収束レンズによって試料上にフォーカスし、試料を透過した電子を結像レンズによって試料下にある検出器上面の絞り位置に再びフォーカスし、試料上の収束電子プローブの中央の一部のみを絞りによって透過させて検出器によって検出する共焦点光学系を有する透過型電子顕微鏡に関する。   In the present invention, irradiated electrons emitted from the electron gun are focused on the sample by the focusing lens, and the electrons transmitted through the sample are focused again on the aperture position on the upper surface of the detector below the sample by the imaging lens to converge on the sample. The present invention relates to a transmission electron microscope having a confocal optical system in which only a central part of an electron probe is transmitted through a diaphragm and detected by a detector.

この種、透過型電子顕微鏡については、特許文献1に示すように、共焦点走査型透過電子顕微鏡の実現のため、図1に示すような収束電子ビームのスキャン−デスキャンの方式を採用しているが、スキャン−デスキャンの同期精度の問題のため、高分解能観察ができない問題があった。
具体的には、電子銃(加速管含む)、単数または複数の収束レンズ、試料、単数または複数の結像レンズ、絞り、透過電子検出器、およびそれら電子ビームのアライメントを行うための複数の電磁偏向器から構成される。
電子銃から出た照射電子ビームを収束レンズによって試料上に最小プローブ径となるようフォーカスする。試料より上にあるスキャンコイルによって照射電子ビームを試料面に平行なXY方向にスキャンする。試料を透過した電子を結像レンズによって試料下にある検出器上の絞り位置に再びフォーカスする。電子ビームの試料上のXYスキャンによる光軸からの位置ずれを試料より下にあるデスキャンコイルによって光軸に振り戻し、試料上の収束電子プローブの中央の一部のみを絞りによって透過させるようにし、検出器によって検出する。
このような従来構成では、像を得るためにビームをスキャンコイルで走査し、そのときのビーム位置の光軸からのをずれをデスキャンコイルで振り戻して検出器前の絞りに入射するようにしている。
サブナノメートルの高分解能像を得る場合、この振り戻しの精度によって横方向の位置ずれが生じてしまい、原理的に高分解能STEM像を得ることが困難となる。また、断層像を得るために対物レンズの焦点を変化させることは、試料位置においてビーム収束点が上下するため、検出器前の絞り位置への収束点も上下してしまい、絞り位置における最収束点が得られない。
また、対物レンズの焦点強度を変えると、結像レンズ系の下の絞りへの入射焦点も変わるため、共焦点条件を維持するためには焦点位置を変えられない。このため、深さ方向の断層像取得は困難である。
非特許文献1では、収束系と照射系において球面収差補正装置を組み込み、像ボケのほとんどない理想的な共焦点光学系を実現しているが走査系が存在しないため像取得は行えない。
また、何れの公知資料も、明視野像の取得を目的にしており、像は、回折効果や位相変調を受けたものとなる。この結果、高角度散乱電子を一点に像面上に集光して試料の原子番号と厚さにのみ依存したコントラストの暗視野像を得ることはできなかった。
米国特許6,548,810号 Applied Physics Letter 89, 124105 (2006) P.D.Nellist et al.
For this type of transmission electron microscope, as shown in Patent Document 1, a converging electron beam scan-descan system as shown in FIG. 1 is adopted in order to realize a confocal scanning transmission electron microscope. However, there is a problem that high-resolution observation cannot be performed due to the synchronization accuracy of scan-descan.
Specifically, an electron gun (including an acceleration tube), one or more converging lenses, a sample, one or more imaging lenses, a diaphragm, a transmission electron detector, and a plurality of electromagnetics for aligning these electron beams It consists of a deflector.
The irradiated electron beam emitted from the electron gun is focused on the sample so as to have a minimum probe diameter by a converging lens. The irradiation electron beam is scanned in the XY directions parallel to the sample surface by the scan coil above the sample. The electrons that have passed through the sample are again focused on the aperture position on the detector under the sample by the imaging lens. The positional deviation of the electron beam from the optical axis due to the XY scan on the sample is returned to the optical axis by a descan coil below the sample, and only a part of the center of the convergent electron probe on the sample is transmitted by the diaphragm. Detect with a detector.
In such a conventional configuration, in order to obtain an image, the beam is scanned by the scan coil, and the deviation of the beam position from the optical axis at that time is turned back by the descan coil so as to be incident on the diaphragm in front of the detector. ing.
When a sub-nanometer high-resolution image is obtained, a lateral displacement occurs due to the accuracy of the return, and in principle, it is difficult to obtain a high-resolution STEM image. Also, changing the focus of the objective lens to obtain a tomographic image raises and lowers the beam convergence point at the sample position, so the convergence point to the diaphragm position before the detector also moves up and down, and the maximum convergence at the diaphragm position. I can't get points.
In addition, if the focal strength of the objective lens is changed, the focal point of incidence on the stop under the imaging lens system also changes, so that the focal position cannot be changed in order to maintain the confocal condition. For this reason, it is difficult to acquire a tomographic image in the depth direction.
In Non-Patent Document 1, a spherical aberration correction device is incorporated in the focusing system and the irradiation system to realize an ideal confocal optical system with almost no image blur, but an image cannot be acquired because there is no scanning system.
In addition, all known materials are aimed at obtaining a bright-field image, and the image is subjected to diffraction effects and phase modulation. As a result, it was not possible to obtain a dark field image having a contrast that depends only on the atomic number and thickness of the sample by focusing high-angle scattered electrons on one point on the image plane.
US Pat. No. 6,548,810 Applied Physics Letter 89, 124105 (2006) p. D. Nellist et al.

