WO2014195998A1 - Charged particle microscope, sample holder for charged particle microscope and charged particle microscopy method - Google Patents

Charged particle microscope, sample holder for charged particle microscope and charged particle microscopy method Download PDF

Info

Publication number
WO2014195998A1
WO2014195998A1 PCT/JP2013/065317 JP2013065317W WO2014195998A1 WO 2014195998 A1 WO2014195998 A1 WO 2014195998A1 JP 2013065317 W JP2013065317 W JP 2013065317W WO 2014195998 A1 WO2014195998 A1 WO 2014195998A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
sample
rotation
charged particle
jig
Prior art date
Application number
PCT/JP2013/065317
Other languages
French (fr)
Japanese (ja)
Inventor
るり子 常田
研 原田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/065317 priority Critical patent/WO2014195998A1/en
Publication of WO2014195998A1 publication Critical patent/WO2014195998A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20214Rotation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes

Definitions

  • the present invention relates to a microscope and a method for analyzing an electromagnetic field structure of a sample using a charged particle beam microscope.
  • Non-Patent Document 1 As a method for reconstructing the three-dimensional electromagnetic field structure of a sample from a transmission electron microscope image, there is a method described in Non-Patent Document 1.
  • a magnetic field component Bx (x, y, z) in the x-axis direction from a rotation series image around the x-axis of the observation region. z) is reconstructed, and the magnetic field component By (x, y, z) in the y-axis direction is reconstructed from the rotation series image around the y-axis, and the remaining magnetic field component Bz (x, y, z) in the z-axis direction is reconstructed.
  • Is calculated from the Maxell equation divB 0, which is a characteristic of the magnetic field.
  • sample holders are known as sample holders used for rotating series image photographing used for three-dimensional reconstruction.
  • Patent Document 1 states that “a sphere 5 at the tip of the sample holder 1, a sample holding rod 6 that passes through and fixed to the center of the sphere 5, and a rotating inner cylinder 3 having a spherical seat that holds the sphere 5, A tilting rod 4 for tilting the sphere 5 is provided, and a tip is inserted between the electron lenses 11 of the electron microscope 11.
  • the sample 7 is held on the electron beam 12 side of the sample holding rod 6.
  • the slope of the tip of the tilting rod 4 is pressed against one end of the sample holding rod 6 to operate the tilt of the Z-axis and the Y-axis, the tilting rod 4 is retracted, and the slope is rotated in a predetermined tilt direction.
  • the inclination direction is changed again by pressing it down to the inclination angle of ”(see FIG. 1 of Patent Document 1 and“ Solution ”in“ Summary ”).
  • “at the atmosphere side of the sample holder 1 are provided with two rotation driving mechanisms and one straight driving mechanism of a side entry type sample moving apparatus having a eucentric moving mechanism.
  • the driving mechanism is used for 360 ° rotation of the X axis of 360 ° and is connected to the rotating inner cylinder 3.
  • the other one of the rotation driving mechanism and the straight driving mechanism is the Z axis, Y axis tilting operation ⁇ z, It is also used as ⁇ y and is connected to a tilting rod 4 installed inside the rotating inner cylinder 3 ”(see paragraph“ 0013 ”of Patent Document 1).
  • an object of the present invention is to reduce artifacts generated by three-dimensional reconstruction in a technique for reconstructing a three-dimensional electromagnetic field structure of a sample from a charged particle beam image of the sample, and to achieve high accuracy. It is to provide a three-dimensional magnetic field structure.
  • the sample holder of the present application is a sample holder used in a charged particle beam apparatus that irradiates a sample with a charged particle beam and observes the sample holder, and the sample holder includes a rotating jig having an attachment portion for attaching the sample to a tip portion thereof.
  • a holding rod having a holding portion for holding the rotating jig, a first rotation angle control unit for rotating the holding rod around a first axis orthogonal to the charged particle beam, and the rotating jig for the second
  • a second rotation angle control unit that rotates about an axis
  • the holding unit includes an angle setting unit that determines an angle formed by the first axis and the second axis to an arbitrary angle. It is characterized by that.
  • the charged particle beam apparatus of the present application includes a charging optical system that irradiates a sample with a charged particle beam, a sample holder that holds the sample, and a detection optical system that detects charged particles from the sample.
  • the sample holder includes a rotating jig having a mounting portion for attaching the sample to a tip portion, a holding rod having a holding portion for holding the rotating jig, and the holding rod as the charged particle beam.
  • a first rotation angle control unit that rotates around a first axis that is orthogonal, and a second rotation angle control unit that rotates the rotary jig around a second axis, and the holding unit includes: And an angle setting unit that determines an angle between the first axis and the second axis as an arbitrary angle.
  • the charged particle beam microscopic method of the present application includes a step of attaching a sample to a tip portion of a sample mounting base, a step of making the x axis of the sample parallel to a first rotation axis, and a step around the x axis of the sample.
  • FIG. 2 is a plan view of a basic configuration of a holding rod tip used in Example 1.
  • FIG. It is explanatory drawing which shows the relationship between the orthogonal coordinate system xyz fixed to the sample, the 1st axis
  • FIG. 3 is a basic configuration diagram of a sample holder and a sample stage used in Examples 1 to 5. It is the block diagram which expanded the acicular sample stand and the protruding sample part.
  • It is a basic block diagram of the 1st rotation jig used in Examples 1-4. 3 is a bird's-eye view of a basic configuration of a holding rod tip used in Example 1.
  • FIG. 6 is a plan view of a basic configuration of a tip of a holding rod used in Example 2.
  • FIG. It is a basic block diagram of the 1st rotation jig used in Examples 2-4. It is a top view of the basic composition of the inclination jig used in Example 2.
  • FIG. FIG. 6 is a basic configuration diagram of a tip of a holding rod used in Example 3, and is a plan view viewed from the Y direction.
  • FIG. 6 is a basic configuration diagram of a tip of a holding rod used in Example 3, and is a plan view viewed from the X direction.
  • FIG. 6 is a plan view of a basic configuration of a holding rod tip used in Example 4.
  • FIG. It is a basic block diagram of the inclination jig
  • FIG. 10 is a plan view of a basic configuration of a holding rod tip used in Example 5.
  • 6 is a basic configuration diagram of a first rotary jig used in Example 5.
  • FIG. 10 is a bird's-eye view of a basic configuration of a holding rod tip used in Example 5.
  • FIG. 10 is a plan view of a basic configuration of a holding rod tip used in Example 6. It is a basic block diagram of the sample holder and sample stage used in Example 6.
  • FIG. 6 is a basic configuration diagram of a thin film sample and a needle sample stage used in Example 7.
  • Non-Patent Document 1 The details of the technique for reconfiguring the magnetic field component Bx (x, y, z) and the magnetic field component By (x, y, z) are shown in Non-Patent Document 1. That is, in Non-Patent Document 1, the magnetic field component Bx (x, y, z) in the x-axis direction is reconstructed from the rotating series transmission electron microscope image around the x axis of the sample, and from the rotating series transmission electron microscope image around the y axis.
  • the magnetic field component Bz (x, y, z) is also reconstructed from a rotating series transmission electron microscope image around the z axis.
  • FIG. 1 shows a specific configuration for realizing acquisition of a rotating series transmission electron microscope image around the z axis.
  • a holding rod having a needle-like sample stand 150 with the sample 10 attached to the tip, a first rotating jig 130 with the needle-like sample stand 150 attached, and a holding rod 120 with the first rotating jig 130 attached to the tip.
  • a sample holder 100 having an angle control mechanism and an angle setting mechanism for setting an angle formed by a first axis and a second axis to be close to 54.7 degrees is illustrated.
  • the vicinity of 54.7 degrees is an example of a representative angle at which the sample does not deviate when the second axis rotates, and is not limited to this angle as long as the accuracy is satisfied. Absent.
  • FIG. 2 shows the relationship between the orthogonal coordinate system xyz fixed to the sample, the first axis, and the second axis.
  • the second axis is aligned with the center of xyz. That is, the angle between the second axis and the x axis, the angle between the second axis and the y axis, and the angle between the second axis and the z axis are 54.7 degrees.
  • the sample is rotated around the x-axis using the first rotation angle control mechanism to obtain a rotation series image around the x-axis. Can do.
  • the sample is rotated around the y-axis using the first rotation mechanism, A rotating series image can be obtained.
  • the sample is rotated around the z-axis using the first rotation mechanism, Can be obtained.
  • the embodiment is shown.
  • rotation series images around three axes orthogonal to each other can be taken, and each vector component can be directly reconstructed from each rotation series image. Therefore, a highly accurate three-dimensional electromagnetic field distribution with less artifacts can be reconstructed. Can be configured.
  • Example 1 shows an example in which a sample processed into a protrusion is mounted on the sample holder of FIG. Details will be described later with reference to FIG.
  • a second rotation angle control mechanism a second rotary jig 140 having a bevel gear portion 131 processed into the first rotary jig 130 and a bevel gear portion 141 processed to mesh with the bevel gear portion 131. Therefore, a control mechanism that rotates the first rotary jig 130 by rotating the second rotary jig 140 is employed.
  • the angle setting mechanism it is a tapered surface 121 on which the first rotating shaft 150 is installed, and an angle formed between the normal line of the tapered surface 121 and the first rotating shaft is set to around 54.7 degrees. Adopted structure. Details are shown below.
  • FIG. 3 schematically shows an electron beam interference microscope comprising a two-stage electron biprism interference optical system as an apparatus used for photographing a sample.
  • an orthogonal coordinate system fixed to the mirror is set as XYZ.
  • the electron gun 1 as an electron source is positioned at the most upstream part in the direction in which the electron beam flows, and the electron beam is brought to a predetermined speed by the accelerating tube 40, and then the irradiation optical system (the first irradiation lens 41, the first irradiation lens).
  • the sample 3 placed on the sample holder 100 is irradiated from the Z direction through the two irradiation lens 42).
  • the first irradiation lens 41 and the second irradiation lens 42 use condenser lenses.
  • the electron beam that has passed through the sample 10 is imaged by the objective lens 5.
  • a first electron biprism 91 is disposed below the objective lens 5, and a second electron biprism 93 is disposed below the first imaging lens 61.
  • an image observation / recording medium 79 for example, a TV camera or a CCD camera
  • FIG. 4 is a basic configuration diagram of the sample holder and the sample stage.
  • the sample holder 100 includes a holding cylinder 110 and a holding rod 120 in the holding cylinder 110.
  • the holding cylinder 110 has an opening 111 through which an electron beam can pass.
  • the holding rod 120 can rotate 360 degrees around the first axis independently of the holding cylinder 110.
  • the diameter of the holding cylinder is designed to be 7 to 8 mm, and the diameter of the holding rod is designed to be 3 mm.
  • a sample holder is inserted between in-lens objective lenses.
  • the lens gap in an in-lens objective lens is about 5 mm, and if a light element cover for suppressing X-ray generation is provided, the thickness that can be inserted into the lens gap is about 3 mm.
  • FIG. 3 is an apparatus for observing the electromagnetic field structure of the sample.
  • the sample In order to avoid a change in the magnetic field structure of the sample due to a strong magnetic field in the lens gap, the sample is placed between the objective lens 5 and the second irradiation lens 42. insert. Since the size of the sample chamber in the Z direction is 10 mm or more, it is possible to increase the diameter of the holding cylinder and holding rod. However, if the diameter of the holding cylinder and holding bar is increased, a new design such as a sample stage is required. I need it.
  • the sample holder used in this example is also made to have a holding cylinder diameter of 7 to 8 mm and a holding rod diameter of 3 mm in consideration of the purpose used in many apparatuses. Therefore, the size of each component of the sample holder varies depending on the apparatus in which the holder is used, and is not necessarily limited to the size described above.
  • the sample holder 110 is inserted into the sample stage from the X direction.
  • the position of the sample 10 in the X, Y, and Z directions is controlled using three linear actuators 101 to 103 including a pulse motor and an encoder (not shown) of the sample stage.
  • a pulse motor 104 that rotates the holding rod 120 is used as the first rotation angle control mechanism that controls the rotation of the holding rod 120.
  • other than the pulse motor may be used as long as the above operation can be realized with high accuracy.
  • FIG. 5 shows the shape of the sample 10 formed in a protruding shape and the basic structure of the needle-like sample stage 150 on which the sample 10 is mounted.
  • the sample 10 has a pedestal portion 13, an observation region 11 in the sample 10, and a protrusion 12 that encloses the observation region 11, and is placed at the tip of a needle-like sample table 150.
  • the diameter of the protrusion 12 is reduced from 50 nm to 200 nm.
  • the needle-like sample stage 150 does not block the electron beam (that is, the optical path of the microscope).
  • the sample stage 150 is conical or polygonal with a taper angle of 35 degrees or less.
  • the needle-like sample stage 150 has a tapered part 151, a grip part 152 used when the needle-like specimen stage 150 is handled with tweezers, etc., and a screw part 153 used for attaching / detaching the needle-like sample stage 150 and the first rotary jig 130. And a cylindrical or polygonal guide portion 154 having a diameter smaller than the diameter of the screw portion 153.
  • the general-purpose tweezers have a flat inner surface at the tip of the tweezers. However, if a dedicated tweezer in which a groove that fits the grip portion 152 of the needle-shaped sample table 150 is formed inside the tweezers tip, Handling becomes easy. Further, when the needle-like sample stage 150 is inserted into the first rotating jig 140, the screw portion 153 can be easily inserted by inserting the guide portion 154 having a diameter smaller than that of the screw portion 153 into the screw hole portion 133 first. become.
  • the shape of the protrusion 12 does not necessarily have to be thinned as shown in the drawing, and may have a shape protruding from the pedestal portion 13.
  • the needle-like sample stage 150 is described as a conical shape having a taper angle of 30 degrees.
  • FIG. 6 shows the basic structure of the first rotary jig 130.
  • the first rotary jig 130 has a bevel gear portion 131, an insertion portion 132 that is inserted into the holding rod 120, and a screw hole portion 133 that is used to attach and detach the needle-like sample table 150.
  • the length of the grip portion 152 and the diameter of the bevel gear 131 are determined so that the angle formed by the second axis is 35 degrees or less. This time, the angle formed between the line connecting the sample 10 and the outermost periphery of the bevel gear 131 and the second axis was 30 degrees.
