JPH08304243A - Sample having cross sectional thin-film, its manufacture, and its holder - Google Patents

Sample having cross sectional thin-film, its manufacture, and its holder

Info

Publication number
JPH08304243A
JPH08304243A JP7137201A JP13720195A JPH08304243A JP H08304243 A JPH08304243 A JP H08304243A JP 7137201 A JP7137201 A JP 7137201A JP 13720195 A JP13720195 A JP 13720195A JP H08304243 A JPH08304243 A JP H08304243A
Authority
JP
Japan
Prior art keywords
sample
cross
thin film
holder
fixing rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7137201A
Other languages
Japanese (ja)
Inventor
Yoichi Ikematsu
陽一 池松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7137201A priority Critical patent/JPH08304243A/en
Publication of JPH08304243A publication Critical patent/JPH08304243A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE: To provide a sample which has a cross sectional thin-film and the specific part of which can be analyzed at once in two direction, its manufacturing method, and its holder. CONSTITUTION: An area 1 of a material including a specific part is machined in a project-like or island-like state and two or more thin film sample pieces 3 inclined against each other are manufactured in the radial direction from a certain point in the specific part by drilling the material with a converged ion beam 5. A holder which holds the sample pieces 3 is constituted of a sample fixing bar 11 provided with an O-ring 15 for maintaining a TEM sample chamber in a vacuum when the bar 11 is inserted into the sample chamber, supporting bar 12 which supports the bar 11, ring 16 fitted to the front end section of the bar 11 in a tiltable state, and disk 17 which is rotatably supported by the ring 16 and can fix the sample pieces 3. Therefore, at least two or more different samples which can be observed and have cross sectional thin-films can be manufactured in the specific part of the material and the specific part can be analyzed collectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、構造解析や組成分析に
用いられる断面薄膜及びその作製方法及び断面薄膜試料
用ホルダに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cross-section thin film used for structural analysis and composition analysis, a method for producing the same, and a cross-section thin film sample holder.

【0002】[0002]

【従来の技術】材料の構造解析や組成分析技術は、その
材料特性(電気的、機械的特性等)を理解する上に於て
非常に重要であり、それらのための装置には、これまで
X線解析装置、電子顕微鏡、オージェ電子分光装置、二
次イオン質量分析装置等が用いられてきた。その中でも
透過型電子顕微鏡(Transmission Electron Microscop
e;以下TEMと略す。)は、材料中のミクロ領域での
形態、構造及び組成を解析する装置として、多くの材料
開発に応用されている。
2. Description of the Related Art The structural analysis and composition analysis techniques of materials are very important for understanding the material properties (electrical, mechanical properties, etc.). X-ray analyzers, electron microscopes, Auger electron spectrometers, secondary ion mass spectrometers, etc. have been used. Among them, Transmission Electron Microscop
e; hereinafter abbreviated as TEM. ) Is applied to many material developments as an apparatus for analyzing the morphology, structure and composition in the micro region of a material.

【0003】このTEM観察用の試料は、多くの場合、
電解研磨法やイオンミリング法により作製されていた。
ところが、これらの手法は材料中の特定箇所をねらった
サンプリングが困難なため、特定箇所の直接観察は不可
能であった。
In many cases, this sample for TEM observation is
It was produced by the electrolytic polishing method or the ion milling method.
However, since these methods make it difficult to sample a specific portion of the material, direct observation of the specific portion is impossible.

【0004】一方、上記問題を解決すべく、集束イオン
ビームを用いた特定箇所のTEM観察用断面薄膜試料の
作製方法(電子顕微鏡,28(1993)119「FI
Bを用いた新しいTEM試料作製方法」、特開平6−2
31719号)が検討されている。特定箇所を含む試料
表面を機械加工し、集束イオンビームにより微細加工す
る方法により、特定箇所の断面薄膜を得ている。
On the other hand, in order to solve the above problem, a method for producing a cross-sectional thin film sample for TEM observation at a specific location using a focused ion beam (electron microscope, 28 (1993) 119 "FI
New TEM sample preparation method using B ", JP-A-6-2
31719) is being considered. A cross-section thin film at a specific location is obtained by a method of machining the sample surface including the specific location and performing fine processing with a focused ion beam.

【0005】しかし、上記方法では、特定箇所に対して
一方向のみ集束イオンビームによる断面薄膜作製に適し
た加工サイズとなっているのみで、他方向に対しては加
工領域が非常に大きいため、一断面の薄膜試料しか作製
できなかった。そのため、従来の試料作製方法では、特
定箇所に対して方向がそれぞれ異なる断面薄膜材料を少
なくとも2つ以上作製する事はできなかった。このた
め、鉄鋼材料中の析出物や半導体集積回路に於ける故障
箇所の解析などで、これまで必要とされていた特定箇所
に対して、2方向以上を一度に構造解析及び組成分析す
ることが不可能であるという問題があった。
However, in the above method, the processing size is only suitable for producing a thin film of a cross section by a focused ion beam in only one direction with respect to a specific location, and the processing area is very large in other directions. Only a thin film sample with one cross section could be prepared. Therefore, in the conventional sample preparation method, it was not possible to prepare at least two cross-sectional thin film materials having different directions with respect to a specific location. For this reason, structural analysis and composition analysis in two or more directions at once can be performed on specific locations that were previously required, such as analysis of precipitates in steel materials and failure locations in semiconductor integrated circuits. There was a problem that it was impossible.