本発明はこのような実情に鑑み、共焦点走査型透過電子顕微鏡の高分解能像取得を可能とするのみならず、断層像取得、さらには暗視野像を共焦点STEM結像を得ることを課題とした。   In view of such circumstances, the present invention not only enables high-resolution image acquisition of a confocal scanning transmission electron microscope, but also provides a tomographic image acquisition and further obtains a confocal STEM image of a dark field image. It was.

発明1の透過型電子顕微鏡は、前記試料を保持する試料ステージを、ナノ駆動構造により電子ビームの光軸方向であるZ軸方向とそれに直交するX軸とY軸方向(X軸とY軸は互いに直交する)とに移動調整可能にしてあることを特徴とする。   The transmission electron microscope according to the first aspect of the present invention is configured such that the sample stage holding the sample is moved by a nano-drive structure in the Z-axis direction, which is the optical axis direction of the electron beam, and the X-axis and Y-axis directions orthogonal thereto It is characterized in that the movement can be adjusted to be perpendicular to each other.

発明2は、発明1の透過型電子顕微鏡において、前記共焦点光学系の検出器により取得した焦点ボケ具合に対応して、前記ナノ駆動構造を焦点ボケを無くす方向に作動する試料ステージ自動調整機構を設けてあることを特徴とする。   A second aspect of the invention is a transmission stage electron microscope of the first aspect, wherein the sample stage automatic adjustment mechanism operates the nano-drive structure in a direction in which the out-of-focus blur is eliminated in response to the out-of-focus condition acquired by the detector of the confocal optical system. Is provided.

発明3は、発明1又は2の透過型電子顕微鏡において、前記ナノ駆動構造は、ピエゾドライブにより構成してあることを特徴とする。   Invention 3 is characterized in that in the transmission electron microscope of Invention 1 or 2, the nano-drive structure is constituted by a piezo drive.

発明4は、発明1から3のいずれかの透過型電子顕微鏡において、前記試料の下方において、光軸に対して所定の角度で傾斜した電子のみを透過する絞りが配置され、当該絞りを透過した電子を検出器に焦点を合わせた収束レンズ系を設けて、前記検出器により透過電子の暗視野STEM像を得る暗視野STEM構造を有していることを特徴とする。   Invention 4 is the transmission electron microscope according to any one of Inventions 1 to 3, wherein a diaphragm that transmits only electrons inclined at a predetermined angle with respect to the optical axis is disposed below the sample, and transmitted through the diaphragm. A focusing lens system in which electrons are focused on a detector is provided, and the detector has a dark field STEM structure for obtaining a dark field STEM image of transmitted electrons by the detector.

発明5は、発明4の透過型電子顕微鏡において、前記暗視野STEM構造により得られた暗視野STEMの焦点ボケ具合により球面収差を検出し、当該球面収差を最小にするように前記試料ステージを移動させる自動調整機構を有していることを特徴とする。   A fifth aspect of the invention is the transmission electron microscope according to the fourth aspect, wherein the spherical aberration is detected by the defocus state of the dark field STEM obtained by the dark field STEM structure, and the sample stage is moved so as to minimize the spherical aberration. It is characterized by having an automatic adjustment mechanism.

発明6は、発明4又は5の透過型電子顕微鏡において、前記絞りは円環型絞りであることを特徴とする。   A sixth aspect of the present invention is the transmission electron microscope according to the fourth or fifth aspect, wherein the diaphragm is an annular diaphragm.

発明1により、共焦点光学系を固定化することが出来たので、従来のようなブレが生じず試料ステージのXY走査によって、共焦点走査型透過電子顕微鏡の高分解能像取得を可能とした。
また、試料ステージのZ軸移動によって、共焦点走査型透過電子顕微鏡の断層像取得を可能とした。
Since the confocal optical system can be fixed according to the first aspect of the present invention, it is possible to obtain a high-resolution image of a confocal scanning transmission electron microscope by XY scanning of the sample stage without causing blurring as in the prior art.
In addition, the tomographic image of the confocal scanning transmission electron microscope can be acquired by moving the sample stage in the Z axis.

発明4により、広い範囲の高角度散乱電子を一点の像面上に集光し、試料の原子番号と厚さにのみ依存したコントラストの暗視野像を共焦点STEM結像によって得ることを可能とした。   According to the invention 4, it is possible to collect a wide range of high-angle scattered electrons on a single image plane and obtain a dark field image having a contrast dependent only on the atomic number and thickness of the sample by confocal STEM imaging. did.

本発明の電子顕微鏡は、電子銃(加速管含む)、単数または複数の収束レンズ、ピエゾドライブで試料をXYZの三次元移動が可能な試料ステージとそれに支持された試料、試料下に配置する円環型絞り、単数または複数の結像レンズ、試料より下に組み込まれる球面収差補正装置、透過電子検出器、その検出器の上に配置される絞り、およびそれら電子ビームのアライメントを行うための複数の電磁偏向器から構成される。   The electron microscope of the present invention includes an electron gun (including an acceleration tube), one or a plurality of converging lenses, a sample stage capable of three-dimensional movement of XYZ with a piezo drive, a sample supported by the sample stage, and a circle disposed under the sample. An annular diaphragm, one or a plurality of imaging lenses, a spherical aberration correction device incorporated below the sample, a transmission electron detector, a diaphragm arranged on the detector, and a plurality for aligning the electron beams It consists of an electromagnetic deflector.