  • Fig. 7 shows the basic structure of the tip of the holding rod 120.
  • a first rotating jig 130 is attached to the tip of the holding rod 120, a second rotating jig 140 having a bevel gear portion 141 installed so as to mesh with the bevel gear portion 131, and the second rotating jig 140 is held by the holding rod.
  • a motor (not shown) that rotates independently from 120 is configured. The rotation of the motor causes the second rotary jig 140 to rotate via the support column 142, and this rotation causes the first rotary jig 130 to rotate.
  • a tapered surface 121 is provided at the tip of the holding rod 120 as an angle setting mechanism for setting the direction of the second axis. Further, the angle formed between the normal line of the tapered surface and the first rotation axis is set in the vicinity of 54.7 degrees.
  • the operating range of the sample stage in a general-purpose transmission electron microscope is ⁇ 1.0 mm in the X direction, 1.0 mm in the Y direction, and ⁇ 0.5 mm in the Z direction. It is necessary to determine the movement of the sample when the sample is rotated within a range that can be followed by the sample stage.
  • the microscope optical axis and the first axis are determined to intersect. Further, the position of the hole into which the first rotary jig is inserted is determined so that the second axis intersects the intersection of the microscope optical axis and the first rotation axis.
  • the sample movement can be minimized when the sample is rotated around the first and second axes. Further, even if the sample 10 is rotated around the first axis and the second axis, the member of the sample holder (particularly, the tapered portion 151) does not block the optical axis of the microscope, and the x-axis and y-axis In addition, a rotation series image in a 360-degree range can be captured around each of the z axes.
  • the shooting procedure mainly consists of the following procedures.
  • a first axis perpendicular to the microscope optical axis and the x-axis of the sample are set in parallel (S1).
  • a rotation series image around the x-axis of the sample is taken using the first rotation angle control mechanism (S2).
  • the y-axis of the sample is set parallel to the first rotation axis using the second rotation angle control mechanism (S3).
  • a rotation series image around the y-axis of the sample is taken using the first rotation angle control mechanism (S4).
  • the z axis of the sample is set parallel to the first rotation axis using the second rotation angle control mechanism (S5).
  • a rotation series image around the z-axis of the sample is taken using the first rotation angle control mechanism (S6).
  • the magnetic field component Bx (x, y, z) in the x-axis direction is reconstructed from the rotation series image around the x-axis of the sample, and the magnetic field component By ( Refer to Non-Patent Document 1 for details of the technique for reconstructing x, y, z).
  • the magnetic field component Bz (x, y, z) in the z-axis direction is reconstructed from the rotation series image around the z-axis to reconstruct the three-dimensional magnetic field structure.
  • Non-Patent Document 1 shows a technique for reconstructing a three-dimensional magnetic field structure using a rotating series phase image reproduced from a Lorentz image. It is possible to apply the technique shown here to a rotating series phase image reproduced from an electron beam interference microscope image. Further, a rotation series image may be taken using a Lorentz scanning transmission electron microscope image. The sample holder and the microscopic method of the present invention can also be used when analyzing the three-dimensional structure of the observation region from rotation series images around the x-axis, y-axis, and z-axis taken with an apparatus other than the above. is there.
  • Example 2 shows an example in which a sample processed into a protrusion is mounted on the sample holder of FIG.
  • the first bevel gear portion 131 processed in the first rotating jig 130 and the second bevel gear portion 131 processed so as to mesh with the first bevel gear portion 131 are used.
  • a second rotating jig 140 having a bevel gear portion 141 is used, and a control mechanism that rotates the first rotating jig 130 by rotating the second rotating jig 140 is employed.
  • the angle setting mechanism includes an inclined jig 160 to which the first rotating shaft 130 is attached and a tapered surface 121 at the tip of the holding rod to which the inclined jig 160 is attached, which is formed between the second axis and the first axis.
  • a structure in which the angle of the tapered surface 121 is designed so that the angle is in the vicinity of 54.7 degrees is adopted.
  • the difference between the first embodiment and the second embodiment is an inclined jig 160.
  • a spring 134 is added in order to prevent the first rotary jig 130 from rattling or shifting.
  • FIG. 10 shows a structure in which the structure of the first rotary jig is changed with the addition of the spring.
  • the inclined jig 160 is sandwiched between the bevel gear portion 131 and the holding jig 135, and the spring 134 is installed between the holding jig 135 and the inclined jig 160.
  • the holding jig 135 is provided with a screw for adjusting the distance between the holding jig 135 and the tilting jig 160, and the spring strength is adjusted by adjusting the distance between the holding jig 135 and the tilting jig 160.
  • the spring 134 may be installed between the bevel gear portion 131 and the inclined jig 160. Further, as shown in FIG. 11, the tilt jig 160 has a hole 161 through which the insertion portion 132 of the first rotary jig 130 passes, a hole 162 through which the column portion 142 of the second rotary jig 140 passes, and the tilt jig. Screw holes 163-1 and 163-2 were provided for attaching 160 to the support rod 120. However, as long as each component can be fixed, it is not always necessary to perform the process as shown in FIG. Further, even if the spring 134 is provided between the bevel gear portion 131 and the holding rod 120 of the first embodiment, it is possible to prevent the first rotating jig 130 from rattling or shifting.
  • Example 3 shows an example in which a sample processed into a protruding shape is mounted on a sample holder using the configuration shown in FIGS. 12 (A) and 12 (B).
  • the first bevel gear portion 131 processed in the first rotating jig 130 and the second bevel gear portion 131 processed so as to mesh with the first bevel gear portion 131 are used.
  • a second rotating jig 140 having a bevel gear portion 141 is used, and a control mechanism that rotates the first rotating jig 130 by rotating the second rotating jig 140 is employed.
  • the tilting jig 160 to which the first rotating shaft 130 is attached the pivot portion 164 provided in the tilting jig 160, the wire 166 attached to the tilting jig 160, and the tilting jig 160 A mechanism that has an attached spring 167, a support 122 provided on the holding rod 120, and a pivot receiving part 123 provided on the support 122, and controls the inclination angle of the inclination jig 160 by moving the wire 166.
  • Example 2 The difference between Example 2 and Example 3 is that a mechanism for controlling the inclination angle of the inclination jig 160 is added.
  • Two support columns 122 are provided at the tip of the support rod 120, and the inclined shaft 160 and the holding rod 120 are sandwiched using screws 125.
  • On both sides of the tilting jig 160 there are two pivots 164 on a third axis orthogonal to the first and second axes, and two pillars 122 that receive them on a support column 122 provided at the tip of the support rod 120.
  • a receiving portion 123 is provided.
  • a spring 167 is attached between one end of the inclination jig 160 and the tip of the holding rod, and a wire 166 is attached to the other end of the inclination jig 160, and the inclination angle of the inclination jig 160 is controlled by moving the wire 166. To do.
  • Example 4 shows an example in which a sample processed into a protruding shape is mounted on a sample holder using the configuration of FIG.
  • the first bevel gear portion 131 processed in the first rotating jig 130 and the second bevel gear portion 131 processed so as to mesh with the first bevel gear portion 131 are used.
  • a second rotating jig 140 having a bevel gear portion 141 is used, and a control mechanism that rotates the first rotating jig 130 by rotating the second rotating jig 140 is employed.
  • the angle setting mechanism As a form of the angle setting mechanism, the inclination jig 160 to which the first rotation shaft 130 is attached, the pivot receiving portion 165 provided in the inclination jig 160, the wire 166 attached to the inclination jig 160, and the inclination jig 160.
  • a mechanism for controlling the inclination angle of the inclination jig 160 by moving the wire 166 is employed.
  • Example 3 The difference between Example 3 and Example 4 is that a mechanism for tilting not only around the third axis of the tilting jig 160 but also around the fourth axis is added.
  • the tilt jig 160 and the tilt angle control method using the wire 166 will be described with reference to FIGS. 14A to 14C.
  • the tilt jig is moved to the third axis by moving the first wire and the second wire in the same direction. Inclined around the fourth axis by moving in the opposite direction.
  • two-axis control is performed using two wires and one screw in order to minimize the number of parts.
  • the tilt jig can be tilted around the third axis by moving the first wire 166-1 and tilted around the fourth axis by moving the second wire.
  • the tilt jig can be tilted around the third axis and the fourth axis.
  • the angle setting mechanism and the angle setting mechanism can be tilted not only around the third axis but also around the fourth axis, they are the same as those in the third embodiment, and thus the description of the microscope main body and the photographing procedure is omitted. To do.
  • Example 5 shows an example in which a sample processed into a protruding shape is mounted on a sample holder using the configuration of FIG.
  • the second rotation angle control mechanism there are a pulley part 136 processed in the first rotary jig 130 and a wire 137 hung on the pulley part 136, and the wire 137 is moved by moving the wire 137.
  • a control mechanism for rotating one rotary jig 130 was adopted.
  • the angle setting mechanism it is a tapered surface 121 on which the first rotating shaft 150 is installed, and an angle formed between the normal line of the tapered surface 121 and the first rotating shaft is set to around 54.7 degrees. Adopted structure.
  • FIG. 16 shows the basic structure of the first rotary jig 130.
  • the first rotary jig 130 has a pulley portion 136 for hooking a wire 137, an insertion portion 133 inserted into the holding rod 120, and a screw hole portion 132 used for detaching the needle-like sample table 150.
  • the length of the grip portion 152 and the diameter of the pulley were determined so that the angle formed by the axis of the grip portion was 35 degrees or less, and this time 30 degrees.
  • FIG. 17 shows the basic structure of the tip of the holding rod 120.
  • a first rotating portion 130 is attached to the tip of the holding rod 120, and a wire-137 is hung on the pulley portion 136 of the first rotating jig 130.
  • the first rotating jig 130 is rotated by moving the wire 137 using a motor (not shown) that moves the wire 137.
  • the rotation angle of the first rotating jig can be measured in the microscope by attaching marks 138 at equiangular intervals on the top surface of the pulley or on the base 13 of the sample (see FIG. 5).
  • a needle-like sample stage is mounted on a sample holder that can set the rotation axis of the bevel gear and the optical axis of the focused ion beam processing apparatus in parallel, and the bevel gears are equiangularly spaced.
  • a method of processing a mark with an ion beam each time the substrate is rotated by the ion beam is performed.
  • the form of the fifth embodiment can be used for the second rotation angle control mechanism in the second, third, and fourth embodiments.
  • the wire 137 is passed through the hole 162 provided in the inclined jig 160.
  • the sample holder used in Examples 1 to 5 includes the holding cylinder 110 and the holding rod 120, but the holding cylinder 110 is not an essential part. That is, by using the sample holder shown in FIG. 19, it can be applied to other embodiments. Since the sample drift at the tip of the holding rod 120 is suppressed by using the holding cylinder 110, the sample holder of FIG. 4 is more suitable for high resolution observation. On the other hand, the measurement shown in FIG. 19 can be performed with a reduced number of parts. Except for the presence or absence of the holding cylinder 110, the operation is the same as in the first to fifth embodiments.
  • FIG. 20 shows the shape of the thin film processed sample 10 and the basic structure of the needle-like sample stage 150 on which the sample 10 is mounted.
  • the sample 10 has a column portion 15 and a thin film portion 14 that encloses the observation region 11, and is placed at the tip of a needle-like sample stage 150.
  • the thickness of the thin film portion 12 is reduced from 50 nm to 200 nm.
  • the magnetic field component Bx reconstructed from the rotation series image around the x axis, the magnetic field component By reconstructed from the rotation series image around the y axis, and the magnetic field component Bz reconstructed from the rotation series image around the z axis are projected. Artifacts due to angle limitations occur.
  • the artifacts generated in Bz are greatly reduced.
  • the observation region may not be included in the protrusion, and in this case, it is effective to adopt the sample shape of FIG. Except for the difference in the sample shape, this is the same as in Examples 1 to 6, so description of the microscope main body, imaging procedure, etc. is omitted.
  • Examples 1 to 7 show examples in which the sample holder is used in an observation apparatus, but it is also possible to use this sample holder in common with a sample processing apparatus. Although not shown, the sample observation device and the sample processing device are used in common, so that the sample can be prevented from being damaged when the needle-like sample table 150 is detached from the sample holder.
  • the incident direction of the charged particle beam with respect to the sample can be arbitrarily set, and there is an advantage that the degree of processing increases.
  • Electron source or electron gun 2 ... Optical axis, 10 ... Sample, 11 ... Sample observation area
  • Control system computer interface 59 ... Objective lens control unit, 61 ... First imaging lens, 62 ... Second imaging lens, 63 ... Third imaging lens, 64 ... Fourth imaging 66 ... control unit for fourth imaging lens, 67 ... control unit for third imaging lens, 68 ... control unit for second imaging lens, 69 ... control unit for first imaging lens, 76 ... image observation Monitor of recording device, 77 ... Image recording device, 78 ... Control unit for image observation / recording medium, 79 ... Image observation / recording medium (for example, TV camera or CCD camera), 8 ... Interference fringe, 89 ... Observation / recording surface 91 ... Central fine wire electrode of the first electron biprism, 93 ...
  • First rotating jig, 131. 1 is a bevel gear portion of a rotating jig
  • 132 is a insertion portion of a first rotating jig
  • 133 is a screw hole portion of the first rotating jig
  • 134 is a spring of the first rotating jig
  • 135 is a spring of the first rotating jig.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Provided is a device allowing charged particle-generated images to be taken in a rotation series around an x-axis, a y-axis and a z-axis of an observed area, having, in a sample holder of a charged particle beam device, a needle-shaped sample stage having a sample mounted at the tip, a first rotating fixture having the needle-shaped sample stage mounted thereon, and a holding rod having the first rotating fixture mounted at the tip, and constituted by a first rotation angle control mechanism rotating the holding rod inside a sample chamber around a first axis orthogonal to an optical axis of a microscope, a second rotation angle control mechanism for rotating the first rotating fixture inside the sample chamber around a second axis, and an angle setting mechanism for setting the angle between the first axis and the second axis to about 54.7 degrees.