【0006】[0006]

【発明が解決しようとする課題】このような従来技術の
問題点に鑑み、本発明の主な目的は、特定箇所に方向が
それぞれ異なる断面薄膜試料を少なくとも2つ以上作製
した試料を試料ホルダに支持し、効率よく構造解析及び
組成分析を行い得る断面薄膜試料及びその作製方法及び
断面薄膜試料用ホルダを提供することにある。
In view of the problems of the prior art as described above, the main object of the present invention is to provide a sample holder in which at least two cross-sectional thin film samples having different directions are prepared at a specific location. It is an object of the present invention to provide a cross-sectional thin film sample that can be supported and efficiently perform structural analysis and composition analysis, a method for manufacturing the same, and a cross-sectional thin film sample holder.

【0007】[0007]

【課題を解決するための手段】このような目的は、本発
明によれば、材料の構造解析及び組成分析を行うための
特定箇所を含む凸状かつ島状に形成された領域中に、前
記特定箇所の任意の一点より放射状に存在しかつ互いに
角度をなす断面薄膜を少なくとも2つ以上形成したこと
を特徴とする断面薄膜試料、または、材料の特定箇所を
含む領域を凸状かつ島状の試料形状に予め機械加工した
後、収束したイオンビームやレーザで穴あけ加工をし
て、前記特定箇所内の任意の一点より放射状に存在しか
つ互いに角度をなす断面薄膜部を少なくとも2つ以上作
製することを特徴とする断面薄膜試料の作製方法、また
は、試料を固定すると共にホルダを透過型電子顕微鏡の
試料室に挿入した際に真空を保持するためのOリングを
備えられた試料固定棒と、前記試料固定棒を支持するた
めの支持棒とを有し、前記試料固定棒の先端に、前記試
料を固定可能でかつ回転可能な機構を有する円板と、前
記円板を支持しかつ傾斜可能にするべく前記試料固定棒
に対し二点で支持されたリングとが設けられていること
を特徴とする断面薄膜試料用ホルダを提供することによ
り達成される。
According to the present invention, such an object is provided in the convex and island-shaped region including a specific portion for performing structural analysis and composition analysis of a material. A cross-section thin film sample characterized by forming at least two cross-section thin films radially existing from one arbitrary point of a particular place and forming an angle with each other, or a region including a particular part of a material having a convex and island shape After pre-machining into a sample shape, drilling is performed with a focused ion beam or laser to produce at least two or more cross-sectional thin-film portions that are radially present at an arbitrary point within the specific location and form an angle with each other. A method for producing a thin film sample having a cross section, or a sample fixing device comprising an O-ring for fixing a sample and holding a vacuum when the holder is inserted into a sample chamber of a transmission electron microscope. And a support rod for supporting the sample fixing rod, the tip of the sample fixing rod, a disk having a mechanism capable of fixing the sample and rotatable, and supporting the disk and This is achieved by providing a holder for a thin film sample having a cross section, which is provided with a ring supported at two points with respect to the sample fixing rod so as to be tiltable.

【0008】[0008]

【作用】このようにすることにより、特定箇所に対し
て、方向がそれぞれ異なる断面薄膜試料を少なくとも2
つ以上作製する事が可能となり、同一場所で角度を変え
た断面の観察が同時に行うことができ、3次元的な特定
箇所の形態の把握な電子解析方による結晶構造の解析が
可能となる。また、電子顕微鏡に搭載された特性X線エ
ネルギー分散型分光法(EDS)や電子エネルギー損失
分光法(EELS)等の組成分析技術を用いることによ
り、特定箇所のそれぞれの断面薄膜に対して微小域の組
成の決定が可能となり、総合的な特定箇所のキャラクタ
リゼーションが実現される。例えば、半導体集積回路に
対する故障箇所の解析に応用することにより、多角的な
視点から故障の原因を検討することが可能となる。
By doing so, at least two cross-sectional thin film samples, which have different directions from each other, are obtained at a specific location.
It is possible to fabricate one or more of them, and it is possible to simultaneously observe cross-sections with different angles at the same place, and it is possible to analyze the crystal structure by an electronic analysis method that grasps the morphology of a three-dimensional specific place. In addition, by using a composition analysis technique such as characteristic X-ray energy dispersive spectroscopy (EDS) or electron energy loss spectroscopy (EELS) mounted on an electron microscope, it is possible to obtain a small area for each thin film of a cross section at a specific location. It is possible to determine the composition of, and a comprehensive characterization of specific points is realized. For example, by applying it to the analysis of a failure point in a semiconductor integrated circuit, it becomes possible to examine the cause of the failure from various viewpoints.

【0009】[0009]

【実施例】以下、本発明の好適実施例を添付の図面につ
いて詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described in detail with reference to the accompanying drawings.

【0010】図1(a)は、本発明に基づく試料の作製
要領を示す試料全体の鳥瞰図であり、特定箇所を含む領
域1に対して、試料加工時に特定箇所の位置が認識可能
なように、その周辺にけがき等により、マーキング2を
施す。このマーキング2は、切断時の特定箇所を認識で
きるサイズ及び形状であれば良い。
FIG. 1 (a) is a bird's-eye view of the entire sample showing the procedure for preparing the sample according to the present invention, so that the position of the specific portion can be recognized when processing the sample with respect to the region 1 including the specific portion. , Marking 2 is applied to the surrounding area by marking or the like. The marking 2 may be of any size and shape that can recognize a specific portion during cutting.

【0011】次に、マーキング2を施した材料からダイ
シングソー等の精密切断機により、試料片3を切断加工
する。この際、特定箇所を含む領域1が凸形状となりか
つ試料片3の中心近傍に位置するように切断する。図1
(b)は、その切断手順を示した図であり、A及びBは
試料片3の縦横の幅、C及びDは凸領域の縦横の幅を示
している。A及びBの大きさは、加工後にTEM観察用
の試料ホルダーによる試料の固定が可能であり、かつT
EMの試料室へ挿入可能なサイズとする。一方、C及び
Dの大きさは、観察の対象となる特定箇所のサイズによ
り決定される。
Next, the sample piece 3 is cut from the material having the marking 2 by a precision cutting machine such as a dicing saw. At this time, cutting is performed so that the region 1 including the specific portion has a convex shape and is located near the center of the sample piece 3. FIG.
(B) is the figure which showed the cutting procedure, A and B have shown the vertical and horizontal width of the sample piece 3, and C and D have shown the vertical and horizontal width of the convex area | region. The sizes of A and B are such that the sample can be fixed with a sample holder for TEM observation after processing, and
The size is such that it can be inserted into the sample chamber of the EM. On the other hand, the sizes of C and D are determined by the size of a specific place to be observed.