電子銃から出た照射電子ビームを収束レンズによって試料上に最小プローブ径となるようフォーカスする。円環型絞りによって試料を透過した電子のうち高角度に散乱された電子のみが結像レンズによって透過電子検出器上の絞り位置に再びフォーカスする。
透過電子検出器上の絞り位置にフォーカスされた電子ビームは、球面収差補正装置によって、球面収差に依存した焦点ボケがなくなり、一点に収束する。この収束電子ビームの中央の一部のみを絞りによって透過させるようにし、検出器によって検出する。試料はXYZの三次元移動が可能な試料ステージによって試料面平行方向(XY方向)に走査される。XY各点における透過電子の強度を読み込み、コンピュータによってXY位置情報と透過電子の強度から画像として出力することにより、共焦点暗視野STEM像を得る。
また、1枚画像を取得するごとに、XYZの三次元移動が可能な試料ステージによって試料をZ方向移動させ、各Z位置における走査像を取得することにより、3次元断層像を得る。
The irradiated electron beam emitted from the electron gun is focused on the sample so as to have a minimum probe diameter by a converging lens. Of the electrons transmitted through the sample by the annular diaphragm, only the electrons scattered at a high angle are again focused on the diaphragm position on the transmission electron detector by the imaging lens.
The electron beam focused on the aperture position on the transmission electron detector is converged to a single point by the spherical aberration correction device without any focal blur depending on the spherical aberration. Only a part of the center of the converged electron beam is transmitted by the diaphragm and detected by the detector. The sample is scanned in a sample surface parallel direction (XY direction) by a sample stage capable of three-dimensional movement of XYZ. A confocal dark field STEM image is obtained by reading the transmitted electron intensity at each XY point and outputting it as an image from the XY position information and the transmitted electron intensity by a computer.
Further, each time one image is acquired, the sample is moved in the Z direction by a sample stage capable of three-dimensional movement of XYZ, and a scanning image at each Z position is acquired, thereby obtaining a three-dimensional tomographic image.

本発明の対物レンズ焦点面に配置された円環型絞りを用いることで、収束電子ビーム位置を固定し、試料ステージを走査して、高角度散乱電子を透過電子検出器にて検出して、高角度散乱円環型暗視野STEM(HAADF−STEM)像を得ることができた。
さらに、結像レンズ系に球面収差補正装置を組み込み、透過電子を球面収差によるボケのない条件で像面に再びフォーカスさせて収束させ、その中心の一部のみを絞りで通過させ、共焦点結像させれば、理想的な共焦点光学系を維持したまま試料ステージ走査によって走査画像を得ることができる。
By using an annular diaphragm disposed on the focal plane of the objective lens of the present invention, the position of the convergent electron beam is fixed, the sample stage is scanned, and high-angle scattered electrons are detected by a transmission electron detector, A high-angle scattering annular dark field STEM (HAADF-STEM) image could be obtained.
In addition, a spherical aberration correction device is incorporated in the imaging lens system, and the transmitted electrons are focused again on the image plane under the condition that there is no blur due to spherical aberration. If imaged, a scanned image can be obtained by scanning the sample stage while maintaining an ideal confocal optical system.

この結果、収束ビームのビーム径をしのぐ横分解能と深さ分解能の明視野STEM像が得られ、原子番号に依存したコントラスト (Zコントラスト)の断層像を観察できるようになる。
さらに、集束レンズ系にも球面収差補正装置を組み込み、収束電子ビームを球面収差の影響を受けない極小の電子ビーム径にし、上記のような共焦点光学系を実現すれば、さらなる横分解能と深さ分解能の共焦点明視野・暗視野STEM像が得られる。
As a result, a bright field STEM image having lateral resolution and depth resolution exceeding the beam diameter of the convergent beam can be obtained, and a tomographic image having a contrast (Z contrast) depending on the atomic number can be observed.
Furthermore, if a spherical aberration correction device is incorporated in the focusing lens system, the focused electron beam is made to have a minimum electron beam diameter that is not affected by spherical aberration, and the confocal optical system as described above is realized, further lateral resolution and depth can be achieved. A confocal bright-field / dark-field STEM image with high resolution is obtained.

下記実施例において、結像レンズ系に球面収差補正装置を組み込み、透過電子もしくは高角度散乱電子を球面収差によるボケのない条件で像面に再びフォーカスさせて収束させて、その中心の一部のみを絞りで通過させ、共焦点結像条件で電子エネルギー分光器を用いた元素種に基づく損失エネルギー分光を行えば、元素分布の断層像を得られる。
収束電子ビーム走査と同期させながらビーム位置から発生する任意の元素の特性X線を測定して像を得ることで元素分布像を得ることができ、現在広く一般的に用いられている。
最近、このX線の検出効率を向上させるためにX線レンズによって、発生したX線を集光して計測する技術が開発されているが、X線レンズは、ある固定点(すなわち集光点)からのX線のみ効率的に検出し、固定点から外れた領域からのX線は検出できない。
In the following embodiment, a spherical aberration correction device is incorporated in the imaging lens system, and transmitted electrons or high-angle scattered electrons are focused again on the image plane under the condition that there is no blur due to spherical aberration, and only a part of the center thereof is converged. And a loss energy spectrum based on element species using an electron energy spectrometer under confocal imaging conditions, a tomographic image of element distribution can be obtained.
An element distribution image can be obtained by measuring the characteristic X-rays of an arbitrary element generated from the beam position while synchronizing with the focused electron beam scanning, and is currently widely used.
Recently, in order to improve the detection efficiency of X-rays, a technique for collecting and measuring generated X-rays with an X-ray lens has been developed. Only the X-rays from the fixed point are detected efficiently, and X-rays from the region deviating from the fixed point cannot be detected.

