JP4654216B2 - Sample holder for charged particle beam equipment - Google Patents

Sample holder for charged particle beam equipment Download PDF

Info

Publication number
JP4654216B2
JP4654216B2 JP2007112482A JP2007112482A JP4654216B2 JP 4654216 B2 JP4654216 B2 JP 4654216B2 JP 2007112482 A JP2007112482 A JP 2007112482A JP 2007112482 A JP2007112482 A JP 2007112482A JP 4654216 B2 JP4654216 B2 JP 4654216B2
Authority
JP
Japan
Prior art keywords
sample piece
sample
ion beam
holder
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007112482A
Other languages
Japanese (ja)
Other versions
JP2007188905A (en
Inventor
靖 黒田
武夫 上野
紀恵 矢口
英巳 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2007112482A priority Critical patent/JP4654216B2/en
Publication of JP2007188905A publication Critical patent/JP2007188905A/en
Application granted granted Critical
Publication of JP4654216B2 publication Critical patent/JP4654216B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、荷電粒子線の照射対象を保持する試料ホールダに関し、特に集束イオンビーム(以下、FIB)加工装置で試料から微小試料片を摘出し、摘出した微小試料片を試料台に固定し加工,観察する際に、摘出した微小試料の任意の方向からの集束イオンビームによる薄膜加工と、その試料の任意の方向からの電子顕微鏡観察を可能にする荷電粒子線装置用試料ホールダに関する。   The present invention relates to a sample holder that holds an object to be irradiated with a charged particle beam, and in particular, a fine sample piece is extracted from a sample by a focused ion beam (hereinafter referred to as FIB) processing apparatus, and the extracted fine sample piece is fixed to a sample stage and processed. The present invention relates to a sample holder for a charged particle beam apparatus that enables thin film processing by a focused ion beam from an arbitrary direction of an extracted micro sample and observation of an electron microscope from the arbitrary direction of the sample when observing.

従来、例えば集束イオンビーム装置による試料の前処理とこれに続く観察のシステム例として特開平7−134963号公報や特開平6−103947号公報がある。この技術では集束イオンビーム装置で加工した試料の付け替えをしないで、前処理装置,透過電子顕微鏡(以下TEM)などの観察装置へ挿入可能である。しかし、これらの装置では、試料ホールダの中軸のみが回転できる機構となっており、一度試料を装着した場合、試料は、試料ホールダ軸の周りを回転するのみである。このため、試料を試料ホールダ軸に垂直な軸周りに回転させることや、中軸に平行および垂直な面内で試料を回転することは不可能であり、イオンビームおよび電子線に対する試料の方向の微調整は困難であった。   Conventionally, for example, JP-A-7-134963 and JP-A-6-103947 have been disclosed as examples of pretreatment of a sample by a focused ion beam apparatus and subsequent observation. In this technique, the sample processed by the focused ion beam apparatus can be inserted into an observation apparatus such as a pretreatment apparatus or a transmission electron microscope (hereinafter referred to as TEM) without changing the sample. However, in these apparatuses, only the center axis of the sample holder can be rotated, and once the sample is mounted, the sample only rotates around the sample holder axis. For this reason, it is impossible to rotate the sample around an axis perpendicular to the sample holder axis, or to rotate the sample in a plane parallel to and perpendicular to the central axis. Adjustment was difficult.

また、特開2000−40483号公報のようにα,β二軸方向に試料傾斜可能なホールダもあるが、この方式のホールダも試料傾斜は20°程度で、試料を360°回転して任意の方向から観察することは困難であった。   In addition, there is a holder that can tilt the sample in the α and β biaxial directions as disclosed in Japanese Patent Application Laid-Open No. 2000-40483, but this type of holder also has a sample tilt of about 20 °, and the sample can be rotated 360 ° to obtain an arbitrary tilt. It was difficult to observe from the direction.

特開平7−134963号公報JP-A-7-134963 特開平6−103947号公報JP-A-6-103947 特開2000−40483号公報JP 2000-40383 A

本発明の目的は、集束イオンビーム加工法などにより摘出した微小試料を任意の方向から加工したり、或いは電子顕微鏡により任意の方向から観察することにある。更に、従来は見逃していた微小欠陥部も見逃すことなく探し出し、加工,解析することが可能な荷電粒子線装置用試料ホールダを提供することにある。   An object of the present invention is to process a micro sample extracted by a focused ion beam processing method or the like from an arbitrary direction or to observe from an arbitrary direction by an electron microscope. It is another object of the present invention to provide a sample holder for a charged particle beam apparatus that can find, process, and analyze a minute defect portion that has been overlooked without missing.

上記目的は、荷電粒子線装置用試料ホールダにおいて、試料を固定した試料台を集束イオンビームの光軸の周りで回転する機能を備えたことで達成される。   The above object is achieved by providing a sample holder for a charged particle beam apparatus having a function of rotating a sample stage on which a sample is fixed around the optical axis of a focused ion beam.

