WO2015037313A1 - Scanning transmission electron microscope and aberration measurement method therefor - Google Patents

Scanning transmission electron microscope and aberration measurement method therefor Download PDF

Info

Publication number
WO2015037313A1
WO2015037313A1 PCT/JP2014/068078 JP2014068078W WO2015037313A1 WO 2015037313 A1 WO2015037313 A1 WO 2015037313A1 JP 2014068078 W JP2014068078 W JP 2014068078W WO 2015037313 A1 WO2015037313 A1 WO 2015037313A1
Authority
WO
WIPO (PCT)
Prior art keywords
aberration
ronchigram
electron microscope
scanning transmission
transmission electron
Prior art date
Application number
PCT/JP2014/068078
Other languages
French (fr)
Japanese (ja)
Inventor
高穂 吉田
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Publication of WO2015037313A1 publication Critical patent/WO2015037313A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/153Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/263Contrast, resolution or power of penetration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1534Aberrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/282Determination of microscope properties
    • H01J2237/2826Calibration

Definitions

  • the present invention relates to a technique for precisely measuring the aberration of a scanning transmission electron microscope (STEM).
  • STEM scanning transmission electron microscope
  • the spherical aberration corrector since the spherical aberration corrector was put into practical use, in addition to the three aberrations, the remaining four aberrations after correcting the spherical aberration (axial coma, star aberration, four-fold astigmatism, and spherical aberration itself) It is necessary to handle a total of 7 aberrations including In order to obtain the highest resolution, it is necessary to evaluate and adjust or suppress a total of 14 axial aperture aberrations of higher order (generally 5th order or less in 2012).
  • Non-patent Document 1 the probe tableau method (Non-patent Document 1) has been mainly used as a method for measuring precise aberrations during aberration correction.
  • a plurality of STEM images with appropriate defocusing are given by varying the incident angle of the electron beam (by a plurality of incident angles).
  • This is a method of performing deconvolution calculation using a sufficiently small STEM image) as a reference image, estimating distortion of the electron probe due to aberration at each electron beam incident angle, and calculating axial aberration from these estimation results.
  • the defocus C 1 ( ⁇ ) and the two-fold astigmatism A 1 ( ⁇ ) at the incident angle at which the original STEM image was taken can be obtained.
  • a multiple simultaneous equation is established from the relational expression of axial aberration and tilt aberration, which will be described later, and as a result, the coefficient of each axial aberration listed in Table 1 is calculated.
  • ⁇ attached to each aberration coefficient indicates designation of the incident angle of the electron beam.
  • non-rotationally symmetric aberrations that is, aberrations with symmetry in 1 to 6 rows
  • have two parameters, magnitude and direction. 25 unconstant must be determined. That is, it is necessary to establish at least as many independent simultaneous equations as there are undetermined numbers.
  • Such an aberration measurement method has a problem that the calculated on-axis aberration coefficient is likely to contain errors not only due to errors occurring in the process of estimating the STEM image itself or the shape of the electron probe but also due to changes over time during STEM image shooting. is there.
  • Ronchigram a projected image
  • Patent Document 1 and Patent Document 2 an aberration measurement method using a projected image
  • the Ronchigram itself is a projected figure of the sample by the electron probe distorted by the aberration, and the figure includes information on the aberration.
  • a Ronchigram is imaged using an electron beam having a sufficiently large convergence angle, aberration information relating to the incident electron beam within the convergence angle is projected onto the corresponding location of the Ronchigram.
  • the axial aberration can be calculated from the Ronchigram of several conditions including the repetition for the purpose of statistically improving the measurement accuracy.
  • the Ronchigram including aberration becomes an atypical image having complicated distortion. Therefore, in order to extract aberration information from an atypical image, appropriate image processing and calculation are essential.
  • the obtained Ronchigram is divided into an appropriate size and the required number of lattices, the image distortion in each lattice and the autocorrelation of the lattice image are taken, and the pattern obtained by the autocorrelation is elliptical. Quantify by fitting with a function.
  • the parameters that determine the elliptic function obtained by fitting are linked to the local aberration information in the lattice using Equation 3, Equation 4, and Equation 5 in the same document, and further, a simultaneous equation obtained from Equation 2 is established from each lattice.
  • the axial aberration coefficient is calculated.
  • the number of gratings is sufficient to establish the simultaneous equations necessary for the calculation of the on-axis aberration, but the size of each grating must also be an appropriate size to extract the local aberration information of the area. I must. Since what is obtained from the autocorrelation of each region divided by the lattice is the strain information averaged within the region, it is preferable that the size of the lattice is as small as possible to know the strain information corresponding to the local area. On the other hand, if the lattice size is too small, the autocorrelation correctly reflecting the distortion information cannot be obtained, and an error occurs in the obtained local aberration.
  • Ronchigram magnification the size of the grating needs to be appropriately selected according to the aberration state.
  • Patent Document 2 and Patent Document 3 also disclose an aberration measurement method using a Ronchigram. These documents disclose methods for measuring aberrations by measuring changes in the Ronchigram with varying optical parameters.
  • Patent Document 2 photographs a Ronchigram before and after the electron probe focused in the vicinity of the sample surface is slightly displaced by an electron optical means such as a deflector (or the sample itself is minutely displaced).
  • the axial aberration is measured by comparing these two Ronchigrams.
  • each Ronchigram is appropriately divided into a plurality of regions, and the local displacement generated before and after the minute displacement of the electron probe is measured in a corresponding region between the two Ronchigrams. Since the local displacement in each region can be regarded as a change in local magnification due to aberration, use Equation 1 in the same document that relates the local displacement and axial aberration, and also calculate the axial aberration by combining simultaneous equations from each region. To do.
  • Patent Document 3 instead of slightly displacing the electron probe, the focal point of the imaging lens is slightly changed, and Ronchigrams are obtained before and after the electron probe is moved up and down in the vicinity of the sample, and the two Ronchigrams are compared. As a result, the axial aberration is measured. Displacement is measured between a plurality of corresponding projection points of two Ronchigrams acquired before and after defocusing is slightly changed, and this is correlated with axial aberration as local aberration information. To calculate the on-axis aberration.
  • the probe tableau method that has been mainly used in STEM conventionally requires a complicated and time-consuming procedure for repeating many measurements while changing the incident angle of the electron beam. It is difficult to say that it is an easy-to-use measurement method for use in the correction (adjustment) process.
  • the aberration measurement method using the Ronchigram can measure the aberration coefficient that gives the axial aberration by a smaller number of measurements (in a short time) than the probe tableau method.
  • the aberration measurement methods using these Ronchigrams also have a number of problems in the image measurement process for extracting a large amount of local aberration information from the Ronchigram as described above.
  • the present invention minutely changes the height relationship between the focal point of the electron probe imaged on or near the sample surface and the sample when imaging one Ronchigram.
  • Get Ronchigram while letting In the present specification, the Ronchigram acquired while slightly changing the focal point as described above is referred to as “Focus Modulated Ronchigram”.
  • local aberration information can be extracted with only one Ronchigram (focus modulation Ronchigram).
  • aberration information can be accurately extracted from the Ronchigram as compared with the conventional method, and as a result, it is possible to accurately measure even higher-order aberrations.
  • FIG. 1 is a diagram illustrating a configuration example of an STEM according to Example 1.
  • FIG. FIG. 6 is a diagram illustrating a configuration example of an STEM according to the second embodiment.
  • FIG. 10 is a diagram illustrating a configuration example of an STEM according to the third embodiment. The figure which shows the example of a photograph of an amorphous thin film sample. The figure which shows the normal Ronchigram obtained by imaging the amorphous thin film sample shown to FIG. 7A.
  • FIG. 6 is a diagram illustrating a configuration example of an STEM according to Example 1.
  • FIG. 10 is a diagram illustrating a configuration example of an STEM according to the third embodiment.
  • FIG. 7B is a diagram showing a focus modulation Ronchigram obtained by imaging the amorphous thin film sample shown in FIG. 7A.
  • This specification provides a method for measuring axial aberration with high accuracy in STEM, particularly an aberration measurement method suitable for adjustment of an aberration correction STEM apparatus.
  • the present specification relates to an aberration measurement method using a Ronchigram, and provides a high-accuracy aberration coefficient measurement method that calculates a quantitatively accurate on-axis aberration coefficient by reducing the arbitraryness at the time of measurement.
  • FIG. 1 shows a schematic configuration of an aberration correction STEM apparatus.
  • the aberration correction STEM device includes an electron source 3 and acceleration means (for example, an acceleration tube 2) for accelerating electrons emitted from the electron source 3 at the top of the mirror body 1.
  • acceleration means for example, an acceleration tube 2 for accelerating electrons emitted from the electron source 3 at the top of the mirror body 1.
  • acceleration means for example, an acceleration tube 2 for accelerating electrons emitted from the electron source 3 at the top of the mirror body 1.
  • acceleration means for example, an acceleration tube 2 for accelerating electrons emitted from the electron source 3 at the top of the mirror body 1.
  • acceleration means for example, an acceleration tube 2 for accelerating electrons emitted from the electron source 3 at the top of the mirror body 1.
  • VG STEM apparatus and the like an apparatus provided with the electron gun 2 at the lowermost end as in some STEMs
  • the apparatus configuration is opposite to that shown in FIG.
  • whether the electron source 2 is at the top or the bottom as shown in FIG. 1 does not have a
  • the electron beam 20 is emitted from the electron source 3.
  • the trajectory of the electron beam 20 that has passed through the converging lens 4 is adjusted by the deflector 6, and the converging state is adjusted by the converging lens 7.
  • These adjusted electron beams 20 are guided to the objective lens 10.
  • the objective lens 10 converges the electron beam 20 on the surface of the sample 9 as an electron probe having a minute diameter.
  • the electronic probe is raster scanned by the scan coil 24 along the sample surface. At this time, transmitted electrons, scattered electrons, secondary electrons, reflected electrons, X-rays, and the like are obtained from various portions of the sample 9.
  • the transmission electron beam 22 and the scattered electron beam 23 are adjusted by the projection lens 12 so as to have an appropriate detection angle with respect to the bright field detector 14 and the annular dark field detector 13. Thereby, the transmission electron beam 22 is detected by the bright field detector 14, and the scattered electron beam 23 is detected by the annular dark field detector 13.
  • control computer 19 reconstructs the detection signal into a two-dimensional image in the order of raster scanning on the sample surface.
  • a bright field STEM image is obtained from the detection signal of the bright field detector 14 (corresponding to the transmission electron beam 22), and the annular dark field is detected from the detection signal of the dark field detector 13 (corresponding to the scattered electron beam 23).
  • a STEM image is obtained.
  • the diameter of an electron probe can be reduced to 0.1 nm or less due to the influence of positive spherical aberration that cannot be avoided with an objective lens that is an electromagnetic field lens.
  • the spherical aberration corrector 11 due to the practical application of the spherical aberration corrector 11 in recent years, the spherical aberration of the objective lens 10 can be corrected, and the diameter of the electron probe can be reduced to 0.1 nm or less.
  • the diameter of the electron probe can be reduced to less than 0.1 nm (that is, 0.08 to 0.05 nm), and it has become possible to obtain a resolution that can clearly identify individual atoms.
  • the spherical aberration corrector 11 In such an aberration correction STEM device, the spherical aberration corrector 11 generates a negative (opposite) spherical aberration equivalent to the spherical aberration of the objective lens 10 in advance when forming the electron probe. As shown, it is provided above the objective lens 10.
  • the spherical aberration corrector 11 is not a rotationally symmetric electromagnetic lens like a conventional electron lens, but has a structure in which a plurality of multipole lenses such as hexapoles, quadrupoles, octupoles, etc. are used in combination. For this reason, the adjustment of the spherical aberration corrector 11 is complicated, and an aberration correction control system 18 for controlling the adjustment is required.
  • the aberration correction control system 18 may be integrated into the electron microscope control system 17 and the control computer 19.
  • the aberration correction control system 18 is a new apparatus or software that has not been used in a conventional electron microscope (STEM or the like).
  • the aberration correction control system 18 includes a power source that drives the main body of the spherical aberration corrector 11, an aberration measuring unit that evaluates the aberration state of the STEM, and an adjustment unit that performs correction adjustment according to the evaluated aberration state.
  • The By the way, the configuration and control of the spherical aberration corrector 11 are complicated, and the adjustment needs to be performed precisely. Therefore, in the normal aberration correction procedure, 1) aberration measurement is executed first, 2) the adjustment content is determined with reference to the measurement result, 3) adjustment is executed, and 4) aberration measurement is executed again.
  • Ronchigram is used for aberration measurement.
  • the projection surface 15 and the imaging detector 16 are disposed below the mirror body.
  • the Ronchigram is an image (projected image) of the sample 9 projected onto the projection surface 15 when the beam scanning by the scan coil 24 is stopped.
  • Ronchigram When acquiring Ronchigram, use the converging lens aperture 5 with a large aperture diameter. In this case, the electron beam 20 transmitted through a wide range of the objective lens 10 is converged to the vicinity of the sample 9 by the objective lens 10. At this time, the electron probe has a distorted shape due to the influence of aberration at various points of the objective lens 10.
  • a Ronchigram (projected image) of the sample 9 formed by the distorted electron probe is projected onto the projection surface 15 via the projection lens 12.
  • the Ronchigram is photographed by an imaging detector 16 such as a CCD camera that photographs the projection surface 15 from the back surface side, and is taken into the control computer 19 as image data.
  • the principle of Ronchigram formation will be described with reference to FIG.
  • the electron beam 20 that has passed through the spherical aberration corrector 11 enters the objective lens 10.
  • the objective lens 10 is ideal (has no aberration)
  • the electron beam 20 passes through the trajectories 21a and 210a and is converged to one point (convergence point O) on the sample surface.
  • the ideal wavefront of the electron beam 20 with respect to convergence in the ideal state is represented by 30a.
  • the ideal wavefront 30a is a spherical surface centered on the convergence point O.
  • the sample 9 at the convergence point O is evenly (uniformly) projected onto all regions in the Ronchigram. Therefore, if there is a particle that blocks the electron beam 20 at the convergence point O, the entire surface of the Ronchigram is uniformly darkened. On the other hand, if there is a hole that transmits the electron beam 20, the entire surface of the Ronchigram becomes uniformly bright and no conspicuous pattern appears. This is a Ronchigram with no aberration. Therefore, the state to be approximated using the spherical aberration corrector 11 is a Ronchigram having a uniform region having no characteristic pattern as wide as possible.
  • the electron beam 20 is not converged to one point (convergence point O) on the sample surface as in an ideal state.
  • the electron beam 210b passing through the point Q of the objective lens 10 passes through a point P that is separated from the convergence point O on the sample surface by ⁇ due to the influence of aberration, passes through the trajectory of the electron beam 221b, and is a point in the Ronchigram. R is reached. That is, the Ronchigram affected by the aberration becomes a distortion projection image of the sample 9.
  • the wavefront is also deformed from the ideal wavefront 30a to the wavefront 30b including the aberration. This wavefront difference is the wavefront aberration.
  • the wavefront aberration (the left side of Equation 1) is expressed by the following equation using the aberration count. [Formula 1]
  • Equation 1 specifies up to fifth-order aberrations.
  • is a complex representation of the electron convergence angle and is given by Equation 2, respectively.
  • the projection point R in the Ronchigram is given by the following equation.
  • L is a so-called camera length (distance from the sample 9 to the image plane 150).
  • the projection point R on the Ronchigram corresponding to a certain point of the sample 9 is determined by the influence of wavefront aberration.
  • Defocusing means that an ideal focal plane (Gaussian focal point) having no aberration moves from the convergence point 0 to the convergence point E.
  • the trajectory (paraxial trajectory) of the electron beam 20 due to ideal (without aberration) convergence changes from the trajectory 210a to the trajectory 211a.
  • the ideal wavefront changes from the wavefront 30a to the wavefront 31a, and the wavefront including aberration changes from the wavefront 30b to 31b.
  • is the wavefront aberration function of Equation 1, and the parenthesized parenthesis represents the differentiation shown below.
  • Equation 8 [Formula 9]
  • FIG. 4 illustrates a partial configuration of the aberration correction STEM according to the first embodiment.
  • the same reference numerals are given to corresponding parts to FIG. 1, and the configuration below the spherical aberration corrector 11 in the basic configuration shown in FIG. 1 is shown. Therefore, the configuration above the spherical aberration corrector 11 in the aberration correction STEM according to the present embodiment is the same as that in FIG. In FIG. 4, for the sake of simplification, the illustration of the bright field detector 14 and the dark field detector 13 which are not necessary for the description of the aberration correction using the Ronchigram is omitted.
  • the aberration correction control system 18 is provided with an aberration measurement system 181 that performs aberration measurement.
  • the aberration measurement system 181 controls the lens current modulator 172 and the imaging detector 16 that modulate the excitation of the objective lens when performing aberration measurement.
  • the electron microscope control system 17 appropriately selects values such as the convergence angle of the convergent electron beam (electron probe) 21 with respect to the sample surface and the focal length of the objective lens 10, so that the optical conditions suitable for acquiring the Ronchigram are obtained. Set.
  • the electron microscope control system 17 projects the Ronchigram on the projection surface 15 after stopping and controlling the operation of the scan coil 24.
  • the projection magnification (that is, the effective camera length) can be adjusted by the projection lens 12.
  • the projected Ronchigram is acquired by the imaging detector 16 disposed on the back side (downward) of the projection surface 15. As described above, the imaging detector 16 acquires a Ronchigram under the control of the aberration measurement system 181. Further, in synchronism with the acquisition of the Ronchigram, the aberration measurement system 181 controls the lens current modulator 172 to apply a current that modulates excitation to the objective lens.
  • the focal point of the convergent electron beam 21 is minutely displaced (vibrated) in the height direction in the vicinity of the sample 9. Due to the minute displacement of the focal point, as described with reference to FIG. 3, the positional change of the projection point R is captured in a form that is integrated into one Ronchigram (focus modulation Ronchigram). It is preferable that the minute displacement of the focus is periodically performed once or a plurality of (an integer of 1 or more) times within the acquisition time of the focus modulation Ronchigram.
  • FIG. 5 shows a partial configuration of the aberration correction STEM according to the second embodiment. Also in the case of FIG. 5, like FIG. 4, only a part of the apparatus configuration is shown. In FIG. 5, the same reference numerals are given to the portions corresponding to FIG. 4.
  • the sample high displacement actuator 184 is attached to the sample holder 8 that holds the sample 9.
  • a piezoelectric element or the like is used as the sample high displacement actuator 184. The sample high displacement actuator 184 in this embodiment slightly displaces the support portion of the sample holder 8 in the vertical direction.
  • the sample 9 when the Ronchigram is acquired, the sample 9 is slightly displaced in the vertical (height) direction under the control of the aberration measurement system 181. Since the vertical displacement of the sample 9 is very small, for example, the actuator 184 may be a rotary type and the sample holder 8 may be slightly rotated around the axis to generate a local sample height displacement. Thus, the focal point can be changed even by changing the height of the sample itself. Also in the case of the present embodiment, similarly to the first embodiment, the focus is changed in one to several cycles in synchronization with the acquisition of the Ronchigram, and the focus modulation Ronchigram is acquired in an integrated manner.
  • FIG. 6 illustrates a partial configuration of the aberration correction STEM according to the third embodiment.
  • the focus adjustment lens 101 for measurement for causing a minute focus fluctuation is arranged above the objective lens 10, and this is controlled by the aberration measurement system 181 to execute the focus fluctuation.
  • the aberration measurement system 181 executes the focus change of one to several cycles using the measurement focus adjustment lens 101 in synchronization with the acquisition of the Ronchigram, and realizes the acquisition of the integrated focus modulation Ronchigram.
  • the objective lens 10 itself to be corrected is used for the measurement although it is minute, so that lens drift, hysteresis, and the like affect the optical system of the STEM. The possibility is slight but worried.
  • Example 2 it is possible to acquire a focus modulation Ronchigram without touching the STEM optical system such as the objective lens 10 and the spherical aberration corrector 11.
  • the objective lens 10 itself does not need to change the excitation for measurement as in the second embodiment.
  • the focus adjustment lens for measurement 101 used in this embodiment may be a very weak lens, and the influence of the aberration is almost negligible.
  • an electrostatic lens is used as the measurement focus adjustment lens 101, for example, the influence can be completely removed from the optical system by turning off the measurement focus adjustment lens 101.
  • Ronchigram is a long-distance projection image of the sample by the electron probe having a focal point in the vicinity of the sample as described above, this can be expressed by a probe shape and convolution on the sample surface as follows.
  • a ( ⁇ , ⁇ ) is a limitation of the electron beam that contributes to the formation of the electron probe, that is, a so-called aperture function.
  • 1 + ⁇ (x, y) is a function representing a phase change due to the sample 9.
  • Sample 9 used weak phase object approximation.
  • ⁇ ( ⁇ ) is a distribution function related to the focus distribution (focal blur), and is given by Equation 14 if a Gaussian distribution with a width ⁇ is assumed, for example.
  • Equation 15 ⁇ ( ⁇ ) is given by Equation 15 when considering the case of using a sin wave with alternating current.
  • FIG. 7A shows two types of Ronchigrams obtained when the amorphous thin film 90 is used as the sample 9.
  • FIG. 7B is a normal Ronchigram 151
  • FIG. 7C is a focus modulation Ronchigram 152.
  • various aberration amounts are listed outside the table.
  • the focus modulation Ronchigram 152 is used, and the locus of the amorphous particles projected in one focus modulation Ronchigram 152 (the displacement amount due to the minute fluctuation of the focus) is used. And local aberration information. These follow ⁇ in Equations 6-8.
  • the aberration correction STEM FIGS. 4 to 6) and the driving method having the above-described configuration are used to obtain the focus modulation Ronchigram 152.
  • FIG. 8A an area suitable for measurement is extracted from the focus modulation Ronchigram 152 (FIG. 8A).
  • the area to be extracted is shown surrounded by a white frame.
  • the area is divided into appropriate sizes (FIG. 8B).
  • FIG. 8B an example of dividing into 5 ⁇ 5 grids is shown.
  • the number of divisions of the grid is not limited to 5 ⁇ 5, and it is not necessary to divide into a grid in the first place.
  • a part of each division area may mutually overlap.
  • the method for clarifying the elongation and distortion amount of each area after division is not limited to the method of obtaining the autocorrelation of each area.
  • the focus modulation ronchigram of the sample-specific part imaged under the same acquisition conditions may be similarly divided into regions, and cross-correlation may be taken between the corresponding divided regions. Further, the cross-correlation may be calculated between the corresponding partial (divided) regions between the focus modulation Ronchigram and the normal Ronchigram 151 (FIG. 7B) acquired at the same sample location.
  • Equation 7 or Equation 8 is established from these measured values. Further, as described in the explanation of FIG. 3, the shortage of the simultaneous equations is obtained in the same way by obtaining the focal modulation Ronchigram at different focal positions ⁇ 2 ( ⁇ ⁇ 1 ), compensate. As a result, the defocus C 2 and astigmatism A 2 for each divided region can be obtained.
  • the elongation strain measurement process corresponding to FIGS. 8C and 8D can be realized by a simple method as shown in FIG. 9, for example. That is, the maximum value and its position for each column (row) in one direction are searched and plotted for one divided area. For example, in the example of FIG. 9, the position (pixel) that gives the maximum value in each column is found from the correlation image 1520, and this is indicated by a broken line 1522 connecting A to B. Further, the correlation strength measured along this broken line Is plotted in the lower graph 1521.
  • a line element 1524 indicated by a bold line can be determined. If this is carried out in each divided region, a line element 1524 representative of elongation strain can be obtained similarly, that is, defocus C 1 and astigmatism A 1 can be obtained in each region.
  • focus modulation Ronchigrams are acquired and analyzed at two focal positions. Thereby, the axial aberration coefficient of the part related to the formation of the STEM electron probe including the objective lens 10 and the spherical aberration corrector 11 can be obtained.
  • the first feature of the measurement method according to each embodiment is that, as in Patent Document 2 and Patent Document 3, two Ronchigrams are not required before and after the focus change, and the focus is 1 during acquisition of one Ronchigram.
  • the focus modulation Ronchigram can be acquired by one step of changing a plurality of periods.
  • the second feature of the measurement method according to each example is that, as in Patent Document 2, it is not necessary to track a specific point in the sample with a Ronchigram before and after the focus change.
  • the measurement method proposed in this specification since the pattern of each region image obtained by dividing the focus modulation Ronchigram appears according to the movement of each sample particle, the amount of elongation distortion of the region pattern using autocorrelation as in the above method Can be measured.
  • the third feature of the measurement method according to each embodiment is that the detection sensitivity of the local aberration information can be adjusted with a focus fluctuation amount ⁇ that can be arbitrarily controlled.
  • the inner 3 ⁇ 3 region has a shorter line element length that gives local aberration information than the outer peripheral region, and seems to easily cause an error. Since the line element length is considered to be proportional to ⁇ from Equation 9, in such a case, a focus variation Ronchigram in which ⁇ is increased in the same field of view should be obtained.
  • the Ronchigram is used for measurement, so that each stage is different from the probe tableau method described in Non-Patent Document 1 (aberration measurement method that requires repeated measurement conditions). It is possible to measure aberrations with a simplified measurement procedure. Accordingly, it is possible to expect a significant reduction in the time required for aberration measurement.
  • Patent Document 2 and Patent Document 3 a plurality of specific observation points are determined on the sample before and after the change of measurement conditions such as defocus and beam shift, and the displacement of the same location is determined. Must be tracked and local aberration information extracted.
  • the focus modulation Ronchigram used at this time is an image obtained by performing focus modulation of one to a plurality of periods within the photographing time of one Ronchigram as described above, and obtained before and after the change of the measurement condition as described above. There is no need to compare multiple Ronchigrams.
  • the aberration measurement method of the present example has the same advantages as the measurement method described in Patent Document 1.
  • a Ronchigram is also used for the measurement, and this is divided into small areas, the autocorrelation of each area image is measured, and local aberration information is extracted from each.
  • the aberration measurement method of Patent Document 1 requires work such as fitting the autocorrelation strength obtained in each region with an elliptic function.
  • the focus modulation Ronchigram is divided into local regions as in Patent Document 1, and this autocorrelation or cross-correlation is taken to extract local aberration information from each. All that is required is the length and orientation of the main peak that appears in the correlation pattern of each region. This can be accurately obtained by the simple method described in FIG.
  • the length of the main peak of this correlation pattern is proportional to the amount of focus modulation at the time of acquiring the focus modulation Ronchigram, as shown in Equation 8 or Equation 9. Utilizing this property, when the main peak length is not long enough for measurement (when it is smaller than the threshold value) or too long (when larger than the threshold value) depending on the aberration state
  • the aberration measurement system 181 can guarantee the measurement accuracy by adjusting the focus modulation amount through the electron microscope control system 17 and optimizing the main peak length to be measured.
  • the number of times of measurement will increase, for example, if a plurality of Ronchigrams in which the amount of focus modulation is adjusted so that a correlation pattern appropriate for the measurement of local aberration information is obtained for each region into which the focus modulation Ronchigram is divided are used. Further, the measurement accuracy of the local aberration information can be further improved.
  • the sample to be measured is limited to a pure amorphous thin film.
  • the aberration measurement method of the present embodiment it is only necessary to know the displacement trajectory of the particle according to the focus modulation. Therefore, if it does not affect this, the measurement sample includes substances other than amorphous, such as crystal fine particles. It may be.
  • the present invention is not limited to the configuration of the embodiment described above, and includes various modifications.
  • the description has been made on the premise of STEM, but other charged particle optical devices (for example, scanning electron microscope (SEM), focused ions, etc.) that scan with the charged particle probe focused on the surface of the observation sample
  • SEM scanning electron microscope
  • FIB beam
  • the present invention can be applied when a Ronchigram can be obtained by devising a measurement sample.
  • the present invention can also be applied to an STEM that does not include the spherical aberration corrector 11.
  • the measured axial aberration cannot be used for aberration correction, but the aberration of the objective lens 11 used in the STEM can be accurately evaluated and used for later use.
  • an aberration measurement method applied to each sample may be registered as a recipe in advance.
  • a function for automatically generating a recipe may be mounted on the aberration correction STEM.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be partly or entirely realized as, for example, an integrated circuit or other hardware.
  • Each of the above-described configurations, functions, and the like may be realized by a processor interpreting and executing a program that realizes each function. That is, each configuration may be realized by software.
  • information such as programs, tables, and files for realizing each function can be stored in a storage device such as a memory, a hard disk, an SSD (Solid State Drive), or a storage medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for explanation, and do not represent all control lines and information lines necessary for the product. In practice, it can be considered that almost all components are connected to each other.