本発明のうちの走査試料ステージを用いれば、走査を行いながら、電子ビームが照射される位置を固定して、特性X線による元素分布像を得ることが出来る。この結果、そのような固定点からのみの特性X線をX線レンズによって集光して高検出効率で取得するX線分析元素分像の取得を行うことができる。
収束電子ビーム照射によって発生する光を集光レンズで電子顕微鏡外に集め、その発光スペクトルを得る方法は、カソードルミネッセンス分光と呼ばれ、現在広く一般的に用いられている。
If the scanning sample stage of the present invention is used, an element distribution image by characteristic X-rays can be obtained by fixing the position irradiated with the electron beam while performing scanning. As a result, it is possible to acquire an X-ray analysis element image that collects characteristic X-rays only from such a fixed point with an X-ray lens and acquires the X-ray analysis elements with high detection efficiency.
A method of collecting the light generated by the irradiation of the focused electron beam outside the electron microscope with a condensing lens and obtaining the emission spectrum is called cathodoluminescence spectroscopy and is currently widely used.

電子ビームを走査すれば、発光スペクトルの分布像を得ることができるが、集光レンズは、ある固定点(すなわち集光点)からの光のみ効率的に検出でき、固定点から外れた領域からの光は検出できない。
本発明のうちの走査試料ステージを用いれば、走査を行いながら、電子ビームが照射される位置を固定して、発光スペクトルを得ることが出来る。その結果、そのような固定点からのみの光を集光レンズによって集光して高検出効率で取得する発光スペクトル分像取得を行うことができる。
If the electron beam is scanned, a distribution image of the emission spectrum can be obtained. However, the condensing lens can efficiently detect only light from a certain fixed point (that is, the condensing point), and from a region outside the fixed point. Cannot be detected.
By using the scanning sample stage of the present invention, it is possible to obtain an emission spectrum by fixing the position irradiated with the electron beam while performing scanning. As a result, it is possible to perform emission spectrum image acquisition in which light only from such a fixed point is collected by a condenser lens and acquired with high detection efficiency.

走査透過型電子顕微鏡(以下STEM)用走査試料ステージの製作とその制御システムを製作した。また、200kV透過型電子顕微鏡において、透過電子検出器の直前に極小絞りを取り付けて共焦点光学系を実現した。
走査試料ステージを用いて、共焦点STEM像の取得実験を実施した。また、対物絞り位置(対物レンズ焦点面)に円環型絞りを装着した。
図4 観察試料は、電子顕微鏡内に装着された試料ゴニオメータに組み込まれたXYZ−駆動ピエゾ素子先端部に保持する。電子銃から出た照射電子は収束レンズによって試料上に最小プローブ径となるようフォーカスする。
A scanning sample stage for a scanning transmission electron microscope (hereinafter referred to as STEM) and its control system were manufactured. Further, in the 200 kV transmission electron microscope, a confocal optical system was realized by attaching a minimum aperture just before the transmission electron detector.
A confocal STEM image acquisition experiment was performed using a scanning sample stage. In addition, an annular diaphragm was mounted at the objective diaphragm position (objective lens focal plane).
FIG. 4 The observation sample is held at the tip of an XYZ-drive piezo element incorporated in a sample goniometer mounted in an electron microscope. The irradiated electrons emitted from the electron gun are focused on the sample so as to have a minimum probe diameter by the converging lens.

この収束電子プローブを偏向コイルによって試料面(XY)内走査を行う。試料を透過した透過電子は結像レンズによって試料下にある検出器上面の絞り位置に再びフォーカスし、試料上の収束電子プローブの拡大投影像を形成する。収束電子プローブの中央の一部のみを絞りによって透過させ、検出器によってその強度を測定し、その強度を電子ビーム走査と同期させて、試料面上の位置各点からの透過電子の強度の変化の像を得る(明視野−共焦点STEM像)。
STEM像出力用PCは、試料のXY走査および高さ(Z位置)の制御信号をXYZ−走査試料ステージ制御モジュールに入力し、ここから出力されるXYZそれぞれの電圧をXYZ−駆動ピエゾ素子に与え、試料のXY走査および高さ調整を行う。試料のXY各点において検出器で検出した透過電子強度を検出器制御モジュールで増幅し、STEM像出力用PCでSTEM像を構築し、出力する。試料のZ位置を、1枚画像を取得する毎に変化させ、多数枚の像を得ることで断層観察が可能となる。
This convergent electron probe is scanned within the sample surface (XY) by a deflection coil. The transmitted electrons that have passed through the sample are again focused on the aperture position on the upper surface of the detector under the sample by the imaging lens, and an enlarged projection image of the convergent electron probe on the sample is formed. Only a part of the center of the convergent electron probe is transmitted by the diaphragm, its intensity is measured by the detector, and the intensity is synchronized with the electron beam scanning to change the intensity of the transmitted electron from each point on the sample surface. (Bright-field-confocal STEM image).
The STEM image output PC inputs XY scanning and height (Z position) control signals of the sample to the XYZ-scanning sample stage control module, and supplies the XYZ voltages output from the XYZ-drive piezo elements. XY scanning and height adjustment of the sample are performed. The transmission electron intensity detected by the detector at each XY point of the sample is amplified by the detector control module, and the STEM image is constructed and output by the STEM image output PC. The tomographic observation becomes possible by changing the Z position of the sample every time one image is acquired and obtaining a large number of images.