また、上記目的は、前記荷電粒子線装置用試料ホールダにおいて、試料を固定した試料台をホールダ軸の周りに回転する機能を備えたことで達成される。   Further, the above object is achieved by providing a function of rotating a sample stage, on which a sample is fixed, around a holder axis in the sample holder for a charged particle beam apparatus.

また、上記目的は、前記荷電粒子線装置用試料ホールダにおいて、電子線の進行方向に対し直角に固定した試料を電子線光軸を円心とし、360°回転できる機能を備えたことで達成される。   Further, the above object is achieved by providing the sample holder for the charged particle beam apparatus with a function capable of rotating a sample fixed at a right angle to the traveling direction of the electron beam with the electron beam optical axis as a center and rotating 360 °. The

また、上記目的は、前記荷電粒子線装置用試料ホールダにおいて、集束イオンビームの進行方向に対し直角に固定した試料を集束イオンビーム光軸を円心とし、360°回転できる機能を備えたことで達成される。   Further, the above object is that the charged particle beam apparatus sample holder has a function of rotating a sample fixed at a right angle to the traveling direction of the focused ion beam by 360 ° with the focused ion beam optical axis as the center. Achieved.

本発明による荷電粒子線装置用試料ホールダを用いることにより、微小試料片を試料台から取り外すことなく、任意の方向からのイオンビームによる試料の加工と、任意の方向からの電子線による観察をすることが可能となる。   By using the sample holder for a charged particle beam apparatus according to the present invention, a sample is processed by an ion beam from an arbitrary direction and observed by an electron beam from an arbitrary direction without removing a minute sample piece from the sample stage. It becomes possible.

以下、図面を参照して本発明について説明する。図1は本発明の一実施例である透過電子顕微鏡(以下TEMと略す)鏡体1の基本構成図である。TEMの鏡体1は電子銃2と照射レンズ3と対物レンズ4,投射レンズ5で構成される。照射レンズ3,対物レンズ4の間には、走査コイル6が配置されており、走査コイル6の下方に試料7が挿入される。試料7は、試料ホールダ8に取り付けられており、試料ホールダ8はホールダ制御部9に接続されている。試料7上方、走査コイル6の下には、二次電子検出器10が組み込まれている。二次電子検出器10は、走査像表示装置11に接続されている。投射レンズ5の下方には、暗視野STEM像観察用の円環状検出器12が配置されている。円環状検出器12は、走査像表示装置11に接続されている。また、円環状検出器12の下方には電子線軸からの出し入れが可能な検出器13(明視野STEM像観察用)が備えられており、走査像表示装置11に接続されている。検出器13の下方には、透過像観察用TVカメラ14が配置されている。TVカメラ14は、TVカメラ制御部15を介してTVモニター16に接続されている。   The present invention will be described below with reference to the drawings. FIG. 1 is a basic configuration diagram of a transmission electron microscope (hereinafter abbreviated as TEM) mirror body 1 according to an embodiment of the present invention. The TEM mirror 1 includes an electron gun 2, an irradiation lens 3, an objective lens 4, and a projection lens 5. A scanning coil 6 is disposed between the irradiation lens 3 and the objective lens 4, and a sample 7 is inserted below the scanning coil 6. The sample 7 is attached to the sample holder 8, and the sample holder 8 is connected to the holder control unit 9. A secondary electron detector 10 is incorporated above the sample 7 and below the scanning coil 6. The secondary electron detector 10 is connected to the scanning image display device 11. An annular detector 12 for observing the dark field STEM image is disposed below the projection lens 5. The annular detector 12 is connected to the scanned image display device 11. A detector 13 (for bright field STEM image observation) that can be taken in and out of the electron beam axis is provided below the annular detector 12 and is connected to the scanning image display device 11. A transmission image observation TV camera 14 is disposed below the detector 13. The TV camera 14 is connected to the TV monitor 16 via the TV camera control unit 15.