Abstract

Acquisition of aberration information from a ronchigram is prone to occurrences of errors. Thus, when imaging a ronchigram, the positional relationship between the focal point of an electron probe imaged onto a sample surface or in the vicinity thereof is varied minutely in the height direction, and the acquired ronchigram (focus-modulated ronchigram) is used to measure the aberration.

Description

走査透過電子顕微鏡及びその収差測定方法Scanning transmission electron microscope and aberration measurement method thereof
 本発明は、走査透過電子顕微鏡(STEM:Scanning Transmission Electron Microscope)の収差を精密に測定する技術に関する。 The present invention relates to a technique for precisely measuring the aberration of a scanning transmission electron microscope (STEM).
 近年、走査透過電子顕微鏡(STEM)や透過電子顕微鏡(TEM)においては、球面収差補正技術が実用化されている。これに伴い、以前では、電子レンズの大きな球面収差に隠れ、あまり重視されてこなかったような微小な各種の収差の影響を適切に取り扱う方法が重要となっている。例えば球面収差補正器が実用化される以前では、STEMにおいて問題となる三次以下の収差は、せいぜいデフォーカス、二回対称非点、三回対称非点の3収差であり、それらについてのみ評価し、または、補償の対策を講じれば良かった。 In recent years, spherical aberration correction technology has been put into practical use in scanning transmission electron microscopes (STEM) and transmission electron microscopes (TEM). Along with this, a method of appropriately handling the influence of various minute aberrations that have been hidden behind the large spherical aberration of the electron lens and have not been emphasized so far has become important. For example, before the spherical aberration corrector was put to practical use, the third-order and lower aberrations that are problematic in STEM are at most three aberrations: defocus, two-fold astigmatism, and three-fold symmetry astigmatism. Or, it would have been good to take compensation measures.
 しかし、球面収差補正器が実用化されてから以後は、前記3収差に加え、球面収差を補正して残る4収差(軸上コマ収差、スター収差、四回対称非点収差、球面収差自体)を含む計7収差を適切に取り扱うことが必要となった。さらに最高分解能を得るためには、より高次(2012年の段階では一般的には5次以下)の計14個の軸上開口収差を評価し、調整または抑制する必要性がいわれている。
Figure JPOXMLDOC01-appb-T000001
However, since the spherical aberration corrector was put into practical use, in addition to the three aberrations, the remaining four aberrations after correcting the spherical aberration (axial coma, star aberration, four-fold astigmatism, and spherical aberration itself) It is necessary to handle a total of 7 aberrations including In order to obtain the highest resolution, it is necessary to evaluate and adjust or suppress a total of 14 axial aperture aberrations of higher order (generally 5th order or less in 2012).
Figure JPOXMLDOC01-appb-T000001
 以上より明らかなように、各レンズ収差の評価(すなわち、収差係数の精密測定法)は、電子顕微鏡の収差補正技術が確立される以前とは桁違いに重要さを増している。従来、収差補正STEM装置(球面収差補正器を備えるSTEM装置)においては、収差補正時の精密収差測定法として、主に、プローブタブロー法(非特許文献1)が用いられてきた。この方法は、電子線の入射角度を可変して(複数の入射角度により)適宜なデフォーカスを与えた状態のSTEM像を複数撮影し、次に、垂直入射正焦点時のSTEM像(収差が十分少ないSTEM像と仮定)を参照像としてデコンボリューション演算を実行して各電子線入射角度での収差による電子プローブの歪みを推定し、これらの推定結果から軸上収差を算出する方法である。 As is clear from the above, the evaluation of each lens aberration (that is, the precision measurement method of the aberration coefficient) is becoming more important than before the establishment of the electron microscope aberration correction technology. Conventionally, in an aberration correction STEM device (STEM device including a spherical aberration corrector), the probe tableau method (Non-patent Document 1) has been mainly used as a method for measuring precise aberrations during aberration correction. In this method, a plurality of STEM images with appropriate defocusing are given by varying the incident angle of the electron beam (by a plurality of incident angles). This is a method of performing deconvolution calculation using a sufficiently small STEM image) as a reference image, estimating distortion of the electron probe due to aberration at each electron beam incident angle, and calculating axial aberration from these estimation results.
 推定されるプローブ形状からは、元のSTEM像を撮影した入射角度におけるデフォーカスC1(τ)と二回対称非点収差A1(τ)を求めることができるので、これら2つの収差を複数の入射角度について測定し、後述する軸上収差と傾斜収差の関係式から多元連立方程式を立て、結果的に表1に列記した各軸上収差の係数を算出する。ここで、各々の収差係数に付されたτは、電子線の入射角度の指定を示している。表1に示す各収差のうち非回転対称収差(すなわち対称性が1~6回の列にある収差)には大きさと方位の2つのパラメータがあり、表1の軸上収差を求めるためには25個の未定数を決定しなければならない。すなわち、少なくとも未定数と同数の独立な連立方程式を立てる必要がある。 From the estimated probe shape, the defocus C 1 (τ) and the two-fold astigmatism A 1 (τ) at the incident angle at which the original STEM image was taken can be obtained. Are measured, a multiple simultaneous equation is established from the relational expression of axial aberration and tilt aberration, which will be described later, and as a result, the coefficient of each axial aberration listed in Table 1 is calculated. Here, τ attached to each aberration coefficient indicates designation of the incident angle of the electron beam. Among the aberrations shown in Table 1, non-rotationally symmetric aberrations (that is, aberrations with symmetry in 1 to 6 rows) have two parameters, magnitude and direction. 25 unconstant must be determined. That is, it is necessary to establish at least as many independent simultaneous equations as there are undetermined numbers.
 プローブタブロー法においては、1つの電子線の入射角度に対してC1(τ)の大きさ、A1(τ)の大きさと方位の計3つの方程式を得ることができるので、最低9つの入射角度を用いてこれらを測定できれば、五次までの軸上収差を求めることができる。実際の例では、統計的に測定精度を上げるために、17~25個の入射角度で各々適宜なアンダーフォーカスとオーバーフォーカスでSTEM像を撮影してC1(τ)とA1(τ)を決め、軸上収差を算出する。 In the probe tableau method, it is possible to obtain a total of three equations of C 1 (τ) magnitude, A 1 (τ) magnitude and orientation with respect to the incident angle of one electron beam. If these can be measured using angles, axial aberrations up to the fifth order can be obtained. In an actual example, in order to statistically improve the measurement accuracy, S 1 T images were taken with appropriate underfocus and overfocus at 17 to 25 incident angles, and C 1 (τ) and A 1 (τ) were calculated. And calculate the axial aberration.
 すなわち、参照像とする垂直入射正焦点での1枚を加え、35枚以上のSTEM像を撮影して収差測定を実行することになり、非常に煩雑で時間もかかる測定となる。このような収差測定法は、STEM像自体又は電子プローブ形状の推定過程で発生する誤差だけでなくSTEM像撮影中の経時的変化によっても、算出される軸上収差係数に誤差を含み易い問題がある。 That is, adding one image at the normal incidence normal focal point as a reference image and taking 35 or more STEM images to execute the aberration measurement makes measurement extremely complicated and time consuming. Such an aberration measurement method has a problem that the calculated on-axis aberration coefficient is likely to contain errors not only due to errors occurring in the process of estimating the STEM image itself or the shape of the electron probe but also due to changes over time during STEM image shooting. is there.
 一方、近年では、プローブタブロー法と異なる原理の収差測定法として、投影像(ロンチグラム)を用いる収差測定法(例えば特許文献1、特許文献2)が開発実用化されている。ロンチグラムの詳細については後述するが、ロンチグラム自体は収差で歪んだ電子プローブによる試料の投影図形であり、その図形には収差に関する情報が含まれる。 On the other hand, in recent years, an aberration measurement method using a projected image (Ronchigram) (for example, Patent Document 1 and Patent Document 2) has been developed and put to practical use as an aberration measurement method based on a principle different from the probe tableau method. Although details of the Ronchigram will be described later, the Ronchigram itself is a projected figure of the sample by the electron probe distorted by the aberration, and the figure includes information on the aberration.
 さらに、十分に大きな収束角度の電子線を用いてロンチグラムを撮像すれば、その収束角度内の入射電子線に関する収差情報がロンチグラムの対応箇所に投影されることになる。このため、前述のプローブタブロー法とは異なり、ロンチグラムの局所領域毎にこれら収差情報を引き出すことで、原理的には1つのロンチグラムから軸上収差を計算することも可能である。統計的に測定精度を向上させる目的での繰り返しを含め、数条件のロンチグラムから軸上収差を算出することができる。ただし、収差を含んだロンチグラムは、複雑な歪みを持った非定形画像となる。よって、非定形画像から収差情報を抽出するには、適切な画像処理と演算が必須となる。 Furthermore, if a Ronchigram is imaged using an electron beam having a sufficiently large convergence angle, aberration information relating to the incident electron beam within the convergence angle is projected onto the corresponding location of the Ronchigram. For this reason, unlike the above-described probe tableau method, it is possible in principle to calculate axial aberration from one Ronchigram by extracting these aberration information for each local area of the Ronchigram. The axial aberration can be calculated from the Ronchigram of several conditions including the repetition for the purpose of statistically improving the measurement accuracy. However, the Ronchigram including aberration becomes an atypical image having complicated distortion. Therefore, in order to extract aberration information from an atypical image, appropriate image processing and calculation are essential.
 例えば特許文献1においては、得られたロンチグラムを適当なサイズかつ必要な数の格子に分割し、各格子内の像ひずみと当該格子画像の自己相関を取り、自己相関により得られたパターンを楕円関数等でフィッティングすることにより定量化する。フィッティングで得られた楕円関数を決めるパラメータは、同文献内の式3、式4、式5を用いて格子内の局所収差情報と結びつけられ、さらに各格子から式2で得られる連立方程式を立て、軸上収差係数を算出する。 For example, in Patent Document 1, the obtained Ronchigram is divided into an appropriate size and the required number of lattices, the image distortion in each lattice and the autocorrelation of the lattice image are taken, and the pattern obtained by the autocorrelation is elliptical. Quantify by fitting with a function. The parameters that determine the elliptic function obtained by fitting are linked to the local aberration information in the lattice using Equation 3, Equation 4, and Equation 5 in the same document, and further, a simultaneous equation obtained from Equation 2 is established from each lattice. The axial aberration coefficient is calculated.
 この場合、格子の数が軸上収差の算出に必要な連立方程式を成立させるに十分であることは勿論だが、各格子のサイズも当該領域の局所収差情報を取り出すために適切な大きさでなければならない。格子で区分された各領域の自己相関から得られるのは領域内で平均化された歪み情報になるので、なるべく当該局所に対応する歪み情報を知るには格子のサイズは小さい方がよい。一方で、格子サイズが小さすぎると、正しく歪み情報を反映した自己相関が得られず、得られる局所収差に誤差が生じる。 In this case, of course, the number of gratings is sufficient to establish the simultaneous equations necessary for the calculation of the on-axis aberration, but the size of each grating must also be an appropriate size to extract the local aberration information of the area. I must. Since what is obtained from the autocorrelation of each region divided by the lattice is the strain information averaged within the region, it is preferable that the size of the lattice is as small as possible to know the strain information corresponding to the local area. On the other hand, if the lattice size is too small, the autocorrelation correctly reflecting the distortion information cannot be obtained, and an error occurs in the obtained local aberration.
 ところで、収差の状態によってロンチグラムの形状は大きく変化する。このため、格子のサイズは、収差状態に合わせて適切に選択する必要がある。ロンチグラム取得時のデフォーカスやカメラ長(ロンチグラム倍率)についても、同様の理由で収差状態に応じた注意深い選択が必要である。 By the way, the shape of the Ronchigram varies greatly depending on the state of aberration. For this reason, the size of the grating needs to be appropriately selected according to the aberration state. For defocus and camera length (Ronchigram magnification) at the time of Ronchigram acquisition, careful selection according to the aberration state is necessary for the same reason.
 特許文献2及び特許文献3も、ロンチグラムを用いる収差測定方法を開示する。これらの文献は、光学パラメータを変えてロンチグラムの変化を測定することにより収差を測定する方法を開示する。 Patent Document 2 and Patent Document 3 also disclose an aberration measurement method using a Ronchigram. These documents disclose methods for measuring aberrations by measuring changes in the Ronchigram with varying optical parameters.
 このうち、特許文献2は、試料面の近傍で焦点が結ばれた電子プローブを偏向器等の電子光学的手段で微小変位させた(又は試料自体を微小変位させた)前後でロンチグラムを撮影し、これら2枚のロンチグラムを比較することで軸上収差を測定する。具体的には、特許文献1と同様、それぞれのロンチグラムを適宜複数の領域に区分し、2枚のロンチグラム間の対応領域に電子プローブの微小変位の前後で生じた局所変位を計測する。各領域の局所変位は、収差による局所倍率の変化とみなせるので、局所変位と軸上収差とを関係付ける同文献中の式1を用い、やはり各領域から連立方程式を組んで軸上収差を算出する。 Among these, Patent Document 2 photographs a Ronchigram before and after the electron probe focused in the vicinity of the sample surface is slightly displaced by an electron optical means such as a deflector (or the sample itself is minutely displaced). The axial aberration is measured by comparing these two Ronchigrams. Specifically, as in Patent Document 1, each Ronchigram is appropriately divided into a plurality of regions, and the local displacement generated before and after the minute displacement of the electron probe is measured in a corresponding region between the two Ronchigrams. Since the local displacement in each region can be regarded as a change in local magnification due to aberration, use Equation 1 in the same document that relates the local displacement and axial aberration, and also calculate the axial aberration by combining simultaneous equations from each region. To do.
 また、特許文献3中では、電子プローブを微小変位させる代わりに結像レンズの焦点を微小に変化させ、電子プローブを試料付近で上下させる前後でロンチグラムをそれぞれ取得し、これら2枚のロンチグラムを比較することで軸上収差を測定する。デフォーカスを微小変化させる前後において取得された2枚のロンチグラムの対応する複数の投影点間で変位を測定し、これを局所収差情報として軸上収差と関連付けし、前述の方法と同様に連立方程式を立てて軸上収差を算出する。 Further, in Patent Document 3, instead of slightly displacing the electron probe, the focal point of the imaging lens is slightly changed, and Ronchigrams are obtained before and after the electron probe is moved up and down in the vicinity of the sample, and the two Ronchigrams are compared. As a result, the axial aberration is measured. Displacement is measured between a plurality of corresponding projection points of two Ronchigrams acquired before and after defocusing is slightly changed, and this is correlated with axial aberration as local aberration information. To calculate the on-axis aberration.
 これら特許文献2及び3に示す方法も、特許文献1の方法と同様に、局所収差情報の抽出が(ロンチグラムを領域区分する場合にはその区分方法も)適切であることに注意を要する。さらに、特許文献1の方法と異なり、異なる2枚のロンチグラム間で対応する投影点の変位を比較するので、複数の投影点で変位前後の位置を正しく結び付けを行う必要がある。一方、特許文献2及び特許文献3の方法では、特許文献1の方法と異なり、ロンチグラム内の変位量を外部で任意に制御できる電子プローブの変位とデフォーカスの量により加減できるので、これを用いて局所収差情報の抽出精度、ひいては軸上収差の測定精度の向上を図ることが可能である。 In the methods shown in Patent Documents 2 and 3, it is necessary to note that the extraction of local aberration information is appropriate (and the method of dividing the Ronchigram is also divided) as in the method of Patent Document 1. Furthermore, unlike the method of Patent Document 1, since the displacements of the corresponding projection points are compared between two different Ronchigrams, it is necessary to correctly associate the positions before and after the displacement at a plurality of projection points. On the other hand, in the methods of Patent Document 2 and Patent Document 3, unlike the method of Patent Document 1, the amount of displacement in the Ronchigram can be adjusted by the amount of displacement and defocus of the electronic probe that can be arbitrarily controlled externally. Thus, it is possible to improve the extraction accuracy of the local aberration information and hence the measurement accuracy of the on-axis aberration.