図5 走査試料ステージは、XYZ−駆動ピエゾ素子を組み込んだ試料ゴニオメータの総称である。XYZピエゾ駆動部は、Y用ピエゾ素子とXZ用ピエゾ素子からなり、Y用ピエゾ素子は電圧印加による伸縮変形によって試料のX位置の移動を行う。XZ用ピエゾ素子は、試料面に平行な方向への対称の電圧印加によって左右への首振り変形によって試料のX方向の移動を行い、試料面に垂直な方向への対称の電圧印加によって上下への首振り変形によって試料のZ方向の移動を行う。これらXYZ各駆動のための電圧はXYZ−試料走査制御モジュールから出力される。XYZ−試料走査制御モジュールから出力されるXYZそれぞれの電圧は、STEM像出力用PCによって設定する。   FIG. 5 The scanning sample stage is a general term for sample goniometers incorporating an XYZ-drive piezo element. The XYZ piezo drive unit includes a Y piezo element and an XZ piezo element, and the Y piezo element moves the X position of the sample by expansion and contraction due to voltage application. The piezo element for XZ moves the sample in the X direction by swinging left and right by applying a symmetrical voltage in a direction parallel to the sample surface, and moves up and down by applying a symmetrical voltage in a direction perpendicular to the sample surface. The sample is moved in the Z direction by swinging the head. The voltages for driving these XYZ are output from the XYZ-sample scanning control module. The XYZ voltages output from the XYZ-sample scanning control module are set by the STEM image output PC.

この構造を、図12、図6を参照してより詳しく説明すると以下の通りとなる。
前記試料ステージは試料保持部(図6)が2つのチューブピエゾ素子の連結を介して電子顕微鏡用試料ホルダーに固定されており、チューブピエゾ(X,Z移動用)は、駆動電圧の印加による首振り動作作用によって、電子ビームの光軸と試料ホルダー軸に垂直方向であるX方向と、電子ビームの光軸に平行方向であるZ方向に、試料保持部を移動させる。
チューブピエゾ(Y移動用)は、駆動電圧の印加による伸縮動作作用によって、試料ホルダーの軸に平行方向に、試料保持部を移動させる。共焦点STEM像取得システムによって、任意のXY走査のための位置設定パラメータをXYZ試料ステージ走査制御電源に入力し、そこから出た制御電圧によって、試料保持部はXY二次元移動される。
This structure will be described in more detail with reference to FIGS. 12 and 6 as follows.
In the sample stage, a sample holding unit (FIG. 6) is fixed to a sample holder for an electron microscope through a connection of two tube piezo elements, and the tube piezo (for X and Z movement) is a neck by applying a drive voltage. The sample holder is moved in the X direction perpendicular to the optical axis of the electron beam and the sample holder axis and in the Z direction parallel to the optical axis of the electron beam by the swinging action.
The tube piezo (for Y movement) moves the sample holder in a direction parallel to the axis of the sample holder by an expansion / contraction operation effect by applying a drive voltage. A position setting parameter for arbitrary XY scanning is input to the XYZ sample stage scanning control power source by the confocal STEM image acquisition system, and the sample holding unit is moved XY two-dimensionally by the control voltage output therefrom.

このようにして、図13に示すように、電子銃から出た照射電子を収束レンズによって試料上にフォーカスし、試料を透過した電子を結像レンズによって試料下にある検出器上面の絞り位置に再びフォーカスし、試料上の収束電子プローブの中央の一部のみを絞りによって透過させるという共焦点光学系において、その透過した電子を検出器によって検出し、その強度を透過電子検出モジュールによって増幅し、その信号を共焦点STEM像取得システムに入力する。各XY位置における信号を画像強度として、共焦点STEM像取得システムにおいて画像化することで、共焦点STEMによる断層像を得る。
1枚断層像を取得したら、共焦点STEM像取得システムによって別のZ位置パラメータをXYZ試料ステージ走査制御電源に入力し、そこから出た制御電圧によって試料保持部を任意のZ方向に移動させ、次の断層像を取得する。これを繰り返すことによって、異なったZ位置における複数枚の断層像を得る。
In this way, as shown in FIG. 13, the irradiated electrons emitted from the electron gun are focused on the sample by the converging lens, and the electrons that have passed through the sample are brought to the aperture position on the detector upper surface under the sample by the imaging lens. In the confocal optical system that focuses again and transmits only a part of the center of the focused electron probe on the sample through the diaphragm, the transmitted electrons are detected by the detector, and the intensity is amplified by the transmission electron detection module. The signal is input to a confocal STEM image acquisition system. A signal at each XY position is imaged in the confocal STEM image acquisition system as an image intensity to obtain a tomographic image by the confocal STEM.
When one tomographic image is acquired, another Z position parameter is input to the XYZ sample stage scanning control power supply by the confocal STEM image acquisition system, and the sample holding unit is moved in an arbitrary Z direction by the control voltage output therefrom. Obtain the next tomogram. By repeating this, a plurality of tomographic images at different Z positions are obtained.

図7は、透過電子検出器の上側に穴径300〜50ミクロンの絞りを取り付けたときの蛍光板での観察像であり、絞りの影像が拡大された試料像と重畳して観察されている。50ミクロンの絞り径は、試料面上でおよそ0.2nmに相当している。
図8は、試料ステージ走査によって得た共焦点STEM像を示し、試料はグラファイトであって、グラファイトのC面の格子(幅0.34nm)が解像されていることがわかる。
FIG. 7 is an observation image on a fluorescent screen when a diaphragm having a hole diameter of 300 to 50 microns is attached to the upper side of the transmission electron detector, and a shadow image of the diaphragm is observed superimposed on the enlarged sample image. An aperture diameter of 50 microns corresponds to approximately 0.2 nm on the sample surface.
FIG. 8 shows a confocal STEM image obtained by scanning the sample stage, and it can be seen that the sample is graphite and the C-plane lattice (width 0.34 nm) of graphite is resolved.

図9は、対物絞り位置(対物レンズ焦点面)に円環型絞りを装着して、その位置を結像レンズによって拡大観察した像。40mradから120mradの散乱電子のみが通過して結像に用いられる。
円環型絞りは、図10に示すように、電子不透過性の材質からなる盤状本体に環状の電子透過部が形成されたもので、電子透過部の直径によって、透過させる電子線の光軸に対する角度を設定することができる。
FIG. 9 is an image obtained by magnifying and observing the position with an imaging lens with an annular diaphragm attached to the objective diaphragm position (focal plane of the objective lens). Only scattered electrons from 40 mrad to 120 mrad pass and are used for imaging.
As shown in FIG. 10, the ring-shaped aperture is a plate-shaped body made of an electron-impermeable material and having an annular electron-transmitting portion. Depending on the diameter of the electron-transmitting portion, the light of the electron beam to be transmitted An angle with respect to the axis can be set.