【0012】まず、図1(b)の上下方向であるY方向
に対して幅A内で破線領域を除く図における左右両側の
領域に対し、特定箇所が観察可能な適切な深さまでその
表面を浅く削る。次に、図1(b)の左右方向であるX
方向に対して幅B内で領域1を残して上記したY方向に
ついて行った加工と同様な深さで浅く削る。このように
して特定箇所を含む領域1を方向の異なる断面薄膜が2
つ以上作成可能な凸状(図における表方向に凸)かつ島
状の形状に予め機械加工する。次に4本の想像線で示し
た線について切断し、試料全体から試料片3を切り離
す。
First, with respect to the Y direction which is the vertical direction of FIG. 1B, the surface of the region on the left and right sides in the width A excluding the broken line region is adjusted to an appropriate depth at which a specific portion can be observed. Shave shallowly. Next, X, which is the left-right direction in FIG.
The region 1 is left in the width B with respect to the direction, and the region is shallowly cut to the same depth as the process performed in the Y direction. In this way, the cross-sectional thin film having different directions is formed in the region 1 including the specific portion.
One or more convex shapes (convex in the front direction in the figure) and island shapes are machined in advance. Next, the lines indicated by four imaginary lines are cut to separate the sample piece 3 from the entire sample.

【0013】図2(a)及び図2(b)は、上述の方法
により機械加工した試料片3の鳥瞰図及び側面図であ
る。なお、寸法Eは、試料片3の厚みであり、その大き
さは上述のA及びBと同じ制約を受ける。
2 (a) and 2 (b) are a bird's-eye view and a side view of the sample piece 3 machined by the above-mentioned method. The dimension E is the thickness of the sample piece 3, and its size is subject to the same restrictions as A and B described above.

【0014】次に、特定箇所を含む凸領域に対して、集
束イオンビームやレーザなどにより、加工位置を決定
し、断面薄膜作製のための微細加工を行う方法について
述べる。
Next, there will be described a method of determining a processing position for a convex region including a specific portion by using a focused ion beam, a laser or the like, and performing fine processing for producing a thin film in a cross section.

【0015】まず、加工位置の決定方法について説明す
る。試料3の表面に集束イオンビームを照射すると、そ
の表面から二次電子が発生する。この二次電子を検出
し、映像化することにより、試料表面の形態に対応した
二次電子像が得られる。この二次電子像から、凸領域中
の特定箇所の位置を把握し、断面薄膜作製のための具体
的な加工位置を決定する。尚、この加工位置の決定で
は、試料表面を加工しない充分強度の弱いイオンビーム
を使用する。
First, a method of determining the processing position will be described. When the surface of the sample 3 is irradiated with the focused ion beam, secondary electrons are generated from the surface. By detecting and imaging this secondary electron, a secondary electron image corresponding to the morphology of the sample surface can be obtained. From this secondary electron image, the position of a specific place in the convex region is grasped, and the specific processing position for forming the cross-sectional thin film is determined. It should be noted that in determining the processing position, an ion beam having a sufficiently weak intensity that does not process the sample surface is used.

【0016】次に、具体的な集束イオンビームによる微
細加工の手順について説明する。図3(a)は、図2で
示されるように凸状かつ島状に加工された凸領域1の鳥
瞰図である。図中の網模様のハッチングを施していない
空欄の3箇所の領域4a・4b・4cに対して、図3
(b)に示されるように集束イオンビーム5で穴あけ加
工を順次行う。その穴あけ加工の際には、まず、大きな
ビーム径で粗く穴あけ加工を行い、次にビームを細く集
束させ、中加工を行う。更にビームを集束させて、仕上
げの微細な仕上げ加工を行う。特に中加工、仕上げ加工
では平滑な断面薄膜試料6を得るため、集束イオンビー
ム5を断面に対して平行に走査させる。
Next, a specific procedure of fine processing with a focused ion beam will be described. FIG. 3A is a bird's-eye view of the convex region 1 processed into a convex shape and an island shape as shown in FIG. For the three blank areas 4a, 4b, and 4c not hatched in FIG.
As shown in (b), drilling is sequentially performed with the focused ion beam 5. At the time of drilling, first, rough drilling is performed with a large beam diameter, then the beam is converged finely, and medium processing is performed. Further, the beam is focused and fine finishing is performed. In particular, in the middle processing and finishing processing, in order to obtain a smooth cross-section thin film sample 6, the focused ion beam 5 is scanned parallel to the cross section.

【0017】このようにして、2箇所に方向がそれぞれ
異なる像観察、構造解析及び組成分析が可能な厚さ約
0.1μmの断面薄膜6の作製が可能となる。なお、F
及びGは、断面薄膜の幅であり、特定箇所の大きさに依
存する。7a及び7bは、断面薄膜試料6の支持及び損
傷に対する保護を目的とした壁である。
In this manner, it is possible to manufacture the cross-sectional thin film 6 having a thickness of about 0.1 μm, which enables image observation, structure analysis and composition analysis in two different directions. In addition, F
And G are the widths of the thin film in cross section, and depend on the size of a specific portion. 7a and 7b are walls for the purpose of supporting the cross-sectional thin film sample 6 and protecting it against damage.