特許第5188846号公報Japanese Patent No. 5188846 米国特許第6552340号明細書US Pat. No. 6,552,340 特許第4553889号公報Japanese Patent No. 4553889
 前述したように、従来、STEMにおいて主に用いられてきたプローブタブロー法は、電子線の入射角度を変えながら多数回の測定を繰り返す煩雑で時間を要する手順が必要であり、特に軸上収差の補正(調整)過程で用いるには、使いやすい測定法とは言い難い。 As described above, the probe tableau method that has been mainly used in STEM conventionally requires a complicated and time-consuming procedure for repeating many measurements while changing the incident angle of the electron beam. It is difficult to say that it is an easy-to-use measurement method for use in the correction (adjustment) process.
 一方、ロンチグラムを用いた収差測定法は、プローブタブロー法に比してより少数回の測定により(短時間で)軸上収差を与える収差係数を測定することができる。しかし、これらロンチグラムを用いる収差測定法も、前述の通り、ロンチグラムから多数の局所収差情報を抽出する画像計測工程に数々の問題を抱えている。 On the other hand, the aberration measurement method using the Ronchigram can measure the aberration coefficient that gives the axial aberration by a smaller number of measurements (in a short time) than the probe tableau method. However, the aberration measurement methods using these Ronchigrams also have a number of problems in the image measurement process for extracting a large amount of local aberration information from the Ronchigram as described above.
 上記課題を解決するため、本発明は、1枚のロンチグラムを撮像する際、試料表面又はその近傍に結像された電子プローブの焦点と試料との高さの関係を高さ方向に微小に変化させながらロンチグラムを取得する。なお、本明細書では、前述のように焦点を微小変化させながら取得するロンチグラムを、「焦点変調ロンチグラム(Focus Modulated Ronchigram)」と呼称する。 In order to solve the above-described problems, the present invention minutely changes the height relationship between the focal point of the electron probe imaged on or near the sample surface and the sample when imaging one Ronchigram. Get Ronchigram while letting In the present specification, the Ronchigram acquired while slightly changing the focal point as described above is referred to as “Focus Modulated Ronchigram”.
 本発明によれば、1枚のロンチグラム(焦点変調ロンチグラム)だけで局所的な収差情報を抽出することができる。しかも、本発明の場合、従来方式に比べ、収差情報を正確にロンチグラムから取り出すことができ、その結果、高次収差まで正確に測定することが可能となる。前述した以外の課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。 According to the present invention, local aberration information can be extracted with only one Ronchigram (focus modulation Ronchigram). In addition, in the case of the present invention, aberration information can be accurately extracted from the Ronchigram as compared with the conventional method, and as a result, it is possible to accurately measure even higher-order aberrations. Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.
球面収差補正器を備えるSTEMの構成例を説明するための概略図。Schematic for demonstrating the structural example of STEM provided with a spherical aberration corrector. ロンチグラムの形成原理を説明する図。The figure explaining the formation principle of Ronchigram. 焦点変化がロンチグラムに与える影響(特に試料上の特定点に対応するロンチグラム上の投影点の変位)を説明する図。The figure explaining the influence which a focus change has on a Ronchigram (especially the displacement of the projection point on the Ronchigram corresponding to the specific point on a sample). 実施例1に係るSTEMの構成例を示す図。1 is a diagram illustrating a configuration example of an STEM according to Example 1. FIG. 実施例2に係るSTEMの構成例を示す図。FIG. 6 is a diagram illustrating a configuration example of an STEM according to the second embodiment. 実施例3に係るSTEMの構成例を示す図。FIG. 10 is a diagram illustrating a configuration example of an STEM according to the third embodiment. アモルファス薄膜試料の写真例を示す図。The figure which shows the example of a photograph of an amorphous thin film sample. 図7Aに示すアモルファス薄膜試料を撮像して得られる通常のロンチグラムを示す図。The figure which shows the normal Ronchigram obtained by imaging the amorphous thin film sample shown to FIG. 7A. 図7Aに示すアモルファス薄膜試料を撮像して得られる焦点変調ロンチグラムを示す図。FIG. 7B is a diagram showing a focus modulation Ronchigram obtained by imaging the amorphous thin film sample shown in FIG. 7A. 焦点変調ロンチグラムから局所領域を取り出す工程を説明する図。The figure explaining the process of taking out a local region from a focus modulation Ronchigram. 取り出した領域を適当なサイズに分割する工程を説明する図。The figure explaining the process of dividing | segmenting the taken-out area | region into suitable size. 分割後の各領域について自己相関を求めた結果を示す図。The figure which shows the result of having calculated | required the autocorrelation about each area | region after a division | segmentation. 焦点変調ロンチグラムから抽出された局所収差情報を説明する図。The figure explaining the local aberration information extracted from the focus modulation Ronchigram. 局所収差情報を数値化する方法(特に相関強度から伸び歪みを表す線素を取得する方法)を説明する図。The figure explaining the method (especially the method of acquiring the line element showing elongation distortion from correlation intensity | strength) which digitizes local aberration information.
 以下、図面に基づいて、本発明の実施の形態を説明する。なお、本発明の実施の態様は、後述する実施例に限定されるものではなく、その技術思想の範囲において、種々の変形が可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiment of the present invention is not limited to the examples described later, and various modifications are possible within the scope of the technical idea.
 本明細書では、STEMにおいて高精度に軸上収差を測定する手法、特に収差補正STEM装置の調整に適した収差測定法を提供する。特に、本明細書は、ロンチグラムを用いた収差測定方法に関し、測定時の恣意性の軽減により、定量的に正確な軸上収差係数を算出する高精度収差係数測定法を提供する。 This specification provides a method for measuring axial aberration with high accuracy in STEM, particularly an aberration measurement method suitable for adjustment of an aberration correction STEM apparatus. In particular, the present specification relates to an aberration measurement method using a Ronchigram, and provides a high-accuracy aberration coefficient measurement method that calculates a quantitatively accurate on-axis aberration coefficient by reducing the arbitraryness at the time of measurement.
[基本構成]
 まず、収差補正STEM装置の基本構成を説明する。図1に、収差補正STEM装置の概略構成を示す。収差補正STEM装置は、鏡体1の頭頂部に、電子源3と、当該電子源3から射出された電子を加速する加速手段(例えば加速管2)とを備える。なお、一部のSTEM(VG製STEM装置等)のように、最下端に電子銃2を備える装置もある。その場合の装置構成は、図1と上下反対となる。もっとも、電子源2が図1に示すように頭頂部にあるか最下部にあるかは、本発明に対して特段の影響を与えない。
[Basic configuration]
First, the basic configuration of the aberration correction STEM apparatus will be described. FIG. 1 shows a schematic configuration of an aberration correction STEM apparatus. The aberration correction STEM device includes an electron source 3 and acceleration means (for example, an acceleration tube 2) for accelerating electrons emitted from the electron source 3 at the top of the mirror body 1. In addition, there is an apparatus provided with the electron gun 2 at the lowermost end as in some STEMs (VG STEM apparatus and the like). In this case, the apparatus configuration is opposite to that shown in FIG. However, whether the electron source 2 is at the top or the bottom as shown in FIG. 1 does not have a particular influence on the present invention.
 電子源3からは電子線20が射出される。収束レンズ4を通過した電子線20の軌道は偏向器6により調整され、さらに集束状態は収束レンズ7により調整される。これら調整後の電子線20は、対物レンズ10に導かれる。対物レンズ10は、電子線20を微小な径サイズの電子プローブとして試料9の面上に収束させる。この電子プローブを、スキャンコイル24により、試料面に沿うようにラスタースキャンする。この際、試料9の各所から透過電子、散乱電子、二次電子、反射電子、X線等が得られる。 The electron beam 20 is emitted from the electron source 3. The trajectory of the electron beam 20 that has passed through the converging lens 4 is adjusted by the deflector 6, and the converging state is adjusted by the converging lens 7. These adjusted electron beams 20 are guided to the objective lens 10. The objective lens 10 converges the electron beam 20 on the surface of the sample 9 as an electron probe having a minute diameter. The electronic probe is raster scanned by the scan coil 24 along the sample surface. At this time, transmitted electrons, scattered electrons, secondary electrons, reflected electrons, X-rays, and the like are obtained from various portions of the sample 9.
 このうち、透過電子線22及び散乱電子線23は、投影レンズ12により、明視野検出器14及び環状暗視野検出器13に対して適当な検出角度になるように調整される。これにより、透過電子線22は明視野検出器14で検出され、散乱電子線23は環状暗視野検出器13で検出される。 Among these, the transmission electron beam 22 and the scattered electron beam 23 are adjusted by the projection lens 12 so as to have an appropriate detection angle with respect to the bright field detector 14 and the annular dark field detector 13. Thereby, the transmission electron beam 22 is detected by the bright field detector 14, and the scattered electron beam 23 is detected by the annular dark field detector 13.
 これらの検出信号は、電子顕微鏡制御システム17を通じ、制御計算機(制御PC)19に読み出される。制御計算機19は、試料面上でラスタースキャンされた順番に検出信号を2次元画像に再構成する。この結果、明視野検出器14の検出信号(透過電子線22に対応)からは明視野STEM像が得られ、暗視野検出器13の検出信号(散乱電子線23に対応)からは環状暗視野STEM像が得られる。以上の説明からも推察される通り、STEM装置において高い分解能を得るためには、対物レンズ10において、試料9の面上に如何に微小な径サイズの電子プローブを形成するかが重要である。 These detection signals are read out to the control computer (control PC) 19 through the electron microscope control system 17. The control computer 19 reconstructs the detection signal into a two-dimensional image in the order of raster scanning on the sample surface. As a result, a bright field STEM image is obtained from the detection signal of the bright field detector 14 (corresponding to the transmission electron beam 22), and the annular dark field is detected from the detection signal of the dark field detector 13 (corresponding to the scattered electron beam 23). A STEM image is obtained. As can be inferred from the above description, in order to obtain a high resolution in the STEM apparatus, it is important how to form an electron probe with a minute diameter size on the surface of the sample 9 in the objective lens 10.
 従来、電磁界レンズである対物レンズでは避けがたい正の球面収差の影響により、電子プローブの径を0.1nm以下に縮小することが非常に困難であった。しかし、近年における球面収差補正器11の実用化により、対物レンズ10の球面収差補正が可能となり、電子プローブの径を0.1nm以下に縮小することが可能とになった。実際、収差補正STEM装置においては、電子プローブの径を0.1nm未満(すなわち、0.08~0.05nm)に縮小でき、個々の原子を明確に識別できる分解能を得ることが可能になった。 Conventionally, it has been very difficult to reduce the diameter of an electron probe to 0.1 nm or less due to the influence of positive spherical aberration that cannot be avoided with an objective lens that is an electromagnetic field lens. However, due to the practical application of the spherical aberration corrector 11 in recent years, the spherical aberration of the objective lens 10 can be corrected, and the diameter of the electron probe can be reduced to 0.1 nm or less. In fact, in the aberration correction STEM apparatus, the diameter of the electron probe can be reduced to less than 0.1 nm (that is, 0.08 to 0.05 nm), and it has become possible to obtain a resolution that can clearly identify individual atoms.
 このような収差補正STEM装置において、球面収差補正器11は、電子プローブの形成に当たり、事前に対物レンズ10が有する球面収差と等量かつ負(反対)の球面収差を発生させるため、図1に示したように対物レンズ10の上方に備え付けられる。この球面収差補正器11は、従来の電子レンズのように回転対称型の電磁レンズではなく、六極子、四極子、八極子等の多極子レンズを複数段組み合わせて用いる構造である。このため、球面収差補正器11の調整は複雑であり、当該調整を制御する収差補正制御システム18が必要となる。実際のハードウェア構成では、収差補正制御システム18は、電子顕微鏡制御システム17及び制御計算機19に統合される場合もある。いずれにしても、収差補正制御システム18は、従来の電子顕微鏡(STEM等)では用いられなかった新しい装置又はソフトウェアである。 In such an aberration correction STEM device, the spherical aberration corrector 11 generates a negative (opposite) spherical aberration equivalent to the spherical aberration of the objective lens 10 in advance when forming the electron probe. As shown, it is provided above the objective lens 10. The spherical aberration corrector 11 is not a rotationally symmetric electromagnetic lens like a conventional electron lens, but has a structure in which a plurality of multipole lenses such as hexapoles, quadrupoles, octupoles, etc. are used in combination. For this reason, the adjustment of the spherical aberration corrector 11 is complicated, and an aberration correction control system 18 for controlling the adjustment is required. In an actual hardware configuration, the aberration correction control system 18 may be integrated into the electron microscope control system 17 and the control computer 19. In any case, the aberration correction control system 18 is a new apparatus or software that has not been used in a conventional electron microscope (STEM or the like).
 収差補正制御システム18は、球面収差補正器11の本体を駆動させる電源の他、STEMの収差状態を評価する収差測定部と、評価された収差状態に従って補正調整を実行する調整部とから構成される。ところで、球面収差補正器11の構成や制御は複雑であり、しかも調整は精密に行う必要がある。このため、通常の収差補正手順では、1) 収差測定を最初に実行し、2) その測定結果を参照して調整内容を決定し、3) 調整を実行し、4) 再度の収差測定を実行し、5) 収差の調整効果を確認し、6) 次の調整内容を決定するといった一連のプロセスを循環的に繰り返し、球面収差補正器11及びSTEM装置を所望の収差補正状態に漸近的に導く調整操作が採用される。 The aberration correction control system 18 includes a power source that drives the main body of the spherical aberration corrector 11, an aberration measuring unit that evaluates the aberration state of the STEM, and an adjustment unit that performs correction adjustment according to the evaluated aberration state. The By the way, the configuration and control of the spherical aberration corrector 11 are complicated, and the adjustment needs to be performed precisely. Therefore, in the normal aberration correction procedure, 1) aberration measurement is executed first, 2) the adjustment content is determined with reference to the measurement result, 3) adjustment is executed, and 4) aberration measurement is executed again. 5) Confirming the effect of adjusting the aberration, 6) Cyclicly repeating a series of processes such as determining the next adjustment content, and asymptotically leading the spherical aberration corrector 11 and the STEM apparatus to the desired aberration correction state. Adjustment operation is adopted.
 ところが、このような調整操作は、収差測定や収差調整自体が煩雑であり、調整の完了までに非常に長い時間が必要になったり、最悪の場合には調整途中でSTEM装置の状態がレンズの熱ドリフト等の影響により変わって収差調整が適切に完了できなくなったりする可能性がある。 However, such adjustment operations involve complicated aberration measurement and aberration adjustment itself, and it takes a very long time to complete the adjustment, or in the worst case, the STEM device is in the middle of adjustment. There is a possibility that the aberration adjustment cannot be properly completed due to an influence of thermal drift or the like.
[実施例で採用する収差測定方法の原理]
 後述する実施例では、収差測定にロンチグラムを使用する。このため、鏡体の下部には、投影面15とイメージング検出器16が配置される。ロンチグラムは、スキャンコイル24によるビームスキャンを止めた場合に、投影面15に投影される試料9の像(投影像)である。
[Principle of Aberration Measurement Method Used in Examples]
In examples described later, Ronchigram is used for aberration measurement. For this reason, the projection surface 15 and the imaging detector 16 are disposed below the mirror body. The Ronchigram is an image (projected image) of the sample 9 projected onto the projection surface 15 when the beam scanning by the scan coil 24 is stopped.
 ロンチグラムを取得する場合、絞り穴の径が大きい収束レンズ絞り5を使用する。この場合、対物レンズ10の広い範囲を透過した電子線20が、対物レンズ10により試料9の近傍に収束される。このとき、電子プローブは、対物レンズ10の各所における収差の影響により歪んだ形状となる。投影面15には、歪んだ形状の電子プローブにより形成される試料9のロンチグラム(投影像)が投影レンズ12を介して投射される。ロンチグラムは、投影面15を裏面側から撮影するCCDカメラ等のイメージング検出器16により撮影され、制御計算機19に画像データとして取り込まれる。 When acquiring Ronchigram, use the converging lens aperture 5 with a large aperture diameter. In this case, the electron beam 20 transmitted through a wide range of the objective lens 10 is converged to the vicinity of the sample 9 by the objective lens 10. At this time, the electron probe has a distorted shape due to the influence of aberration at various points of the objective lens 10. A Ronchigram (projected image) of the sample 9 formed by the distorted electron probe is projected onto the projection surface 15 via the projection lens 12. The Ronchigram is photographed by an imaging detector 16 such as a CCD camera that photographs the projection surface 15 from the back surface side, and is taken into the control computer 19 as image data.