本発明による共焦点STEMおよび共焦点暗視野STEMによって、厚いままの半導体デバイスや生物試料が高分解能で観察可能になり、半導体産業におけるデバイス検査や性能評価、生物試料の高分解能・高コントラスト3次元観察などの点で画期的なツールとなる。さらに高角度散乱電子を用いたZコントラスト断層像観察は、光学顕微鏡で言えば共焦点蛍光顕微鏡に相当するものであり、試料内部の元素分布情報が観察可能となる。半導体デバイス解析の分野では、現在はFIBを用いて試料を削ずってねらった断面を露出させる方法やトモグラフィー技術を利用した三次元観察が行われているが、前者では試料を破壊しながらの観察であり、かつ得られる像は2次元断面像である。後者の場合は回折効果によって見る方向でコントラストが変化し、また回転軸が一つであるために回転軸方向の情報が得られない、といった欠点がある。分解能も1nm程度であり、原子分解能は得られない。共焦点STEMは、完全な三次元情報が得られるわけではないが、原子分解能で断層像が取得可能となる。生物試料に関しては、試料は一般に厚く、電子顕微鏡観察ではコントラストが得にくいが、共焦点観察技術によって試料の高分解能・高コントラスト3次元観察が可能となる。以上のように、本研究において開発を目指す共焦点走査型電子顕微鏡は、半導体デバイス解析や生物試料観察にとってブレークスルーとなりうる装置であり、様々な科学分野や産業分野への波及効果が極めて高い。   The confocal STEM and confocal dark field STEM according to the present invention enable observation of thick semiconductor devices and biological samples with high resolution, device inspection and performance evaluation in the semiconductor industry, and high resolution and high contrast 3D of biological samples. It becomes a breakthrough tool in terms of observation. Further, Z-contrast tomographic image observation using high-angle scattered electrons is equivalent to a confocal fluorescence microscope in terms of an optical microscope, and element distribution information inside the sample can be observed. Currently, in the field of semiconductor device analysis, FIB is used for 3D observation using a method that exposes the cross-section of the sample and tomography technology, but in the former, observation is performed while destroying the sample. And the obtained image is a two-dimensional cross-sectional image. In the latter case, there are disadvantages that the contrast changes in the viewing direction due to the diffraction effect, and that there is only one rotation axis, so information on the rotation axis direction cannot be obtained. The resolution is also about 1 nm, and atomic resolution cannot be obtained. Confocal STEM does not provide complete three-dimensional information, but can obtain tomographic images at atomic resolution. Regarding biological samples, the samples are generally thick and it is difficult to obtain contrast by electron microscope observation, but high-resolution and high-contrast three-dimensional observation of the sample is possible by confocal observation technology. As described above, the confocal scanning electron microscope aimed at development in this research is an apparatus that can be a breakthrough for semiconductor device analysis and biological sample observation, and has a very high ripple effect on various scientific fields and industrial fields.

スキャン−デスキャン方式の共焦点STEMの原理図Principle of scan-descan confocal STEM ステージスキャン方式の共焦点STEMの原理図Principle diagram of stage scan confocal STEM 高角度円環暗視野−共焦点STEMの原理図Principle of high-angle annular dark field-confocal STEM 走査試料ステージと共焦点光学系によって実施した予備実験の説明図Explanatory drawing of preliminary experiment conducted with scanning sample stage and confocal optical system 走査試料ステージとその制御システムの模式図Schematic diagram of scanning sample stage and its control system STEM用走査試料ステージの写真Photograph of scanning sample stage for STEM 透過電子検出器の直前に極小絞りを取り付けたときの蛍光板での観察像Observation image on a fluorescent screen when a minimum aperture is attached just before the transmission electron detector 実験で得られた共焦点STEM像(明視野)Confocal STEM image (bright field) obtained by experiment 対物絞り位置(対物レンズ焦点面)に装着した円環型絞りを示す写真Photograph showing an annular aperture mounted at the objective aperture position (objective focal plane) 円環型絞りの構造を明確にするための図面Drawing for clarifying the structure of an annular diaphragm 円環型絞りの機能を説明する模式図Schematic diagram explaining the function of an annular diaphragm ピエゾ駆動XYZ駆動試料ステージを示す斜視図Perspective view showing a piezo-driven XYZ-driven sample stage ピエゾ駆動XYZ駆動試料ステージを用いた共焦点STEMによる三次元断層像取得システムを示す概念図Conceptual diagram showing a three-dimensional tomographic image acquisition system by confocal STEM using a piezo-driven XYZ-driven sample stage

Claims (6)