【0018】図3(b)は、凸領域1の微細加工後の一
例を示した斜視図であり、図におけるJは、加工深さで
あり、特定箇所8のサイズにより決定される。尚、断面
薄膜試料6の厚みは0.1μm以下とすることが望まし
い。0.1μm以上の膜厚になると、通常使用される加
速電圧200kVでのTEMでは像観察や構造解析が困
難となるからである。
FIG. 3B is a perspective view showing an example of the convex region 1 after fine processing, and J in the drawing is a processing depth, which is determined by the size of the specific portion 8. The thickness of the cross-sectional thin film sample 6 is preferably 0.1 μm or less. This is because if the film thickness is 0.1 μm or more, it becomes difficult to perform image observation and structural analysis with a TEM at an acceleration voltage of 200 kV that is normally used.

【0019】また、F及びGの幅が小さい場合、イオン
ビーム加工の際、試料表面を構成していたイオンが開口
部または側壁に再付着、堆積し、断面薄膜試料6に対す
る構造解析や組成分析への障害となることがあり、注意
が必要である。
When the widths of F and G are small, the ions constituting the surface of the sample are redeposited and deposited on the opening or the side wall during the ion beam processing, and the structural analysis or composition analysis of the thin film sample 6 in cross section is performed. It may be a hindrance to and needs attention.

【0020】更に、上述の作製方法により、特定箇所8
に対して、図4(a)に示すような3方向の断面薄膜試
料9a・9b・9c、あるいは図4(b)に示すような
4方向の断面薄膜試料10a・10b・10c・10d
の作製も可能である。
Further, by the above-mentioned manufacturing method, the specific portion 8
On the other hand, cross-section thin film samples 9a, 9b, 9c in three directions as shown in FIG. 4A, or cross-section thin film samples 10a, 10b, 10c, 10d in four directions as shown in FIG. 4B.
Can also be manufactured.

【0021】次に、本発明のTEM用の試料ホルダにつ
いて図5(a)を参照して以下に説明する。試料ホルダ
は、試料固定棒11と支持棒12、及び握り部13から
構成されている。
Next, the sample holder for TEM of the present invention will be described below with reference to FIG. The sample holder includes a sample fixing rod 11, a supporting rod 12, and a grip 13.

【0022】試料固定棒11は、その先端に試料片3を
直接支持する棒であり、TEM試料室内の対物レンズ間
へ挿入可能な径及び長さとする。支持棒12は、TEM
試料室内に挿入可能なサイズとし、特にその長さは、試
料片3を試料固定棒11の先端に固定した際、電子線1
4(図3(b)参照)が作製した断面薄膜試料6に対し
適切に入射可能な長さとする。また、支持棒12には、
高真空であるTEM試料室内に挿入した際に真空を保つ
ために適当な位置にOリング15が具備されている。握
り部13は、TEN試料室に対する本試料ホルダの挿入
及び取り出しを容易にするためのものであり、この試料
ホルダに具備する方が望ましい。試料固定棒11及び支
持棒12の材質としてはA1などの非磁性かつ加工のし
易い金属材料が好適である。
The sample fixing rod 11 is a rod that directly supports the sample piece 3 at its tip, and has a diameter and a length that can be inserted between the objective lenses in the TEM sample chamber. The support rod 12 is a TEM
The size is set so that it can be inserted into the sample chamber, and the length thereof is especially set when the sample piece 3 is fixed to the tip of the sample fixing rod 11.
4 (see FIG. 3 (b)) has a length such that it can be appropriately incident on the cross-sectional thin film sample 6. In addition, the support rod 12 has
An O-ring 15 is provided at an appropriate position in order to maintain a vacuum when it is inserted into a TEM sample chamber which is a high vacuum. The grip portion 13 is for facilitating insertion and removal of the sample holder into and from the TEN sample chamber, and it is preferable to provide the grip portion 13 in this sample holder. As a material for the sample fixing rod 11 and the supporting rod 12, a non-magnetic and easily workable metal material such as A1 is suitable.

【0023】図5(b)及び図5(c)は、試料固定棒
11の先端部の構造を示した図であり、図に示されるよ
うに、試料固定棒11の先端部にはリング16と円板1
7とが設けられている。リング16は、図5(b)の矢
印Kに示されるように試料固定棒11の軸線に直交する
軸線回りに傾動可能に、試料固定棒11の先端部に二点
で支持されており、図に示されるように試料固定棒11
の軸線をX軸とした場合のX軸を含む面に対して90度
まで傾斜可能にされている。また円板17は、リング1
6に回転機構を介して装着され、リング16の端面内で
360度の回転が可能にされている。円板17の直径
は、試料片3を固定する際、試料片3の固定面がリング
16にかかることのない大きさとする。これにより、円
滑な試料片3の回転が確保される。この円板17に、加
工を施した試料片3を特定箇所の断面薄膜試料6の存在
する凸領域1が上向きとなるように固定を行う。円板1
7への試料片3の固定は、導電性のある接着剤の塗布や
同じく導電性のある粘着テープ等を使用することにより
可能となる。
5 (b) and 5 (c) are views showing the structure of the tip of the sample fixing rod 11, and as shown in the figure, a ring 16 is provided at the tip of the sample fixing rod 11. And disk 1
7 are provided. The ring 16 is supported at two points on the tip of the sample fixing rod 11 so as to be tiltable around an axis orthogonal to the axis of the sample fixing rod 11 as shown by an arrow K in FIG. As shown in, the sample fixing rod 11
When the axis line of is the X axis, it can be inclined up to 90 degrees with respect to the plane including the X axis. Further, the disk 17 is the ring 1
6 is mounted via a rotating mechanism, and is capable of rotating 360 degrees in the end face of the ring 16. The diameter of the circular plate 17 is set so that the fixing surface of the sample piece 3 does not contact the ring 16 when the sample piece 3 is fixed. This ensures smooth rotation of the sample piece 3. The processed sample piece 3 is fixed to the circular plate 17 so that the convex region 1 where the cross-sectional thin film sample 6 is present at a specific position faces upward. Disk 1
The sample piece 3 can be fixed to the sample 7 by applying an electrically conductive adhesive or using an electrically conductive adhesive tape.