 図2を用い、ロンチグラムの形成原理を説明する。球面収差補正器11を通過した電子線20は、対物レンズ10に入射する。この時、対物レンズ10が理想的である(収差を持たない)場合、電子線20は軌道21a及び210aを通って試料面上の一点(収束点O)に収束される。図2では、理想状態での収束に対する電子線20の理想波面を30aで表している。図に示すように、理想波面30aは、収束点Oを中心とする球面となる。 The principle of Ronchigram formation will be described with reference to FIG. The electron beam 20 that has passed through the spherical aberration corrector 11 enters the objective lens 10. At this time, when the objective lens 10 is ideal (has no aberration), the electron beam 20 passes through the trajectories 21a and 210a and is converged to one point (convergence point O) on the sample surface. In FIG. 2, the ideal wavefront of the electron beam 20 with respect to convergence in the ideal state is represented by 30a. As shown in the figure, the ideal wavefront 30a is a spherical surface centered on the convergence point O.
 この場合、投影面150に投影されるロンチグラムは、ロンチグラム内の全ての領域に収束点Oの試料9が均等に(一様に)投射される。よって、仮に収束点Oに電子線20を遮断する粒子があれば、ロンチグラムの全面が一様に暗くなる。逆に、仮に電子線20を透過する穴があれば、ロンチグラムの全面が一様に明るくなり、目立ったパターンは現れない。これが収差のない状態のロンチグラムである。従って、球面収差補正器11を用いて近づけようとする状態は、特徴的なパターンを持たない一様な領域をなるべく広く持つロンチグラムである。 In this case, in the Ronchigram projected on the projection surface 150, the sample 9 at the convergence point O is evenly (uniformly) projected onto all regions in the Ronchigram. Therefore, if there is a particle that blocks the electron beam 20 at the convergence point O, the entire surface of the Ronchigram is uniformly darkened. On the other hand, if there is a hole that transmits the electron beam 20, the entire surface of the Ronchigram becomes uniformly bright and no conspicuous pattern appears. This is a Ronchigram with no aberration. Therefore, the state to be approximated using the spherical aberration corrector 11 is a Ronchigram having a uniform region having no characteristic pattern as wide as possible.
 一方、対物レンズ10に収差がある場合、電子線20は理想状態のように試料面上の一点(収束点O)に収束されなくなる。例えば対物レンズ10の点Qを通った電子線210bは、収差の影響を受けて試料面上の収束点Oからδだけ離れた点Pを通り、電子線221bの軌道を通ってロンチグラム内の点Rに到達する。すなわち、収差の影響を受けたロンチグラムは、試料9の歪み投影像になる。収差を含む場合、波面も理想波面30aから収差を含む波面30bに変形する。この波面の差が波面収差である。波面収差(式1の左辺)は、収差計数を用いて次式のように表される。
[式1]
Figure JPOXMLDOC01-appb-I000002
On the other hand, when the objective lens 10 has aberration, the electron beam 20 is not converged to one point (convergence point O) on the sample surface as in an ideal state. For example, the electron beam 210b passing through the point Q of the objective lens 10 passes through a point P that is separated from the convergence point O on the sample surface by δ due to the influence of aberration, passes through the trajectory of the electron beam 221b, and is a point in the Ronchigram. R is reached. That is, the Ronchigram affected by the aberration becomes a distortion projection image of the sample 9. When the aberration is included, the wavefront is also deformed from the ideal wavefront 30a to the wavefront 30b including the aberration. This wavefront difference is the wavefront aberration. The wavefront aberration (the left side of Equation 1) is expressed by the following equation using the aberration count.
[Formula 1]
Figure JPOXMLDOC01-appb-I000002
 式1では、五次収差までを明記している。式中、ωは、電子収束角度の複素表示であり、それぞれ式2で与えられる。
[式2]
Figure JPOXMLDOC01-appb-I000003
Equation 1 specifies up to fifth-order aberrations. In the equation, ω is a complex representation of the electron convergence angle and is given by Equation 2, respectively.
[Formula 2]
Figure JPOXMLDOC01-appb-I000003
 ここで、αとβは、それぞれ面内と面垂直に対する入射角度である。従って、図2では、αのみを示している。収差による試料面上での変位δは、αとβを用いた複素表示により次式で表される。
[式3]
Figure JPOXMLDOC01-appb-I000004
Here, α and β are incident angles with respect to in-plane and perpendicular to the plane, respectively. Therefore, in FIG. 2, only α is shown. Displacement δ on the sample surface due to aberration is expressed by the following equation by complex display using α and β.
[Formula 3]
Figure JPOXMLDOC01-appb-I000004
 さらに、ロンチグラム内の投影点Rは、次式で与えられる。
[式4]
Figure JPOXMLDOC01-appb-I000005
 式4において、Lはいわゆるカメラ長(試料9から像面150までの距離)である。式4に表される通り、試料9のある点に対応するロンチグラム上の投影点Rは、波面収差の影響を受けて決まる。
Further, the projection point R in the Ronchigram is given by the following equation.
[Formula 4]
Figure JPOXMLDOC01-appb-I000005
In Expression 4, L is a so-called camera length (distance from the sample 9 to the image plane 150). As expressed in Expression 4, the projection point R on the Ronchigram corresponding to a certain point of the sample 9 is determined by the influence of wavefront aberration.
 次に、図3を用い、電子プローブを、図2の状態から試料9の近傍で微小にデフォーカスする場合に、ロンチグラム内の投影点Rがどのように変化するかについて説明する。デフォーカスは、収差のない理想的な焦点面(ガウス焦点)が、収束点0から収束点Eに移ることである。このとき、理想的な(収差を含まない)収束による電子線20の軌道(近軸軌道)は、軌道210aから軌道211aに変化する。また、理想波面は波面30aから波面31aに、収差を含む波面は波面30bから31bに変化する。 Next, how the projected point R in the Ronchigram changes when the electron probe is slightly defocused in the vicinity of the sample 9 from the state of FIG. 2 will be described with reference to FIG. Defocusing means that an ideal focal plane (Gaussian focal point) having no aberration moves from the convergence point 0 to the convergence point E. At this time, the trajectory (paraxial trajectory) of the electron beam 20 due to ideal (without aberration) convergence changes from the trajectory 210a to the trajectory 211a. The ideal wavefront changes from the wavefront 30a to the wavefront 31a, and the wavefront including aberration changes from the wavefront 30b to 31b.
 デフォーカスが生じると、図3に示す通り、もはや対物レンズ10の点Qからの軌道210bを通る電子線20は試料9上の点Pを通過せず、対物レンズ10の新たな点Q’からの軌道211bを通る電子線20が点Pを照射する。すなわち、試料9上の点Pは、軌道221bを通る電子線20によりロンチグラム上の投影点R’に投影される。このとき、デフォーカスによる投影点の移動は、次式で与えられる
[式5]
Figure JPOXMLDOC01-appb-I000006
When defocusing occurs, as shown in FIG. 3, the electron beam 20 passing through the trajectory 210b from the point Q of the objective lens 10 no longer passes through the point P on the sample 9, and starts from a new point Q ′ of the objective lens 10. The electron beam 20 passing through the orbit 211b irradiates the point P. That is, the point P on the sample 9 is projected onto the projection point R ′ on the Ronchigram by the electron beam 20 passing through the trajectory 221b. At this time, the movement of the projection point by defocus is given by the following equation [Equation 5].
Figure JPOXMLDOC01-appb-I000006
 ここでのλは、次式で与えられる。
[式6]
Figure JPOXMLDOC01-appb-I000007
 ただし、式6において、デフォーカスδεは微少量として一次の項まで残した。
Here, λ is given by the following equation.
[Formula 6]
Figure JPOXMLDOC01-appb-I000007
However, in Expression 6, the defocus δε is left as small as the first order term.
 式中のχは、式1の波面収差関数であり、その上付きカッコ内は以下に示す微分を表している。
[式7]
Figure JPOXMLDOC01-appb-I000008
In the equation, χ is the wavefront aberration function of Equation 1, and the parenthesized parenthesis represents the differentiation shown below.
[Formula 7]
Figure JPOXMLDOC01-appb-I000008
 ここで、式6の収差関数χに対し、式1を代入して具体的に計算し、さらに電子線20の収束角度(α,β)も十分小さいものと仮定してその一次項まで計算すると、式8又は式9が得られる。
[式8]
Figure JPOXMLDOC01-appb-I000009
[式9]
Figure JPOXMLDOC01-appb-I000010
Here, when calculating specifically by substituting Equation 1 for the aberration function χ of Equation 6, and assuming that the convergence angle (α, β) of the electron beam 20 is also sufficiently small, calculating up to its primary term , Equation 8 or Equation 9 is obtained.
[Formula 8]
Figure JPOXMLDOC01-appb-I000009
[Formula 9]
Figure JPOXMLDOC01-appb-I000010
 ところで、ロンチグラム上における投影点の変位δを測定すれば、式8及び式9により、収束角度(α,β)に対するデフォーカスC1=C1(α,β)と、A1=A1(α,β)を決めることができる。ただし、式8及び式9から明らかな通り、決定すべき未定係数は、C1と、A1の実部と虚部(Re A1, Im A1)の3つであるのに対し、存在する独立方程式は2つである。このため、このままでは未定係数を全て決めることができない。 By the way, if the displacement δ of the projection point on the Ronchigram is measured, the defocus C 1 = C 1 (α, β) with respect to the convergence angle (α, β) and A 1 = A 1 ( α, β) can be determined. However, as is clear from Equation 8 and Equation 9, undetermined coefficients to be determined, and C 1, the real and imaginary parts of A 1 whereas it is three (Re A 1, Im A 1), there There are two independent equations. For this reason, all undetermined coefficients cannot be determined as they are.
 そこで、式10で与えられる異なるデフォーカスC1’について同様の測定を行う。
[式10]
Figure JPOXMLDOC01-appb-I000011
 さらに、後述する式11で与えられる変位δ’を加えれば、全ての未定係数を決定するのに十分な数の方程式を得ることができる。ここで、焦点変化εは、外部から任意に規定の量として与えられる定数である。
[式11]
Figure JPOXMLDOC01-appb-I000012
Therefore, the same measurement is performed for the different defocus C 1 ′ given by Equation 10.
[Formula 10]
Figure JPOXMLDOC01-appb-I000011
Furthermore, if a displacement δ ′ given by Equation 11 described later is added, a sufficient number of equations can be obtained to determine all undetermined coefficients. Here, the focus change ε is a constant arbitrarily given as a prescribed amount from the outside.
[Formula 11]
Figure JPOXMLDOC01-appb-I000012
 以上のように2つのデフォーカス条件において、1枚のロンチグラムの撮像中に、電子プローブの焦点を試料9の近傍で微小に変動させれば、1枚のロンチグラムから全ての未知係数を決定するのに十分な数の方程式を取得することができる。 As described above, if the focal point of the electron probe is slightly changed in the vicinity of the sample 9 during imaging of one Ronchigram under two defocus conditions, all unknown coefficients are determined from one Ronchigram. A sufficient number of equations can be obtained.
[実施例1]
 図4に、実施例1に係る収差補正STEMの一部の構成を示す。図4には、図1との対応部分に同一符号を付しており、図1に示す基本構成のうち球面収差補正器11よりも下方の構成を表している。従って、本実施例に係る収差補正STEMのうち球面収差補正器11よりも上方の構成は、図1と同様である。なお、図4では、図の簡略化のため、ロンチグラムを用いた収差補正の説明には不要である明視野検出器14と暗視野検出器13の図示を省いている。
[Example 1]
FIG. 4 illustrates a partial configuration of the aberration correction STEM according to the first embodiment. In FIG. 4, the same reference numerals are given to corresponding parts to FIG. 1, and the configuration below the spherical aberration corrector 11 in the basic configuration shown in FIG. 1 is shown. Therefore, the configuration above the spherical aberration corrector 11 in the aberration correction STEM according to the present embodiment is the same as that in FIG. In FIG. 4, for the sake of simplification, the illustration of the bright field detector 14 and the dark field detector 13 which are not necessary for the description of the aberration correction using the Ronchigram is omitted.
 収差補正制御システム18には、収差測定を行う収差測定システム181が配置される。収差測定システム181は、収差測定実行時に対物レンズの励磁を変調するレンズ電流モジュレータ172とイメージング検出器16を制御する。収差測定時、電子顕微鏡制御システム17は、収束電子線(電子プローブ)21の試料面に対する収束角度や対物レンズ10の焦点距離などの値を適宜選択することにより、ロンチグラムの取得に適した光学条件を設定する。次に、電子顕微鏡制御システム17は、スキャンコイル24の動作を停止制御した上で、投影面15上にロンチグラムを投影する。 The aberration correction control system 18 is provided with an aberration measurement system 181 that performs aberration measurement. The aberration measurement system 181 controls the lens current modulator 172 and the imaging detector 16 that modulate the excitation of the objective lens when performing aberration measurement. At the time of aberration measurement, the electron microscope control system 17 appropriately selects values such as the convergence angle of the convergent electron beam (electron probe) 21 with respect to the sample surface and the focal length of the objective lens 10, so that the optical conditions suitable for acquiring the Ronchigram are obtained. Set. Next, the electron microscope control system 17 projects the Ronchigram on the projection surface 15 after stopping and controlling the operation of the scan coil 24.
 ここでの投影倍率(すなわち、実効的なカメラ長)は、投影レンズ12で調整可能である。投影されたロンチグラムは、投影面15の裏側(下方)に配置したイメージング検出器16で取得する。前述したように、イメージング検出器16は、収差測定システム181の制御下でロンチグラムを取得する。さらに、このロンチグラムの取得と同期して、収差測定システム181は、レンズ電流モジュレータ172を制御し、対物レンズに励磁を変調する電流を加える。 Here, the projection magnification (that is, the effective camera length) can be adjusted by the projection lens 12. The projected Ronchigram is acquired by the imaging detector 16 disposed on the back side (downward) of the projection surface 15. As described above, the imaging detector 16 acquires a Ronchigram under the control of the aberration measurement system 181. Further, in synchronism with the acquisition of the Ronchigram, the aberration measurement system 181 controls the lens current modulator 172 to apply a current that modulates excitation to the objective lens.
 すなわち、1枚のロンチグラムの取得に同期して、収束電子線21の焦点を試料9の近傍で高さ方向に微小変位(振動)させる。この焦点の微小変位により、図3を用いて説明したように、投影点Rの位置変化が1枚のロンチグラム(焦点変調ロンチグラム)に積算される形で取り込まれる。焦点の微小変位は、焦点変調ロンチグラムの取得時間内に1回又は複数(1以上の整数)回周期的に行われることが好ましい。 That is, in synchronism with the acquisition of one Ronchigram, the focal point of the convergent electron beam 21 is minutely displaced (vibrated) in the height direction in the vicinity of the sample 9. Due to the minute displacement of the focal point, as described with reference to FIG. 3, the positional change of the projection point R is captured in a form that is integrated into one Ronchigram (focus modulation Ronchigram). It is preferable that the minute displacement of the focus is periodically performed once or a plurality of (an integer of 1 or more) times within the acquisition time of the focus modulation Ronchigram.
[実施例2]
 図5に、実施例2に係る収差補正STEMの一部の構成を示す。図5の場合も、図4と同様、装置構成の一部分のみを表している。なお、図5には図4との対応部分に同一符号を付して示している。本実施例の場合、焦点の微小変位は、対物レンズ10の励磁によってではなく、試料9自体の高さ方向への微小運動によって行う。このため、本実施例の場合には、試料9を保持する試料ホルダ8に試料高変位用アクチュエータ184を取り付ける。試料高変位用アクチュエータ184には、例えばピエゾ素子等を使用する。本実施例における試料高変位用アクチュエータ184は、試料ホルダ8の支持部を上下方向に微小変位させる。
[Example 2]
FIG. 5 shows a partial configuration of the aberration correction STEM according to the second embodiment. Also in the case of FIG. 5, like FIG. 4, only a part of the apparatus configuration is shown. In FIG. 5, the same reference numerals are given to the portions corresponding to FIG. 4. In the case of this embodiment, the minute displacement of the focal point is not performed by the excitation of the objective lens 10 but by the minute movement in the height direction of the sample 9 itself. Therefore, in the case of the present embodiment, the sample high displacement actuator 184 is attached to the sample holder 8 that holds the sample 9. As the sample high displacement actuator 184, for example, a piezoelectric element or the like is used. The sample high displacement actuator 184 in this embodiment slightly displaces the support portion of the sample holder 8 in the vertical direction.