電子線17は、照射レンズ3により、試料36面上でスポット状に収束され、走査コイル6によって試料7面上を走査する。二次電子検出器10は、電子線17の照射によって、試料7から放出される二次電子を検出して、走査像表示装置11により、試料7の電子線17走査領域の二次電子像を表示する。検出器13では試料7から角度が半角約50
mrad以内で散乱を受けた透過電子を検出して走査像表示装置11により、明視野透過電子像を表示する。円環状検出器12についても同様であり、電子線17の照射によって、試料7から散乱角度が半角約80〜500mradの範囲で散乱した電子(弾性散乱電子)を検出し、走査像表示装置11により、暗視野透過電子像を表示する。また、照射レンズ3の条件を変えることにより、試料7面上に、ある広がりをもった電子線17が照射され、試料7を透過した電子は対物レンズ4により、結像され、その像は投射レンズ5により拡大され、TVカメラ14上に投影される。投影された透過電子像はTVカメラ制御部15を介し、TVモニター16上に表示される。試料7は試料ホールダ8に接続されたホールダ制御部9により、電子線光軸上で角度を変えることが可能で、様々な角度から二次電子像,走査透過像,透過電子像を観察することが可能である。
The electron beam 17 is converged in a spot shape on the surface of the sample 36 by the irradiation lens 3, and the surface of the sample 7 is scanned by the scanning coil 6. The secondary electron detector 10 detects secondary electrons emitted from the sample 7 by irradiation of the electron beam 17, and the scanning image display device 11 displays a secondary electron image of the scanning region of the electron beam 17 of the sample 7. indicate. In the detector 13, the angle from the sample 7 is about 50 half-widths.
The transmitted electron scattered within mrad is detected, and the bright field transmitted electron image is displayed by the scanning image display device 11. The same applies to the annular detector 12. Electrons (elastically scattered electrons) scattered from the sample 7 in the range of a half angle of about 80 to 500 mrad by the irradiation of the electron beam 17 are detected, and the scanning image display device 11 performs detection. A dark field transmission electron image is displayed. Further, by changing the conditions of the irradiation lens 3, an electron beam 17 having a certain spread is irradiated on the surface of the sample 7, and the electrons transmitted through the sample 7 are imaged by the objective lens 4, and the image is projected. The image is magnified by the lens 5 and projected onto the TV camera 14. The projected transmission electron image is displayed on the TV monitor 16 via the TV camera control unit 15. The angle of the sample 7 can be changed on the electron beam optical axis by the holder control unit 9 connected to the sample holder 8, and the secondary electron image, the scanning transmission image, and the transmission electron image can be observed from various angles. Is possible.

図2にFIB装置18の構成図を示す。FIB装置18鏡体は、イオン銃19,コンデンサーレンズ20,絞り21,走査電極22,対物レンズ23で構成されている。FIB装置18の試料室には、試料7を取り付けた試料ホールダ8上方に二次電子検出器24,試料7への保護膜の形成および試料台への試料7の固定のためのデポジション銃25,
FIB加工により作製した微小試料の運搬のためのマイクロプローブ26がとりつけられている。二次電子検出器24には走査像表示装置27が接続されている。走査像表示装置27は走査電極制御部28を介して走査電極22に接続されている。また、マイクロプローブ26にはマイクロプローブ26の位置制御のためのマイクロプローブ制御装置29が接続されている。また、試料ホールダ8は、ホールダ制御部9に接続されている。イオン銃19から放出されたイオンビーム30は、コンデンサーレンズ20と絞り21により収束され、対物レンズ23を通過し、試料7上に収束する。対物レンズ23上方の走査電極22は、走査電極制御部28の指示により、試料7に入射するイオンビーム30を偏向し走査させる。イオンビーム30が試料7に照射されると、試料7はスパッタされるとともに二次電子を発生する。発生した二次電子は、二次電子検出器24により検出され走査像表示装置27に表示される。デポジション銃25より試料7方向に放出されたガスはイオンビーム30と反応し分解され、金属が試料7面上のイオンビーム30照射領域に堆積する。この堆積膜は、FIB加工前の試料7表面の保護膜の形成および微小試料片の試料台への固定に用いられる。試料7は試料ホールダ8に接続されたホールダ制御部9により、イオンビーム30光軸上で角度を変えることが可能で、様々な角度から加工することが可能である。
FIG. 2 shows a configuration diagram of the FIB apparatus 18. The FIB device 18 mirror body includes an ion gun 19, a condenser lens 20, a diaphragm 21, a scanning electrode 22, and an objective lens 23. In the sample chamber of the FIB apparatus 18, a secondary electron detector 24 above the sample holder 8 to which the sample 7 is attached, a deposition gun 25 for forming a protective film on the sample 7 and fixing the sample 7 to the sample stage. ,
A microprobe 26 for transporting a micro sample produced by FIB processing is attached. A scanning image display device 27 is connected to the secondary electron detector 24. The scanning image display device 27 is connected to the scanning electrode 22 via the scanning electrode control unit 28. The microprobe 26 is connected to a microprobe control device 29 for controlling the position of the microprobe 26. The sample holder 8 is connected to the holder control unit 9. The ion beam 30 emitted from the ion gun 19 is converged by the condenser lens 20 and the diaphragm 21, passes through the objective lens 23, and converges on the sample 7. The scanning electrode 22 above the objective lens 23 deflects and scans the ion beam 30 incident on the sample 7 according to an instruction from the scanning electrode control unit 28. When the sample 7 is irradiated with the ion beam 30, the sample 7 is sputtered and generates secondary electrons. The generated secondary electrons are detected by the secondary electron detector 24 and displayed on the scanning image display device 27. The gas emitted from the deposition gun 25 toward the sample 7 reacts with the ion beam 30 and is decomposed, and metal is deposited on the ion beam 30 irradiation region on the surface of the sample 7. This deposited film is used to form a protective film on the surface of the sample 7 before FIB processing and to fix a minute sample piece to the sample stage. The angle of the sample 7 can be changed on the optical axis of the ion beam 30 by a holder control unit 9 connected to the sample holder 8, and the sample 7 can be processed from various angles.