Description

荷電粒子線顕微鏡、荷電粒子線顕微鏡用試料ホルダ及び荷電粒子線顕微方法Charged particle beam microscope, charged particle beam microscope sample holder, and charged particle beam microscope method
 本発明は、荷電粒子線顕微鏡を用いて試料の電磁場構造を解析する顕微鏡及び方法に関する。 The present invention relates to a microscope and a method for analyzing an electromagnetic field structure of a sample using a charged particle beam microscope.
 透過電子顕微鏡像から試料の3次元的な電磁場構造を再構成する方法として、非特許文献1に記載の方法がある。 As a method for reconstructing the three-dimensional electromagnetic field structure of a sample from a transmission electron microscope image, there is a method described in Non-Patent Document 1.
 ベクトル成分、すなわち各画素に割り当てられた直交3成分(x,y,z)を再構成するには、観察領域のx軸周りの回転シリーズ像からx軸方向の磁場成分Bx(x,y,z)を再構成し、y軸周りの回転シリーズ像からy軸方向の磁場成分By(x,y,z)を再構成し、残りのz軸方向の磁場成分Bz(x,y,z)は磁場の特性であるMaxell方程式divB=0から計算できると示されている。 In order to reconstruct a vector component, that is, an orthogonal three component (x, y, z) assigned to each pixel, a magnetic field component Bx (x, y, z) in the x-axis direction from a rotation series image around the x-axis of the observation region. z) is reconstructed, and the magnetic field component By (x, y, z) in the y-axis direction is reconstructed from the rotation series image around the y-axis, and the remaining magnetic field component Bz (x, y, z) in the z-axis direction is reconstructed. Is calculated from the Maxell equation divB = 0, which is a characteristic of the magnetic field.
 また、3次元再構成に用いる回転シリーズ像撮影に使用される試料ホルダとしては、以下の試料ホルダが公知である。 Also, the following sample holders are known as sample holders used for rotating series image photographing used for three-dimensional reconstruction.
 特許文献1には、「試料ホルダ1の先端部には球体5と、球体5の中心に貫通して固定された試料保持棒6と、球体5を保持する球面座を有する回転内筒3と、球体5の傾斜操作を行なう傾斜用ロッド4とが設けられており、先端部は電子顕微鏡の電子レンズ11の間に挿入されている。試料7は試料保持棒6の電子ビーム12側に保持される。試料保持棒6の一端に傾斜用ロッド4の先端の斜面を押し付けてZ軸とY軸の傾斜を操作し、傾斜用ロッド4を退避させ所定の傾斜方向に斜面を回転させて所定の傾斜角まで再び押し付けて傾斜方向を変更する。」と記載されている(特許文献1の図1及び「要約」の「解決手段」参照)。 Patent Document 1 states that “a sphere 5 at the tip of the sample holder 1, a sample holding rod 6 that passes through and fixed to the center of the sphere 5, and a rotating inner cylinder 3 having a spherical seat that holds the sphere 5, A tilting rod 4 for tilting the sphere 5 is provided, and a tip is inserted between the electron lenses 11 of the electron microscope 11. The sample 7 is held on the electron beam 12 side of the sample holding rod 6. The slope of the tip of the tilting rod 4 is pressed against one end of the sample holding rod 6 to operate the tilt of the Z-axis and the Y-axis, the tilting rod 4 is retracted, and the slope is rotated in a predetermined tilt direction. The inclination direction is changed again by pressing it down to the inclination angle of ”(see FIG. 1 of Patent Document 1 and“ Solution ”in“ Summary ”).
 また、「試料ホルダ1の大気側にはユーセントリック型の移動機構を具備するサイドエントリー型の試料移動装置の二つの回転駆動機構と一つの直進駆動機構が設けられている。このうち一つの回転駆動機構は360度のX軸の回転Θxに用いられ、回転内筒3に接続されている。また、他の一つの回転駆動機構と直進駆動機構とはZ軸、Y軸の傾斜操作Θz、Θyに用いられ、回転内筒3の内部に設置された傾斜用ロッド4に接続されている。」との記載もある(特許文献1の段落「0013」参照)。 Further, “at the atmosphere side of the sample holder 1 are provided with two rotation driving mechanisms and one straight driving mechanism of a side entry type sample moving apparatus having a eucentric moving mechanism. The driving mechanism is used for 360 ° rotation of the X axis of 360 ° and is connected to the rotating inner cylinder 3. The other one of the rotation driving mechanism and the straight driving mechanism is the Z axis, Y axis tilting operation Θz, It is also used as Θy and is connected to a tilting rod 4 installed inside the rotating inner cylinder 3 ”(see paragraph“ 0013 ”of Patent Document 1).
特開2004-688661号公報JP 2004-688661 A 特開2001-256912号公報JP 2001-256912 A
 しかしながら、従来の技術では磁場成分Bxの再構成像や磁場成分Byの再構成像に投影角度制限によるアーティファクトが発生するため、BxやByからMaxell方程式divB=0を用いて計算したBzには更に多くのアーティファクトが発生することが判明した。 However, in the conventional technique, artifacts due to the projection angle limitation occur in the reconstructed image of the magnetic field component Bx and the reconstructed image of the magnetic field component By, and therefore Bz calculated from the Bx and By using the Maxell equation divB = 0 is further included in Bz Many artifacts were found to occur.
 まず、特許文献1に示す試料ホルダを用いた場合、試料のx軸を試料クレードル(12)の傾斜軸に合わせて設置し、x軸回り±70度範囲の回転シリーズ像を得ることが出来る。その後、移動機構(16)を用いて試料のy軸を試料クレードル(12)の傾斜軸に合わせ、x軸回り±70度範囲の回転シリーズ像を得ることが出来る。しかしこれらの回転シリーズ像から再構成されたBx及びByには投影角度制限によるアーティファクトが発生する。そして、Maxell方程式divB=0とならない成分がBxとByに混入しているため、Bzにおいて更に多くのアーティファクトが発生する。なお、試料を±70度以上傾斜させるとクレードル(12)や移動機構(16)などが入射電子線もしくは透過電子線の光路を塞ぐため、360度範囲の投影像を得ることは不可能であり、投影角度制限によるアーティファクトをなくすことはできない。 First, in the case where the sample holder shown in Patent Document 1 is used, it is possible to obtain a rotating series image in a range of ± 70 degrees around the x axis by installing the sample with the x axis aligned with the tilt axis of the sample cradle (12). Thereafter, using the moving mechanism (16), the y-axis of the sample is aligned with the tilt axis of the sample cradle (12), and a rotation series image in the range of ± 70 degrees around the x-axis can be obtained. However, artifacts due to projection angle limitation occur in Bx and By reconstructed from these rotated series images. Since components that do not satisfy the Maxell equation divB = 0 are mixed in Bx and By, more artifacts occur in Bz. Note that if the sample is tilted by ± 70 degrees or more, the cradle (12), the moving mechanism (16), etc. block the optical path of the incident electron beam or the transmitted electron beam, and it is impossible to obtain a projection image in the 360-degree range. Artifacts due to projection angle limitations cannot be eliminated.
 次に、特許文献2に示す試料ホルダを用いた場合、試料のx軸を回転内筒31の回転軸に合わせて設置し、回転θxを変化させてx軸回り360度範囲の回転シリーズ像を得ることが出来る。しかしながらその後、傾斜用ロッド4を用いてθy及びθzを調整し、試料のy軸を回転内筒31の回転軸に合わせることは困難である。 Next, when the sample holder shown in Patent Document 2 is used, the sample is placed with the x-axis aligned with the rotation axis of the rotating inner cylinder 31, and the rotation θx is changed to obtain a rotation series image in the range of 360 degrees around the x-axis. Can be obtained. However, after that, it is difficult to adjust θy and θz using the tilting rod 4 so that the y-axis of the sample matches the rotation axis of the rotating inner cylinder 31.
 なぜなら、θy及びθzは±数10度しか変化できないからである。これはθy及びθzの変化範囲は球体5を支える回転内筒3に試料保持棒6が接触する角度で制限されることに起因する。仮に、θy及びθzの回転角度範囲を±45度まで拡大するために回転内筒3先端の穴径を大きくすると、試料を傾斜させるために傾斜用ロッド4を押しつけると球体5が飛び出すことになる。従ってy軸回りの回転シリーズ像を得ることができないので、磁場成分Byを求めることが出来ず、Maxell方程式divB=0を用いてBzを計算する事も出来ない。 This is because θy and θz can only change ± 10 degrees. This is because the change ranges of θy and θz are limited by the angle at which the sample holding rod 6 contacts the rotating inner cylinder 3 that supports the sphere 5. If the hole diameter at the tip of the rotating inner cylinder 3 is increased in order to expand the rotation angle range of θy and θz to ± 45 degrees, the spherical body 5 will pop out when the tilting rod 4 is pressed to tilt the sample. . Therefore, since a rotation series image around the y axis cannot be obtained, the magnetic field component By cannot be obtained, and Bz cannot be calculated using the Maxell equation divB = 0.
 以上の課題をふまえて、本発明の目的は、試料の荷電粒子線像から試料の3次元的な電磁場構造を再構成する技術において、3次元再構成で発生するアーティファクトを低減させ、高精度な3次元磁場構造を提供することである。 In view of the above problems, an object of the present invention is to reduce artifacts generated by three-dimensional reconstruction in a technique for reconstructing a three-dimensional electromagnetic field structure of a sample from a charged particle beam image of the sample, and to achieve high accuracy. It is to provide a three-dimensional magnetic field structure.
 上記課題を解決するために、以下の装置及び方法を考案した。以下にその一例を示す。すなわち、本出願の試料ホルダは、荷電粒子線を試料へ照射し観察する荷電粒子線装置に用いる試料ホルダであって、前記試料ホルダは、先端部に前記試料を取り付ける取付部を有する回転冶具と、前記回転冶具を保持する保持部を有する保持棒と、前記保持棒を前記荷電粒子線と直交する第1の軸回りに回転させる第1の回転角度制御部と、前記回転冶具を第2の軸回りに回転させる第2の回転角度制御部と、を有し、前記保持部は、前記第1の軸と前記第2の軸のなす角を任意の角度に定める角度設定部と、を有することを特徴とする。 In order to solve the above problems, the following apparatus and method have been devised. An example is shown below. That is, the sample holder of the present application is a sample holder used in a charged particle beam apparatus that irradiates a sample with a charged particle beam and observes the sample holder, and the sample holder includes a rotating jig having an attachment portion for attaching the sample to a tip portion thereof. A holding rod having a holding portion for holding the rotating jig, a first rotation angle control unit for rotating the holding rod around a first axis orthogonal to the charged particle beam, and the rotating jig for the second A second rotation angle control unit that rotates about an axis, and the holding unit includes an angle setting unit that determines an angle formed by the first axis and the second axis to an arbitrary angle. It is characterized by that.
 また、本出願の荷電粒子線装置は、荷電粒子線を試料へ照射する照射光学系と、前記試料を保持する試料ホルダと、前記試料からの荷電粒子を検出する検出光学系と、を有する荷電粒子線装置であって、前記試料ホルダは、先端部に前記試料を取り付ける取付部を有する回転冶具と、前記回転冶具を保持する保持部を有する保持棒と、前記保持棒を前記荷電粒子線と直交する第1の軸回りに回転させる第1の回転角度制御部と、前記回転冶具を第2の軸回りに回転させる第2の回転角度制御部と、を有し、前記保持部は、前記第1の軸と前記第2の軸のなす角を任意の角度に定める角度設定部と、を有することを特徴とする。 Further, the charged particle beam apparatus of the present application includes a charging optical system that irradiates a sample with a charged particle beam, a sample holder that holds the sample, and a detection optical system that detects charged particles from the sample. In the particle beam apparatus, the sample holder includes a rotating jig having a mounting portion for attaching the sample to a tip portion, a holding rod having a holding portion for holding the rotating jig, and the holding rod as the charged particle beam. A first rotation angle control unit that rotates around a first axis that is orthogonal, and a second rotation angle control unit that rotates the rotary jig around a second axis, and the holding unit includes: And an angle setting unit that determines an angle between the first axis and the second axis as an arbitrary angle.
 また、本出願の荷電粒子線顕微法は、試料取付台の先端部に試料を取り付けるステップと、前記試料のx軸を第1の回転軸と平行にするステップと、前記試料のx軸回りの回転シリーズ像を得るステップと、前記試料のy軸を第1の回転軸と平行にするステップと、前記試料のy軸回りの回転シリーズ像を得るステップと、前記試料のz軸を第1の回転軸と平行にするステップと、前記試料のz軸回りの回転シリーズ像を得るステップと、を含み、前記x軸と前記y軸と前記z軸とはそれぞれ直交座標系であることを特徴とする。 Further, the charged particle beam microscopic method of the present application includes a step of attaching a sample to a tip portion of a sample mounting base, a step of making the x axis of the sample parallel to a first rotation axis, and a step around the x axis of the sample. Obtaining a rotation series image, making the y-axis of the sample parallel to a first rotation axis, obtaining a rotation series image around the y-axis of the sample, and the z-axis of the sample as a first And a step of obtaining a rotation series image around the z-axis of the sample, wherein the x-axis, the y-axis, and the z-axis are orthogonal coordinate systems, respectively. To do.
 本装置及び方法を用いることで、試料の電磁場分布を再構成することができる。 電磁 By using this apparatus and method, the electromagnetic field distribution of the sample can be reconstructed.
実施例1で用いた保持棒先端の基本構成の平面図である。2 is a plan view of a basic configuration of a holding rod tip used in Example 1. FIG. 試料に固定された直交座標系xyzと第1の軸と第2の軸の関係を示す説明図である。It is explanatory drawing which shows the relationship between the orthogonal coordinate system xyz fixed to the sample, the 1st axis | shaft, and the 2nd axis | shaft. 電子線干渉顕微鏡の基本構成図である。It is a basic lineblock diagram of an electron beam interference microscope. 実施例1から5で用いた試料ホルダ及び試料ステージの基本構成図である。FIG. 3 is a basic configuration diagram of a sample holder and a sample stage used in Examples 1 to 5. 針状試料台および突起状試料部分を拡大した構成図である。It is the block diagram which expanded the acicular sample stand and the protruding sample part. 実施例1から4で用いた第1の回転冶具の基本構成図である。It is a basic block diagram of the 1st rotation jig used in Examples 1-4. 実施例1で用いた保持棒先端の基本構成の鳥瞰図である。3 is a bird's-eye view of a basic configuration of a holding rod tip used in Example 1. FIG. 試料のx軸回り、y軸回り及びz軸回りの回転シリーズ像を撮影するためのフローチャートである。It is a flowchart for imaging | photography the rotation series image around the x-axis, y-axis, and z-axis of the sample. 実施例2で用いた保持棒先端の基本構成の平面図である。6 is a plan view of a basic configuration of a tip of a holding rod used in Example 2. FIG. 実施例2から4で用いた第1の回転冶具の基本構成図であるIt is a basic block diagram of the 1st rotation jig used in Examples 2-4. 実施例2で用いた傾斜冶具の基本構成の平面図である。It is a top view of the basic composition of the inclination jig used in Example 2. FIG. 実施例3で用いた保持棒先端の基本構成図であり、Y方向からみた平面図である。FIG. 6 is a basic configuration diagram of a tip of a holding rod used in Example 3, and is a plan view viewed from the Y direction. 実施例3で用いた保持棒先端の基本構成図であり、X方向からみた平面図である。FIG. 6 is a basic configuration diagram of a tip of a holding rod used in Example 3, and is a plan view viewed from the X direction. 実施例3で用いた保持棒先端の基本構成図であり、全体の鳥瞰図である。It is a basic block diagram of the holding rod tip used in Example 3, and is a bird's-eye view of the whole. 実施例4で用いた保持棒先端の基本構成の平面図である。6 is a plan view of a basic configuration of a holding rod tip used in Example 4. FIG. 実施例4で用いた傾斜冶具の基本構成図であり、2本のワイヤーと1本のネジを用い、2本のワイヤーの移動量の組み合わせで2軸制御する場合の基本構成図である。It is a basic block diagram of the inclination jig | tool used in Example 4, and is a basic block diagram in the case of carrying out biaxial control by the combination of the movement amount of two wires using two wires and one screw. 実施例4で用いた傾斜冶具の基本構成図であり、2本のワイヤーと2本のネジを用い、各ワイヤーが各軸を制御する場合の基本構成図である。It is a basic block diagram of the inclination jig | tool used in Example 4, and is a basic block diagram in case each wire controls each axis | shaft using two wires and two screws. 実施例4で用いた傾斜冶具の基本構成図であり、2本のワイヤーと2本のネジを用い、2本のワイヤーの移動量の組み合わせで2軸制御する場合の基本構成図である。It is a basic block diagram of the inclination jig used in Example 4, and is a basic block diagram in the case of using two wires and two screws and performing biaxial control with a combination of movement amounts of the two wires. 実施例5で用いた保持棒先端の基本構成の平面図である。FIG. 10 is a plan view of a basic configuration of a holding rod tip used in Example 5. 実施例5で用いた第1の回転冶具の基本構成図である。6 is a basic configuration diagram of a first rotary jig used in Example 5. FIG. 実施例5で用いた保持棒先端の基本構成の鳥瞰図である。10 is a bird's-eye view of a basic configuration of a holding rod tip used in Example 5. FIG. 実施例6で用いた保持棒先端の基本構成の平面図である。FIG. 10 is a plan view of a basic configuration of a holding rod tip used in Example 6. 実施例6で用いた試料ホルダ及び試料ステージの基本構成図である。It is a basic block diagram of the sample holder and sample stage used in Example 6. 実施例7で用いた薄膜状試料と針状試料台の基本構成図である。FIG. 6 is a basic configuration diagram of a thin film sample and a needle sample stage used in Example 7.