 本実施例の場合も、ロンチグラムの取得時には、収差測定システム181による制御の下、試料9を上下(高さ)方向に微小変位させる。なお、試料9の上下変位は微小であるので、例えばアクチュエータ184を回転型とし、試料ホルダ8を軸周りに微小に回転させることにより、局所的な試料の高さ変位を生成しても良い。このように試料自体の高さを変える方法でも、焦点変化を起こすことができる。また、本実施例の場合も、実施例1と同様に、ロンチグラム取得と同期して1~数周期で焦点を変化させ、積算的に焦点変調ロンチグラムを取得する。 Also in the case of the present embodiment, when the Ronchigram is acquired, the sample 9 is slightly displaced in the vertical (height) direction under the control of the aberration measurement system 181. Since the vertical displacement of the sample 9 is very small, for example, the actuator 184 may be a rotary type and the sample holder 8 may be slightly rotated around the axis to generate a local sample height displacement. Thus, the focal point can be changed even by changing the height of the sample itself. Also in the case of the present embodiment, similarly to the first embodiment, the focus is changed in one to several cycles in synchronization with the acquisition of the Ronchigram, and the focus modulation Ronchigram is acquired in an integrated manner.
[実施例3]
 図6に、実施例3に係る収差補正STEMの一部の構成を示す。図6の場合も、図4や図5の場合と同様、装置構成の一部分のみを表している。なお、図6には図4との対応部分に同一符号を付して示している。本実施例の場合、微小焦点変動を引き起こすための測定用焦点調整レンズ101を対物レンズ10の上方に配置し、これを収差測定システム181で制御して焦点変動を実行する。収差測定システム181は、ロンチグラムの取得と同期して、測定用焦点調整レンズ101を用いて1~数周期の焦点変化を実行させ、積算的な焦点変調ロンチグラムの取得を実現する。
[Example 3]
FIG. 6 illustrates a partial configuration of the aberration correction STEM according to the third embodiment. In the case of FIG. 6 as well, only a part of the apparatus configuration is shown as in the case of FIG. 4 and FIG. In FIG. 6, the same reference numerals are given to the portions corresponding to FIG. 4. In the case of the present embodiment, the focus adjustment lens 101 for measurement for causing a minute focus fluctuation is arranged above the objective lens 10, and this is controlled by the aberration measurement system 181 to execute the focus fluctuation. The aberration measurement system 181 executes the focus change of one to several cycles using the measurement focus adjustment lens 101 in synchronization with the acquisition of the Ronchigram, and realizes the acquisition of the integrated focus modulation Ronchigram.
 なお、実施例1(図4)の場合には、微小ながら被補正対象である対物レンズ10自体を測定に利用するため、レンズのドリフトやヒステリシス等が、STEMの光学系に影響を与えてしまう可能性が僅かではあるが心配される。一方、実施例2(図5)の場合には、対物レンズ10や球面収差補正器11などのSTEM光学系に触れることなく焦点変調ロンチグラムを取得することが可能である。また、本実施例(図6)の場合にも、対物レンズ10自体は、実施例2と同様、測定のために励磁を変える必要がない。しかも、本実施例で使用する測定用焦点調整レンズ101もごく弱いレンズでよく、ほとんどその収差の影響は無視できる。また、測定用焦点調整レンズ101として例えば静電型レンズを用いる場合、測定用焦点調整レンズ101をオフすることで、その影響を完全に光学系から取り除くことができる。 In the case of the first embodiment (FIG. 4), the objective lens 10 itself to be corrected is used for the measurement although it is minute, so that lens drift, hysteresis, and the like affect the optical system of the STEM. The possibility is slight but worried. On the other hand, in the case of Example 2 (FIG. 5), it is possible to acquire a focus modulation Ronchigram without touching the STEM optical system such as the objective lens 10 and the spherical aberration corrector 11. Also in the case of the present embodiment (FIG. 6), the objective lens 10 itself does not need to change the excitation for measurement as in the second embodiment. In addition, the focus adjustment lens for measurement 101 used in this embodiment may be a very weak lens, and the influence of the aberration is almost negligible. Further, when an electrostatic lens is used as the measurement focus adjustment lens 101, for example, the influence can be completely removed from the optical system by turning off the measurement focus adjustment lens 101.
 ロンチグラムは、前述の通り、試料近傍に焦点を有する電子プローブによる試料の遠距離投影像であるので、これを式で示せば以下の通り、試料面上のプローブ形状とコンボリューションで表現される。
[式12]
Figure JPOXMLDOC01-appb-I000013
 ここで、A(α,β)は、電子プローブ形成に寄与する電子線の制限、いわゆる絞り関数である。1+Ψ(x,y)は、試料9による位相変化を表す関数である。試料9は、弱位相物体近似を用いた。
Since the Ronchigram is a long-distance projection image of the sample by the electron probe having a focal point in the vicinity of the sample as described above, this can be expressed by a probe shape and convolution on the sample surface as follows.
[Formula 12]
Figure JPOXMLDOC01-appb-I000013
Here, A (α, β) is a limitation of the electron beam that contributes to the formation of the electron probe, that is, a so-called aperture function. 1 + Ψ (x, y) is a function representing a phase change due to the sample 9. Sample 9 used weak phase object approximation.
 ロンチグラムの形成を示す式12において、デフォーカスεを導入すると言うことは、これを収差関数に含めデフォーカスに対して積分すると、式13のようになる。式13の積分範囲は{-∞,+∞}である。
[式13]
Figure JPOXMLDOC01-appb-I000014
In Expression 12 indicating the formation of the Ronchigram, introducing defocus ε is expressed as Expression 13 when this is included in the aberration function and integrated with respect to defocus. The integration range of Equation 13 is {−∞, + ∞}.
[Formula 13]
Figure JPOXMLDOC01-appb-I000014
 ここで、σ(ε)は、フォーカス分布(焦点ボケ)に関する分布関数であり、例えば巾δεのガウス分布を仮定すれば、式14で与えられる。
[式14]
Figure JPOXMLDOC01-appb-I000015
Here, σ (ε) is a distribution function related to the focus distribution (focal blur), and is given by Equation 14 if a Gaussian distribution with a width δε is assumed, for example.
[Formula 14]
Figure JPOXMLDOC01-appb-I000015
 また、交流を用いてsin波で振る場合を考えれば、δ(ε)は、式15で与えられる。
[式15]
Figure JPOXMLDOC01-appb-I000016
Further, δ (ε) is given by Equation 15 when considering the case of using a sin wave with alternating current.
[Formula 15]
Figure JPOXMLDOC01-appb-I000016
[各実施例で得られる焦点変調ロンチグラムによる収差の評価]
 図7Aに、アモルファス薄膜90を試料9とする場合に取得される2種類のロンチグラムを示す。図7Bは通常のロンチグラム151であり、図7Cは焦点変調ロンチグラム152である。通常のロンチグラム151と焦点変調ロンチグラム152は、いずれもガウス焦点からε1=+50nmに電子プローブを結んで形成したものである。さらに、焦点変調ロンチグラムの場合、このε1=+50nmを中心に、δε=±10nmの焦点変動を加えている。その他、各種収差量は表外に列記の通りである。
[Evaluation of aberration by focus modulation Ronchigram obtained in each example]
FIG. 7A shows two types of Ronchigrams obtained when the amorphous thin film 90 is used as the sample 9. FIG. 7B is a normal Ronchigram 151 and FIG. 7C is a focus modulation Ronchigram 152. Both the normal Ronchigram 151 and the focus modulation Ronchigram 152 are formed by connecting an electron probe from a Gaussian focus to ε 1 = + 50 nm. Further, in the case of the focus modulation ronchigram, a focus variation of δε = ± 10 nm is added around this ε 1 = + 50 nm. In addition, various aberration amounts are listed outside the table.
 前述した特許文献1に記載の方法の場合、通常のロンチグラム151から局所的なアモルファス投影像の粒形状を楕円関数等のフィッティング演算を用いて評価し、これらの局所収差情報を用いて軸上収差を算出する。また、特許文献2及び3は、焦点と試料面の位置関係を高さ方向に微小に変化させる前後で2枚のロンチグラム151を取得し、対応領域間の局所変位を局所収差情報として軸上収差を算出する。 In the case of the method described in Patent Document 1 described above, the grain shape of a local amorphous projection image is evaluated from a normal Ronchigram 151 using a fitting operation such as an elliptic function, and axial aberrations are obtained using these local aberration information. Is calculated. In Patent Documents 2 and 3, two Ronchigrams 151 are obtained before and after the positional relationship between the focal point and the sample surface is slightly changed in the height direction, and axial aberration is obtained using local displacement between corresponding regions as local aberration information. Is calculated.
 これに対し、前述の各実施例の場合には、焦点変調ロンチグラム152を使用し、1枚の焦点変調ロンチグラム152内に投影されたアモルファス粒子の軌跡(焦点の微小変動に伴う変位量)を用いて局所収差情報とする。これらは式6~式8のλに従う。勿論、焦点変調ロンチグラム152の取得には、前述した構成の各収差補正STEM(図4~図6)と駆動方法が使用される。 On the other hand, in the case of each of the above-described embodiments, the focus modulation Ronchigram 152 is used, and the locus of the amorphous particles projected in one focus modulation Ronchigram 152 (the displacement amount due to the minute fluctuation of the focus) is used. And local aberration information. These follow λ in Equations 6-8. Of course, the aberration correction STEM (FIGS. 4 to 6) and the driving method having the above-described configuration are used to obtain the focus modulation Ronchigram 152.
 図8A~図8Dに、局所収差情報の具体的な抽出方法を説明する。まず、焦点変調ロンチグラム152から測定に用いるのに適した領域を取り出す(図8A)。図では、取り出される領域を白枠で囲んで示している。次に、当該領域を適当なサイズに分割する(図8B)。ここでは、5×5の格子状に分割する例を示す。もっとも、格子の分割数は5×5に限らないし、そもそも格子状に分割する必要もない。また、それぞれの分割区域の一部が互いに重畳していても良い。 8A to 8D, a specific method for extracting local aberration information will be described. First, an area suitable for measurement is extracted from the focus modulation Ronchigram 152 (FIG. 8A). In the figure, the area to be extracted is shown surrounded by a white frame. Next, the area is divided into appropriate sizes (FIG. 8B). Here, an example of dividing into 5 × 5 grids is shown. However, the number of divisions of the grid is not limited to 5 × 5, and it is not necessary to divide into a grid in the first place. Moreover, a part of each division area may mutually overlap.
 次に、分割後の各領域について、粒子の伸び歪み量を明確化するため自己相関をとる(図8C)。なお、分割後の各領域の伸びや歪み量を明確化するための方法は、各領域の自己相関を求める方法に限らない。例えば同じ取得条件で撮影した試料別箇所の焦点変調ロンチグラムを同様に領域分割し、対応する分割領域間で相互相関をとっても良い。また、焦点変調ロンチグラムと同じ試料箇所で取得した通常のロンチグラム151(図7B)との間で、対応する部分(分割)領域間で相互相関を計算してもよい。 Next, autocorrelation is taken for each region after the division in order to clarify the elongation strain amount of the particles (FIG. 8C). Note that the method for clarifying the elongation and distortion amount of each area after division is not limited to the method of obtaining the autocorrelation of each area. For example, the focus modulation ronchigram of the sample-specific part imaged under the same acquisition conditions may be similarly divided into regions, and cross-correlation may be taken between the corresponding divided regions. Further, the cross-correlation may be calculated between the corresponding partial (divided) regions between the focus modulation Ronchigram and the normal Ronchigram 151 (FIG. 7B) acquired at the same sample location.
 最後に、各分割領域の伸び歪み量を定量化し、各分割領域にその長さと方向を表す線素を得る(図8D)。この線素のx - y成分は式7、又は、長さと方向は式8にそのまま対応する。よって、これらの計測値から式7又は式8の方程式を立てる。さらに、連立方程式の数に不足する分は、図3の説明内で述べた通り、異なる焦点位置ε2(≠ε1)で同様に焦点変調ロンチグラムを取得し、同様の方程式を立ててこれを補う。これにより、各々の分割領域についてのデフォーカスC2と非点収差A2を求めることができる。さらに、これらの値を以下の式16に代入し、必要な収差次数までの連立方程式を立て、軸上収差を計算する。
[式16]
Figure JPOXMLDOC01-appb-I000017
 ここで、(αii)は、i番目の分割領域の中心に対する電子線の収束角度、例えば図2に示されるそれである。
Finally, the amount of elongation strain in each divided region is quantified, and a line element indicating the length and direction is obtained in each divided region (FIG. 8D). The x-y component of this line element corresponds directly to Expression 7, or the length and direction correspond to Expression 8. Therefore, Equation 7 or Equation 8 is established from these measured values. Further, as described in the explanation of FIG. 3, the shortage of the simultaneous equations is obtained in the same way by obtaining the focal modulation Ronchigram at different focal positions ε 2 (≠ ε 1 ), compensate. As a result, the defocus C 2 and astigmatism A 2 for each divided region can be obtained. Further, by substituting these values into the following equation 16, a simultaneous equation up to the required aberration order is established, and the axial aberration is calculated.
[Formula 16]
Figure JPOXMLDOC01-appb-I000017
Here, (α i , β i ) is the convergence angle of the electron beam with respect to the center of the i-th divided region, for example, that shown in FIG.
 図8C及び図8Dに対応する伸び歪み量測定プロセスは、例えば図9に示すような単純な方法で実現できる。すなわち、分割区分された1つの領域に関し、1方向に列(行)毎の最大値とその位置を探しプロットする。例えば図9の例では、相関像1520の中からそれぞれ縦列中の最大値を与える位置(ピクセル)を見付け、これをAからBを結ぶ破線1522で示し、更にこの破線に沿って測った相関強度を下グラフ1521にプロットしている。この上下のグラフを参照し、適宜決めた閾値以上の相関強度を持つピクセルを選択し、これらの位置を線形近似することにより、太線で示す線素1524を決めることができる。これを各分割領域で実施すれば、同様に伸び歪みを代表する線素1524を得て、すなわち各領域でデフォーカスC1と非点収差A1を得ることができる。 The elongation strain measurement process corresponding to FIGS. 8C and 8D can be realized by a simple method as shown in FIG. 9, for example. That is, the maximum value and its position for each column (row) in one direction are searched and plotted for one divided area. For example, in the example of FIG. 9, the position (pixel) that gives the maximum value in each column is found from the correlation image 1520, and this is indicated by a broken line 1522 connecting A to B. Further, the correlation strength measured along this broken line Is plotted in the lower graph 1521. By referring to the upper and lower graphs and selecting pixels having correlation strengths equal to or higher than a threshold value determined appropriately and linearly approximating these positions, a line element 1524 indicated by a bold line can be determined. If this is carried out in each divided region, a line element 1524 representative of elongation strain can be obtained similarly, that is, defocus C 1 and astigmatism A 1 can be obtained in each region.
 以上の方法を用いて、2つの焦点位置にて焦点変調ロンチグラムを取得し解析する。これにより、対物レンズ10及び球面収差補正器11を含むSTEM電子プローブの形成に関わる部位の軸上収差係数を求めることができる。 Using the above method, focus modulation Ronchigrams are acquired and analyzed at two focal positions. Thereby, the axial aberration coefficient of the part related to the formation of the STEM electron probe including the objective lens 10 and the spherical aberration corrector 11 can be obtained.
[実施例の特長]
 各実施例による測定法の1つ目の特長は、特許文献2や特許文献3のように、焦点変化の前後で2枚のロンチグラムを必要とせず、1枚のロンチグラムの取得中に焦点を1~複数周期変化させる一工程により焦点変調ロンチグラムを取得できることである。
[Features of the embodiment]
The first feature of the measurement method according to each embodiment is that, as in Patent Document 2 and Patent Document 3, two Ronchigrams are not required before and after the focus change, and the focus is 1 during acquisition of one Ronchigram. The focus modulation Ronchigram can be acquired by one step of changing a plurality of periods.
 各実施例による測定法の2つ目の特長は、特許文献2のように、試料中の特定点を焦点変化前後のロンチグラムで追跡する必要がないことである。本明細書で提案する測定法では、焦点変調ロンチグラムを分割した各領域像のパターンが各試料粒子の移動に従って現れることから、前記手法のように自己相関等を用いて当該領域パターンの伸び歪み量を測定することができる。 The second feature of the measurement method according to each example is that, as in Patent Document 2, it is not necessary to track a specific point in the sample with a Ronchigram before and after the focus change. In the measurement method proposed in this specification, since the pattern of each region image obtained by dividing the focus modulation Ronchigram appears according to the movement of each sample particle, the amount of elongation distortion of the region pattern using autocorrelation as in the above method Can be measured.