図3に本発明の一実施例である荷電粒子線装置用試料ホールダ8の先端部の上面図(a)および断面図(b)を示す。試料ホールダ8は、先端部と連結されたホールダ軸31が、軸中心の周りに360°回転可能な機構を有し、さらに前記機構と独立して先端部に傘歯車32(第1の傘歯車)を有する別の回転軸33をホールダ軸31内部に有する。試料回転軸33はホールダ制御部9に接続され、ホールダ制御部9により、試料回転軸33および傘歯車32が回転する。傘歯車32と傘歯車34(第2の傘歯車)は噛み合うように接しており、試料回転軸33を回転することにより、傘歯車32が回転し、同時に傘歯車
34が回転する。また、試料ホールダ8はFIB装置18内でイオンビーム30が入射する際、ホールダ8の構造物がイオンビーム30をさえぎることの無いよう一部解放された構造となっている。
FIG. 3 shows a top view (a) and a cross-sectional view (b) of the tip of a sample holder 8 for a charged particle beam apparatus according to an embodiment of the present invention. The sample holder 8 has a mechanism in which a holder shaft 31 connected to the tip portion can rotate 360 ° around the center of the shaft, and the bevel gear 32 (first bevel gear 32) is provided at the tip portion independently of the mechanism. ) Has another rotating shaft 33 inside the holder shaft 31. The sample rotation shaft 33 is connected to the holder control unit 9, and the sample rotation shaft 33 and the bevel gear 32 are rotated by the holder control unit 9. The bevel gear 32 and the bevel gear 34 (second bevel gear) are in contact with each other, and by rotating the sample rotating shaft 33, the bevel gear 32 rotates and at the same time the bevel gear 34 rotates. Further, the sample holder 8 has a structure in which a part of the structure of the holder 8 is released so that the structure of the holder 8 does not block the ion beam 30 when the ion beam 30 is incident in the FIB apparatus 18.

図4は本発明の一実施例である試料台35側面図(a)および斜視図(b)である。試料台35に微小試料片36を固定した状態の側面図および斜視図をそれぞれ(c),(d)に示す。微小試料片36は試料台35の先端に取り付けられている。試料台35先端部は微小試料片36の固定が容易なように平坦な形状を有する。微小試料片36と試料台35の接触部分には、FIB装置18のデポジション銃25を用いてデポジション膜37を形成させ、接着する。   FIG. 4 is a side view (a) and a perspective view (b) of a sample stage 35 according to an embodiment of the present invention. A side view and a perspective view in a state where the minute sample piece 36 is fixed to the sample stage 35 are shown in (c) and (d), respectively. The minute sample piece 36 is attached to the tip of the sample table 35. The tip of the sample stage 35 has a flat shape so that the minute sample piece 36 can be easily fixed. A deposition film 37 is formed and adhered to the contact portion between the minute sample piece 36 and the sample stage 35 by using the deposition gun 25 of the FIB apparatus 18.

図5(a)に本発明の一実施例である荷電粒子線装置用試料ホールダ8に試料台35
(試料支持部)を固定した例を示す。傘歯車32および34は中空状になっており、試料台35を差し込むように装着することができる。FIBによる加工を行うときは、試料台35を傘歯車34に装着し、FIB装置18に試料ホールダ8を挿入し、試料台35上方よりイオンビーム30を入射させ、微小試料片36を加工する。イオンビーム30を一点に留まらせたまま試料台35を回転させると、円筒状の微小試料片36を加工することができる。加工が終わったら、ホールダ軸31自体を90°回転させ透過電子顕微鏡1試料室にホールダ8を挿入し、試料台35の側面から電子線17を入射させる。すなわち、紙面に垂直方向から電子線17を入射させて透過像を観察する。この際、試料回転軸33を動かすことにより、傘歯車34が回転し、試料36の周囲360°の方向から観察することが可能である。また、図5(b)に示したように試料台35を付け替えるようにしてもよい。これにより、X線分析時において効率よくX線の取り出しが可能な方向を選択することができる。
FIG. 5A shows a sample stage 35 and a sample holder 8 for a charged particle beam apparatus according to an embodiment of the present invention.
The example which fixed (sample support part) is shown. The bevel gears 32 and 34 are hollow and can be mounted so as to insert the sample table 35. When processing by FIB, the sample stage 35 is attached to the bevel gear 34, the sample holder 8 is inserted into the FIB apparatus 18, and the ion beam 30 is incident from above the sample stage 35 to process the minute sample piece 36. When the sample stage 35 is rotated while the ion beam 30 remains at one point, the cylindrical minute sample piece 36 can be processed. When the processing is completed, the holder shaft 31 itself is rotated by 90 °, the holder 8 is inserted into the sample chamber of the transmission electron microscope 1, and the electron beam 17 is incident from the side surface of the sample stage 35. That is, the transmission image is observed by making the electron beam 17 incident on the paper surface from the vertical direction. At this time, the bevel gear 34 is rotated by moving the sample rotating shaft 33, and it is possible to observe from the direction of 360 ° around the sample 36. Further, the sample stage 35 may be replaced as shown in FIG. Thereby, it is possible to select a direction in which X-ray extraction can be efficiently performed during X-ray analysis.