 磁場成分Bx(x,y,z)及び磁場成分By(x,y,z)を再構成する技術の詳細は、非特許文献1に示されている。すなわち、非特許文献1では試料のx軸周りの回転シリーズ透過電子顕微鏡像からx軸方向の磁場成分Bx(x,y,z)を再構成し、y軸周りの回転シリーズ透過電子顕微鏡像からy軸方向の磁場成分By(x,y,z)を再構成し、残りのz軸方向の磁場成分Bz(x,y,z)は磁場の特性であるMaxell方程式divB=0から計算できると示されている。 The details of the technique for reconfiguring the magnetic field component Bx (x, y, z) and the magnetic field component By (x, y, z) are shown in Non-Patent Document 1. That is, in Non-Patent Document 1, the magnetic field component Bx (x, y, z) in the x-axis direction is reconstructed from the rotating series transmission electron microscope image around the x axis of the sample, and from the rotating series transmission electron microscope image around the y axis. The magnetic field component By (x, y, z) in the y-axis direction is reconstructed, and the remaining magnetic field component Bz (x, y, z) in the z-axis direction can be calculated from the Maxell equation divB = 0, which is the magnetic field characteristic. It is shown.
 それに対し、本発明では磁場成分Bz(x,y,z)もz軸回りの回転シリーズ透過電子顕微鏡像から再構成する。 On the other hand, in the present invention, the magnetic field component Bz (x, y, z) is also reconstructed from a rotating series transmission electron microscope image around the z axis.
 図1に、z軸回りの回転シリーズ透過電子顕微鏡像の取得を実現するための具体的な構成を示した。試料10を先端に装着した針状試料台150と、針状試料台150を装着した第1の回転冶具130と、第1の回転冶具130を先端に装着した保持棒120とを持ち、保持棒120を試料室内で顕微鏡光軸と直行する第1の軸回りに回転させる第1の回転角度制御機構と、第1の回転冶具130を試料室内で第2の軸回りに回転させる第2の回転角度制御機構と第1の軸と第2の軸のなす角を54.7度近傍に設定する角度設定機構を持つ試料ホルダ100を図示している。ここで、54.7度近傍とは第2の軸が回転した際に試料の位置ずれが起こらない代表的な角度の例示であり、精度を満たす範囲ならば、この角度に限定されるものではない。 FIG. 1 shows a specific configuration for realizing acquisition of a rotating series transmission electron microscope image around the z axis. A holding rod having a needle-like sample stand 150 with the sample 10 attached to the tip, a first rotating jig 130 with the needle-like sample stand 150 attached, and a holding rod 120 with the first rotating jig 130 attached to the tip. A first rotation angle control mechanism for rotating 120 around a first axis perpendicular to the microscope optical axis in the sample chamber, and a second rotation for rotating the first rotary jig 130 around the second axis within the sample chamber A sample holder 100 having an angle control mechanism and an angle setting mechanism for setting an angle formed by a first axis and a second axis to be close to 54.7 degrees is illustrated. Here, the vicinity of 54.7 degrees is an example of a representative angle at which the sample does not deviate when the second axis rotates, and is not limited to this angle as long as the accuracy is satisfied. Absent.
 図2に、試料に固定された直交座標系xyzと第1の軸と第2の軸の関係を示す。第2の軸はxyzの中心と一致させてある。すなわち、第2軸とx軸のなす角も、第2軸とy軸のなす角も、第2軸とz軸のなす角も54.7度になっている。x軸を顕微鏡光軸と直行する第1の回転軸回と平行に設定した後、第1の回転角度制御機構を用いて試料をx軸回りに回転させ、x軸回り回転シリーズ像を得ることができる。その後、第2の回転角度制御機構を用いて試料のy軸を第1の回転軸と平行に設定した後、第1の回転機構を用いて試料をy軸回りに回転させ、y軸回りの回転シリーズ像を得ることができる。 FIG. 2 shows the relationship between the orthogonal coordinate system xyz fixed to the sample, the first axis, and the second axis. The second axis is aligned with the center of xyz. That is, the angle between the second axis and the x axis, the angle between the second axis and the y axis, and the angle between the second axis and the z axis are 54.7 degrees. After setting the x-axis parallel to the first rotation axis that is orthogonal to the microscope optical axis, the sample is rotated around the x-axis using the first rotation angle control mechanism to obtain a rotation series image around the x-axis. Can do. Then, after setting the y-axis of the sample in parallel with the first rotation axis using the second rotation angle control mechanism, the sample is rotated around the y-axis using the first rotation mechanism, A rotating series image can be obtained.
 同様に、第2の回転角度制御機構を用いて試料のz軸を第1の回転軸と平行に設定した後、第1の回転機構を用いて試料をz軸回りに回転させ、z軸回りの回転シリーズ像を得ることができる。以下、その実施形態を示す。 Similarly, after setting the z-axis of the sample to be parallel to the first rotation axis using the second rotation angle control mechanism, the sample is rotated around the z-axis using the first rotation mechanism, Can be obtained. Hereinafter, the embodiment is shown.
 上記により、互いに直交する3軸回りの回転シリーズ像が撮影できるようになり、各回転シリーズ像から各ベクトル成分を直接再構成できるので、アーティファクトの影響の少ない、高精度な3次元電磁場分布を再構成できるようになる。 As described above, rotation series images around three axes orthogonal to each other can be taken, and each vector component can be directly reconstructed from each rotation series image. Therefore, a highly accurate three-dimensional electromagnetic field distribution with less artifacts can be reconstructed. Can be configured.
 実施例1では、突起状に加工された試料を図1の試料ホルダに装着した事例を示す。また詳細な部分は後述する図6にて説明する。第2の回転角度制御機構の形態として、第1の回転冶具130に加工された笠歯車部131と、笠歯車部131と噛み合うように加工された笠歯車部141を持つ第2の回転冶具140であり、第2の回転冶具140を回転させることで第1の回転冶具130を回転させる制御機構を採用した。また、角度設定機構の形態として、第1の回転軸150を設置するテーパー面121であり、テーパー面121の法線と第1の回転軸のなす角が54.7度近傍に設定されている構造を採用した。以下、詳細を示す。 Example 1 shows an example in which a sample processed into a protrusion is mounted on the sample holder of FIG. Details will be described later with reference to FIG. As a form of the second rotation angle control mechanism, a second rotary jig 140 having a bevel gear portion 131 processed into the first rotary jig 130 and a bevel gear portion 141 processed to mesh with the bevel gear portion 131. Therefore, a control mechanism that rotates the first rotary jig 130 by rotating the second rotary jig 140 is employed. In addition, as a form of the angle setting mechanism, it is a tapered surface 121 on which the first rotating shaft 150 is installed, and an angle formed between the normal line of the tapered surface 121 and the first rotating shaft is set to around 54.7 degrees. Adopted structure. Details are shown below.
 まず図3に、試料の撮影に用いる装置として、2段電子線バイプリズム干渉光学系を構成した電子線干渉顕微鏡を模式的に示す。前提として、鏡体に固定した直交座標系をXYZと設定している。 First, FIG. 3 schematically shows an electron beam interference microscope comprising a two-stage electron biprism interference optical system as an apparatus used for photographing a sample. As a premise, an orthogonal coordinate system fixed to the mirror is set as XYZ.
 そして、電子源としての電子銃1が電子線の流れる方向の最上流部に位置し、電子線は加速管40にて所定の速度にされた後、照射光学系(第1照射レンズ41、第2照射レンズ42)を経て試料ホルダ100に載置された試料3にZ方向から照射される。第1照射レンズ41、第2照射レンズ42はコンデンサレンズを用いる。 The electron gun 1 as an electron source is positioned at the most upstream part in the direction in which the electron beam flows, and the electron beam is brought to a predetermined speed by the accelerating tube 40, and then the irradiation optical system (the first irradiation lens 41, the first irradiation lens). The sample 3 placed on the sample holder 100 is irradiated from the Z direction through the two irradiation lens 42). The first irradiation lens 41 and the second irradiation lens 42 use condenser lenses.
 試料10を透過した電子線は、対物レンズ5にて結像される。対物レンズ5の下側に第1の電子線バイプリズム91が配置され、第1の結像レンズ61を介した下側に第2の電子線バイプリズム93が配置されている。 The electron beam that has passed through the sample 10 is imaged by the objective lens 5. A first electron biprism 91 is disposed below the objective lens 5, and a second electron biprism 93 is disposed below the first imaging lens 61.
 第1、第2の電子線バイプリズム(91、93)により干渉縞間隔sや干渉領域幅Wが定まった電子線干渉顕微鏡像は、第2、第3、第4の結像レンズ(62、63、64)を経て所定の倍率に調整され、観察記録面89で画像観察・記録媒体79(例えばTVカメラやCCDカメラ)により記録される。その後、演算処理装置77により振幅像、位相像などに再生され、例えばモニタ76などに表示される。 Electron beam interference microscope images in which the interference fringe interval s and the interference region width W are determined by the first and second electron biprisms (91, 93) are the second, third, and fourth imaging lenses (62, 63, 64) and adjusted to a predetermined magnification, and recorded on the observation recording surface 89 by an image observation / recording medium 79 (for example, a TV camera or a CCD camera). Thereafter, it is reproduced as an amplitude image, a phase image, etc. by the arithmetic processing unit 77 and displayed on the monitor 76, for example.
 次に図4は試料ホルダ及び試料ステージの基本構成図である。試料ホルダ100は保持筒110と、保持筒110内の保持棒120から構成される。保持筒110は電子線が通過できる開口部111を持つ。保持棒120は、保持筒110とは独立に、第1の軸回りに360度回転可能である。一般に、保持筒の直径は7~8mm、保持棒の直径は~3mmに設計される。 Next, FIG. 4 is a basic configuration diagram of the sample holder and the sample stage. The sample holder 100 includes a holding cylinder 110 and a holding rod 120 in the holding cylinder 110. The holding cylinder 110 has an opening 111 through which an electron beam can pass. The holding rod 120 can rotate 360 degrees around the first axis independently of the holding cylinder 110. Generally, the diameter of the holding cylinder is designed to be 7 to 8 mm, and the diameter of the holding rod is designed to be 3 mm.
 ちなみに、汎用の透過電子顕微鏡では試料ホルダをインレンズ型の対物レンズの間に挿入する。インレンズ型の対物レンズにおけるレンズギャップは5mm程度であり、さらにX線発生抑制の軽元素カバーが装備されていると、レンズギャップに挿入可能な厚さは3mm程度になる。 Incidentally, in a general-purpose transmission electron microscope, a sample holder is inserted between in-lens objective lenses. The lens gap in an in-lens objective lens is about 5 mm, and if a light element cover for suppressing X-ray generation is provided, the thickness that can be inserted into the lens gap is about 3 mm.
 一方、図3は試料の電磁場構造を観察する装置であり、レンズギャップ内の強磁場で試料の磁場構造が変化することを避けるために、試料は対物レンズ5と第2照射レンズ42の間を挿入する。試料室のZ方向のサイズは10mm以上あるので、保持筒及び保持棒の直径を増加させることは可能であるが、保持筒及び保持棒の直径を増加させる場合は、試料ステージ等の新規設計が必要になる。 On the other hand, FIG. 3 is an apparatus for observing the electromagnetic field structure of the sample. In order to avoid a change in the magnetic field structure of the sample due to a strong magnetic field in the lens gap, the sample is placed between the objective lens 5 and the second irradiation lens 42. insert. Since the size of the sample chamber in the Z direction is 10 mm or more, it is possible to increase the diameter of the holding cylinder and holding rod. However, if the diameter of the holding cylinder and holding bar is increased, a new design such as a sample stage is required. I need it.
 また、集束イオンビーム加工装置を用いた試料加工や汎用の透過電子顕微鏡を用いた試料形状評価を共通の試料ホルダで行いたいというニーズがある。以上の理由から本実施例で用いる試料ホルダも、多くの装置で用いられる目的を考慮して保持筒の直径を7~8mmに、保持棒の直径を~3mmにすることにした。したがって、試料ホルダの各構成部品のサイズは、そのホルダが用いられる装置によって異なるものであり、上記にて述べたサイズに必ずしも限定でされるものではない。 There is also a need to perform sample processing using a focused ion beam processing apparatus and sample shape evaluation using a general-purpose transmission electron microscope with a common sample holder. For the above reasons, the sample holder used in this example is also made to have a holding cylinder diameter of 7 to 8 mm and a holding rod diameter of 3 mm in consideration of the purpose used in many apparatuses. Therefore, the size of each component of the sample holder varies depending on the apparatus in which the holder is used, and is not necessarily limited to the size described above.
 そして、試料ホルダ110は試料ステージにX方向から挿入される。試料10のX、Y、Z方向の位置は試料ステージのパルスモータ及びエンコーダ(図示せず)からなる3個のリニアクチュエータ101~103を用いて制御する。また、保持棒120の回転を制御する第1の回転角度制御機構には、例えば保持棒120を回転させるパルスモータ104を用いる。また上記の動作を精度よく実現できるのであれば、パルスモータ以外を用いてもよい。 The sample holder 110 is inserted into the sample stage from the X direction. The position of the sample 10 in the X, Y, and Z directions is controlled using three linear actuators 101 to 103 including a pulse motor and an encoder (not shown) of the sample stage. For example, a pulse motor 104 that rotates the holding rod 120 is used as the first rotation angle control mechanism that controls the rotation of the holding rod 120. Further, other than the pulse motor may be used as long as the above operation can be realized with high accuracy.
 図5には、突起状に形成された試料10の形状と、試料10を装着する針状試料台150の基本構造を示す。試料10は台座部13と、試料10における観察領域11と、観察領域11を内包する突起部12とを持ち、針状試料台150の先端に設置される。透過電子像を得るために、突起部12の直径は50nmから200nmに細線化されている。 FIG. 5 shows the shape of the sample 10 formed in a protruding shape and the basic structure of the needle-like sample stage 150 on which the sample 10 is mounted. The sample 10 has a pedestal portion 13, an observation region 11 in the sample 10, and a protrusion 12 that encloses the observation region 11, and is placed at the tip of a needle-like sample table 150. In order to obtain a transmission electron image, the diameter of the protrusion 12 is reduced from 50 nm to 200 nm.
 また、試料10を第1の軸回りに回転させた場合でも、第2の軸回りに回転させた場合でも針状試料台150が電子線(すなわち顕微鏡の光路)を遮断しないように、針状試料台150はテーパー角が35度以下の円錐状もしくは多角錐状になっている。針状試料台150はテーパー部151と、針状試料台150をピンセットなどでハンドリングする際に用いるグリップ部152と、針状試料台150と第1の回転冶具130との脱着に用いるネジ部153と、ネジ部153の直径よりも小さい直径を持つ円柱状もしくは多角柱状のガイド部154とを持つ。 Further, even when the sample 10 is rotated about the first axis or the second axis is rotated, the needle-like sample stage 150 does not block the electron beam (that is, the optical path of the microscope). The sample stage 150 is conical or polygonal with a taper angle of 35 degrees or less. The needle-like sample stage 150 has a tapered part 151, a grip part 152 used when the needle-like specimen stage 150 is handled with tweezers, etc., and a screw part 153 used for attaching / detaching the needle-like sample stage 150 and the first rotary jig 130. And a cylindrical or polygonal guide portion 154 having a diameter smaller than the diameter of the screw portion 153.
 汎用のピンセットはピンセット先端の内側は平面になっているが、針状試料台150のグリップ部152に適合する溝がピンセット先端の内側に作成された専用ピンセットを用いると、針状試料台150のハンドリングが容易になる。また、針状試料台150を第1の回転冶具140に挿入する際、ネジ部153よりも直径の小さいガイド部154を先にネジ穴部133に挿入することで、ネジ部153の挿入が容易になる。 The general-purpose tweezers have a flat inner surface at the tip of the tweezers. However, if a dedicated tweezer in which a groove that fits the grip portion 152 of the needle-shaped sample table 150 is formed inside the tweezers tip, Handling becomes easy. Further, when the needle-like sample stage 150 is inserted into the first rotating jig 140, the screw portion 153 can be easily inserted by inserting the guide portion 154 having a diameter smaller than that of the screw portion 153 into the screw hole portion 133 first. become.
 ちなみに、突起部12の形状は必ずしも図示したような細線化されている必要は無く、台座部13からみて突出している形状を有していればよい。また本実施例では針状試料台150はテーパー角が30度の円錐状として説明する。 Incidentally, the shape of the protrusion 12 does not necessarily have to be thinned as shown in the drawing, and may have a shape protruding from the pedestal portion 13. In this embodiment, the needle-like sample stage 150 is described as a conical shape having a taper angle of 30 degrees.
 図6に第1の回転冶具130の基本構造を示す。第1の回転冶具130は傘歯車部131、保持棒120に差し込む差し込み部132と、針状試料台150の脱着に用いるネジ穴部133を持つ。試料10を第1の軸回りに回転させても第2の軸回りに回転させても第1の回転冶具が顕微鏡光路を遮断しないように、試料10と傘歯車131の最外周とを結ぶ線と第2の軸のなす角が35度以下になるように、グリップ部152の長さや傘歯車131の直径を定める。今回、試料10と傘歯車131の最外周とを結ぶ線と第2の軸のなす角は30度で作成した。 FIG. 6 shows the basic structure of the first rotary jig 130. The first rotary jig 130 has a bevel gear portion 131, an insertion portion 132 that is inserted into the holding rod 120, and a screw hole portion 133 that is used to attach and detach the needle-like sample table 150. A line connecting the sample 10 and the outermost periphery of the bevel gear 131 so that the first rotating jig does not block the microscope optical path even if the sample 10 is rotated about the first axis or the second axis. The length of the grip portion 152 and the diameter of the bevel gear 131 are determined so that the angle formed by the second axis is 35 degrees or less. This time, the angle formed between the line connecting the sample 10 and the outermost periphery of the bevel gear 131 and the second axis was 30 degrees.