【0024】このリング16の傾斜機構と円板17の回
転機構により、各々の断面薄膜に対して電子線14が適
当に入射されるような位置に容易にかえることが可能と
なる。即ち、今回開発した試料ホルダにより、特定箇所
の方向の異なるそれぞれの断面薄膜試料6に対して、観
察の度に試料ホルダーへ試料片3を付け替えることな
く、効率的な像観察や構造解析及び組成分析が実現され
る。
The tilting mechanism of the ring 16 and the rotating mechanism of the circular plate 17 make it possible to easily change the electron beam 14 to a position where the electron beam 14 is appropriately incident on each thin film in cross section. That is, the newly developed sample holder enables efficient image observation, structural analysis and composition without changing the sample piece 3 to the sample holder for each observation for each thin film sample 6 having a different direction at a specific location. Analysis is realized.

【0025】更に、集束イオンビーム装置に、図5
(a)を示したTEM用試料ホルダを挿入する際、その
試料ホルダを支持できる試料ステージを具備することに
より、機械加工段階の試料片3をTEMホルダの先端に
装着した状態で集束イオンビーム5による加工が可能と
なる。更に、加工後、試料片3をホルダより取り外す必
要がなく、直接TEMへ挿入することができ、迅速な断
面薄膜試料6の観察が可能となる。
Furthermore, in the focused ion beam device, as shown in FIG.
When the sample holder for TEM shown in (a) is inserted, a sample stage capable of supporting the sample holder is provided so that the focused ion beam 5 is attached with the sample piece 3 at the machining stage attached to the tip of the TEM holder. Can be processed. Furthermore, after processing, it is not necessary to remove the sample piece 3 from the holder, and the sample piece 3 can be directly inserted into the TEM, and the cross-sectional thin film sample 6 can be observed quickly.

【0026】図5(b)は、集束イオンビーム5による
機械加工時のホルダ先端の拡大図である。まず、ホルダ
先端の円板17に機械加工後の試料片3を特定箇所が存
在する凸領域1が上向きとなるように固定する。固定に
は、導電性のある接着剤の塗布や同じく導電性のある粘
着テープ等を使用する。次に、集束イオンビーム装置の
試料室内にホルダを挿入する。その後、集束イオンビー
ム5が特定箇所を含む凸領域1に適切に照射されるよう
リング16を傾斜し、集束イオンビーム5による穴あけ
加工で、凸領域に断面薄膜試料6を作製する。加工完了
後、試料ホルダを集束イオンビーム装置より取り出す。
FIG. 5B is an enlarged view of the tip of the holder during machining with the focused ion beam 5. First, the machined sample piece 3 is fixed to the disk 17 at the tip of the holder so that the convex region 1 in which the specific portion is present faces upward. For fixing, a conductive adhesive is applied or a conductive adhesive tape or the like is used. Next, the holder is inserted into the sample chamber of the focused ion beam apparatus. After that, the ring 16 is tilted so that the focused ion beam 5 is appropriately irradiated to the convex region 1 including the specific portion, and the cross-sectional thin film sample 6 is formed in the convex region by drilling with the focused ion beam 5. After the processing is completed, the sample holder is taken out from the focused ion beam device.

【0027】次に、断面薄膜試料6の観察及び分析のた
め、試料ホルダーをTEMに挿入する。図5(c)は、
TEM観察時の試料ホルダ先端の拡大図である。集束イ
オンビーム5による加工の時ほぼ水平であったリング1
6を、電子線14が適切に入射できる位置まで傾斜し、
更に円板17を回転させることにより、各断面薄膜試料
片6の像観察及び組成分析が可能となる。
Next, in order to observe and analyze the cross-section thin film sample 6, the sample holder is inserted into the TEM. FIG. 5 (c) shows
It is an enlarged view of the tip of a sample holder at the time of TEM observation. Ring 1 which was almost horizontal when processed by focused ion beam 5
6 is tilted to a position where the electron beam 14 can be appropriately incident,
Further rotation of the disk 17 enables image observation and composition analysis of each cross-section thin film sample piece 6.

【0028】これにより、試料作製からTEM観察まで
の作業が効率良く行えるばかりでなく、集束イオンビー
ム装置とTEMとの間でホルダを介して、直接試料のや
りとりが行えるため、作製過程のTEM像をその都度観
察することができ、TEM観察に対して各断面薄膜試料
6を適切な試料厚みにすることが実現できる。
As a result, not only the work from sample preparation to TEM observation can be performed efficiently, but also the sample can be directly exchanged between the focused ion beam device and the TEM via the holder. Can be observed each time, and each cross-sectional thin film sample 6 can be realized to have an appropriate sample thickness for TEM observation.

【0029】尚、今回の発明により、作製した試料はT
EMのみならず、走査型電子顕微鏡やオージェ電子分光
装置に対するサンプルとして用い、解析することも可能
である。
The sample produced according to the present invention is T
Not only EM but also a sample for a scanning electron microscope or an Auger electron spectroscope can be used for analysis.