電子銃から出た照射電子を収束レンズによって試料上にフォーカスし、試料を透過した電子を結像レンズによって試料下にある検出器上面の絞り位置に再びフォーカスし、試料上の収束電子プローブの中央の一部のみを絞りによって透過させて検出器によって検出する共焦点光学系を有する透過型電子顕微鏡であって、前記試料を保持する試料ステージを、ナノ駆動構造により電子ビームの光軸方向であるZ軸方向とそれに直交するX軸とY軸方向(X軸とY軸は互いに直交する)とに移動調整可能にしてあることを特徴とする透過型電子顕微鏡。   The irradiated electron emitted from the electron gun is focused on the sample by the converging lens, and the electron transmitted through the sample is again focused by the imaging lens on the aperture position on the detector upper surface below the sample, and the center of the converging electron probe on the sample A transmission electron microscope having a confocal optical system that transmits only a part of the sample by a diaphragm and detects the same by a detector, and the sample stage holding the sample is arranged in the optical axis direction of the electron beam by a nano-drive structure A transmission electron microscope characterized by being movable and adjustable in a Z-axis direction and an X-axis direction and a Y-axis direction orthogonal to the Z-axis direction (X-axis and Y-axis are mutually orthogonal). 請求項1に記載の透過型電子顕微鏡において、前記共焦点光学系の検出器により取得した焦点ボケ具合に対応して、前記ナノ駆動構造を焦点ボケを無くす方向に作動する試料ステージ自動調整機構を設けてあることを特徴とする透過型電子顕微鏡。   2. The transmission electron microscope according to claim 1, further comprising: a sample stage automatic adjustment mechanism that operates the nano-drive structure in a direction to eliminate out-of-focus blur in response to the out-of-focus condition acquired by the detector of the confocal optical system. A transmission electron microscope characterized by being provided. 請求項1又は2に記載の透過型電子顕微鏡において、前記ナノ駆動構造は、ピエゾドライブにより構成してあることを特徴とする透過型電子顕微鏡。   3. The transmission electron microscope according to claim 1, wherein the nano-driving structure is configured by a piezo drive. 4. 請求項1から3のいずれかに記載の透過型電子顕微鏡において、前記試料の下方において、光軸に対して所定の角度で傾斜した電子のみを透過する絞りが配置され、当該絞りを透過した電子を検出器に焦点を合わせた収束レンズ系を設けて、前記検出器により透過電子の暗視野STEM像を得る暗視野STEM構造を有していることを特徴とする透過型電子顕微鏡。   4. The transmission electron microscope according to claim 1, wherein a diaphragm that transmits only electrons inclined at a predetermined angle with respect to the optical axis is disposed below the sample, and the electrons transmitted through the diaphragm. A transmission electron microscope having a dark field STEM structure in which a converging lens system focused on a detector is provided and a dark field STEM image of transmitted electrons is obtained by the detector. 請求項4に記載の透過型電子顕微鏡において、前記暗視野STEM構造により得られた暗視野STEMの焦点ボケ具合により球面収差を検出し、当該球面収差を最小にするように前記試料ステージを移動させる自動調整機構を有していることを特徴とする透過型電子顕微鏡。   5. The transmission electron microscope according to claim 4, wherein spherical aberration is detected by a defocus state of the dark field STEM obtained by the dark field STEM structure, and the sample stage is moved so as to minimize the spherical aberration. A transmission electron microscope having an automatic adjustment mechanism. 請求項4又は5に記載の透過型電子顕微鏡において、前記絞りは円環型絞りであることを特徴とする透過型電子顕微鏡。   6. The transmission electron microscope according to claim 4, wherein the stop is an annular stop.
JP2007113612A 2007-04-24 2007-04-24 Scanning transmission electron microscope Pending JP2008270056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007113612A JP2008270056A (en) 2007-04-24 2007-04-24 Scanning transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007113612A JP2008270056A (en) 2007-04-24 2007-04-24 Scanning transmission electron microscope

Publications (1)

Publication Number Publication Date
JP2008270056A true JP2008270056A (en) 2008-11-06

Family

ID=40049288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007113612A Pending JP2008270056A (en) 2007-04-24 2007-04-24 Scanning transmission electron microscope

Country Status (1)