 各実施例による測定法の3つ目の特長は、局所収差情報の検出感度を、任意に制御可能な焦点変動量δεで調整できることである。例えば図8Dの場合、内側の3×3の領域は、外周の領域に比べて、局所収差情報を与える線素長が短く誤差を生み易く思える。線素長は式9からδεに比例すると考えられるので、このような場合は、試料同視野でδεを増加させた焦点変動ロンチグラムを取得すれば良い。δεが異なる複数の焦点変調ロンチグラムを組み合わせ、各分割領域で適当な線素長が得られるδεのデータを組み合わせれば、測定精度の向上を見込むこともできる。 The third feature of the measurement method according to each embodiment is that the detection sensitivity of the local aberration information can be adjusted with a focus fluctuation amount δε that can be arbitrarily controlled. For example, in the case of FIG. 8D, the inner 3 × 3 region has a shorter line element length that gives local aberration information than the outer peripheral region, and seems to easily cause an error. Since the line element length is considered to be proportional to δε from Equation 9, in such a case, a focus variation Ronchigram in which δε is increased in the same field of view should be obtained. By combining a plurality of focus modulation ronchigrams having different δε and combining data of δε that can obtain an appropriate line element length in each divided region, improvement in measurement accuracy can be expected.
[実施例の効果]
 以上の通り、焦点変調ロンチグラムを用いた収差測定法の採用により、特に収差補正STEMにおいて高次までの軸上収差係数を測定可能とする高精度収差測定法を提供することができる。
[Effect of Example]
As described above, by adopting the aberration measurement method using the focus modulation Ronchigram, it is possible to provide a high-precision aberration measurement method capable of measuring on-axis aberration coefficients up to higher orders, particularly in the aberration correction STEM.
 また、本実施例の収差測定法では、ロンチグラムを測定に用いることにより、非特許文献1に記載されたプローブタブロー法(複数の測定条件を繰り返し行う必要のある収差測定法)に比べ、各段に単純化された測定手順での収差測定が可能となる。従って、これに合わせて収差測定に要する時間の大幅な短縮も見込むことができる。 Further, in the aberration measurement method of the present embodiment, the Ronchigram is used for measurement, so that each stage is different from the probe tableau method described in Non-Patent Document 1 (aberration measurement method that requires repeated measurement conditions). It is possible to measure aberrations with a simplified measurement procedure. Accordingly, it is possible to expect a significant reduction in the time required for aberration measurement.
 また、従来のロンチグラムを用いた収差測定法(特許文献2、特許文献3)では、デフォーカス、ビームシフト等の測定条件の変更前後で、試料に複数の特定観察点を決めて同箇所の変位を追跡し、局所収差情報を取り出す必要がある。しかし、本実施例の収差測定法の場合には、試料内に特定の観察点を定める必要なく、焦点変調ロンチグラム自体の形態から必要な局所収差情報を抽出して軸上収差係数を計算することができる。この際に用いる焦点変調ロンチグラムとは、前述の通り、1枚のロンチグラムの撮影時間内に1~複数周期のフォーカス変調を行い取得される画像であり、前記のような測定条件の変更前後に取得された複数枚のロンチグラムの比較をする必要もない。 Also, in the conventional aberration measurement method using Ronchigram (Patent Document 2 and Patent Document 3), a plurality of specific observation points are determined on the sample before and after the change of measurement conditions such as defocus and beam shift, and the displacement of the same location is determined. Must be tracked and local aberration information extracted. However, in the case of the aberration measurement method of this embodiment, it is not necessary to set a specific observation point in the sample, and the necessary local aberration information is extracted from the form of the focus modulation Ronchigram itself to calculate the axial aberration coefficient. Can do. The focus modulation Ronchigram used at this time is an image obtained by performing focus modulation of one to a plurality of periods within the photographing time of one Ronchigram as described above, and obtained before and after the change of the measurement condition as described above. There is no need to compare multiple Ronchigrams.
 本実施例の収差測定法は、特許文献1に記載された測定法に対しても同様の利点を有する。特許文献1の収差測定法では、同じく測定にロンチグラムを利用し、かつ、これを小領域に分割区分して各領域像の自己相関を計指し、各々から局所収差情報の抽出を行う。しかし、特許文献1の収差測定法は、各領域で得られた自己相関強度を楕円関数でフィッティングする等の作業を要する。 The aberration measurement method of the present example has the same advantages as the measurement method described in Patent Document 1. In the aberration measurement method of Patent Document 1, a Ronchigram is also used for the measurement, and this is divided into small areas, the autocorrelation of each area image is measured, and local aberration information is extracted from each. However, the aberration measurement method of Patent Document 1 requires work such as fitting the autocorrelation strength obtained in each region with an elliptic function.
 ところが、フィッティング誤差やロンチグラムの局所領域の自己相関が主ピーク以外にサブピークを示しやすい等の性質もあり、上記のような方法で自己相関から正しい局所収差情報を抽出するには注意が必要である。一方、本実施例の収差測定法によれば、焦点変調ロンチグラムを特許文献1と同様に局所領域に分け、この自己相関もしくは相互相関をとって、各々から局所収差情報の抽出を行うが、この場合に必要とされるのは各領域の相関パターンに現れる主ピークの長さと方位のみである。これは図9に説明した単純な方法により、精度よく求めることができる。 However, fitting errors and autocorrelation in the local area of the Ronchigram tend to show sub-peaks in addition to the main peak. Care must be taken to extract correct local aberration information from the autocorrelation using the method described above. . On the other hand, according to the aberration measurement method of the present embodiment, the focus modulation Ronchigram is divided into local regions as in Patent Document 1, and this autocorrelation or cross-correlation is taken to extract local aberration information from each. All that is required is the length and orientation of the main peak that appears in the correlation pattern of each region. This can be accurately obtained by the simple method described in FIG.
 これに関連し、この相関パターンの主ピークの長さは式8又は式9に示される通り、焦点変調ロンチグラム取得時のフォーカス変調量に比例する。当該性質を利用し、収差の状態によって主ピーク長が測定に足る十分な長さを持たない時(しきい値より小さい場合)、又は、過長すぎる時(しきい値より大きい場合)には、収差測定システム181は、電子顕微鏡制御システム17を通じてフォーカス変調量を調整し、測定される主ピーク長を適正化することにより、測定精度を保証することができる。 In this regard, the length of the main peak of this correlation pattern is proportional to the amount of focus modulation at the time of acquiring the focus modulation Ronchigram, as shown in Equation 8 or Equation 9. Utilizing this property, when the main peak length is not long enough for measurement (when it is smaller than the threshold value) or too long (when larger than the threshold value) depending on the aberration state The aberration measurement system 181 can guarantee the measurement accuracy by adjusting the focus modulation amount through the electron microscope control system 17 and optimizing the main peak length to be measured.
 なお、測定回数の増加を招くことになるが、例えば焦点変調ロンチグラムを区分した各領域について局所収差情報の測定に適正な相関パターンが得られるようにフォーカス変調量を調整した複数のロンチグラムを用いれば、局所収差情報の測定精度をさらに向上させることもできる。 Although the number of times of measurement will increase, for example, if a plurality of Ronchigrams in which the amount of focus modulation is adjusted so that a correlation pattern appropriate for the measurement of local aberration information is obtained for each region into which the focus modulation Ronchigram is divided are used. Further, the measurement accuracy of the local aberration information can be further improved.
 また、特許文献1の収差測定法では、被測定試料は、純粋なアモルファス薄膜に限定されている。一方、本実施例の収差測定法においては、フォーカス変調に応じた粒子の変位軌跡が分かれば良いので、これに影響を及ぼさない程度であれば、結晶微粒子などアモルファス以外の物質が測定試料に含まれていてもよい。 In addition, in the aberration measurement method of Patent Document 1, the sample to be measured is limited to a pure amorphous thin film. On the other hand, in the aberration measurement method of the present embodiment, it is only necessary to know the displacement trajectory of the particle according to the focus modulation. Therefore, if it does not affect this, the measurement sample includes substances other than amorphous, such as crystal fine particles. It may be.
[他の実施例]
 本発明は、上述した実施例の構成に限定されるものでなく、様々な変形例を含んでいる。例えば前述の実施例においては、専らSTEMを前提に説明したが、観察試料の表面に荷電粒子プローブを収束させた状態で走査する他の荷電粒子光学装置(例えば走査電子顕微鏡(SEM)、収束イオンビーム(FIB)加工機)であっても、測定試料の工夫等によりロンチグラムを取得できる場合には、本発明を適用することができる。
[Other embodiments]
The present invention is not limited to the configuration of the embodiment described above, and includes various modifications. For example, in the above-described embodiments, the description has been made on the premise of STEM, but other charged particle optical devices (for example, scanning electron microscope (SEM), focused ions, etc.) that scan with the charged particle probe focused on the surface of the observation sample Even in the case of a beam (FIB) processing machine, the present invention can be applied when a Ronchigram can be obtained by devising a measurement sample.
 また、本発明は、球面収差補正器11を搭載しないSTEMに対しても適用することができる。その場合、測定された軸上収差を収差補正に用いることができないが、STEMで用いられている対物レンズ11が有する収差を正確に評価し、後の使用に役立てることができる。
 また、前述の説明では、試料の種類を問わず、前述の収差測定方法を適用する場合について説明した。しかし、試料ごとに適用する収差測定方法を予めレシピとして登録しても良い。また、レシピを自動生成する機能を収差補正STEMに搭載しても良い。
The present invention can also be applied to an STEM that does not include the spherical aberration corrector 11. In that case, the measured axial aberration cannot be used for aberration correction, but the aberration of the objective lens 11 used in the STEM can be accurately evaluated and used for later use.
In the above description, the case where the above-described aberration measuring method is applied regardless of the type of the sample has been described. However, an aberration measurement method applied to each sample may be registered as a recipe in advance. A function for automatically generating a recipe may be mounted on the aberration correction STEM.
 また、上述の実施例は、本発明を分かりやすく説明するために、一部の実施例について詳細に説明したものであり、必ずしも説明した全ての構成を備える必要は無い。また、ある実施例の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成に他の構成を追加し、又は、各実施例の一部構成を他の構成で置換し、又は各実施例の一部構成を削除することも可能である。 In addition, the above-described embodiments are described in detail for some embodiments in order to explain the present invention in an easy-to-understand manner, and it is not always necessary to provide all the configurations described. Further, a part of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. It is also possible to add other configurations to the configuration of each embodiment, replace a partial configuration of each embodiment with another configuration, or delete a partial configuration of each embodiment.
 また、上述した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路その他のハードウェアとして実現しても良い。また、上記の各構成、機能等は、それぞれの機能を実現するプログラムをプロセッサが解釈して実行することにより実現しても良い。すなわち、各構成等をソフトウェアにより実現しても良い。この場合、各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリやハードディスク、SSD(Solid State Drive)等の記憶装置、ICカード、SDカード、DVD等の記憶媒体に格納することができる。 In addition, each of the above-described configurations, functions, processing units, processing means, and the like may be partly or entirely realized as, for example, an integrated circuit or other hardware. Each of the above-described configurations, functions, and the like may be realized by a processor interpreting and executing a program that realizes each function. That is, each configuration may be realized by software. In this case, information such as programs, tables, and files for realizing each function can be stored in a storage device such as a memory, a hard disk, an SSD (Solid State Drive), or a storage medium such as an IC card, an SD card, or a DVD. .
 また、制御線や情報線は、説明上必要と考えられるものを示すものであり、製品上必要な全ての制御線や情報線を表すものでない。実際にはほとんど全ての構成が相互に接続されていると考えて良い。 Also, the control lines and information lines indicate what is considered necessary for explanation, and do not represent all control lines and information lines necessary for the product. In practice, it can be considered that almost all components are connected to each other.
1:鏡体、2:加速管、3:電子源、4:収束レンズ、5:収束レンズ絞り、6:偏向器、7:収束レンズ、8:試料ホルダ、9:試料、10:対物レンズ、11:球面収差補正器、12:投影レンズ、13:暗視野検出器、14:明視野検出器、15:投影面(蛍光板)、16:イメージング検出器(CCDカメラ等)、17:電子顕微鏡制御システム、18:収差補正制御システム、181:収差測定システム、182:試料高変位用電源、184:試料高変位用アクチュエータ、19:制御計算機(制御PC)、20:電子線、21:収束電子線、21a、210a:試料面に理想状態で収束する電子線の軌道(近似軌道)、21b、210b:試料面に収差を含んで収束する電子線の軌道、211a:焦点変位後に理想状態で収束する電子線の軌道(近似軌道)、211b:焦点変位後に収差を含んで収束する電子線の軌道、22a、220a:試料を理想状態で透過する電子線の軌道(近似軌道)、22b、220b:試料の収差を含んで透過する電子線の軌道、221a:焦点変位後に理想状態で透過する電子線の軌道(近似軌道)、221b:焦点変位後に収差を含んで透過する電子線の軌道、20Ta:照射電子線(垂直入射)、20Tb:照射電子線(傾斜入射)、24:スキャンコイル、30a:電子線の理想波面、30b:収差を含む電子波面、90:試料(アモルファス薄膜)、101:測定用焦点調整レンズ、150:投影面、151:ロンチグラム像、152:焦点変調ロンチグラム像、171:対物レンズ電源、172:レンズ電流変調電源、252:焦点変調ロンチグラムから測定領域を取り出し分割した像、253:252の各領域の自己相関強度を示す像、254:253の各領域の自己相関強度の伸び歪み量を線素定量化して示す像、1520:一領域の相関強度像例、1522:相関強度像の各縦列中で最高強度を示す点を結ぶ折れ線、1523:破線A-Bに沿った相関強度プロファイル、1524:相関強度の伸び歪み量を定量化した線素。 1: mirror body, 2: accelerator tube, 3: electron source, 4: converging lens, 5: converging lens diaphragm, 6: deflector, 7: converging lens, 8: sample holder, 9: sample, 10: objective lens, 11: spherical aberration corrector, 12: projection lens, 13: dark field detector, 14: bright field detector, 15: projection surface (fluorescent screen), 16: imaging detector (CCD camera, etc.), 17: electron microscope control System: 18: Aberration correction control system, 181: Aberration measurement system, 182: Sample high displacement power supply, 184: Sample high displacement actuator, 19: Control computer (control PC), 20: Electron beam, 21: Convergent electron beam 21a, 210a: electron beam trajectory (approximate trajectory) converging in an ideal state on the sample surface, 21b, 210b: electron beam trajectory converging with aberration on the sample surface, 211a: convergence in the ideal state after focal displacement Electric Line trajectory (approximate trajectory), 211b: trajectory of electron beam that converges with aberration after focal displacement, 22a, 220a: trajectory of electron beam that passes through the sample in an ideal state (approximate trajectory), 22b, 220b: specimen trajectory Trajectory of electron beam that passes through aberration, 221a: Trajectory of electron beam that passes through in ideal state after focal displacement (approximate trajectory), 221b: Trajectory of electron beam that passes through aberration after focal displacement, 20Ta: Irradiated electron Line (perpendicular incidence), 20Tb: irradiation electron beam (gradient incidence), 24: scan coil, 30a: ideal wavefront of electron beam, 30b: electron wavefront including aberration, 90: sample (amorphous thin film), 101: focus for measurement Adjustment lens, 150: projection plane, 151: Ronchigram image, 152: focus modulation Ronchigram image, 171: objective lens power supply, 172: lens current modulation power supply, 252: An image obtained by dividing a measurement region from a point modulation Ronchigram, an image showing the autocorrelation strength of each region of 253: 252, an image showing the amount of elongation distortion of the autocorrelation strength of each region of 254: 253 quantified by a linear element, 1520 : Example of correlation intensity image of one region, 1522: Polygonal line connecting points indicating the highest intensity in each column of the correlation intensity image, 1523: Correlation intensity profile along broken line AB, 1524: Quantification of elongation distortion amount of correlation intensity Line element.