【0030】図6は本発明の一実施例を示した図であ
る。図6(a)は半導体集積回路内のAl配線中で導電
性不良を起こした箇所の模式図であり、図においてハッ
チングを施した領域がAl配線21である。このサンプ
ルからダイシングソーによる機械研磨により試料を整形
し、集束イオンビーム装置により、図6(a)中の破線
位置に断面薄膜の作製を行った。約1μmのビーム径で
粗く穴あけ加工を行い、次にビーム径を約0.5μmと
して中加工を行った。更にビーム径を約0.05μm以
下として仕上げ加工を行った。
FIG. 6 is a diagram showing an embodiment of the present invention. FIG. 6A is a schematic view of a portion of the Al wiring in the semiconductor integrated circuit where the poor conductivity occurs, and the hatched area in the drawing is the Al wiring 21. A sample was shaped from this sample by mechanical polishing with a dicing saw, and a cross-sectional thin film was formed at a position indicated by a broken line in FIG. 6A by a focused ion beam device. Roughly drilling was performed with a beam diameter of about 1 μm, and then medium processing was performed with a beam diameter of about 0.5 μm. Further, finishing processing was performed with a beam diameter of about 0.05 μm or less.

【0031】この後、この試料を本発明による試料ホル
ダの先端に銀ペーストで固定し、乾燥後、TEMにより
不良箇所の像観察及びEDSによる組成分析を実施し
た。
Thereafter, this sample was fixed to the tip of the sample holder according to the present invention with silver paste, dried, and then imaged of the defective portion was observed by TEM and composition analysis by EDS was performed.

【0032】図6(b)及び図6(c)は、2つの断面
薄膜試料のTEM像であり、図中、22は絶縁膜であ
り、23は異常コントラスト部であり、24はSi基板
である。両図ともに像中のAl/Si基板界面に化合物
と考えられる異常コントラスト部23が観察された。
FIGS. 6 (b) and 6 (c) are TEM images of two cross-section thin film samples, in which 22 is an insulating film, 23 is an abnormal contrast portion, and 24 is a Si substrate. is there. In both figures, an abnormal contrast portion 23, which is considered to be a compound, was observed at the Al / Si substrate interface in the images.

【0033】次に、上記異常コントラスト部23の組成
を明らかにするためにEDS分析を実施した。図6
(d)は、図6(b)中の異常コントラスト部23のE
DS分析結果である。このEDSスペクトルから異常コ
ントラスト部23はAlとSiとからなることが判明し
た。以上の解析から、導電性の不良はAl配線/Si基
板界面に於てSiとAlとの化合物相の形成によるもの
であることが明らかとなった。
Next, an EDS analysis was performed to clarify the composition of the abnormal contrast portion 23. Figure 6
6D shows E of the abnormal contrast portion 23 in FIG. 6B.
It is a DS analysis result. From this EDS spectrum, it was found that the abnormal contrast portion 23 was composed of Al and Si. From the above analysis, it was clarified that the poor conductivity was due to the formation of the compound phase of Si and Al at the Al wiring / Si substrate interface.

【0034】以上のように、本発明によれば不良箇所を
2方向から迅速に観察でき、また特定箇所の微小部元素
分析も可能である。また、実施例を通して、今回開発し
た資料作製方法は半導体デバイスの不良解析に対しても
有効であるといえる。
As described above, according to the present invention, it is possible to quickly observe a defective portion from two directions, and it is also possible to perform elemental analysis of a minute portion of a specific portion. Further, it can be said that the material manufacturing method developed this time is also effective for failure analysis of semiconductor devices through the examples.

【0035】[0035]

【発明の効果】このように本発明によれば、材料の特定
箇所に対して、観察が可能な方向の異なる断面薄膜試料
の作製が少なくとも2つ以上可能となり、特定箇所の総
合的な構造解析及び組成分析の決定が実現できる。ま
た、今回開発した試料ホルダにより、作製した試料に対
して迅速な解析が可能となった。更に、これまで、方向
がそれぞれ異なる2つ以上の断面薄膜試料を作製するた
めには、それぞれの断面薄膜試料を各々1試料ずつ作製
する必要があったが、本発明により、同一サンプル上に
2つ以上の断面薄膜試料の作製が実現可能なため、試料
の作製時間の大幅な短縮が可能となる。また、上記の作
製した断面薄膜試料を固定する試料ホルダを使用するこ
とにより、効率的な像観察や構造解析及び組成分析が可
能となる。
As described above, according to the present invention, it is possible to prepare at least two cross-sectional thin film samples in different directions in which observation is possible at a specific portion of a material, and comprehensive structural analysis of the specific portion is possible. And compositional analysis decisions can be realized. In addition, the newly developed sample holder enables quick analysis of the prepared sample. Further, until now, in order to produce two or more cross-sectional thin film samples having different directions, it was necessary to produce each cross-sectional thin film sample one by one. Since it is possible to manufacture one or more thin-film cross-section samples, it is possible to significantly reduce the sample preparation time. Further, by using the sample holder for fixing the above-prepared cross-sectional thin film sample, efficient image observation, structure analysis and composition analysis are possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明に基づく試料の作製要領を示す
試料全体の鳥瞰図であり、(b)は試料片の切断手順を
示した図。
FIG. 1 (a) is a bird's-eye view of the entire sample showing a procedure for producing a sample based on the present invention, and FIG. 1 (b) is a view showing a procedure for cutting a sample piece.

【図2】(a)は凸領域を機械加工した試料片3の鳥瞰
図であり、(b)は(a)の側面図。
2A is a bird's-eye view of a sample piece 3 in which a convex region is machined, and FIG. 2B is a side view of FIG.

【図3】(a)は凸領域の鳥瞰図であり、(b)は凸領
域の微細加工後の一例を示した斜視図。
FIG. 3A is a bird's-eye view of a convex region, and FIG. 3B is a perspective view showing an example of the convex region after fine processing.