なお、上記説明では、試料台35を傘歯車34に固定した例について説明したが、無論、試料台35を傘歯車34に取り付け,取り外しができるような構成にしても良い。取り付け,取り外し可能とすることで、加工や観察条件に応じた試料台を採用することができる。   In the above description, the example in which the sample stage 35 is fixed to the bevel gear 34 has been described. Of course, the sample stage 35 may be attached to and detached from the bevel gear 34. By making it possible to attach and detach, it is possible to adopt a sample stage according to processing and observation conditions.

図6に微小試料片36に対するイオンビーム30と電子線17の位置関係を示す。加工時は(a,b)に示すようにイオンビーム30を微小試料片36上方から入射させ、例えば角柱や円柱など任意の形状に加工する。加工した後に、透過電子顕微鏡1により、微小試料片36のイオンビーム30が入射した方向に対し垂直な方向から電子線17を入射させ、その内部を観察する。ここで、二次電子像を用いれば試料36表面の情報がえられ、走査透過電子像を用いることにより内部構造を観察することができる。また試料36は回転可能であるので全方位からの観察が可能となり、試料内部の構造の位置関係を立体的に捉えることが可能となる。   FIG. 6 shows the positional relationship between the ion beam 30 and the electron beam 17 with respect to the minute sample piece 36. At the time of processing, as shown in (a, b), the ion beam 30 is incident from above the minute sample piece 36 and processed into an arbitrary shape such as a prism or a cylinder. After the processing, the electron beam 17 is incident from a direction perpendicular to the direction in which the ion beam 30 of the minute sample piece 36 is incident by the transmission electron microscope 1 and the inside is observed. Here, if the secondary electron image is used, information on the surface of the sample 36 can be obtained, and the internal structure can be observed by using the scanning transmission electron image. In addition, since the sample 36 can be rotated, observation from all directions is possible, and the positional relationship of the structure inside the sample can be captured three-dimensionally.

図7に本発明の別の一実施例である荷電粒子線装置用試料ホールダ8の先端部の上面図(a)および側面図(b)を示す。試料ホールダ8には、先端と連結されたホールダ軸
31自体が回転する機構、傘歯車32と38が設けられている。ホールダ8先端部全体は軸周りに360°回転可能である。試料回転軸33の先端には、傘歯車32が備え付けられている。また、傘歯車32と傘歯車38は噛み合うように接しているので、試料回転軸33を動作させることにより、傘歯車38を360°回転させることができる。試料台
35は傘歯車38上の固定台39に装着する。微小試料片36は試料台35の先端に取り付けられている。
FIG. 7 shows a top view (a) and a side view (b) of the tip of a sample holder 8 for a charged particle beam apparatus according to another embodiment of the present invention. The sample holder 8 is provided with a mechanism for rotating the holder shaft 31 itself connected to the tip, bevel gears 32 and 38. The entire tip of the holder 8 can be rotated 360 ° around the axis. A bevel gear 32 is provided at the tip of the sample rotation shaft 33. Further, since the bevel gear 32 and the bevel gear 38 are in contact with each other, the bevel gear 38 can be rotated 360 ° by operating the sample rotating shaft 33. The sample table 35 is mounted on a fixed table 39 on the bevel gear 38. The minute sample piece 36 is attached to the tip of the sample table 35.

図7(c)を用いて試料36の加工方法を説明する。FIBにより試料36を加工する際には、試料ホールダ8のホールダ軸31をイオンビーム30が試料台35上方より入射するように回転し、傘歯車38を一部回転させながら加工する。これにより、例えば、半導体デバイスのようにエッチングレートの異なる材料で構成されている試料の場合、試料厚さに違いが生じ、いわゆる加工スジが出来てしまうことが問題であった。しかし、本実施例のように試料を回転させてイオンビーム19の入射方向を変えながら加工することにより、加工スジなく全体的に均一な厚さの試料を作製できる。作製した試料36は図7
(b)に示すように電子線17を入射させ、その二次電子像および透過像を観察する。
A processing method of the sample 36 will be described with reference to FIG. When processing the sample 36 by FIB, the holder shaft 31 of the sample holder 8 is rotated so that the ion beam 30 is incident from above the sample stage 35, and the bevel gear 38 is partially rotated. As a result, for example, in the case of a sample made of a material having a different etching rate, such as a semiconductor device, a difference occurs in the sample thickness, so that a so-called processing stripe is generated. However, by processing the sample while rotating the sample to change the incident direction of the ion beam 19 as in the present embodiment, a sample having a uniform thickness can be manufactured without processing lines. The produced sample 36 is shown in FIG.
As shown in (b), the electron beam 17 is made incident, and the secondary electron image and the transmitted image are observed.