 図7に保持棒120先端の基本構造を示す。保持棒120先端には第1の回転冶具130が装着され、傘歯車部131と噛み合うように設置された笠歯車部141を持つ第2の回転冶具140と、第2の回転冶具140を保持棒120とは独立に回転させるモーター(図示せず)から構成される。モーターの回転は支柱部142を介して第2の回転冶具140を回転させ、この回転で第1の回転冶具130を回転させる。 Fig. 7 shows the basic structure of the tip of the holding rod 120. A first rotating jig 130 is attached to the tip of the holding rod 120, a second rotating jig 140 having a bevel gear portion 141 installed so as to mesh with the bevel gear portion 131, and the second rotating jig 140 is held by the holding rod. A motor (not shown) that rotates independently from 120 is configured. The rotation of the motor causes the second rotary jig 140 to rotate via the support column 142, and this rotation causes the first rotary jig 130 to rotate.
 前述した図1について、さらに詳細に説明する。保持棒120先端における第1の軸、第2の軸、第1の回転冶具130、第2の回転冶具140の配置を示す。保持棒120の先端には第2の軸の方向を設定する角度設定機構としてテーパー面121が設けられている。また、テーパー面の法線と第1の回転軸のなす角が54.7度近傍に設定されている。 1 will be described in more detail. The arrangement | positioning of the 1st axis | shaft in the front-end | tip of the holding rod 120, a 2nd axis | shaft, the 1st rotation jig 130, and the 2nd rotation jig 140 is shown. A tapered surface 121 is provided at the tip of the holding rod 120 as an angle setting mechanism for setting the direction of the second axis. Further, the angle formed between the normal line of the tapered surface and the first rotation axis is set in the vicinity of 54.7 degrees.
 また、汎用の透過電子顕微鏡における試料ステージの稼働範囲はX方向で±1.0mm、Y方向で1.0mm、Z方向で±0.5mmであるから、第1の軸及び第2の軸回りに試料を回転させた時の試料移動は試料ステージで追従できる範囲以下に定める必要がある。 In addition, the operating range of the sample stage in a general-purpose transmission electron microscope is ± 1.0 mm in the X direction, 1.0 mm in the Y direction, and ± 0.5 mm in the Z direction. It is necessary to determine the movement of the sample when the sample is rotated within a range that can be followed by the sample stage.
 そのために、顕微鏡光軸と第1の軸が交差するように定める。また、顕微鏡光軸と第1の回転軸の交点に第2の軸が交わるように第1の回転冶具を差し込む穴の位置を定める。 Therefore, the microscope optical axis and the first axis are determined to intersect. Further, the position of the hole into which the first rotary jig is inserted is determined so that the second axis intersects the intersection of the microscope optical axis and the first rotation axis.
 これら3つの軸の交点に試料10を設置することで、第1及び第2の軸回りに試料を回転させた時、試料の移動を最も少なくすることが出来る。また、試料10を第1の軸及び第2の軸回りに回転させても試料ホルダの部材(特にテーパー部151)が顕微鏡光軸を遮断しないような形状になっており、x軸、y軸及びz軸回りの各々において360度範囲の回転シリーズ像の撮影が可能な構造になっている。 By installing the sample 10 at the intersection of these three axes, the sample movement can be minimized when the sample is rotated around the first and second axes. Further, even if the sample 10 is rotated around the first axis and the second axis, the member of the sample holder (particularly, the tapered portion 151) does not block the optical axis of the microscope, and the x-axis and y-axis In addition, a rotation series image in a 360-degree range can be captured around each of the z axes.
 最後に図8にて撮影手順を説明する。撮影手順は主に以下の手順から構成される。
顕微鏡光軸と直行する第1の軸と試料のx軸とを平行に設定する(S1)。
第1の回転角度制御機構を用いて試料のx軸回りの回転シリーズ像を撮影する(S2)。
第2の回転角度制御機構を用いて試料のy軸を第1の回転軸と平行に設定する(S3)。
第1の回転角度制御機構を用いて試料のy軸回りの回転シリーズ像を撮影する(S4)。
第2の回転角度制御機構を用いて試料のz軸を第1の回転軸と平行に設定する(S5)。
第1の回転角度制御機構を用いて試料のz軸回りの回転シリーズ像を撮影する(S6)。
Finally, the photographing procedure will be described with reference to FIG. The shooting procedure mainly consists of the following procedures.
A first axis perpendicular to the microscope optical axis and the x-axis of the sample are set in parallel (S1).
A rotation series image around the x-axis of the sample is taken using the first rotation angle control mechanism (S2).
The y-axis of the sample is set parallel to the first rotation axis using the second rotation angle control mechanism (S3).
A rotation series image around the y-axis of the sample is taken using the first rotation angle control mechanism (S4).
The z axis of the sample is set parallel to the first rotation axis using the second rotation angle control mechanism (S5).
A rotation series image around the z-axis of the sample is taken using the first rotation angle control mechanism (S6).
 前述したように、試料のx軸周りの回転シリーズ像からx軸方向の磁場成分Bx(x,y,z)を再構成し、y軸周りの回転シリーズ像からy軸方向の磁場成分By(x,y,z)を再構成する技術の詳細は、非特許文献1を参照されたい。同じ手順でz軸周りの回転シリーズ像からz軸方向の磁場成分Bz(x,y,z)を再構成し、3次元磁場構造を再構成する。 As described above, the magnetic field component Bx (x, y, z) in the x-axis direction is reconstructed from the rotation series image around the x-axis of the sample, and the magnetic field component By ( Refer to Non-Patent Document 1 for details of the technique for reconstructing x, y, z). In the same procedure, the magnetic field component Bz (x, y, z) in the z-axis direction is reconstructed from the rotation series image around the z-axis to reconstruct the three-dimensional magnetic field structure.
 なお、非特許文献1ではローレンツ像から再生した回転シリーズ位相像を用いて3次元磁場構造を再構成する技術を示している。ここで示された技術を電子線干渉顕微鏡像から再生した回転シリーズ位相像に適用することは可能である。また、回転シリーズ像をローレンツ走査透過電子顕微鏡像を用いて撮影しても良い。上記以外の装置で撮影したx軸回り、y軸回り、z軸回りの回転シリーズ像から観察領域の3次元構造を解析する場合にも、本発明の試料ホルダおよび顕微方法を用いることが可能である。 Note that Non-Patent Document 1 shows a technique for reconstructing a three-dimensional magnetic field structure using a rotating series phase image reproduced from a Lorentz image. It is possible to apply the technique shown here to a rotating series phase image reproduced from an electron beam interference microscope image. Further, a rotation series image may be taken using a Lorentz scanning transmission electron microscope image. The sample holder and the microscopic method of the present invention can also be used when analyzing the three-dimensional structure of the observation region from rotation series images around the x-axis, y-axis, and z-axis taken with an apparatus other than the above. is there.
 実施例2では、突起状に加工された試料を図9の試料ホルダに装着した事例を示す。本実施例では第2の回転角度制御機構の形態として、第1の回転冶具130に加工された第1の笠歯車部131と、第1の笠歯車部131と噛み合うように加工された第2の笠歯車部141を持つ第2の回転冶具140であり、第2の回転冶具140を回転させることで第1の回転冶具130を回転させる制御機構を採用した。また、角度設定機構の形態として、第1の回転軸130を装着する傾斜冶具160と、傾斜冶具160を装着する保持棒先端のテーパー面121であり、第2の軸と第1の軸のなす角が54.7度近傍になるようにテーパー面121の角度が設計されている構造を採用した。実施例1と実施例2との違いは、傾斜冶具160である。また、第1の回転冶具130のガタつきやズレを防止するために、バネ134を追加している。 Example 2 shows an example in which a sample processed into a protrusion is mounted on the sample holder of FIG. In the present embodiment, as a form of the second rotation angle control mechanism, the first bevel gear portion 131 processed in the first rotating jig 130 and the second bevel gear portion 131 processed so as to mesh with the first bevel gear portion 131 are used. A second rotating jig 140 having a bevel gear portion 141 is used, and a control mechanism that rotates the first rotating jig 130 by rotating the second rotating jig 140 is employed. In addition, the angle setting mechanism includes an inclined jig 160 to which the first rotating shaft 130 is attached and a tapered surface 121 at the tip of the holding rod to which the inclined jig 160 is attached, which is formed between the second axis and the first axis. A structure in which the angle of the tapered surface 121 is designed so that the angle is in the vicinity of 54.7 degrees is adopted. The difference between the first embodiment and the second embodiment is an inclined jig 160. Further, a spring 134 is added in order to prevent the first rotary jig 130 from rattling or shifting.
 図10には、バネ追加に伴い、第1の回転冶具の構造を変更した構造を示している。第1の回転冶具130を装着する際、傘歯車部131と抑え冶具135で傾斜冶具160を挟み込む構造とし、抑え冶具135と傾斜冶具160の間にバネ134を設置した。抑え冶具135には抑え冶具135と傾斜冶具160の距離を調整するネジが設けられており、抑え冶具135と傾斜冶具160の距離を調整することでバネの強さを調整する構造とした。 FIG. 10 shows a structure in which the structure of the first rotary jig is changed with the addition of the spring. When the first rotating jig 130 is mounted, the inclined jig 160 is sandwiched between the bevel gear portion 131 and the holding jig 135, and the spring 134 is installed between the holding jig 135 and the inclined jig 160. The holding jig 135 is provided with a screw for adjusting the distance between the holding jig 135 and the tilting jig 160, and the spring strength is adjusted by adjusting the distance between the holding jig 135 and the tilting jig 160.
 なお、バネ134は傘歯車部131と傾斜冶具160の間に設置しても良い。また図11に示すように傾斜冶具160には第1の回転冶具130の差し込み部132を通すための穴161と、第2の回転冶具140の支柱部142を通すための穴162と、傾斜冶具160を支持棒120に装着するためにネジ穴163-1、163-2、を設けた。ただし、それぞれの部品を固定できるのであれば、必ずしも図11のようにする必要はない。また、実施例1の傘歯車部131と保持棒120との間にバネ134を設けても第1の回転冶具130のガタつきやズレを防止することができる。 The spring 134 may be installed between the bevel gear portion 131 and the inclined jig 160. Further, as shown in FIG. 11, the tilt jig 160 has a hole 161 through which the insertion portion 132 of the first rotary jig 130 passes, a hole 162 through which the column portion 142 of the second rotary jig 140 passes, and the tilt jig. Screw holes 163-1 and 163-2 were provided for attaching 160 to the support rod 120. However, as long as each component can be fixed, it is not always necessary to perform the process as shown in FIG. Further, even if the spring 134 is provided between the bevel gear portion 131 and the holding rod 120 of the first embodiment, it is possible to prevent the first rotating jig 130 from rattling or shifting.
 第1の回転冶具及び角度設定機構以外は実施例1と同様であるので、顕微鏡本体や撮影手順などの説明は省略する。 Since the first rotating jig and the angle setting mechanism are the same as those in the first embodiment, description of the microscope main body and the photographing procedure is omitted.
 実施例3では、図12(A)及び図12(B)の構成を用いて、突起状に加工された試料を試料ホルダに装着した事例を示す。 Example 3 shows an example in which a sample processed into a protruding shape is mounted on a sample holder using the configuration shown in FIGS. 12 (A) and 12 (B).
 本実施例では第2の回転角度制御機構の形態として、第1の回転冶具130に加工された第1の笠歯車部131と、第1の笠歯車部131と噛み合うように加工された第2の笠歯車部141を持つ第2の回転冶具140であり、第2の回転冶具140を回転させることで第1の回転冶具130を回転させる制御機構を採用した。また、角度設定機構の形態として、第1の回転軸130を装着する傾斜冶具160と、傾斜冶具160に設けられたピポット部164と、傾斜冶具160に取り付けられたワイヤー166と、傾斜冶具160に取り付けられたバネ167と、保持棒120に設けられた支柱部122と、支柱部122に設けられたピポット受け部123とを持ち、ワイヤー166の移動によって傾斜冶具160の傾斜角度を制御する機構を採用した。 In the present embodiment, as a form of the second rotation angle control mechanism, the first bevel gear portion 131 processed in the first rotating jig 130 and the second bevel gear portion 131 processed so as to mesh with the first bevel gear portion 131 are used. A second rotating jig 140 having a bevel gear portion 141 is used, and a control mechanism that rotates the first rotating jig 130 by rotating the second rotating jig 140 is employed. In addition, as the form of the angle setting mechanism, the tilting jig 160 to which the first rotating shaft 130 is attached, the pivot portion 164 provided in the tilting jig 160, the wire 166 attached to the tilting jig 160, and the tilting jig 160 A mechanism that has an attached spring 167, a support 122 provided on the holding rod 120, and a pivot receiving part 123 provided on the support 122, and controls the inclination angle of the inclination jig 160 by moving the wire 166. Adopted.
 実施例2と実施例3との違いは、傾斜冶具160の傾斜角度を制御する機構が付加された点である。支持棒120先端には2つの支柱部122が設けられており、ネジ125を用いて傾斜軸160及び保持棒120を挟み込む構造になっている。傾斜冶具160の両脇には第1及び第2の軸と直交する第3の軸上に2つピポット部164が、支持棒120先端に設けられた支柱部122にはそれらを受ける2つのピポット受け部123が設けられている。傾斜冶具160の一端と保持棒先端との間にバネ167が取り付けられており、傾斜冶具160の他端にはワイヤー166が取り付けられており、ワイヤー166を移動よって傾斜冶具160の傾斜角度を制御する。 The difference between Example 2 and Example 3 is that a mechanism for controlling the inclination angle of the inclination jig 160 is added. Two support columns 122 are provided at the tip of the support rod 120, and the inclined shaft 160 and the holding rod 120 are sandwiched using screws 125. On both sides of the tilting jig 160, there are two pivots 164 on a third axis orthogonal to the first and second axes, and two pillars 122 that receive them on a support column 122 provided at the tip of the support rod 120. A receiving portion 123 is provided. A spring 167 is attached between one end of the inclination jig 160 and the tip of the holding rod, and a wire 166 is attached to the other end of the inclination jig 160, and the inclination angle of the inclination jig 160 is controlled by moving the wire 166. To do.
 角度設定機構と、角度設定機構を用いて傾斜冶具の角度を設定する手順が図8のS1の前に加わる以外は実施例2と同様であるので、顕微鏡本体や撮影手順などの説明は省略する。 Since the angle setting mechanism and the procedure for setting the angle of the tilting jig using the angle setting mechanism are the same as those in the second embodiment except that S1 in FIG. 8 is added, the description of the microscope main body and the imaging procedure is omitted. .
 実施例4では、図13の構成を用いて、突起状に加工された試料を試料ホルダに装着した事例を示す。本実施例では第2の回転角度制御機構の形態として、第1の回転冶具130に加工された第1の笠歯車部131と、第1の笠歯車部131と噛み合うように加工された第2の笠歯車部141を持つ第2の回転冶具140であり、第2の回転冶具140を回転させることで第1の回転冶具130を回転させる制御機構を採用した。 Example 4 shows an example in which a sample processed into a protruding shape is mounted on a sample holder using the configuration of FIG. In the present embodiment, as a form of the second rotation angle control mechanism, the first bevel gear portion 131 processed in the first rotating jig 130 and the second bevel gear portion 131 processed so as to mesh with the first bevel gear portion 131 are used. A second rotating jig 140 having a bevel gear portion 141 is used, and a control mechanism that rotates the first rotating jig 130 by rotating the second rotating jig 140 is employed.
 また、角度設定機構の形態として、第1の回転軸130を装着する傾斜冶具160と、傾斜冶具160に設けられたピポット受け部165と、傾斜冶具160に取り付けられたワイヤー166と、傾斜冶具160に取り付けられたバネ167と、保持棒120に設けられたピポット部124とを持ち、ワイヤー166の移動によって傾斜冶具160の傾斜角度を制御する機構を採用した。 In addition, as a form of the angle setting mechanism, the inclination jig 160 to which the first rotation shaft 130 is attached, the pivot receiving portion 165 provided in the inclination jig 160, the wire 166 attached to the inclination jig 160, and the inclination jig 160. A mechanism for controlling the inclination angle of the inclination jig 160 by moving the wire 166 is employed.
 実施例3と実施例4との違いは、傾斜冶具160の第3の軸回りだけでなく第4の軸回りの傾斜する機構が付加された点である。図14(A)から図14(C)を用いてワイヤー166による傾斜冶具160と傾斜角度の制御方法を説明する。 The difference between Example 3 and Example 4 is that a mechanism for tilting not only around the third axis of the tilting jig 160 but also around the fourth axis is added. The tilt jig 160 and the tilt angle control method using the wire 166 will be described with reference to FIGS. 14A to 14C.