Claims (15)

  1.  電子ビームを発生する電子源と、
     前記電子ビームを所定のエネルギーに加速する加速手段と、
     加速された前記電子ビームを収束させるレンズ又はレンズ群と、
     前記レンズ又はレンズ群の下流側に配置された観察試料の面上に電子プローブを結像する対物レンズと、
     前記電子プローブを前記観察試料の表面方向に規定範囲内で二次元走査する走査系と、
     前記観察試料を透過した電子を検出し、ロンチグラムを取得するイメージング部と、
     前記イメージング部と同期動作する制御部であって、1枚のロンチグラムの取得中に、前記観察試料の表面又はその近傍に結像される前記電子プローブの焦点と前記観察試料の高さの関係を微小に変動させる制御部と
     を有する走査透過電子顕微鏡。
    An electron source for generating an electron beam;
    Accelerating means for accelerating the electron beam to a predetermined energy;
    A lens or lens group for converging the accelerated electron beam;
    An objective lens that forms an image of an electron probe on the surface of an observation sample disposed on the downstream side of the lens or lens group;
    A scanning system that two-dimensionally scans the electron probe within a specified range in the surface direction of the observation sample;
    An imaging unit that detects electrons transmitted through the observation sample and acquires a Ronchigram;
    A control unit that operates in synchronization with the imaging unit, and obtains the relationship between the focus of the electron probe imaged on or near the surface of the observation sample and the height of the observation sample during acquisition of one Ronchigram A scanning transmission electron microscope having a control unit that minutely fluctuates.
  2.  請求項1に記載の走査透過電子顕微鏡において、
     前記制御部は、前記対物レンズの励磁電流を微小に変動させることにより、前記高さの関係を微小に変動させることを特徴とする走査透過電子顕微鏡。
    The scanning transmission electron microscope according to claim 1,
    The scanning transmission electron microscope characterized in that the control unit minutely varies the height relationship by minutely varying the excitation current of the objective lens.
  3.  請求項1に記載の走査透過電子顕微鏡において、
     前記制御部は、前記観察試料を保持するホルダの取り付け高さを微小に変動させることにより、前記高さの関係を微小に変動させることを特徴とする走査透過電子顕微鏡。
    The scanning transmission electron microscope according to claim 1,
    The scanning transmission electron microscope characterized in that the control unit minutely varies the height relationship by minutely varying the mounting height of the holder that holds the observation sample.
  4.  請求項1に記載の走査透過電子顕微鏡において、
     前記制御部は、前記対物レンズとは別の焦点調整用レンズの励起を微小に変動させることにより、前記高さの関係を微小に変動させることを特徴とする走査透過電子顕微鏡。
    The scanning transmission electron microscope according to claim 1,
    The scanning transmission electron microscope according to claim 1, wherein the control unit minutely varies the height relationship by minutely varying excitation of a focus adjusting lens different from the objective lens.
  5.  請求項1に記載の走査透過電子顕微鏡において、
     1回以上の周期の焦点変動と同期して取得された前記1枚のロンチグラムから測定される収差情報に基づいて、前記対物レンズを含む電子プローブ結像系の軸上収差を高次まで計算する測定部を更に有することを特徴とする走査透過電子顕微鏡。
    The scanning transmission electron microscope according to claim 1,
    Based on the aberration information measured from the one Ronchigram acquired in synchronism with the focus variation of one or more periods, the axial aberration of the electron probe imaging system including the objective lens is calculated to a higher order. A scanning transmission electron microscope further comprising a measurement unit.
  6.  請求項5に記載の走査透過電子顕微鏡において、
     前記測定部は、前記1枚のロンチグラム内の複数の局所領域からそれぞれ局所伸び歪み量を測定し、これら複数の局所伸び歪み量に基づいて前記軸上収差を計算することを特徴とする走査透過電子顕微鏡。
    The scanning transmission electron microscope according to claim 5,
    The measuring unit measures a local elongation strain amount from each of a plurality of local regions in the one Ronchigram, and calculates the on-axis aberration based on the plurality of local elongation strain amounts. electronic microscope.
  7.  請求項5に記載の走査透過電子顕微鏡において、
     前記1枚のロンチグラム内の複数の局所領域からそれぞれ測定された局所伸び歪み量が適正長さを有しない場合、前記制御部は、前記局所伸び歪み量が適正長さを満たすように前記高さの関係を調整し、前記測定部は、前記高さの関係の調整を通じて取得された複数のロンチグラムに基づいて前記局所伸び歪み量を測定することを特徴とする走査透過電子顕微鏡。
    The scanning transmission electron microscope according to claim 5,
    When the amount of local elongation strain measured from each of a plurality of local regions in the single Ronchigram does not have an appropriate length, the control unit may increase the height so that the amount of local elongation strain satisfies the appropriate length. The scanning transmission electron microscope is characterized in that the measurement unit measures the amount of local elongation strain based on a plurality of Ronchigrams acquired through adjustment of the height relationship.
  8.  請求項5に記載の走査透過電子顕微鏡において、
     前記測定部は、前記高さの関係の第1の変動により取得された第1のロンチグラムから第1の領域の局所伸び歪み量を測定し、前記高さの関係の第2の変動により取得された第2のロンチグラムから第2の領域の局所伸び歪み量を測定することを特徴とする走査透過電子顕微鏡。
    The scanning transmission electron microscope according to claim 5,
    The measurement unit measures a local elongation strain amount of the first region from the first Ronchigram acquired by the first variation of the height relationship, and is acquired by the second variation of the height relationship. A scanning transmission electron microscope characterized in that a local elongation strain amount in the second region is measured from the second Ronchigram.
  9.  電子ビームを発生する電子源と、前記電子ビームを所定のエネルギーに加速する加速手段と、加速された前記電子ビームを収束させるレンズ又はレンズ群と、前記レンズ又はレンズ群の下流側に配置された観察試料の面上に電子プローブを結像する対物レンズと、前記電子プローブを前記観察試料の表面方向に規定範囲内で二次元走査する走査系とを有する走査透過電子顕微鏡における収差測定方法において、
     制御部が、前記観察試料の表面又はその近傍に結像される前記電子プローブの焦点と前記観察試料の高さの関係を微小に変動させる処理と、
     前記制御部と同期動作するイメージング部が、前記高さの関係の微小な変動による投影像の変化情報を画像内に含む1枚のロンチグラムを取得する処理と、
     前記1枚のロンチグラムから収差情報を測定する処理と
     を有することを特徴とする収差測定方法。
    An electron source for generating an electron beam; acceleration means for accelerating the electron beam to a predetermined energy; a lens or a lens group for converging the accelerated electron beam; and a downstream side of the lens or the lens group. In an aberration measurement method in a scanning transmission electron microscope having an objective lens that forms an electron probe on the surface of an observation sample and a scanning system that two-dimensionally scans the electron probe within a specified range in the surface direction of the observation sample.
    A process in which the control unit minutely varies the relationship between the focus of the electron probe imaged on or near the surface of the observation sample and the height of the observation sample;
    A process in which an imaging unit that operates in synchronization with the control unit acquires a single Ronchigram that includes change information of a projected image due to minute variations in the height relationship in the image;
    And a process of measuring aberration information from the one Ronchigram.
  10.  請求項9に記載の収差測定方法において、
     前記制御部は、前記対物レンズの励磁電流を微小に変動させることにより、前記高さの関係を微小に変動させる
     ことを特徴とする収差測定方法。
    The aberration measurement method according to claim 9,
    The aberration measurement method, wherein the control unit minutely varies the height relationship by minutely varying an exciting current of the objective lens.
  11.  請求項9に記載の収差測定方法において、
     前記制御部は、前記観察試料を保持するホルダの取り付け高さを微小に変動させることにより、前記高さの関係を微小に変動させることを特徴とする収差測定方法。
    The aberration measurement method according to claim 9,
    The aberration measuring method, wherein the control unit minutely varies the height relationship by minutely varying a mounting height of a holder for holding the observation sample.
  12.  請求項9に記載の収差測定方法において、
     前記制御部は、前記対物レンズとは別の焦点調整用レンズの励起を微小に変動させることにより、前記高さの関係を微小に変動させることを特徴とする収差測定方法。
    The aberration measurement method according to claim 9,
    The aberration measurement method, wherein the control unit minutely varies the height relationship by minutely varying excitation of a focus adjusting lens different from the objective lens.
  13.  請求項9に記載の収差測定方法において、
     測定部は、1回以上の周期の焦点変動と同期して取得された前記1枚のロンチグラムから測定される収差情報に基づいて、前記対物レンズを含む電子プローブ結像系の軸上収差を高次まで計算することを特徴とする収差測定方法。
    The aberration measurement method according to claim 9,
    The measurement unit increases the on-axis aberration of the electron probe imaging system including the objective lens based on the aberration information measured from the one Ronchigram acquired in synchronization with the focus variation of one or more periods. An aberration measurement method characterized by calculating to the following.
  14.  請求項13に記載の収差測定方法において、
     前記測定部は、前記1枚のロンチグラム内の複数の局所領域からそれぞれ局所伸び歪み量を測定し、これら複数の局所伸び歪み量に基づいて前記軸上収差を計算することを特徴とする収差測定方法。
    The aberration measurement method according to claim 13,
    The measurement unit measures local elongation strain amounts from a plurality of local regions in the one Ronchigram, and calculates the axial aberration based on the plurality of local elongation strain amounts. Method.
  15.  請求項13に記載の収差測定方法において、
     前記1枚のロンチグラム内の複数の局所領域からそれぞれ測定された局所伸び歪み量が適正長さを有しない場合、前記制御部は、前記局所伸び歪み量が適正長さを満たすように前記高さの関係を調整し、前記測定部は、前記高さの関係の調整を通じて取得された複数のロンチグラムに基づいて前記局所伸び歪み量を測定することを特徴とする収差測定方法。
    The aberration measurement method according to claim 13,
    When the amount of local elongation strain measured from each of a plurality of local regions in the single Ronchigram does not have an appropriate length, the control unit may increase the height so that the amount of local elongation strain satisfies the appropriate length. And the measurement unit measures the amount of local elongation distortion based on a plurality of Ronchigrams acquired through adjustment of the height relationship.
PCT/JP2014/068078 2013-09-13 2014-07-07 Scanning transmission electron microscope and aberration measurement method therefor WO2015037313A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-190966 2013-09-13
JP2013190966A JP6163063B2 (en) 2013-09-13 2013-09-13 Scanning transmission electron microscope and aberration measurement method thereof