図8に示すように固定台39の構造を試料台35の取り外しが可能で、試料台35を二方向から取り付けられるようにしても良い。(a)が上面図(b),(c)側面図である。図7(b)のように試料台35は固定台39にイオンビーム30入射方向と平行にも装着でき、図7(c)のように、試料台35を電子線17入射方向と垂直に装着できる。これにより、試料ホールダ8のホールダ軸31自体に回転機構が無くてもFIB加工と電子顕微鏡観察が行える。   As shown in FIG. 8, the structure of the fixed base 39 may be such that the sample base 35 can be removed and the sample base 35 can be attached from two directions. (A) is a top view (b), (c) is a side view. The sample table 35 can be mounted on the fixed table 39 in parallel with the incident direction of the ion beam 30 as shown in FIG. 7B, and the sample table 35 is mounted perpendicular to the incident direction of the electron beam 17 as shown in FIG. it can. Thereby, FIB processing and electron microscope observation can be performed even if the holder shaft 31 itself of the sample holder 8 has no rotation mechanism.

本発明の一実施例であるTEM装置基本構成図。1 is a basic configuration diagram of a TEM apparatus according to an embodiment of the present invention. 本発明の一実施例であるFIB装置基本構成図。1 is a basic configuration diagram of an FIB apparatus according to an embodiment of the present invention. 本発明の一実施例である荷電粒子線装置用試料ホールダ先端部の上面図および断面図。The top view and sectional drawing of the sample holder tip part for charged particle beam devices which are one example of the present invention. 本発明の一実施例である荷電粒子線装置用試料台の側面図および斜視図。The side view and perspective view of the sample stand for charged particle beam apparatuses which are one Example of this invention. 本発明の一実施例である荷電粒子線装置用試料ホールダ先端部の上面図。The top view of the sample holder front-end | tip part for charged particle beam apparatuses which is one Example of this invention. 本発明実施時の試料加工および観察法説明図。Explanatory drawing of sample processing and observation method at the time of this invention implementation. 本発明の一実施例である荷電粒子線装置用試料ホールダ先端部の上面図および側面図。The top view and side view of the sample holder front-end | tip part for charged particle beam apparatuses which are one Example of this invention. 本発明の一実施例である荷電粒子線装置用試料ホールダ先端部の上面図および側面図。The top view and side view of the sample holder front-end | tip part for charged particle beam apparatuses which are one Example of this invention.

符号の説明Explanation of symbols

1…透過電子顕微鏡、2…電子銃、3…照射系レンズ、4,23…対物レンズ、5…投射レンズ、6…走査コイル、7…試料、8…試料ホールダ、9…ホールダ制御部、10,24…二次電子検出器、11,27…走査像表示装置、12…暗視野STEM像観察用円環状検出器、13…明視野検出器、14…TVカメラ、15…TVカメラ制御部、16…TVモニター、17…電子線、18…FIB装置、19…イオン銃、20…コンデンサーレンズ、21…絞り、22…走査電極、25…デポジション銃、26…マイクロプローブ、28…走査電極制御部、29…マイクロプローブ制御装置、30…イオンビーム、31…ホールダ軸、32,34,38…傘歯車、33…試料回転軸、35…試料台、36…微小試料片、37…デポジション膜、39…固定台。   DESCRIPTION OF SYMBOLS 1 ... Transmission electron microscope, 2 ... Electron gun, 3 ... Irradiation system lens, 4, 23 ... Objective lens, 5 ... Projection lens, 6 ... Scanning coil, 7 ... Sample, 8 ... Sample holder, 9 ... Holder control part, 10 , 24 ... Secondary electron detector, 11, 27 ... Scanned image display device, 12 ... Annular detector for dark field STEM image observation, 13 ... Bright field detector, 14 ... TV camera, 15 ... TV camera control unit, 16 ... TV monitor, 17 ... electron beam, 18 ... FIB device, 19 ... ion gun, 20 ... condenser lens, 21 ... aperture, 22 ... scanning electrode, 25 ... deposition gun, 26 ... microprobe, 28 ... scanning electrode control 29: Microprobe control device, 30 ... Ion beam, 31 ... Holder shaft, 32, 34, 38 ... Bevel gear, 33 ... Sample rotating shaft, 35 ... Sample stand, 36 ... Micro sample piece, 37 ... Deposition , 39 ... fixed base.

Claims (7)

荷電粒子線照射装置鏡体の側部から挿入可能に構成され、並びに荷電粒子線光軸に対して垂直なホールダ軸の軸中心の周りに360°回転可能であり、及び前記ホールダ軸に対して垂直な任意の回転軸を中心に360°回転可能である試料台を備えた試料ホールダを用いた微小試料の加工観察方法であって、
前記試料ホールダが挿入されたイオンビーム装置の試料室内において、イオンビーム加工により摘出された微小試料片を、当該微小試料片が前記ホールダ軸の軸中心上となるように、及びイオンビーム光軸上となるように、前記試料台に保持し、前記イオンビーム光軸上で前記微小試料片の角度を変えることを可能とし、
前記イオンビーム光軸上で、少なくともイオンビーム光軸と平行な回転軸を中心に前記微小試料片を回転させて前記微小試料片にイオンビームを照射し、当該微小試料任意の方向からイオンビームにより加工し、
前記イオンビームにより加工された前記微小試料片を保持する前記試料ホールダを透過電子顕微鏡に挿入し、透過電子顕微鏡の試料室内において、前記イオンビームにより加工された微小試料片を、前記ホールダ軸の軸中心上、及び電子線光軸上に配置し、前記電子線光軸上で前記微小試料片の角度を変えることを可能とし、
前記電子線光軸上で、少なくとも前記電子線に垂直な回転軸を中心に前記微小試料片を回転させて前記微小試料片に電子線を照射し、当該微小試料片を任意の方向から透過電子顕微鏡観察する方法。
The charged particle beam irradiation apparatus is configured to be insertable from the side of the mirror body, and can be rotated 360 ° around the axis center of the holder axis perpendicular to the charged particle beam optical axis, and with respect to the holder axis A method for processing and observing a small sample piece using a sample holder provided with a sample stage that can rotate 360 ° about a vertical arbitrary rotation axis ,
In the sample chamber of the ion beam apparatus in which the sample holder is inserted, a micro sample piece extracted by ion beam processing is placed on the ion beam optical axis so that the micro sample piece is on the axis center of the holder axis. It is possible to change the angle of the micro sample piece on the ion beam optical axis so as to be held on the sample stage,
On the ion beam optical axis, the micro sample piece is rotated around at least a rotation axis parallel to the ion beam optical axis to irradiate the micro sample piece with the ion beam, and the micro sample piece is ionized from an arbitrary direction. Processed by beam,
The sample holder holding the micro sample piece processed by the ion beam is inserted into a transmission electron microscope, and the micro sample piece processed by the ion beam is inserted into the axis of the holder axis in the sample chamber of the transmission electron microscope. It is possible to change the angle of the micro sample piece on the center and on the electron beam optical axis, on the electron beam optical axis,
On the electron beam optical axis, and irradiates an electron beam onto the micro-sample piece by rotating the micro sample piece about a vertical axis of rotation at least in the electron beam, the micro sample piece in any direction or al method of observing transparently electron microscope.
請求項1記載の微小試料片の加工観察方法であって、It is the processing observation method of the micro sample piece according to claim 1,
イオンビーム加工により摘出された前記微小試料片を角柱形状にイオンビーム加工することを特徴とする方法。A method characterized by ion beam processing the minute sample piece extracted by ion beam processing into a prismatic shape.
請求項1記載の微小試料片の加工観察方法であって、It is the processing observation method of the micro sample piece according to claim 1,
イオンビーム加工により摘出された前記微小試料片を円柱形状にイオンビーム加工することを特徴とする方法。A method characterized by ion beam processing the minute sample piece extracted by ion beam processing into a cylindrical shape.
請求項1記載の微小試料片の加工観察方法であって、It is the processing observation method of the micro sample piece according to claim 1,
前記イオンビーム光軸上で、イオンビーム光軸と垂直な回転軸を中心に前記微小試料片を回転させて前記試料片にイオンビームを照射し、イオンビームの入射方向を変えながら前記微小試料片を加工することを特徴とする方法。On the ion beam optical axis, the minute sample piece is rotated around a rotation axis perpendicular to the ion beam optical axis to irradiate the sample piece with the ion beam, and the minute sample piece is changed while changing the incident direction of the ion beam. A method characterized by processing.
請求項1記載の微小試料片の加工観察方法であって、It is the processing observation method of the micro sample piece according to claim 1,
前記透過電子顕微鏡において、前記微小試料片の走査透過像を観察することを特徴とする方法。In the transmission electron microscope, a scanning transmission image of the minute sample piece is observed.
請求項1記載の微小試料片の加工観察方法であって、It is the processing observation method of the micro sample piece according to claim 1,
前記透過電子顕微鏡において、前記微小試料片の透過電子像を観察することを特徴とする方法。A method of observing a transmission electron image of the minute sample piece in the transmission electron microscope.
請求項1記載の微小試料片の加工観察方法であって、It is the processing observation method of the micro sample piece according to claim 1,
前記透過電子顕微鏡において、前記微小試料片の内部構造の位置関係を立体的に捉えることを特徴とする方法。In the transmission electron microscope, the positional relationship of the internal structure of the minute sample piece is captured three-dimensionally.
JP2007112482A 2007-04-23 2007-04-23 Sample holder for charged particle beam equipment Expired - Lifetime JP4654216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007112482A JP4654216B2 (en) 2007-04-23 2007-04-23 Sample holder for charged particle beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007112482A JP4654216B2 (en) 2007-04-23 2007-04-23 Sample holder for charged particle beam equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002244504A Division JP2004087214A (en) 2002-08-26 2002-08-26 Sample holder for charged particle beam device

Publications (2)

Publication Number Publication Date
JP2007188905A JP2007188905A (en) 2007-07-26
JP4654216B2 true JP4654216B2 (en) 2011-03-16

Family

ID=38343887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007112482A Expired - Lifetime JP4654216B2 (en) 2007-04-23 2007-04-23 Sample holder for charged particle beam equipment

Country Status (1)