 図14(A)に示す位置に2本のワイヤー-166と1本のバネを取り付けた場合、第1のワイヤーと第2のワイヤーとを同方向に移動させることで傾斜冶具を第3の軸回りに、反対方向に移動させることで第4の軸回りに傾斜させる。図14(A)は部品点数を最小限にするために、2本のワイヤーと1本のネジで2軸制御を行っている。 When two wires-166 and one spring are attached at the position shown in FIG. 14 (A), the tilt jig is moved to the third axis by moving the first wire and the second wire in the same direction. Inclined around the fourth axis by moving in the opposite direction. In FIG. 14A, two-axis control is performed using two wires and one screw in order to minimize the number of parts.
 次に、図14(B)に示すように2本のワイヤーと2本のバネで2軸制御することも可能である。第1のワイヤー166-1を移動させることで傾斜冶具を第3の軸回りに、第2のワイヤーを移動させることで第4の軸回りに傾斜させることができる。 Next, as shown in FIG. 14B, it is possible to perform two-axis control with two wires and two springs. The tilt jig can be tilted around the third axis by moving the first wire 166-1 and tilted around the fourth axis by moving the second wire.
 また、図14(C)に示すように、ワイヤー及びバネを第3の軸上もしくは第4の軸上に取り付ける必要はなく、他の部品と干渉しない位置に取り付け、第1のワイヤー166-1と第2のワイヤー166-2の移動を適時調整することで、傾斜冶具を第3の軸回り及び第4の軸回りの傾斜させることができる。 Further, as shown in FIG. 14C, it is not necessary to attach the wire and the spring on the third axis or the fourth axis, and the first wire 166-1 is attached at a position where it does not interfere with other parts. By adjusting the movement of the second wire 166-2 as appropriate, the tilt jig can be tilted around the third axis and the fourth axis.
 角度設定機構と、角度設定機構によって第3の軸回りだけでなく第4の軸回りに傾斜可能になったこと以外は実施例3と同様であるので、顕微鏡本体や撮影手順などの説明は省略する。 Since the angle setting mechanism and the angle setting mechanism can be tilted not only around the third axis but also around the fourth axis, they are the same as those in the third embodiment, and thus the description of the microscope main body and the photographing procedure is omitted. To do.
 実施例5では、図15の構成を用いて、突起状に加工された試料を試料ホルダに装着した事例を示す。本実施例では第2の回転角度制御機構の形態として、第1の回転冶具130に加工された滑車部136と、滑車部136に掛けられたワイヤー137であり、ワイヤー137を移動させることで第1の回転冶具130を回転させる制御機構を採用した。また、角度設定機構の形態として、第1の回転軸150を設置するテーパー面121であり、テーパー面121の法線と第1の回転軸のなす角が54.7度近傍に設定されている構造を採用した。 Example 5 shows an example in which a sample processed into a protruding shape is mounted on a sample holder using the configuration of FIG. In this embodiment, as a form of the second rotation angle control mechanism, there are a pulley part 136 processed in the first rotary jig 130 and a wire 137 hung on the pulley part 136, and the wire 137 is moved by moving the wire 137. A control mechanism for rotating one rotary jig 130 was adopted. In addition, as a form of the angle setting mechanism, it is a tapered surface 121 on which the first rotating shaft 150 is installed, and an angle formed between the normal line of the tapered surface 121 and the first rotating shaft is set to around 54.7 degrees. Adopted structure.
 図16に第1の回転冶具130の基本構造を示す。第1の回転冶具130はワイヤー137をかける滑車部136と、保持棒120に差し込む差し込み部133と、針状試料台150の脱着に用いるネジ穴部132を持つ。試料10を第1の軸回りに回転させても第2の軸回りに回転させても第1の回転冶具が顕微鏡光路を遮断しないように、試料10と滑車部外周とを結ぶ線と第2の軸のなす角が35度以下、今回は30度になるように、グリップ部152の長さや滑車の直径を定めた。 FIG. 16 shows the basic structure of the first rotary jig 130. The first rotary jig 130 has a pulley portion 136 for hooking a wire 137, an insertion portion 133 inserted into the holding rod 120, and a screw hole portion 132 used for detaching the needle-like sample table 150. A line connecting the sample 10 and the outer periphery of the pulley portion and the second so that the first rotating jig does not block the microscope optical path even if the sample 10 is rotated around the first axis or the second axis. The length of the grip portion 152 and the diameter of the pulley were determined so that the angle formed by the axis of the grip portion was 35 degrees or less, and this time 30 degrees.
 次に図17に、保持棒120先端の基本構造を示す。保持棒120の先端には第1の回転部130が装着され、第1の回転冶具130の滑車部136にはワイヤー-137が掛けられている。ワイヤー137を移動させるモーター(図示せず)を用い、ワイヤー137を移動させることで第1の回転冶具130を回転させる。 Next, FIG. 17 shows the basic structure of the tip of the holding rod 120. A first rotating portion 130 is attached to the tip of the holding rod 120, and a wire-137 is hung on the pulley portion 136 of the first rotating jig 130. The first rotating jig 130 is rotated by moving the wire 137 using a motor (not shown) that moves the wire 137.
 なお、第1の回転冶具を傘歯車ではなく、滑車及びワイヤーで回転させた場合の問題点として、滑車とワイヤーとの滑りがある。滑りがあるとモーターの移動量と第1の回転軸の回転量にずれが発生することがあるため、第1の回転冶具の回転角度を直接測定する手段を設けるとより好適である。今回は滑車の上面、もしくは試料の台座部13(図5参照)に等角度間隔の目印138を付けることで回転角度を顕微鏡内で測れるようにした。 In addition, there is slippage between the pulley and the wire as a problem when the first rotating jig is rotated by the pulley and the wire instead of the bevel gear. If there is slippage, there may be a difference between the amount of movement of the motor and the amount of rotation of the first rotating shaft. Therefore, it is more preferable to provide means for directly measuring the rotation angle of the first rotating jig. This time, the rotation angle can be measured in the microscope by attaching marks 138 at equiangular intervals on the top surface of the pulley or on the base 13 of the sample (see FIG. 5).
 この等間隔の目印(マーク)の作成には、傘歯車の回転軸と集束イオンビーム加工装置の光軸とを平行に設定できる試料ホルダに針状試料台を装着し、傘歯車を等角度間隔で回転させるたびにイオンビームで目印を加工する方法が一例として挙げられる。 In order to create marks with equal intervals, a needle-like sample stage is mounted on a sample holder that can set the rotation axis of the bevel gear and the optical axis of the focused ion beam processing apparatus in parallel, and the bevel gears are equiangularly spaced. As an example, a method of processing a mark with an ion beam each time the substrate is rotated by the ion beam.
 第2の回転角度制御機構以外は実施例1と同様であるので、顕微鏡本体や撮影手順などの説明は省略する。また実施例2、3、4における第2の回転角度制御機構に実施例5の形態を用いることも可能である。この場合、傾斜冶具160に設けられた穴162にワイヤー137を通すことになる。 Since other than the second rotation angle control mechanism is the same as that of the first embodiment, description of the microscope main body and the photographing procedure is omitted. Further, the form of the fifth embodiment can be used for the second rotation angle control mechanism in the second, third, and fourth embodiments. In this case, the wire 137 is passed through the hole 162 provided in the inclined jig 160.
 実施例1~5で用いた試料ホルダは保持筒110と保持棒120から構成されているが、保持筒110は必須の部品ではない。すなわち、図19に示す試料ホルダを用いることで、他の実施例に適用する事も可能である。なお、保持筒110を用いることで保持棒120先端の試料ドリフトが抑制されることから、高分解能観察には図4の試料ホルダの方が適している。一方、図19に示される構成を取ることで、部品点数を減らした測定を行うことができる。保持筒110の有無以外は実施例1~5と同様であるので、顕微鏡本体や撮影手順などの説明は省略する。 The sample holder used in Examples 1 to 5 includes the holding cylinder 110 and the holding rod 120, but the holding cylinder 110 is not an essential part. That is, by using the sample holder shown in FIG. 19, it can be applied to other embodiments. Since the sample drift at the tip of the holding rod 120 is suppressed by using the holding cylinder 110, the sample holder of FIG. 4 is more suitable for high resolution observation. On the other hand, the measurement shown in FIG. 19 can be performed with a reduced number of parts. Except for the presence or absence of the holding cylinder 110, the operation is the same as in the first to fifth embodiments.
 実施例1~6では突起状に加工した試料を試料ホルダに装着しているが、これらの試料ホルダに薄膜状に加工した試料を装着することも可能である。図20に、薄膜加工した試料10の形状と、試料10を装着する針状試料台150の基本構造を示す。試料10は支柱部15と観察領域11を内包する薄膜部14とを持ち、針状試料台150の先端に設置される。 In Examples 1 to 6, samples processed into protrusions are mounted on sample holders, but it is also possible to mount samples processed into thin films on these sample holders. FIG. 20 shows the shape of the thin film processed sample 10 and the basic structure of the needle-like sample stage 150 on which the sample 10 is mounted. The sample 10 has a column portion 15 and a thin film portion 14 that encloses the observation region 11, and is placed at the tip of a needle-like sample stage 150.
 透過電子像を得るために、薄膜部12の膜厚は50nmから200nmに薄膜化されている。試料10を第1の軸及び第2の軸回りに回転させると支柱部が顕微鏡光路を遮断する角度範囲が存在するため、360度範囲の投影像を得ることができない。そのため、x軸回りの回転シリーズ像から再構成した磁場成分Bx、y軸回りの回転シリーズ像から再構成した磁場成分By、及びz軸回りの回転シリーズ像から再構成した磁場成分Bzには投影角度制限によるアーティファクトが発生する。 In order to obtain a transmission electron image, the thickness of the thin film portion 12 is reduced from 50 nm to 200 nm. When the sample 10 is rotated about the first axis and the second axis, there is an angle range in which the column portion cuts off the microscope optical path, and thus a projection image in a 360-degree range cannot be obtained. Therefore, the magnetic field component Bx reconstructed from the rotation series image around the x axis, the magnetic field component By reconstructed from the rotation series image around the y axis, and the magnetic field component Bz reconstructed from the rotation series image around the z axis are projected. Artifacts due to angle limitations occur.
 しかしながら、投影角度範囲制限の発生している磁場成分Bxと磁場成分ByからからMaxell方程式divB=0を用いて計算したBzに比べ、Bzで発生するアーティファクトは大幅に低減される。観察目的によっては観察領域を突起部に内包できない場合があり、この場合は図20の試料形状を採用することが効果的である。
試料形状が異なる以外は実施例1~6と同様であるので、顕微鏡本体や撮影手順などの説明は省略する。
However, compared to Bz calculated using the Maxell equation divB = 0 from the magnetic field component Bx and the magnetic field component By where the projection angle range is restricted, the artifacts generated in Bz are greatly reduced. Depending on the observation purpose, the observation region may not be included in the protrusion, and in this case, it is effective to adopt the sample shape of FIG.
Except for the difference in the sample shape, this is the same as in Examples 1 to 6, so description of the microscope main body, imaging procedure, etc. is omitted.
 実施例1~7では試料ホルダを観察装置で使用した例を示したが、この試料ホルダを試料加工装置と共通使用することも可能である。図示はしていないが、試料観察装置と試料加工装置とを共通で使用することにより、針状試料台150を試料ホルダから脱着する際の試料破損を防止することが出来る。 Examples 1 to 7 show examples in which the sample holder is used in an observation apparatus, but it is also possible to use this sample holder in common with a sample processing apparatus. Although not shown, the sample observation device and the sample processing device are used in common, so that the sample can be prevented from being damaged when the needle-like sample table 150 is detached from the sample holder.
 また、試料加工装置においては、本試料ホルダを用いることで、試料に対する荷電粒子線の入射方向を任意に設定できるようになり、加工の任意度が増加するという利点もある。 Also, in the sample processing apparatus, by using this sample holder, the incident direction of the charged particle beam with respect to the sample can be arbitrarily set, and there is an advantage that the degree of processing increases.
1…電子源もしくは電子銃、2…光軸、10…試料、11…試料の観察領域、12…試料の突起部、13…試料の台座部、14…試料の薄膜部、15…試料の支柱部、18…真空容器、19…電子源の制御ユニット、27…電子線の軌道、39…試料ステージの制御ユニット、40…加速管、41…第1照射(コンデンサ)レンズ、42…第2照射(コンデンサ)レンズ、47…第2照射レンズの制御ユニット、48…第1照射レンズの制御ユニット、49…加速管の制御ユニット、5…対物レンズ、51…制御系コンピュータ、52…制御系コンピュータのモニタ、53…制御系コンピュータのインターフェース、59…対物レンズの制御ユニット、61…第1結像レンズ、62…第2結像レンズ、63…第3結像レンズ、64…第4結像レンズ、66…第4結像レンズの制御ユニット、67…第3結像レンズの制御ユニット、68…第2結像レンズの制御ユニット、69…第1結像レンズの制御ユニット、76…画像観察・記録装置のモニタ、77…画像記録装置、78…画像観察・記録媒体の制御ユニット、79…画像観察・記録媒体(例えばTVカメラやCCDカメラ)、8…干渉縞、89…観察・記録面、91…第1の電子線バイプリズムの中央極細線電極、93…第2の電子線バイプリズムの中央極細線電極、97…第2の電子線バイプリズムの制御ユニット、98…第1の電子線バイプリズムの制御ユニット、100…試料ホルダ、101…X方向移動用リニアアクチュエータ、102…Y方向移動用リニアアクチュエータ、103…Z方向移動用リニアアクチュエータ、104…試料ホルダ先端のピポット部、105…第1の軸回り回転用モーター、110…保持筒、111…保持筒の開口部、120…保持棒、121…保持棒先端のテーパー面、122…保持棒先端の支柱部、123…保持棒先端のピポット受け部、124…保持棒先端のピポット部、125…保持棒先端の支柱部抑え用ネジ、130…第1の回転冶具、131…第1の回転冶具の笠歯車部、132…第1の回転冶具の差し込み部、133…第1の回転冶具のネジ穴部、134…第1の回転冶具のバネ、135…第1の回転冶具の抑え冶具、136…第1の回転冶具滑車部、137…第1の回転冶具用のワイヤー、138…第1の回転冶具の回転角度測定用の目印、140…第2の回転冶具、141…第2の回転冶具の傘歯車部、142…第2の回転冶具の支柱部、150…針状試料台、151…針状試料台のテーパー部、152…針状試料台のグリップ部、153…針状試料台のネジ部、154…針状試料台のガイド部、160…傾斜冶具、161…傾斜冶具に第1の回転冶具の差し込み部132を通すための穴161と、162…傾斜冶具に第2の回転冶具の支柱部142もしくはワイヤー137を通すための穴、163…傾斜冶具を支持棒120に装着するためのネジ穴163、164…傾斜冶具のピポット部、165…傾斜冶具のピポット受け部、166…傾斜冶具のワイヤー、167…傾斜冶具のバネ、 DESCRIPTION OF SYMBOLS 1 ... Electron source or electron gun, 2 ... Optical axis, 10 ... Sample, 11 ... Sample observation area | region, 12 ... Sample protrusion part, 13 ... Sample base part, 14 ... Sample thin film part, 15 ... Sample support | pillar , 18 ... Vacuum container, 19 ... Electron source control unit, 27 ... Electron beam trajectory, 39 ... Sample stage control unit, 40 ... Acceleration tube, 41 ... First irradiation (condenser) lens, 42 ... Second irradiation (Condenser) lens 47... Second irradiation lens control unit 48. First irradiation lens control unit 49... Acceleration tube control unit 5. Objective lens 51. Monitor, 53 ... Control system computer interface, 59 ... Objective lens control unit, 61 ... First imaging lens, 62 ... Second imaging lens, 63 ... Third imaging lens, 64 ... Fourth imaging 66 ... control unit for fourth imaging lens, 67 ... control unit for third imaging lens, 68 ... control unit for second imaging lens, 69 ... control unit for first imaging lens, 76 ... image observation Monitor of recording device, 77 ... Image recording device, 78 ... Control unit for image observation / recording medium, 79 ... Image observation / recording medium (for example, TV camera or CCD camera), 8 ... Interference fringe, 89 ... Observation / recording surface 91 ... Central fine wire electrode of the first electron biprism, 93 ... Central fine wire electrode of the second electron biprism, 97 ... Control unit of the second electron biprism, 98 ... First electron Linear biprism control unit, 100 ... Sample holder, 101 ... X direction moving linear actuator, 102 ... Y direction moving linear actuator, 103 ... Z direction moving linear actuator 104, a pivot portion at the tip of the sample holder, 105 ... a motor for rotating around the first axis, 110 ... a holding cylinder, 111 ... an opening of the holding cylinder, 120 ... a holding rod, 121 ... a tapered surface at the tip of the holding rod, 122 ... Support rod end strut portion, 123... Holding rod tip pivot receiving portion, 124... Holding rod tip pivot portion, 125. Holding rod tip strut holding screw, 130... First rotating jig, 131. 1 is a bevel gear portion of a rotating jig, 132 is a insertion portion of a first rotating jig, 133 is a screw hole portion of the first rotating jig, 134 is a spring of the first rotating jig, and 135 is a spring of the first rotating jig. Retaining jig, 136 ... first rotating jig pulley section, 137 ... wire for first rotating jig, 138 ... mark for measuring the rotation angle of the first rotating jig, 140 ... second rotating jig, 141 ... first 142, the bevel gear part of the rotary jig 2 ... Supporting part of second rotating jig, 150... Needle sample table, 151. Tapered part of needle sample table, 152. Grip part of needle sample table, 153. Screw part of needle sample table, 154. Guide part of the sample stage, 160... Tilting jig, 161... Hole 161 for passing the insertion part 132 of the first rotating jig through the tilting jig, 162... The column part 142 or wire of the second rotating jig to the tilting jig. 137, a hole for passing through 163, screw holes 163 for mounting the tilting jig to the support rod 120, 164, a pivot part of the tilting jig, 165, a pivot receiving part of the tilting jig, 166, a wire of the tilting jig, 167,. Slant jig spring,