Publications (1)

Publication Number Publication Date
WO2015037313A1 true WO2015037313A1 (en) 2015-03-19

Family

ID=52665437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068078 WO2015037313A1 (en) 2013-09-13 2014-07-07 Scanning transmission electron microscope and aberration measurement method therefor

Country Status (2)

Country Link
JP (1) JP6163063B2 (en)
WO (1) WO2015037313A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210335570A1 (en) * 2020-04-23 2021-10-28 Jeol Ltd. Scanning Transmission Electron Microscope and Adjustment Method of Optical System

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7285871B2 (en) 2020-04-23 2023-06-02 日本電子株式会社 Scanning Transmission Electron Microscope and Optical System Adjustment Method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101791A (en) * 2011-11-08 2013-05-23 Hitachi High-Technologies Corp Scan transmission electron microscope, and sample observation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552340B1 (en) * 2000-10-12 2003-04-22 Nion Co. Autoadjusting charged-particle probe-forming apparatus
EP1796130A1 (en) * 2005-12-06 2007-06-13 FEI Company Method for determining the aberration coefficients of the aberration function of a particle-optical lens.
JP2007179753A (en) * 2005-12-27 2007-07-12 Hitachi High-Technologies Corp Scanning transmission electron microscope, and aberration measuring method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101791A (en) * 2011-11-08 2013-05-23 Hitachi High-Technologies Corp Scan transmission electron microscope, and sample observation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210335570A1 (en) * 2020-04-23 2021-10-28 Jeol Ltd. Scanning Transmission Electron Microscope and Adjustment Method of Optical System
US11545337B2 (en) * 2020-04-23 2023-01-03 Jeol Ltd. Scanning transmission electron microscope and adjustment method of optical system

Also Published As

Publication number Publication date
JP2015056376A (en) 2015-03-23
JP6163063B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
JP4069545B2 (en) Electron microscope method, electron microscope array biological sample inspection method and biological inspection apparatus using the same
JP5103532B2 (en) Charged particle beam device with aberration corrector
JP4553889B2 (en) Determination method of aberration coefficient in aberration function of particle optical lens
JP5202071B2 (en) Charged particle microscope apparatus and image processing method using the same
JP4587742B2 (en) Charged particle beam microscopic method and charged particle beam application apparatus
JP2008177064A (en) Scanning charged particle microscope device, and processing method of image acquired with scanning charged particle microscope device
JP2006332296A (en) Focus correction method in electronic beam applied circuit pattern inspection
JP5735262B2 (en) Charged particle optical apparatus and lens aberration measuring method
TWI691996B (en) Electron beam observation device, electron beam observation system and control method of electron beam observation device
JP5603421B2 (en) Charged particle beam equipment with automatic aberration correction method
WO2015015985A1 (en) Charged particle beam device and aberration measurement method in charged particle beam device
JP5094282B2 (en) Local charge distribution precise measurement method and apparatus
JP2019204618A (en) Scanning electron microscope
JP2006153894A (en) Observation apparatus and method using electron beam
JP2020149767A (en) Charged particle beam device
JP6163063B2 (en) Scanning transmission electron microscope and aberration measurement method thereof
JPWO2019058440A1 (en) Charged particle beam device
US8294118B2 (en) Method for adjusting optical axis of charged particle radiation and charged particle radiation device
JP4548432B2 (en) Electron microscope method, electron microscope array biological sample inspection method and biological inspection apparatus using the same
JP6770482B2 (en) Charged particle beam device and scanning image distortion correction method
JP2017216115A (en) Electron microscope for magnetic field measurement, and magnetic field measurement method
JP4069785B2 (en) Electron microscope method, electron microscope array biological sample inspection method and biological inspection apparatus using the same
JP7285871B2 (en) Scanning Transmission Electron Microscope and Optical System Adjustment Method
JP2012142299A (en) Scanning charged particle microscope device, and processing method of image taken by scanning charged particle microscope device
EP3905302A1 (en) Scanning transmission electron microscope and adjustment method of optical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844609

Country of ref document: EP

Kind code of ref document: A1