Country Link
JP (1) JP2008270056A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7777185B2 (en) * 2007-09-25 2010-08-17 Ut-Battelle, Llc Method and apparatus for a high-resolution three dimensional confocal scanning transmission electron microscope
JP2011065860A (en) * 2009-09-17 2011-03-31 Jeol Ltd Device and method for acquiring confocal stem (scanning transmission electron microscope) image
DE112009001298T5 (en) 2008-10-20 2011-04-21 Aisin AW Co., Ltd., Anjo-shi Power transmission device and vehicle in which a power transmission device is installed
EP2315232A2 (en) 2009-08-07 2011-04-27 Hitachi, Ltd. Transmission electron microscope and method for observing specimen image with the same
WO2011071008A1 (en) 2009-12-07 2011-06-16 株式会社日立ハイテクノロジーズ Transmission electron microscope and test sample observation method
JP2011175908A (en) * 2010-02-25 2011-09-08 National Institute For Materials Science Sample holder, and scanning transmission electron microscope
WO2013012041A1 (en) * 2011-07-20 2013-01-24 株式会社日立ハイテクノロジーズ Scanning electron microscope and scanning tunneling electron microscope
CN103021776A (en) * 2012-12-06 2013-04-03 中国科学院物理研究所 Transmission electron microscope with near-field optical scanning function
JP2013532883A (en) * 2010-07-14 2013-08-19 エフ・イ−・アイ・カンパニー Contrast improvement of scanning confocal electron microscope
EP2239758A3 (en) * 2009-04-08 2014-08-06 Carl Zeiss NTS GmbH Particle-beam microscope
JP2016511926A (en) * 2013-02-14 2016-04-21 ユニフェルシテイト アントウェルペンUniversiteit Antwerpen High resolution amplitude contrast imaging
JPWO2018020565A1 (en) * 2016-07-26 2018-10-04 株式会社日立製作所 Replacement site measuring device and replacement site measuring method
EP3731257A3 (en) * 2016-03-04 2021-02-24 Phenom-World Holding B.V. Scanning electron microscope
CN112444224A (en) * 2020-11-13 2021-03-05 大连理工大学 Intelligent detection system and method for lens aperture and thickness
US11024481B2 (en) 2016-03-04 2021-06-01 Fei Company Scanning electron microscope
WO2023243063A1 (en) * 2022-06-16 2023-12-21 株式会社日立ハイテク Transmission charged particle beam device and ronchigram imaging method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7777185B2 (en) * 2007-09-25 2010-08-17 Ut-Battelle, Llc Method and apparatus for a high-resolution three dimensional confocal scanning transmission electron microscope
DE112009001298T5 (en) 2008-10-20 2011-04-21 Aisin AW Co., Ltd., Anjo-shi Power transmission device and vehicle in which a power transmission device is installed
EP2239758A3 (en) * 2009-04-08 2014-08-06 Carl Zeiss NTS GmbH Particle-beam microscope
EP2315232A2 (en) 2009-08-07 2011-04-27 Hitachi, Ltd. Transmission electron microscope and method for observing specimen image with the same
US8193494B2 (en) 2009-08-07 2012-06-05 Hitachi, Ltd. Transmission electron microscope and method for observing specimen image with the same
US8253101B2 (en) 2009-09-17 2012-08-28 Jeol Ltd. Method and system for acquisition of confocal STEM images
JP2011065860A (en) * 2009-09-17 2011-03-31 Jeol Ltd Device and method for acquiring confocal stem (scanning transmission electron microscope) image
US8586922B2 (en) 2009-12-07 2013-11-19 Hitachi High-Technologies Corporation Transmission electron microscope and sample observation method
WO2011071008A1 (en) 2009-12-07 2011-06-16 株式会社日立ハイテクノロジーズ Transmission electron microscope and test sample observation method
JP2011175908A (en) * 2010-02-25 2011-09-08 National Institute For Materials Science Sample holder, and scanning transmission electron microscope
JP2013532883A (en) * 2010-07-14 2013-08-19 エフ・イ−・アイ・カンパニー Contrast improvement of scanning confocal electron microscope
CN103703537B (en) * 2011-07-20 2015-06-17 株式会社日立高新技术 Scanning electron microscope and scanning tunneling electron microscope
CN103703537A (en) * 2011-07-20 2014-04-02 株式会社日立高新技术 Scanning electron microscope and scanning tunneling electron microscope
JP2013025967A (en) * 2011-07-20 2013-02-04 Hitachi High-Technologies Corp Scanning/transmission electron microscope
US8878130B2 (en) 2011-07-20 2014-11-04 Hitachi High-Technologies Corporation Scanning electron microscope and scanning transmission electron microscope
WO2013012041A1 (en) * 2011-07-20 2013-01-24 株式会社日立ハイテクノロジーズ Scanning electron microscope and scanning tunneling electron microscope
CN103021776A (en) * 2012-12-06 2013-04-03 中国科学院物理研究所 Transmission electron microscope with near-field optical scanning function
JP2016511926A (en) * 2013-02-14 2016-04-21 ユニフェルシテイト アントウェルペンUniversiteit Antwerpen High resolution amplitude contrast imaging
EP3731257A3 (en) * 2016-03-04 2021-02-24 Phenom-World Holding B.V. Scanning electron microscope
US11024481B2 (en) 2016-03-04 2021-06-01 Fei Company Scanning electron microscope
JPWO2018020565A1 (en) * 2016-07-26 2018-10-04 株式会社日立製作所 Replacement site measuring device and replacement site measuring method
CN112444224A (en) * 2020-11-13 2021-03-05 大连理工大学 Intelligent detection system and method for lens aperture and thickness
CN112444224B (en) * 2020-11-13 2021-11-05 大连理工大学 Intelligent detection system and method for lens aperture and thickness
WO2023243063A1 (en) * 2022-06-16 2023-12-21 株式会社日立ハイテク Transmission charged particle beam device and ronchigram imaging method

Similar Documents

Publication Publication Date Title
JP2008270056A (en) Scanning transmission electron microscope
JP3998556B2 (en) High resolution X-ray microscope
JP3867524B2 (en) Observation apparatus and observation method using electron beam
US7777185B2 (en) Method and apparatus for a high-resolution three dimensional confocal scanning transmission electron microscope
US9535020B2 (en) Analyzing an object using a particle beam apparatus
US8476588B2 (en) Method of electron diffraction tomography
JP5449679B2 (en) Electron beam observation apparatus and sample observation method
US9390888B2 (en) Apparatus and method of applying small-angle electron scattering to characterize nanostructures on opaque substrate
JP2014107274A (en) Method of performing tomographic imaging of sample in charged-particle microscope
JP4650330B2 (en) Combined device of optical microscope and X-ray analyzer
JP5309552B2 (en) Electron beam tomography method and electron beam tomography apparatus
EP2924707B1 (en) Raman microscope and electron microscope analytical system
WO2013108711A1 (en) Charged particle beam microscope, sample holder for charged particle beam microscope, and charged particle beam microscopy
JP4717481B2 (en) Scanning probe microscope system
CN111739782A (en) Apparatus and method for transferring electrons from a sample to an energy analyser and electron spectrometer apparatus
JP4337832B2 (en) Observation apparatus and observation method using electron beam
JP2008084643A (en) Electron microscope and solid observation method
US9396907B2 (en) Method of calibrating a scanning transmission charged-particle microscope
JP2010080144A (en) Compound microscope device and method of observing sample
TW201822242A (en) Apparatus for combined STEM and EDS tomography
US9966223B2 (en) Device for correlative scanning transmission electron microscopy (STEM) and light microscopy
WO2015037313A1 (en) Scanning transmission electron microscope and aberration measurement method therefor
JP5397060B2 (en) Charged particle microscope and analysis method
JP6554066B2 (en) Electron microscope for magnetic field measurement and magnetic field measurement method
JP2022155554A (en) Method and system for acquiring three dimensional electron diffraction data