Claims (13)

  1.  荷電粒子線を試料へ照射し観察する荷電粒子線装置に用いる試料ホルダであって、
     前記試料ホルダは、
     先端部に前記試料を取り付ける取付部を有する回転冶具と、
     前記回転冶具を保持する保持部を有する保持棒と、
     前記保持棒を前記荷電粒子線と直交する第1の軸回りに回転させる第1の回転角度制御部と、
     前記回転冶具を第2の軸回りに回転させる第2の回転角度制御部と、を有し、
     前記保持部は、前記第1の軸と前記第2の軸のなす角を任意の角度に定める角度設定部と、を有することを特徴とする試料ホルダ。
    A sample holder used in a charged particle beam apparatus for irradiating and observing a charged particle beam on a sample,
    The sample holder is
    A rotating jig having a mounting part for attaching the sample to the tip part;
    A holding rod having a holding portion for holding the rotating jig;
    A first rotation angle control unit that rotates the holding rod around a first axis orthogonal to the charged particle beam;
    A second rotation angle control unit for rotating the rotary jig around a second axis,
    The sample holder, wherein the holding unit includes an angle setting unit that sets an angle formed by the first axis and the second axis to an arbitrary angle.
  2.  請求項1において、
     前記保持部は、前記第1の軸と前記第2の軸のなす角を54.7度近傍に定めるテーパー面を有することを特徴とする試料ホルダ。
    In claim 1,
    The sample holder, wherein the holding portion has a tapered surface that defines an angle formed by the first axis and the second axis in the vicinity of 54.7 degrees.
  3.  請求項1において、
     前記保持棒は、前記第1の軸方向に回転する第1の歯車を有し、
     前記回転冶具は、前記第1の歯車から回転が伝達される第2の歯車を有し、
     前記第2の回転角度制御部は、前記第1の歯車と前記第2の歯車との回転動作によって前記回転冶具を回転させることを特徴とする試料ホルダ。
    In claim 1,
    The holding rod has a first gear that rotates in the first axial direction;
    The rotating jig has a second gear to which rotation is transmitted from the first gear,
    The sample holder, wherein the second rotation angle control unit rotates the rotating jig by a rotating operation of the first gear and the second gear.
  4.  請求項1において、
     前記保持棒は、前記回転冶具に接続されたワイヤを有し、
     前記角度設定部は、前記ワイヤによって前記回転冶具を回転させることを特徴とする試料ホルダ。
    In claim 1,
    The holding rod has a wire connected to the rotary jig,
    The said angle setting part rotates the said rotation jig with the said wire, The sample holder characterized by the above-mentioned.
  5.  請求項1において、
     前記保持部は、前記第1の軸と傾斜関係にあるテーパー面を有し、
     前記角度設定部は、前記テーパー面に設けられたピボットにより前記第1の軸と前記第2の軸のなす角を任意の角度に定めることを特徴とする試料ホルダ。
    In claim 1,
    The holding portion has a tapered surface in an inclined relationship with the first axis,
    The sample holder, wherein the angle setting section determines an angle formed by the first axis and the second axis to an arbitrary angle by a pivot provided on the tapered surface.
  6.  請求項1において、
     前記取付台保持部は、前記荷電粒子線装置にて観察可能でかつ前記第2の回転に対して等角度の間隔にて印されたマークを有することを特徴とする試料ホルダ。
    In claim 1,
    The sample holder is characterized by having a mark that can be observed by the charged particle beam device and marked at an equiangular interval with respect to the second rotation.
  7.  荷電粒子線を試料へ照射する照射光学系と、前記試料を保持する試料ホルダと、前記試料からの荷電粒子を検出する検出光学系と、を有する荷電粒子線装置であって、
     前記試料ホルダは、
     先端部に前記試料を取り付ける取付部を有する回転冶具と、
     前記回転冶具を保持する保持部を有する保持棒と、
     前記保持棒を前記荷電粒子線と直交する第1の軸回りに回転させる第1の回転角度制御部と、
     前記回転冶具を第2の軸回りに回転させる第2の回転角度制御部と、を有し、
     前記保持部は、前記第1の軸と前記第2の軸のなす角を任意の角度に定める角度設定部と、を有することを特徴とする荷電粒子線装置。
    A charged particle beam apparatus comprising: an irradiation optical system that irradiates a sample with a charged particle beam; a sample holder that holds the sample; and a detection optical system that detects charged particles from the sample;
    The sample holder is
    A rotating jig having a mounting part for attaching the sample to the tip part;
    A holding rod having a holding portion for holding the rotating jig;
    A first rotation angle control unit that rotates the holding rod around a first axis orthogonal to the charged particle beam;
    A second rotation angle control unit for rotating the rotary jig around a second axis,
    The charged particle beam apparatus, wherein the holding unit includes an angle setting unit that determines an angle between the first axis and the second axis as an arbitrary angle.
  8.  請求項7において、
     前記保持部は、前記第1の軸と前記第2の軸のなす角を54.7度近傍に定めるテーパー面を有することを特徴とする荷電粒子線装置。
    In claim 7,
    The charged particle beam apparatus according to claim 1, wherein the holding portion has a tapered surface that defines an angle formed by the first axis and the second axis in the vicinity of 54.7 degrees.
  9.  請求項7において、
     前記保持部は、前記第1の軸と傾斜関係にあるテーパー面を有し、
     前記角度設定部は、前記テーパー面に設けられたピボットにより前記第1の軸と前記第2の軸のなす角を任意の角度に定めることを特徴とする荷電粒子線装置。
    In claim 7,
    The holding portion has a tapered surface in an inclined relationship with the first axis,
    The charged particle beam device according to claim 1, wherein the angle setting unit determines an angle formed by the first axis and the second axis by a pivot provided on the tapered surface.
  10.  試料取付台の先端部に試料を取り付けるステップと、
     前記試料のx軸を第1の回転軸と平行にするステップと、
     前記試料のx軸回りの回転シリーズ像を得るステップと、
     前記試料のy軸を第1の回転軸と平行にするステップと、
     前記試料のy軸回りの回転シリーズ像を得るステップと、
     前記試料のz軸を第1の回転軸と平行にするステップと、
     前記試料のz軸回りの回転シリーズ像を得るステップと、を含み、
     前記x軸と前記y軸と前記z軸とはそれぞれ直交座標系であることを特徴とする荷電粒子線顕微法。
    Attaching the sample to the tip of the sample mount;
    Making the x-axis of the sample parallel to the first axis of rotation;
    Obtaining a rotating series image about the x-axis of the sample;
    Making the y-axis of the sample parallel to the first rotation axis;
    Obtaining a rotating series image about the y-axis of the sample;
    Making the z-axis of the sample parallel to the first axis of rotation;
    Obtaining a rotational series image about the z-axis of the sample,
    The charged particle beam microscopic method, wherein the x-axis, the y-axis, and the z-axis are orthogonal coordinate systems.
  11.  請求項10において、
     前記試料のx軸を第1の回転軸と平行にするステップと前記試料のy軸を第1の回転軸と平行にするステップと前記試料のz軸を第1の回転軸と平行にするステップとは、前記第1の回転軸に対して54.7度近傍にて傾斜している第2の軸回りに前記試料を回転させるステップであることを特徴とする荷電粒子線顕微法。
    In claim 10,
    Making the x-axis of the sample parallel to the first rotation axis, making the y-axis of the sample parallel to the first rotation axis, and making the z-axis of the sample parallel to the first rotation axis Is a step of rotating the sample around a second axis inclined near 54.7 degrees with respect to the first rotation axis.
  12.  請求項10において、
     前記試料のx軸回りの回転シリーズ像を得るステップと前記試料のy軸回りの回転シリーズ像を得るステップと前記試料のz軸回りの回転シリーズ像を得るステップとは、前記試料の回転角度の範囲がそれぞれの軸において1回転以上であることを特徴とする荷電粒子線顕微法。
    In claim 10,
    The step of obtaining a rotation series image of the sample around the x-axis, the step of obtaining a rotation series image of the sample around the y-axis, and the step of obtaining a rotation series image of the sample around the z-axis include the rotation angle of the sample. A charged particle beam microscopic method characterized in that the range is one rotation or more in each axis.
  13.  請求項10において、
     第2の荷電粒子線を前記試料に照射し、前記試料を突起状もしくは薄膜状に加工するステップをさらに有することを特徴とする荷電粒子線顕微法。
    In claim 10,
    A charged particle beam microscope, further comprising a step of irradiating the sample with a second charged particle beam and processing the sample into a protrusion or a thin film.
PCT/JP2013/065317 2013-06-03 2013-06-03 Charged particle microscope, sample holder for charged particle microscope and charged particle microscopy method WO2014195998A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/065317 WO2014195998A1 (en) 2013-06-03 2013-06-03 Charged particle microscope, sample holder for charged particle microscope and charged particle microscopy method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/065317 WO2014195998A1 (en) 2013-06-03 2013-06-03 Charged particle microscope, sample holder for charged particle microscope and charged particle microscopy method