Country Link
JP (1) JP4654216B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021007286T5 (en) 2021-05-17 2024-01-25 Hitachi High-Tech Corporation SAMPLE HOLDER AND ANALYSIS SYSTEM

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5075801B2 (en) * 2008-12-02 2012-11-21 株式会社日立ハイテクノロジーズ Observation sample preparation method
JP5135551B2 (en) * 2008-12-22 2013-02-06 新日鐵住金株式会社 Sample holder
US8227781B2 (en) 2009-07-24 2012-07-24 Lyudmila Zaykova-Feldman Variable-tilt specimen holder and method and for monitoring milling in a charged-particle instrument
US20110017922A1 (en) * 2009-07-24 2011-01-27 Omniprobe, Inc. Variable-tilt tem specimen holder for charged-particle beam instruments
JP5517559B2 (en) * 2009-10-26 2014-06-11 株式会社日立ハイテクノロジーズ Charged particle beam apparatus and display method of three-dimensional information in charged particle beam apparatus
JP5883658B2 (en) 2012-01-20 2016-03-15 株式会社日立ハイテクノロジーズ Charged particle beam microscope, charged particle beam microscope sample holder, and charged particle beam microscope method
CN110010435B (en) * 2019-04-18 2024-02-20 山东省分析测试中心 In-situ failure analysis sample stage and scanning electron microscope

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097537A (en) * 1983-11-01 1985-05-31 Internatl Precision Inc Sample device for electron-ray equipment
JPH09306403A (en) * 1996-05-20 1997-11-28 Hitachi Ltd Sample processor
JPH10111223A (en) * 1996-10-04 1998-04-28 Hitachi Ltd Sample preparing device and electron microscope for observing three-dimensional structure and method therefor
JP2001084951A (en) * 1999-09-17 2001-03-30 Hitachi Ltd Working observation device and sample working method
JP2002025490A (en) * 2000-07-13 2002-01-25 Mitsubishi Electric Corp Sample holder, sample table and sample table fixture for electron microscope
JP2004087214A (en) * 2002-08-26 2004-03-18 Hitachi High-Technologies Corp Sample holder for charged particle beam device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097537A (en) * 1983-11-01 1985-05-31 Internatl Precision Inc Sample device for electron-ray equipment
JPH09306403A (en) * 1996-05-20 1997-11-28 Hitachi Ltd Sample processor
JPH10111223A (en) * 1996-10-04 1998-04-28 Hitachi Ltd Sample preparing device and electron microscope for observing three-dimensional structure and method therefor
JP2001084951A (en) * 1999-09-17 2001-03-30 Hitachi Ltd Working observation device and sample working method
JP2002025490A (en) * 2000-07-13 2002-01-25 Mitsubishi Electric Corp Sample holder, sample table and sample table fixture for electron microscope
JP2004087214A (en) * 2002-08-26 2004-03-18 Hitachi High-Technologies Corp Sample holder for charged particle beam device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021007286T5 (en) 2021-05-17 2024-01-25 Hitachi High-Tech Corporation SAMPLE HOLDER AND ANALYSIS SYSTEM

Also Published As

Publication number Publication date
JP2007188905A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
JP4654216B2 (en) Sample holder for charged particle beam equipment
JP5908964B2 (en) Compound focused ion beam system
JP5048596B2 (en) Sample stand, sample rotating holder, sample stand preparation method, and sample analysis method
WO2010097861A1 (en) Charged particle beam device
WO2013108711A1 (en) Charged particle beam microscope, sample holder for charged particle beam microscope, and charged particle beam microscopy
JP2018141791A (en) Particle beam system and method of processing tem-sample
JP7340363B2 (en) Apparatus and method for preparing microscopic specimens
JP6711655B2 (en) Focused ion beam device
US20040129897A1 (en) Sample manufacturing apparatus
US10483084B2 (en) Object preparation device and particle beam device having an object preparation device and method for operating the particle beam device
TWI768001B (en) Charged particle beam apparatus and sample processing method
JP6207081B2 (en) Focused ion beam device
US10504691B2 (en) Method for generating a composite image of an object and particle beam device for carrying out the method
JP2009216534A (en) Thin-film sample preparation method
JP2004087214A (en) Sample holder for charged particle beam device
WO2014195998A1 (en) Charged particle microscope, sample holder for charged particle microscope and charged particle microscopy method
JP4988175B2 (en) Sample table for charged particle equipment
JP3106846U (en) Sample holder for charged particle beam equipment
US20230298855A1 (en) Method and apparatus for micromachining a sample using a focused ion beam
JP2009122122A (en) Sample making apparatus for three-dimensional structure observation, electron microscope, and its method
TWI813760B (en) Sample Processing Observation Method
JPH03280342A (en) Three-dimensional processing device for minute parts
US20240038489A1 (en) Method for attaching an object to a manipulator and for moving the object in a particle beam apparatus, computer program product, and particle beam apparatus
JP2019148550A (en) Thin sample preparation device and thin sample preparation method
JP3488075B2 (en) Thin film sample preparation method and system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4654216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term