【図4】(a)は3方向の断面薄膜試料を作製した例を
示す図3(a)と同様の鳥瞰図であり、(b)は4方向
の断面薄膜試料を作製した例を示す図3(a)と同様の
鳥瞰図。
FIG. 4 (a) is a bird's-eye view similar to FIG. 3 (a) showing an example in which a cross-sectional thin film sample is prepared in three directions, and FIG. 4 (b) is a diagram showing an example in which a cross-sectional thin film sample in four directions is prepared. A bird's-eye view similar to (a).

【図5】(a)は本発明の断面薄膜試料を固定する試料
ホルダーの構成を示す全体図であり、(b)は試料加工
時のホルダの先端の拡大図であり、(c)は分析時のホ
ルダ先端の拡大図。
5A is an overall view showing the structure of a sample holder for fixing a cross-sectional thin film sample of the present invention, FIG. 5B is an enlarged view of the tip of the holder during sample processing, and FIG. Enlarged view of the tip of the holder at the time.

【図6】(a)は試料のサンプリング位置の模式図であ
り、(b)は試料に対する一方の断面を示す図であり、
(c)は試料に対する他方の断面を示す図であり、
(d)はTEM像及びEDS組成分析結果の模写図。
6A is a schematic diagram of a sampling position of a sample, FIG. 6B is a diagram showing one cross section of the sample, FIG.
(C) is a diagram showing the other cross section of the sample,
(D) is a copy of the TEM image and the EDS composition analysis result.

【符号の説明】[Explanation of symbols]

1 領域 2 マーキング 3 試料片 4a・4b・4c 領域 5 集束イオンビーム 6 断面薄膜試料 7a・7b 壁 8 特定箇所 9a・9b・9c 断面薄膜試料 10a・10b・10c・10d 断面薄膜試料 11 試料固定棒 12 支持棒 13 握り部 14 電子線 15 Oリング 16 リング 17 円板 21 Al配線 22 絶縁膜 23 異常コントラスト部 24 Si基板 1 area 2 marking 3 sample piece 4a, 4b, 4c area 5 focused ion beam 6 cross-section thin film sample 7a, 7b wall 8 specific location 9a, 9b, 9c cross-section thin film sample 10a, 10b, 10c, 10d cross-section thin film sample 11 sample fixing rod 12 Support Rod 13 Grip 14 Electron Beam 15 O Ring 16 Ring 17 Disc 21 Al Wiring 22 Insulating Film 23 Abnormal Contrast 24 Si Substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 材料の構造解析及び組成分析を行うた
めの特定箇所を含む凸状かつ島状に形成された領域中
に、前記特定箇所の任意の一点より放射状に存在しかつ
互いに角度をなす断面薄膜を少なくとも2つ以上形成し
たことを特徴とする断面薄膜試料。
1. In a region formed in a convex shape and in an island shape including a specific portion for conducting structural analysis and composition analysis of a material, radial points are present from any one point of the specific portion and form an angle with each other. A cross-sectional thin film sample, characterized in that at least two cross-sectional thin films are formed.
【請求項2】 材料の特定箇所を含む領域を凸状かつ
島状の試料形状に予め機械加工した後、収束したイオン
ビームやレーザで穴あけ加工をして、前記特定箇所内の
任意の一点より放射状に存在しかつ互いに角度をなす断
面薄膜部を少なくとも2つ以上作製することを特徴とす
る断面薄膜試料の作製方法。
2. A region including a specific portion of the material is pre-machined into a convex and island-shaped sample shape, and then a hole is drilled by a focused ion beam or laser to select from any one point within the specific portion. A method for producing a cross-section thin-film sample, characterized in that at least two cross-section thin-film portions that radially exist and form an angle with each other are produced.
【請求項3】 試料を固定すると共にホルダを透過型
電子顕微鏡の試料室に挿入した際に真空を保持するため
のOリングを備えられた試料固定棒と、前記試料固定棒
を支持するための支持棒とを有し、前記試料固定棒の先
端に、前記試料を固定可能でかつ回転可能な機構を有す
る円板と、前記円板を支持しかつ傾斜可能にするべく前
記試料固定棒に対し二点で支持されたリングとが設けら
れていることを特徴とする断面薄膜試料用ホルダ。
3. A sample fixing rod provided with an O-ring for fixing a sample and holding a vacuum when the holder is inserted into a sample chamber of a transmission electron microscope; and a sample fixing rod for supporting the sample fixing rod. A disc having a supporting rod and a mechanism capable of fixing and rotating the sample at the tip of the sample fixing rod, and the sample fixing rod for supporting and tilting the disc. A holder for a thin film sample having a cross section, comprising: a ring supported at two points.
JP7137201A 1995-05-11 1995-05-11 Sample having cross sectional thin-film, its manufacture, and its holder Withdrawn JPH08304243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7137201A JPH08304243A (en) 1995-05-11 1995-05-11 Sample having cross sectional thin-film, its manufacture, and its holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7137201A JPH08304243A (en) 1995-05-11 1995-05-11 Sample having cross sectional thin-film, its manufacture, and its holder

Publications (1)

Publication Number Publication Date
JPH08304243A true JPH08304243A (en) 1996-11-22

Family

ID=15193161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7137201A Withdrawn JPH08304243A (en) 1995-05-11 1995-05-11 Sample having cross sectional thin-film, its manufacture, and its holder

Country Status (1)

Country Link
JP (1) JPH08304243A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241255A (en) * 2003-02-06 2004-08-26 Renesas Technology Corp Sample holder for electron microscope
US7138628B2 (en) 1997-07-22 2006-11-21 Hitachi, Ltd. Method and apparatus for specimen fabrication
JP2008071510A (en) * 2006-09-12 2008-03-27 Mems Core Co Ltd Mass spectrometer
JP2008294004A (en) * 2008-08-13 2008-12-04 Hitachi Ltd Sample producing device
JP2009109236A (en) * 2007-10-26 2009-05-21 Masanori Owari Processing method of needle-like sample for atom probe, and focused ion beam apparatus
JP2010204118A (en) * 2010-06-07 2010-09-16 Hitachi Ltd Sample holder
WO2013108711A1 (en) * 2012-01-20 2013-07-25 株式会社日立ハイテクノロジーズ Charged particle beam microscope, sample holder for charged particle beam microscope, and charged particle beam microscopy
WO2014195998A1 (en) * 2013-06-03 2014-12-11 株式会社日立製作所 Charged particle microscope, sample holder for charged particle microscope and charged particle microscopy method
JP2016025085A (en) * 2014-07-21 2016-02-08 エフ・イ−・アイ・カンパニー Tem sample mounting geometry
US9305743B2 (en) 2014-03-12 2016-04-05 Kabushiki Kaisha Toshiba Marking apparatus and marking method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7791050B2 (en) 1997-07-22 2010-09-07 Hitachi, Ltd. Method and apparatus for specimen fabrication
US7397052B2 (en) 1997-07-22 2008-07-08 Hitachi, Ltd. Method and apparatus for specimen fabrication
US8569719B2 (en) 1997-07-22 2013-10-29 Hitachi, Ltd. Method and apparatus for specimen fabrication
US7999240B2 (en) 1997-07-22 2011-08-16 Hitachi, Ltd. Method and apparatus for specimen fabrication
US8405053B2 (en) 1997-07-22 2013-03-26 Hitachi, Ltd. Method and apparatus for specimen fabrication
US7397050B2 (en) 1997-07-22 2008-07-08 Hitachi, Ltd. Method and apparatus for specimen fabrication
US7397051B2 (en) 1997-07-22 2008-07-08 Hitachi, Ltd. Method and apparatus for specimen fabrication
US7138628B2 (en) 1997-07-22 2006-11-21 Hitachi, Ltd. Method and apparatus for specimen fabrication
US7525108B2 (en) 1997-07-22 2009-04-28 Hitachi, Ltd. Focused ion beam apparatus for specimen fabrication
US7176458B2 (en) 1997-07-22 2007-02-13 Hitachi, Ltd. Method and apparatus for specimen fabrication
JP2004241255A (en) * 2003-02-06 2004-08-26 Renesas Technology Corp Sample holder for electron microscope
JP2008071510A (en) * 2006-09-12 2008-03-27 Mems Core Co Ltd Mass spectrometer
JP2009109236A (en) * 2007-10-26 2009-05-21 Masanori Owari Processing method of needle-like sample for atom probe, and focused ion beam apparatus
JP2008294004A (en) * 2008-08-13 2008-12-04 Hitachi Ltd Sample producing device
JP2010204118A (en) * 2010-06-07 2010-09-16 Hitachi Ltd Sample holder
WO2013108711A1 (en) * 2012-01-20 2013-07-25 株式会社日立ハイテクノロジーズ Charged particle beam microscope, sample holder for charged particle beam microscope, and charged particle beam microscopy
US8963102B2 (en) 2012-01-20 2015-02-24 Hitachi High-Technologies Corporation Charged particle beam microscope, sample holder for charged particle beam microscope, and charged particle beam microscopy
DE112013000437B4 (en) 2012-01-20 2018-07-26 Hitachi High-Technologies Corporation Charged particle beam microscope, sample holder for a charged particle beam microscope and charged particle beam microscopy
WO2014195998A1 (en) * 2013-06-03 2014-12-11 株式会社日立製作所 Charged particle microscope, sample holder for charged particle microscope and charged particle microscopy method
US9305743B2 (en) 2014-03-12 2016-04-05 Kabushiki Kaisha Toshiba Marking apparatus and marking method
JP2016025085A (en) * 2014-07-21 2016-02-08 エフ・イ−・アイ・カンパニー Tem sample mounting geometry

Similar Documents

Publication Publication Date Title
US6194720B1 (en) Preparation of transmission electron microscope samples
KR101463245B1 (en) Focused ion beam apparatus and sample section forming and thin-piece sample preparing methods
JP4699168B2 (en) Electron microscope sample preparation method
JP2774884B2 (en) Method for separating sample and method for analyzing separated sample obtained by this separation method
JP3805547B2 (en) Sample preparation equipment
JP2004087174A (en) Ion beam device, and working method of the same
KR100796829B1 (en) Tem sample slicing process
JPH09189649A (en) Preparing method of flat sample for transmission type electron microscope, and method for measuring defect by this transmission type microscope
JP3892360B2 (en) Ion beam equipment
JPH08304243A (en) Sample having cross sectional thin-film, its manufacture, and its holder
JP4048210B2 (en) Sample preparation method
JPH11108813A (en) Method and device for preparing sample
JP3768197B2 (en) Preparation method of transmission electron microscope specimen
Kamino et al. A method for multidirectional TEM observation of a specific site at atomic resolution
US6723650B1 (en) TEM sample preparation using transparent defect protective coating
JP2005308400A (en) Sample machining method, sample machining device and sample observing method
Anderson et al. Combined tripod polishing and FIB method for preparing semiconductor plan view specimens
JP2003007241A (en) Common sample holder for scanning electron microscope and focused-ion beam device, and sample-preparation method for transmission electron microscope
US6251782B1 (en) Specimen preparation by focused ion beam technique
TW201819884A (en) Sample with sharpening tip, preparing method thereof and analysis method thereof
JP4170048B2 (en) Ion beam apparatus and ion beam processing method
Tuggle et al. Electron backscatter diffraction of Nb3Sn coated niobium: Revealing structure as a function of depth
JP2001319954A (en) Sample processing method with focused ion beam
JPH1084020A (en) Processing method and inspection method for semiconductor
KR20050033699A (en) Method for forming sample using analysis by tem

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806