Publications (1)

Publication Number Publication Date
WO2014195998A1 true WO2014195998A1 (en) 2014-12-11

Family

ID=52007675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065317 WO2014195998A1 (en) 2013-06-03 2013-06-03 Charged particle microscope, sample holder for charged particle microscope and charged particle microscopy method

Country Status (1)

Country Link
WO (1) WO2014195998A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025085A (en) * 2014-07-21 2016-02-08 エフ・イ−・アイ・カンパニー Tem sample mounting geometry
FR3047316A1 (en) * 2016-02-02 2017-08-04 Commissariat Energie Atomique METHOD FOR CHARACTERIZING A SAMPLE COMBINING AN X-RAY CHARACTERIZATION TECHNIQUE AND A SECONDARY IONIZATION MASS SPECTROMETRY CHARACTERIZATION TECHNIQUE
JP2020064780A (en) * 2018-10-18 2020-04-23 株式会社日立ハイテクサイエンス Charged particle beam device and sample processing observation method
TWI788423B (en) * 2017-11-17 2023-01-01 日商日立高新技術科學股份有限公司 Charged Particle Beam Device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304243A (en) * 1995-05-11 1996-11-22 Nippon Steel Corp Sample having cross sectional thin-film, its manufacture, and its holder
JP2004087214A (en) * 2002-08-26 2004-03-18 Hitachi High-Technologies Corp Sample holder for charged particle beam device
JP2005174808A (en) * 2003-12-12 2005-06-30 Jeol Ltd Sample holder and charged particle beam device
JP2007018944A (en) * 2005-07-11 2007-01-25 Hitachi High-Technologies Corp Sample stage for charged particle beam device
JP2010003617A (en) * 2008-06-23 2010-01-07 Hitachi High-Technologies Corp Sample stand, sample rotating holder, construction method of sample stand, and sample stand construction method, and test piece analyzing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304243A (en) * 1995-05-11 1996-11-22 Nippon Steel Corp Sample having cross sectional thin-film, its manufacture, and its holder
JP2004087214A (en) * 2002-08-26 2004-03-18 Hitachi High-Technologies Corp Sample holder for charged particle beam device
JP2005174808A (en) * 2003-12-12 2005-06-30 Jeol Ltd Sample holder and charged particle beam device
JP2007018944A (en) * 2005-07-11 2007-01-25 Hitachi High-Technologies Corp Sample stage for charged particle beam device
JP2010003617A (en) * 2008-06-23 2010-01-07 Hitachi High-Technologies Corp Sample stand, sample rotating holder, construction method of sample stand, and sample stand construction method, and test piece analyzing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025085A (en) * 2014-07-21 2016-02-08 エフ・イ−・アイ・カンパニー Tem sample mounting geometry
FR3047316A1 (en) * 2016-02-02 2017-08-04 Commissariat Energie Atomique METHOD FOR CHARACTERIZING A SAMPLE COMBINING AN X-RAY CHARACTERIZATION TECHNIQUE AND A SECONDARY IONIZATION MASS SPECTROMETRY CHARACTERIZATION TECHNIQUE
EP3203219A1 (en) * 2016-02-02 2017-08-09 Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives Method for characterising a sample combining x-ray tomography with secondary ion mass spectrometry
US10481109B2 (en) 2016-02-02 2019-11-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for characterizing a sample combining an X-ray characterization technique and a secondary ionization mass spectrometry characterization technique
TWI788423B (en) * 2017-11-17 2023-01-01 日商日立高新技術科學股份有限公司 Charged Particle Beam Device
JP2020064780A (en) * 2018-10-18 2020-04-23 株式会社日立ハイテクサイエンス Charged particle beam device and sample processing observation method
JP7152757B2 (en) 2018-10-18 2022-10-13 株式会社日立ハイテクサイエンス Sample processing observation method

Similar Documents

Publication Publication Date Title
US8963102B2 (en) Charged particle beam microscope, sample holder for charged particle beam microscope, and charged particle beam microscopy
JP5048596B2 (en) Sample stand, sample rotating holder, sample stand preparation method, and sample analysis method
JP4988662B2 (en) Charged particle beam equipment
JP4978065B2 (en) Electron microscope application equipment
US9147551B2 (en) Method for electron tomography
JP2011514641A (en) Sample holder assembly
EP2402976A1 (en) Method of electron diffraction tomography
JP4654216B2 (en) Sample holder for charged particle beam equipment
WO2014195998A1 (en) Charged particle microscope, sample holder for charged particle microscope and charged particle microscopy method
US9507139B2 (en) Specimen holder, specimen preparation device, and positioning method
KR20170108805A (en) Focused ion beam apparatus
JP4433092B2 (en) Three-dimensional structure observation method
JP2004087214A (en) Sample holder for charged particle beam device
EP3973559B1 (en) Diffractometer for charged-particle crystallography
TWI813760B (en) Sample Processing Observation Method
US9947506B2 (en) Sample holder and focused ion beam apparatus
JP2009070604A (en) Sample support stage for observing three-dimensional structure, protractor and three-dimensional structure observing method
JP2013080605A (en) Sample holder tip, sample holder, and manufacturing method of sample holder tip
WO2022244055A1 (en) Sample holder and analysis system
JP2011204367A (en) Sample stand for electron microscope
JP2015207482A (en) Charged particle beam device, and specimen stage for charged particle beam device
JP2006040768A (en) Electron microscope
WO2024046987A1 (en) Charged-particle irradiation unit for a charged-particle diffractometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP