JP4433092B2 - Three-dimensional structure observation method - Google Patents

Three-dimensional structure observation method Download PDF

Info

Publication number
JP4433092B2
JP4433092B2 JP2009051471A JP2009051471A JP4433092B2 JP 4433092 B2 JP4433092 B2 JP 4433092B2 JP 2009051471 A JP2009051471 A JP 2009051471A JP 2009051471 A JP2009051471 A JP 2009051471A JP 4433092 B2 JP4433092 B2 JP 4433092B2
Authority
JP
Japan
Prior art keywords
sample
observation
protrusion
dimensional structure
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009051471A
Other languages
Japanese (ja)
Other versions
JP2009122122A (en
Inventor
るり子 常田
博司 柿林
雅成 高口
邦康 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009051471A priority Critical patent/JP4433092B2/en
Publication of JP2009122122A publication Critical patent/JP2009122122A/en
Application granted granted Critical
Publication of JP4433092B2 publication Critical patent/JP4433092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、微細に加工された半導体デバイス内の所望の箇所における構造を3次元的に観察するための3次元構造観察用試料作製装置及びその観察手段と方法に関する。   The present invention relates to a sample preparation apparatus for three-dimensional structure observation for three-dimensionally observing a structure at a desired location in a finely processed semiconductor device, and its observation means and method.

半導体デバイスでは試料構造が微細になるにつれ、高空間分解能を持つ透過電子顕微鏡
(以下略してTEM)による観察の重要性が高まってきている。それに加え、様々なパターン形状を重ね合わせて作製される半導体デバイスの構造を3次元的に評価したいという要求も高まってきている。
In semiconductor devices, as the sample structure becomes finer, the importance of observation with a transmission electron microscope (hereinafter abbreviated as TEM) having high spatial resolution is increasing. In addition, there is an increasing demand for three-dimensional evaluation of the structure of a semiconductor device manufactured by overlaying various pattern shapes.

これらの要求に対し、TEMを用いて試料の3次元構造を観察する試みがなされてきた。以下、従来の観察法の手順を示す。   In response to these requirements, attempts have been made to observe the three-dimensional structure of a sample using a TEM. Hereafter, the procedure of the conventional observation method is shown.

まず観察対象のTEM像を観察するために、試料を薄膜化する。試料内を電子線が透過できる距離は短く、透過電子顕微鏡の入射電圧100から300kVでは、電子線が透過できる距離は100nm以下である。観察対象の厚さを100nm以下にするために、研磨剤を用いて試料を100μm程度まで薄膜化する。更に観察対象近傍をすり鉢状に研磨して厚さ数10μmにした後、例えば特開平5−312700 号記載のTEM試料の作製装置を用いて100nm以下に薄膜化する。   First, in order to observe the TEM image to be observed, the sample is thinned. The distance through which the electron beam can pass through the sample is short. When the transmission voltage of the transmission electron microscope is 100 to 300 kV, the distance through which the electron beam can be transmitted is 100 nm or less. In order to make the thickness of the observation object 100 nm or less, the sample is thinned to about 100 μm using an abrasive. Further, the vicinity of the observation object is polished into a mortar shape to a thickness of several tens of μm, and then thinned to 100 nm or less using, for example, a TEM sample preparation apparatus described in JP-A-5-312700.

薄膜化した試料片をリング状の試料台に固定し、上記試料台の周辺部を、例えば特開平6−139986 号記載の電子顕微鏡の試料支持方法及び装置に示される試料ホルダに固定した後試料室に挿入し、観察対象のTEM像を観察する。3次元構造を評価するには試料片を試料室内で傾斜させて複数方向から観察したTEM像を用いる。   The thinned sample piece is fixed to a ring-shaped sample table, and the periphery of the sample table is fixed to a sample holder shown in, for example, the method and apparatus for supporting an electron microscope described in Japanese Patent Laid-Open No. 6-139986. Insert into the chamber and observe the TEM image to be observed. In order to evaluate the three-dimensional structure, a TEM image observed from a plurality of directions with the sample piece tilted in the sample chamber is used.

更に3次元構造を定量的に評価するには、TEM像を投影像として用い、3次元再構成を行う。結晶性試料のTEM像を投影像として用いるためには、特願平3−110126 号記載の3次元原子配列観察装置を用いて試料内の原子によって高角に散乱された電子で結像した高角散乱電子像を用いる必要がある。これはTEM像のコントラストには主に電子散乱能を反映した散乱コントラストだけでなく、主に結晶構造を反映した回折コントラストが混在しており、TEM像を投影像として用いるには回折コントラストを低減させる必要があるからである。上記高角散乱電子像を用い、特願平3−110126 号記載の方法で3次元構造再構成を行う。まず投影切断面定理を用いて各2次元断面を再構成し、それらを積み重ねて3次元構造を構築する。   Furthermore, in order to quantitatively evaluate the three-dimensional structure, a three-dimensional reconstruction is performed using a TEM image as a projection image. In order to use a TEM image of a crystalline sample as a projection image, a high-angle scattering image formed by electrons scattered at a high angle by atoms in the sample using a three-dimensional atomic array observation apparatus described in Japanese Patent Application No. 3-110126. It is necessary to use an electronic image. This is because the contrast of the TEM image includes not only the scattering contrast mainly reflecting the electron scattering ability but also the diffraction contrast mainly reflecting the crystal structure, and the diffraction contrast is reduced to use the TEM image as the projection image. It is necessary to make it. Using the above high angle scattered electron image, the three-dimensional structure is reconstructed by the method described in Japanese Patent Application No. 3-110126. First, each two-dimensional section is reconstructed using the projected cutting plane theorem, and these are stacked to construct a three-dimensional structure.

特開平3−110126号公報JP-A-3-110126

従来のTEM観察用試料片では、観察対象はすり鉢状に加工された試料片の中心近傍に存在する。この様な形状では、試料片を大きく傾斜させると電子線を通過させる試料厚さが厚くなり、電子線が透過できないためにTEM像が得られなくなる。また従来のTEM観察用試料ホルダでは、試料ホルダを大きく傾斜させるとリング状の試料台や試料ホルダが電子線の経路を塞いでしまうため、TEM像が得られなくなる。つまり従来の試料片形状及び試料ホルダを用いる限り、試料傾斜角度範囲に制限があり、観察対象を任意の方向から観察することはできない。汎用TEMにおける傾斜角度範囲は±60度程度であり、高空間分解能の TEMほど電子レンズのギャップは狭く設計されているため、試料ホルダを挿入する試料室の幅が狭くなり、更に傾斜角度範囲は狭くなっている。   In the conventional TEM observation sample piece, the observation target exists in the vicinity of the center of the sample piece processed into a mortar shape. In such a shape, when the sample piece is tilted greatly, the thickness of the sample through which the electron beam passes is increased, and the TEM image cannot be obtained because the electron beam cannot be transmitted. Further, in the conventional TEM observation sample holder, if the sample holder is tilted greatly, the ring-shaped sample stage and the sample holder block the electron beam path, so that a TEM image cannot be obtained. That is, as long as the conventional sample piece shape and sample holder are used, the sample tilt angle range is limited, and the observation target cannot be observed from any direction. In general-purpose TEM, the tilt angle range is about ± 60 degrees. The higher the spatial resolution TEM, the narrower the gap of the electron lens, the narrower the sample chamber into which the sample holder is inserted. It is narrower.

更に試料傾斜角度範囲の制限は、3次元再構成において非常に大きな障害となる。画像再構成で用いられる投影面切断定理とは、試料f(x,y)のθ方向からの投影データp(r,θ)の1次元フーリエ変換は、試料の2次元フーリエ変換F(μ,ν)のθ方向の切断面のラインプロファイルと一致するという定理である(図17(a))。つまり全方向の投影データが得られれば、試料構造に関する全ての情報は得られたことになる(図17(b))。   Furthermore, the limitation of the sample tilt angle range is a very big obstacle in three-dimensional reconstruction. The projection plane cutting theorem used in image reconstruction is that the one-dimensional Fourier transform of the projection data p (r, θ) from the θ direction of the sample f (x, y) is the two-dimensional Fourier transform F (μ, This is the theorem that coincides with the line profile of the cut surface in the θ direction of ν) (FIG. 17A). In other words, if projection data in all directions is obtained, all information related to the sample structure is obtained (FIG. 17B).

しかし投影角度範囲が制限されると、図17(c)に示す様に必要な情報が欠落してしまい、正確な再構成像を得ることが原理的に困難となる。投影角度制限下で再構成を行うと、再構成像上に激しいアーティファクトが発生し、上記アーティファクトのために試料構造の解析ができないこともある。上記アーティファクトを画像復元処理によって低減する方法が検討されてきたが、試料構造に関する様々な仮定が必要であったり、また復元処理を適用できる試料形状が限定されたりしていた。また同一構造と思われる試料を複数個用意し、上記試料を異なる方向から薄膜化して試料の全方向の投影像を得る試みもなされているが、デバイス不良箇所の解析の様に不良素子がただ1つしか存在しない場合には適用できなかった。   However, when the projection angle range is limited, necessary information is lost as shown in FIG. 17C, and it is theoretically difficult to obtain an accurate reconstructed image. When reconstruction is performed under the projection angle limit, severe artifacts are generated on the reconstruction image, and the sample structure may not be analyzed due to the artifacts. Although methods for reducing the artifacts by image restoration processing have been studied, various assumptions regarding the sample structure are necessary, and sample shapes to which the restoration processing can be applied are limited. There have also been attempts to prepare multiple samples of the same structure and thin the sample from different directions to obtain a projected image of the sample in all directions. It was not applicable when there was only one.

本発明では3次元観察用試料片として、観察対象を内包する突起部分を持つ形状に加工した試料片を用いる。上記試料片では突起の中心軸回りの全方向から観察対象を観察できる。上記形状に試料片を加工するために、ダイサー,集束イオンビーム加工装置等を用いる。上記集束イオンビーム加工装置は観察対象を内包する突起作製用のイオンビーム偏向器及びブランカを有する。更に試料ホルダとして1軸全方向傾斜試料ホルダを用いる。上記1軸全方向傾斜試料ホルダは保持筒と上記保持筒によって支えられた棒状支持具によって構成され、上記棒状支持具は1軸全方向に傾斜できる様に設計されている。上記試料片を上記棒状支持具の先端に突起の中心軸と試料傾斜軸を合わせて設置すれば、観察対象を突起の中心軸回りに360°傾斜して観察できる。つまり観察対象の全方向のTEM像を得ることができる。   In the present invention, a sample piece processed into a shape having a protruding portion that encloses an observation target is used as the three-dimensional observation sample piece. In the sample piece, the observation object can be observed from all directions around the central axis of the protrusion. A dicer, a focused ion beam processing apparatus, or the like is used to process the sample piece into the above shape. The focused ion beam processing apparatus includes an ion beam deflector and a blanker for producing a protrusion that encloses an observation target. Furthermore, a uniaxial omnidirectional sample holder is used as the sample holder. The uniaxial omnidirectional sample holder is constituted by a holding cylinder and a rod-shaped support supported by the holding cylinder, and the rod-shaped support is designed to be inclined in all directions of the uniaxial axis. If the sample piece is placed at the tip of the rod-shaped support so that the center axis of the protrusion and the sample tilt axis are aligned, the observation object can be observed inclined 360 ° around the center axis of the protrusion. That is, a TEM image in all directions of the observation target can be obtained.

本発明を用いれば、観察対象を突起の中心軸回りの任意の方向から観察した TEM像を得られるので、3次元的な試料構造を直接評価できる様になる。また、試料の3次元構造を再構成するための必要条件ある全方向の投影像の観察が実現される。従って試料に関する既知情報を用いる必要はなく、任意の試料形状を1つの試料片から正確に再構成できる。   By using the present invention, it is possible to obtain a TEM image obtained by observing the observation target from an arbitrary direction around the central axis of the protrusion, so that a three-dimensional sample structure can be directly evaluated. In addition, observation of projection images in all directions, which are necessary conditions for reconstructing the three-dimensional structure of the sample, is realized. Therefore, it is not necessary to use known information about the sample, and any sample shape can be accurately reconstructed from one sample piece.

本発明によって、3次元的に構築されたデバイス構造内の任意形状及び任意位置の試料構造を3次元的に解析し、デバイスのプロセスのチェックや最適化さらにはデバイス設計に関する重要な情報を提供することができる。   According to the present invention, a sample structure at an arbitrary shape and an arbitrary position in a three-dimensionally constructed device structure is analyzed three-dimensionally to provide important information regarding device process check and optimization and device design. be able to.

本発明の実施例で用いた透過電子顕微鏡の全体構成図。The whole block diagram of the transmission electron microscope used in the Example of this invention. 3次元観察用試料片の形状を示す概念図。The conceptual diagram which shows the shape of the sample piece for three-dimensional observation. 試料片を設置する試料台の構成図。The block diagram of the sample stand which installs a sample piece. 1軸全方向試料ホルダの構成図。The block diagram of a uniaxial omnidirectional sample holder. 試料片の加工位置調整の説明図。Explanatory drawing of the processing position adjustment of a sample piece. SEM用標準試料ホルダの断面図。Sectional drawing of the standard sample holder for SEM. 試料破損保護カバーの構成図。The block diagram of a sample breakage protection cover. 本発明の一実施例の集束イオンビーム加工装置の基本構成図。The basic block diagram of the focused ion beam processing apparatus of one Example of this invention. ダイサーを用いて太めの突起を切り出す工程を示す説明図。Explanatory drawing which shows the process of cutting out a thick protrusion using a dicer. ダイサーを用いて太めの突起を切り出す工程を示す説明図。Explanatory drawing which shows the process of cutting out a thick protrusion using a dicer. 試料片の加工工程の説明図。Explanatory drawing of the process process of a sample piece. 試料片の加工工程の説明図。Explanatory drawing of the process process of a sample piece. 試料片の加工工程の説明図。Explanatory drawing of the process process of a sample piece. 試料片の加工工程の説明図。Explanatory drawing of the process process of a sample piece. 試料片に形成する突起部の半径とイオンビーム加工位置の関係を示す説明図。Explanatory drawing which shows the relationship between the radius of the projection part formed in a sample piece, and an ion beam processing position. 試料片上の観察対象部の説明図。Explanatory drawing of the observation object part on a sample piece. 投影切断面定理の説明図。Explanatory drawing of a projection cut surface theorem.

図1は本発明の実施例で用いた透過電子顕微鏡の基本構成である。電子銃1,コンデンサレンズ2,電子線偏向コイル3,対物レンズ4,試料ホルダ5,試料傾斜機構6,インカラム(in−column)型7またポストカラム(post-column)型35のエネルギフィルタ、画像記録装置8及び制御用ソフトと画像処理ソフトを備えた計算機9から構成されている。   FIG. 1 shows a basic configuration of a transmission electron microscope used in an embodiment of the present invention. Electron gun 1, condenser lens 2, electron beam deflection coil 3, objective lens 4, sample holder 5, sample tilt mechanism 6, in-column type 7 or post-column type 35 energy filter, image It comprises a recording device 8 and a computer 9 provided with control software and image processing software.

図2に本実施例で用いる試料片10の形状を示す。試料片10はある面に突起部分11を持つチップに加工されている。突起11の中心軸をz軸とする。突起部分11は観察対象12を内包している。上記領域における突起の直径2Rは電子線が通過できる範囲内にする。直径2Rは入射電子線の加速電圧に依存し、加速電圧が高くなるほど電子線が透過する距離は長くなる。加速電圧100〜300kVの場合には2Rは100nm以下、3MVの場合には10μm以下である。   FIG. 2 shows the shape of the sample piece 10 used in this embodiment. The sample piece 10 is processed into a chip having a protruding portion 11 on a certain surface. The central axis of the protrusion 11 is the z axis. The protruding portion 11 includes the observation object 12. The diameter 2R of the protrusion in the region is set within a range where the electron beam can pass. The diameter 2R depends on the acceleration voltage of the incident electron beam, and the distance through which the electron beam passes increases as the acceleration voltage increases. In the case of an acceleration voltage of 100 to 300 kV, 2R is 100 nm or less, and in the case of 3 MV, it is 10 μm or less.

前記試料片10を図3に示す試料台13に固定する。試料台13の上部には試料片10を設置する台、下部には試料台13を棒状支持具15に固定するネジ 16が設けられている。試料片10を接着剤で固定する試料台(図3(a))とネジで固定する試料台(図3(b))がある。   The sample piece 10 is fixed to a sample table 13 shown in FIG. At the upper part of the sample stage 13, a stage for installing the sample piece 10 is provided, and at the lower part, a screw 16 for fixing the sample stage 13 to the rod-like support 15 is provided. There are a sample table (FIG. 3A) for fixing the sample piece 10 with an adhesive and a sample table (FIG. 3B) for fixing with a screw.

図3(a)の試料台13では試料台13の上部と試料片10の下面を接着剤で固定する。装置構造が単純なので小型化が容易であるという特徴を持つ。図3 (b)の試料台13は試料台13の上部に試料を設置する凹状部分を有し、上記凹状部分の外枠に取り付けられている4本のネジ40で試料片10を固定する。この構造では、試料台内の試料位置の微調整を4本のネジで行える。また試料片10の脱着が容易なので、一度観察した試料片10に他の装置で処理を施した後、同じ試料片10を観察することも可能である。また接着剤を用いないので、試料室内の真空度の劣化を避けられる。   3A, the upper part of the sample stage 13 and the lower surface of the sample piece 10 are fixed with an adhesive. Since the device structure is simple, it is easy to downsize. The sample stage 13 in FIG. 3 (b) has a concave part for placing the sample on the upper part of the sample stage 13, and the sample piece 10 is fixed by four screws 40 attached to the outer frame of the concave part. In this structure, fine adjustment of the sample position in the sample table can be performed with four screws. In addition, since the sample piece 10 can be easily detached, it is possible to observe the same sample piece 10 after processing the sample piece 10 once observed with another apparatus. Further, since no adhesive is used, deterioration of the degree of vacuum in the sample chamber can be avoided.

図4に1軸全方向傾斜ホルダの構成図を示す。1軸全方向傾斜試料ホルダは保持筒14によって支えられた棒状支持具15を有し、上記棒状支持具15は1軸全方向に傾斜できる。試料傾斜軸方向をZ軸,電子線の入射方向をY軸,前記2つの軸と直交する方向をX軸とする。試料片10の並行移動は従来のTEM用試料ホルダと同様に、パルスモータとテコを用いたホルダ微動機構により、試料ホルダ全体をXYZ方向に移動させて実現する。試料片10を固定した試料台13は棒状保持具15の先端に設けられたネジ穴に試料台13下部のネジ16を差し込んで取り付ける。   FIG. 4 shows a configuration diagram of the uniaxial omnidirectional tilt holder. The uniaxial omnidirectional sample holder has a bar-like support 15 supported by a holding cylinder 14, and the bar-like support 15 can be tilted in all directions on one axis. The sample tilt axis direction is the Z axis, the incident direction of the electron beam is the Y axis, and the direction perpendicular to the two axes is the X axis. Similar to the conventional TEM sample holder, the parallel movement of the sample piece 10 is realized by moving the entire sample holder in the XYZ directions by a holder fine movement mechanism using a pulse motor and a lever. The sample stage 13 to which the sample piece 10 is fixed is attached by inserting a screw 16 below the sample stage 13 into a screw hole provided at the tip of the rod-shaped holder 15.

試料台13には、試料台固定の際に突起11の破壊を防ぐため、図7に示すような保護カバー34が取り付けられる。上記保護カバー34は筒状の形状をしており、側面に縦長の穴があいている。図7(a)に示すように保護カバー34を上げてネジ41で固定しておくと、作業中に誤って突起11を破壊することがかなり防止できる。突起11を側面から加工・観察する際は、図7(b)に示すように保護カバー34を下げ、ネジ41で固定して使用する。   A protective cover 34 as shown in FIG. 7 is attached to the sample table 13 in order to prevent the protrusion 11 from being destroyed when the sample table is fixed. The protective cover 34 has a cylindrical shape, and has a vertically long hole in the side surface. If the protective cover 34 is raised and fixed with the screw 41 as shown in FIG. 7A, it is possible to considerably prevent the protrusion 11 from being accidentally broken during the operation. When processing and observing the protrusion 11 from the side, the protective cover 34 is lowered and fixed with screws 41 as shown in FIG.

ネジ16の中心軸と試料傾斜軸Zを一致させてあるので、棒状支持具15を傾斜させると試料台13はネジ16の中心軸回りに傾斜する。更に突起11の中心軸とネジ16の中心軸を一致させて試料片10を試料台13に固定すれば、突起11つまり観察対象12を1軸全方向に傾斜して観察できる。   Since the center axis of the screw 16 and the sample tilt axis Z coincide with each other, when the rod-shaped support 15 is tilted, the sample stage 13 tilts around the center axis of the screw 16. Furthermore, if the sample piece 10 is fixed to the sample stage 13 with the center axis of the protrusion 11 and the center axis of the screw 16 aligned, the protrusion 11, that is, the observation object 12 can be observed tilted in one axis in all directions.

突起11の中心軸zと試料傾斜軸Zを一致させるための装置としては、例えば以下の2つがある。   For example, there are the following two apparatuses for aligning the center axis z of the protrusion 11 with the sample tilt axis Z.

1つは前記試料台13に図5(a)に示す様に付けられた目印17と光軸上に十字のパターン18が挿入された光学顕微鏡を用いるものである。上記目印17は前記試料台13上部に向かい合わせに2組付けられており、各目印を結ぶ直線は試料台13を棒状支持具15に固定した際にZ軸で交差する様になっている。試料台13の目印17を結ぶ直線と十字パターン18が一致する様に試料台13を設置し、上記試料台13に突起11の先端が十字パターン18の中心と一致するよう試料を固定すれば、突起11の中心軸zと試料ホルダの試料傾斜軸Zが一致する。   One is to use an optical microscope in which a mark 17 provided on the sample stage 13 as shown in FIG. 5A and a cross pattern 18 are inserted on the optical axis. Two marks 17 are assembled so as to face the upper part of the sample stage 13, and a straight line connecting the marks intersects with the Z axis when the sample stage 13 is fixed to the rod-shaped support 15. If the sample stage 13 is installed so that the straight line connecting the marks 17 of the sample stage 13 and the cross pattern 18 coincide, and the sample is fixed to the sample stage 13 so that the tip of the protrusion 11 coincides with the center of the cross pattern 18, The central axis z of the protrusion 11 coincides with the sample tilt axis Z of the sample holder.

もう1つは、試料台13を差し込めるネジ穴を有した試料台回転装置(図5 (b))と光学顕微鏡を用いるものである。上記回転台19は上記試料台13をネジ16の中心軸回りに回転させることができる。試料片10を乗せた試料台 13を回転させ、光学顕微鏡で突起11の移動を観察する。突起11の中心軸zが試料台と回転軸と一致すれは、突起11の中心位置は回転しなくなる。   The other uses a sample stage rotating device (FIG. 5B) having a screw hole into which the sample stage 13 can be inserted and an optical microscope. The rotating table 19 can rotate the sample table 13 around the central axis of the screw 16. The sample stage 13 on which the sample piece 10 is placed is rotated, and the movement of the protrusion 11 is observed with an optical microscope. If the center axis z of the protrusion 11 coincides with the sample stage and the rotation axis, the center position of the protrusion 11 does not rotate.

なお図2に示す形状以外の試料片、例えば支持棒の先端に観察対象が付着している試料や様々な形状の生物試料などを立体的に観察する場合、試料台13を各試料形状に応じて加工し、上記加工された試料台の下部に試料台13と共通のネジ16を設ければ、共通の棒状支持具15に装着できる。つまり試料形状に応じて加工する箇所は試料台のみで良い。   In addition, when observing a sample piece other than the shape shown in FIG. 2, for example, a sample in which an observation target is attached to the tip of a support bar or a biological sample of various shapes, in three dimensions, the sample stage 13 is set according to each sample shape. If a common screw 16 with the sample stage 13 is provided at the lower part of the processed sample stage, it can be attached to the common bar-shaped support 15. In other words, only the sample stage may be processed according to the sample shape.

また他の計測装置で試料片を観察する際、上記計測装置の試料ホルダに前記試料台固定用ネジに対応するネジ穴を設けておけば、試料台13を共通使用できる。例えば図6に示す走査電子顕微鏡(以下略してSEM)用試料ホルダにネジ 16に適応するネジ穴を設けておけば、試料片の加工形状を高分解能でSEM観察できる。   Further, when observing a sample piece with another measuring device, the sample table 13 can be used in common if a screw hole corresponding to the sample table fixing screw is provided in the sample holder of the measuring device. For example, if a screw hole suitable for the screw 16 is provided in a sample holder for a scanning electron microscope (hereinafter abbreviated as SEM) shown in FIG. 6, the processed shape of the sample piece can be observed with high-resolution SEM.

次に3次元構造解析用試料片作製装置である集束イオンビーム加工装置の基本構成を図8に示す。液体金属イオン源21,コンデンサレンズ22,ブランカ 23,イオンビーム偏向器24,対物レンズ25,試料ホルダ26,試料傾斜機構27,試料冷却機構28,2次イオン検出及び2次イオン質量分析器29及び画像記録と制御用の計算機30から構成される。試料ホルダ26として、前記試料ホルダ5を含む他の試料ホルダを使用できる。上記偏向器24は計算機30の制御によってを任意の走査方式で走査できる。また上記ブランカ23及び偏向器24は計算機30によって制御されており、集束イオンビームが指定領域を走査しようとするとブランカ23によって試料片10へのイオン照射が中断される機能を有する。   Next, FIG. 8 shows a basic configuration of a focused ion beam processing apparatus which is a three-dimensional structural analysis specimen preparation apparatus. Liquid metal ion source 21, condenser lens 22, blanker 23, ion beam deflector 24, objective lens 25, sample holder 26, sample tilt mechanism 27, sample cooling mechanism 28, secondary ion detection and secondary ion mass analyzer 29 and It is composed of a computer 30 for image recording and control. As the sample holder 26, another sample holder including the sample holder 5 can be used. The deflector 24 can be scanned by an arbitrary scanning method under the control of the computer 30. The blanker 23 and the deflector 24 are controlled by a computer 30 and have a function of interrupting ion irradiation to the sample piece 10 by the blanker 23 when the focused ion beam attempts to scan a specified region.

次に3次元解析用試料作製法について説明する。本工程によって図2に示す形状に試料片10を加工する。   Next, a method for preparing a sample for three-dimensional analysis will be described. By this step, the sample piece 10 is processed into the shape shown in FIG.

まずダイサーを用いて太めの突起11を持つチップに加工する。ダイサーの加工精度では突起11の幅は数10μmである。上記方法としては、突起11を作製してからチップに切り分ける方法と、チップに切り分けてから突起11を作製する方法の2つがある。   First, a chip having a thick protrusion 11 is processed using a dicer. In the processing accuracy of the dicer, the width of the protrusion 11 is several tens of μm. As the above method, there are two methods, that is, a method in which the protrusion 11 is formed and then cut into chips, and a method in which the protrusion 11 is formed after cutting into chips.

まず前者の手順を図9に示す。ウェハをダイサーにセットし、幅の厚いダイサー31を用いて突起11以外の部分を削り取る(図9(a))。その後幅の薄いダイサー31で図3に示す試料台13に固定できる大きさのチップを切り出す (図9(b))。本法はウェハ内で同一の加工パターンが繰り返されている試料に有効である。   First, the former procedure is shown in FIG. The wafer is set on a dicer, and a portion other than the protrusions 11 is scraped off using a thick dicer 31 (FIG. 9A). Thereafter, a chip having a size that can be fixed to the sample stage 13 shown in FIG. 3 is cut out by a thin dicer 31 (FIG. 9B). This method is effective for samples in which the same processing pattern is repeated in the wafer.

次に後者の手順を図10に示す。ダイサー31でウェハをチップに切り出した後、突起以外の部分をダイサー31で切り出すあるいは削り取る。前者の方法ではウェハ表面と直交する突起11つまり結晶成長方向と同じ方向の突起11しか作製できないのに対し、本法では任意方向の突起11を作製できる。   Next, the latter procedure is shown in FIG. After the wafer is cut into chips by the dicer 31, the portions other than the protrusions are cut or cut by the dicer 31. In the former method, only the projections 11 orthogonal to the wafer surface, that is, the projections 11 in the same direction as the crystal growth direction can be produced, whereas in this method, the projections 11 in any direction can be produced.

次に前記試料片10を前記試料台13に、太めの突起11の中心軸と試料傾斜軸を一致させて固定する工程を示す。試料片10が試料台13の中心から大きく外れると、後の工程の障害となる。例えば試料片10を回転させながら集束イオンビームを加工する際、試料片10の回転によって突起11が移動してしまうと、突起11の加工精度が低下する。位置ずれが大きい場合にはそれを補正するための工夫が必要である。例えば、位置ずれを補正する試料ホルダ微動機構、位置ずれに追随する集束イオンビーム照射機構等が必要となってくる。   Next, a step of fixing the sample piece 10 to the sample stage 13 with the central axis of the thick protrusion 11 and the sample tilt axis aligned with each other is shown. If the sample piece 10 deviates greatly from the center of the sample stage 13, it will be an obstacle to the subsequent process. For example, when processing the focused ion beam while rotating the sample piece 10, if the protrusion 11 moves due to the rotation of the sample piece 10, the processing accuracy of the protrusion 11 is lowered. When the positional deviation is large, a device for correcting it is necessary. For example, a sample holder fine movement mechanism that corrects the positional deviation, a focused ion beam irradiation mechanism that follows the positional deviation, and the like are required.

突起11の中心軸と試料傾斜軸を一致させるために、光学顕微鏡に挿入された十字のパターン18と試料台13の目印17を結ぶ直線とが一致する様に試料台13を設置する方法(図5(a))や、図5(b)に示す様に試料台13を回転させながら突起11の中心の運動を光学顕微鏡で観察し、突起11の中心位置が回転しなくなる様に試料位置を微調整する方法を用いる。   In order to make the center axis of the projection 11 coincide with the sample tilt axis, the sample stage 13 is set so that the cross pattern 18 inserted into the optical microscope and the straight line connecting the mark 17 of the sample stage 13 coincide (FIG. 5 (a)) or the movement of the center of the protrusion 11 is observed with an optical microscope while rotating the sample stage 13 as shown in FIG. 5 (b), and the sample position is adjusted so that the center position of the protrusion 11 does not rotate. Use a fine-tuning method.

次に図11,図12に集束イオンビームを用いて、電子線が透過できる太さに突起11を細線化する工程を示す。上記工程には集束イオンビームを突起11の中心軸zに対してほぼ並行な方向から入射する方法と直交する方向から入射する方法がある。   Next, FIGS. 11 and 12 show a process of thinning the protrusion 11 to a thickness that allows transmission of an electron beam using a focused ion beam. There is a method in which the focused ion beam is incident from a direction orthogonal to a method in which the focused ion beam is incident from a direction substantially parallel to the central axis z of the protrusion 11.

まず、図11では集束イオンビーム33を突起11の中心軸zに対してほぼ並行な方向から入射する工程を示す。試料片10を突起11の中心軸zと集束イオンビーム33の入射方向が並行になるように集束イオンビーム試料室に設置し、2次イオン像を観察する。この観察像を計算機に入力して画像表示装置に表示し、突起領域111を指定する。突起領域111の中心つまり加工後突起先端となる位置に集束イオンビームを用いて目印32をマーキングする。細線化された突起11をz軸方向から観察した像から突起内の解析対象12の位置を特定するのは一般に困難だからである。尚、太めの突起11に加工した時点で観察対象の位置を見失う試料は、太めの突起11に加工する前に目印32を付けておく必要がある。また本工程によって観察対象近傍の突起11の太さは100nm以下になるので突起は非常に破損し易くなる。突起の破損防止のためには突起形状を円柱状よりも円錐状にすることが望ましい。   First, FIG. 11 shows a step in which the focused ion beam 33 is incident from a direction substantially parallel to the central axis z of the protrusion 11. The sample piece 10 is placed in the focused ion beam sample chamber so that the central axis z of the projection 11 and the incident direction of the focused ion beam 33 are parallel, and a secondary ion image is observed. This observation image is input to the computer and displayed on the image display device, and the projection region 111 is designated. The mark 32 is marked by using a focused ion beam at the center of the projection region 111, that is, at the position that becomes the tip of the projection after processing. This is because it is generally difficult to specify the position of the analysis target 12 in the projection from an image obtained by observing the thinned projection 11 from the z-axis direction. Note that a sample that loses the position of the observation target when it is processed into the thick protrusion 11 needs to have a mark 32 before it is processed into the thick protrusion 11. In addition, since the thickness of the protrusion 11 near the observation target is 100 nm or less by this step, the protrusion is very easily damaged. In order to prevent breakage of the protrusion, it is desirable that the protrusion shape be conical rather than cylindrical.

従来の集束イオンビーム加工法では試料上で集束イオンビーム33を図11 (a)に示す様に走査していた。本法では突起領域111を残して集束イオンビーム33を走査しなければならない。例えば図11(a)に示す様に突起領域 111を指定した場合、集束イオンビーム33を図11(b)に示す様に円状に走査すれば突起以外の領域のみを削除できる(図11(c))。楕円や正方形など形状に加工したい場合は集束イオンビーム33を楕円または正方形に走査すれば良い。突起形状を円錐状にする場合は、突起中心近傍が残るように、中心近傍における集束イオンビーム走査速度を周辺近傍よりも速くなるように調整する。本法は従来の集束イオンビーム加工装置の集束イオンビーム偏向器の制御プログラムを書替えれば実現できる。   In the conventional focused ion beam processing method, the focused ion beam 33 is scanned on the sample as shown in FIG. In this method, the focused ion beam 33 must be scanned while leaving the projection region 111. For example, when the projection region 111 is designated as shown in FIG. 11A, only the region other than the projection can be deleted by scanning the focused ion beam 33 in a circular shape as shown in FIG. c)). When processing into a shape such as an ellipse or a square, the focused ion beam 33 may be scanned into an ellipse or a square. When the protrusion shape is conical, the focused ion beam scanning speed in the vicinity of the center is adjusted to be higher than that in the vicinity of the periphery so that the vicinity of the protrusion center remains. This method can be realized by rewriting the control program for the focused ion beam deflector of the conventional focused ion beam processing apparatus.

また別の方法として図12のように、計算機制御されたブランカ23を利用する方法がある。集束イオンビーム33は従来と同様に走査し(図12(a))、集束イオンビーム33が突起領域111を走査する時には計算機制御されたブランカによって集束イオンビーム照射が中断される(図12(b))。突起形状を円錐状にする場合は、集束イオンビーム照射中断領域を同心円的に拡大・縮小し、中心近傍が残るように調整する。前記図11の加工法はでは集束イオンビーム走査モードがTVの走査モードと異なるため、加工中に試料の2次イオン像を得ることができないが、本法では試料加工中の2次イオン像をTV画面上で常に監視しながら加工を行える。   As another method, there is a method using a computer-controlled blanker 23 as shown in FIG. The focused ion beam 33 is scanned in the same manner as before (FIG. 12A), and when the focused ion beam 33 scans the projection region 111, the focused ion beam irradiation is interrupted by the computer controlled blanker (FIG. 12B). )). When the projection shape is conical, the focused ion beam irradiation interruption region is concentrically enlarged / reduced and adjusted so that the vicinity of the center remains. In the processing method of FIG. 11, since the focused ion beam scanning mode is different from the TV scanning mode, a secondary ion image of a sample cannot be obtained during processing. However, in this method, a secondary ion image during sample processing is not obtained. Machining can be performed while constantly monitoring on the TV screen.

次に、集束イオンビーム33を突起11の中心軸zに対してほぼ直交する方向から入射する工程を示す。試料片10を突起11の中心軸zと集束イオンビーム33の入射方向が直交するように集束イオンビーム試料室に設置し、2次イオン像を観察する。例えば図13(a)の様に突起の根本近傍に目印32をマーキングする。突起領域111を指定し、他の領域は集束イオンビーム33を照射して削除する。上記領域の削除が終了すると試料を傾斜し、上記工程を繰り返し(図13(b))、所望の形状に試料を加工する(図13(c))。集束イオンビーム33の入射方向と突起11の中心軸zを並行に設定して加工する方法では試料加工中に突起11の真上からしか観察できなかったが、本法では突起11を横方向から観察できるので、突起11の根本近傍のデバイスパターン形状を参照しながら、観察対象の位置を指定することができる。   Next, a process in which the focused ion beam 33 is incident from a direction substantially orthogonal to the central axis z of the protrusion 11 will be described. The sample piece 10 is placed in the focused ion beam sample chamber so that the central axis z of the protrusion 11 and the incident direction of the focused ion beam 33 are orthogonal to each other, and a secondary ion image is observed. For example, as shown in FIG. 13A, a mark 32 is marked near the root of the protrusion. The projection region 111 is designated, and other regions are deleted by irradiating the focused ion beam 33. When the deletion of the region is completed, the sample is tilted, the above process is repeated (FIG. 13B), and the sample is processed into a desired shape (FIG. 13C). In the processing method in which the incident direction of the focused ion beam 33 and the central axis z of the protrusion 11 are set in parallel, it can be observed only from directly above the protrusion 11 during sample processing. Since observation is possible, the position of the observation target can be specified while referring to the device pattern shape near the root of the protrusion 11.

また試料片10を回転させながら集束イオンビーム33を照射しても良い。図14に示す様に試料片10をZ軸回りに回転させながら集束イオンビーム33を照射する。その際集束イオンビーム33の入射位置を突起11の中心軸Zの位置よりも所望の半径Rだけずらして指定する。集束イオンビーム33の試料表面に対する入射角度θは、突起半径rが大きいときは急角度(θ1)で入射するので、試料ダメージは大きいが加工速度は速くなる(図15(a))。突起半径rが小さくなるに従って試料入射角度が小さくなる(θ2
)ので、加工速度は遅くなるが試料ダメージは少なくなる(図15(b))。突起半径rが所望の半径Rよりも小さくなると集束イオンビーム照射は自動的に終了する(図15(c))。
Further, the focused ion beam 33 may be irradiated while rotating the sample piece 10. As shown in FIG. 14, the focused ion beam 33 is irradiated while rotating the sample piece 10 around the Z axis. At this time, the incident position of the focused ion beam 33 is specified by being shifted from the position of the central axis Z of the protrusion 11 by a desired radius R. The incident angle θ of the focused ion beam 33 with respect to the sample surface is incident at a steep angle (θ1) when the projection radius r is large, so that the sample damage is large but the processing speed is high (FIG. 15A). As the projection radius r decreases, the sample incident angle decreases (θ2
Therefore, the processing speed is reduced, but the sample damage is reduced (FIG. 15B). When the projection radius r becomes smaller than the desired radius R, the focused ion beam irradiation is automatically terminated (FIG. 15C).

なお、突起11の中心軸zと試料回転軸Zの位置がずれていると、試料を回転させた時に突起11の中心軸の位置がずれるので、予め幾つかの回転角度における突起11の中心軸の位置を測定して計算機に入力し、上記位置ずれを追跡するように試料回転と同期させながら集束イオンビームを走査する。本法には集束イオンビームのビーム径よりも細い突起を比較的容易に作製できるという特徴がある。また加工が進むに連れて試料ダメージが小さくなることから、試料の仕上げ工程として有効である。   If the position of the center axis z of the protrusion 11 is shifted from the position of the sample rotation axis Z, the position of the center axis of the protrusion 11 is shifted when the sample is rotated. The position is measured and input to a computer, and the focused ion beam is scanned while synchronizing with the sample rotation so as to track the positional deviation. This method is characterized in that a projection thinner than the beam diameter of the focused ion beam can be produced relatively easily. In addition, since the sample damage is reduced as the processing proceeds, it is effective as a sample finishing step.

以上の方法を用いて試料を加工する。試料が所望の形状に加工されたかの判断は2次イオン像による形状観察、または2次イオン質量分析法による組成解析、2次電子像による高空間分解能の形状観察等を用いる。   The sample is processed using the above method. Judgment of whether the sample has been processed into a desired shape uses shape observation by secondary ion image, composition analysis by secondary ion mass spectrometry, shape observation with high spatial resolution by secondary electron image, or the like.

なお突起状に加工する工程において、試料を観察してから解析対象を決定する場合もある。つまりあるデバイスで不良原因となり得る箇所が複数箇所存在し、TEM像で観察してからでなければ3次元的に解析したい領域が決定できない場合がある。例えば図16に示す様に、パターン形状の一部が断線している場合、まず図16(a)に示すような板状に試料を加工してTEMで観察し、断線箇所を観察対象12と特定した後、上記観察対象12を内包する突起(図16(b))に加工し、断線状態を3次元的に観察する。   Note that, in the process of processing into a protruding shape, the analysis target may be determined after observing the sample. In other words, there are a plurality of locations that can cause defects in a certain device, and there are cases where an area to be analyzed three-dimensionally cannot be determined unless it is observed with a TEM image. For example, as shown in FIG. 16, when a part of the pattern shape is disconnected, first, the sample is processed into a plate shape as shown in FIG. After specifying, it processes into the protrusion (FIG.16 (b)) which includes the said observation object 12, and observes a disconnection state three-dimensionally.

前記工程によって作製された試料片10の観察は従来のTEM観察と同様に行う。試料片10が固定されている試料台13を保持筒14内の棒状支持具15に固定し、TEM試料室に挿入し、加速した電子線を観察対象12に照射し、そのTEM像を得る。観察対象12をz軸回りに自由に傾斜させながら3次元構造を観察する。   Observation of the sample piece 10 produced by the above process is performed in the same manner as conventional TEM observation. A sample stage 13 on which a sample piece 10 is fixed is fixed to a rod-like support 15 in a holding cylinder 14, inserted into a TEM sample chamber, and irradiated with an accelerated electron beam 12 to obtain a TEM image. The three-dimensional structure is observed while the observation object 12 is freely tilted around the z axis.

本発明を用いれば、例えばある不良箇所近傍のデバイスパターン形状及びその周辺の析出物の3次元分布等を直接評価できる。また本技術によって全方向の投影像を得ることが可能となり、3次元再構成のための必要条件が初めて満たされたのである。本法によって、ただ1つの試料片から任意形状の構造を再構成することが可能となる。   By using the present invention, it is possible to directly evaluate, for example, the device pattern shape in the vicinity of a certain defective portion and the three-dimensional distribution of precipitates in the vicinity thereof. In addition, this technology makes it possible to obtain an omnidirectional projection image, and the requirement for three-dimensional reconstruction is satisfied for the first time. With this method, it is possible to reconstruct a structure of an arbitrary shape from only one sample piece.

なお、観察対象12の領域が広範囲である場合、観察対象12を内包する突起の直径2Rは必然的に大きくなってしまう。突起の直径2Rが大きくなると、試料内で散乱される電子が増加するため、観察像の空間分解能が低下してしまう。加速電圧100kV〜300kVで通常のTEM像を得る際、試料厚さを数10nm程度にして観察しており、これ以上厚くすると観察像が不鮮明になってくる。厚膜試料観察に対しては、エネルギフィルタを用いた非弾性散乱電子の除去が効果を発揮する。試料内を通過した電子のうち弾性散乱電子のみが通過できる様にエネルギフィルタのスリットを設定して非散乱電子を除去すれば、フィルタなしの場合の数倍の厚さの試料が観察できるようになる。   In addition, when the area | region of the observation object 12 is wide, the diameter 2R of the processus | protrusion which encloses the observation object 12 will necessarily become large. When the diameter 2R of the protrusion is increased, the number of electrons scattered in the sample increases, so that the spatial resolution of the observation image is reduced. When a normal TEM image is obtained at an acceleration voltage of 100 kV to 300 kV, the sample is observed with a thickness of several tens of nanometers. If the sample is thicker than this, the observed image becomes unclear. Removal of inelastically scattered electrons using an energy filter is effective for thick film sample observation. If the slit of the energy filter is set so that only the elastic scattered electrons among the electrons that have passed through the sample can be passed and the non-scattered electrons are removed, the sample can be observed several times thicker than the case without the filter. Become.

1…電子銃、2…コンデンサレンズ、3…電子偏向コイル、4…対物レンズ、5…試料ホルダ、6…試料傾斜機構、7…in−column型エネルギフィルタ、8…画像記録装置、9…制御用ソフトと画像処理用ソフトを備えた計算機、10…試料片、11…突起、12…観察対象、13…試料台、14…保持筒、15…棒状支持具、16…試料台固定用ネジ、17…試料片位置調整用の目印、18…光学顕微鏡の光軸上に挿入された十字パターン、19…試料台回転装置、20…SEM 用標準試料台、21…液体金属イオン源、22…コンデンサレンズ、23…ブランカ、24…イオンビーム偏向器、25…対物レンズ、26…試料ホルダ、27…試料傾斜機構、28…試料冷却機構、29…質量分析機、30…画像記録装置及び制御用計算機、31…ダイサー、32…観察対象の位置参照に用いる目印、33…イオンビーム、34…試料破損保護カバー、35…post−column型エネルギフィルタ、111…突起領域。   DESCRIPTION OF SYMBOLS 1 ... Electron gun, 2 ... Condenser lens, 3 ... Electron deflection coil, 4 ... Objective lens, 5 ... Sample holder, 6 ... Sample inclination mechanism, 7 ... In-column type energy filter, 8 ... Image recording device, 9 ... Control A computer equipped with software for image processing and software for image processing, 10 ... sample piece, 11 ... protrusion, 12 ... observation object, 13 ... sample stand, 14 ... holding cylinder, 15 ... rod-shaped support, 16 ... screw for fixing the sample stand, DESCRIPTION OF SYMBOLS 17 ... Mark for sample piece position adjustment, 18 ... Cross pattern inserted on the optical axis of optical microscope, 19 ... Sample stage rotation apparatus, 20 ... Standard sample stage for SEM, 21 ... Liquid metal ion source, 22 ... Condenser Lens, 23 ... Blanker, 24 ... Ion beam deflector, 25 ... Objective lens, 26 ... Sample holder, 27 ... Sample tilting mechanism, 28 ... Sample cooling mechanism, 29 ... Mass spectrometer, 30 ... Image recording device and control computer 31 ... Dicer, 32 ... mark used in the location reference of the observation object, 33 ... ion beam, 34 ... sample damage protective cover, 35 ... post-column type energy filter, 111 ... projection area.

Claims (7)

透過電子顕微鏡を用いた試料の三次元構造観察方法であって、
観察対象を内包する突起部を有する上記試料を集束イオンビームにより作製する工程と、
上記透過電子顕微鏡の電子レンズの上極と下極の間に上記試料が載置された試料台を設置する工程と、
上記突起部の中心軸回りの任意方向に上記観察対象を傾斜させながら電子線を照射して、上記観察対象の全方向の投影像を得る工程と、
上記全方向の投影像から上記試料の構造を三次元的に解析する工程と、
上記試料台には、上記突起部の中心軸に対して任意角度傾斜できる支持具が取り付けられており、
上記支持具を支える保持筒の少なくとも一部が、上記電子レンズの上極と下極の間に配置され、
上記試料台を上記保持筒とは独立して上記突起部の中心軸まわりに傾斜させながら、上記観察対象に電子線を照射して、上記観察対象の全方向の投影像を得る三次元構造観察方法。
A method for observing a three-dimensional structure of a sample using a transmission electron microscope,
Producing the sample having a protrusion containing the observation object by a focused ion beam;
Installing a sample stage on which the sample is placed between the upper and lower poles of the electron lens of the transmission electron microscope;
Irradiating an electron beam while tilting the observation target in an arbitrary direction around the central axis of the protrusion, and obtaining a projection image in all directions of the observation target;
A three-dimensional analysis of the structure of the sample from the omnidirectional projection image;
A support that can be tilted at an arbitrary angle with respect to the central axis of the protrusion is attached to the sample stage.
At least a part of the holding cylinder that supports the support is disposed between the upper pole and the lower pole of the electronic lens,
Three-dimensional structure observation for irradiating the observation object with an electron beam while tilting the sample stage around the central axis of the protrusion independently of the holding cylinder to obtain an omnidirectional projection image of the observation object Method.
透過電子顕微鏡を用いた試料の三次元構造観察方法であって、
観察対象を含む円柱状もしくは円錐状の突起部を有する上記試料を集束イオンビームにより作製する工程と、
上記透過電子顕微鏡の電子レンズの上極と下極の間に上記試料が載置された試料台を設置する工程と、
上記試料台を固定している支持具を試料傾斜軸に対して1軸全方向に傾斜させながら上記観察対象に電子線を照射して、上記観察対象の全方向の投影像を得る工程と、
上記全方向の投影像から上記試料の三次元構造を再構成する工程と、
上記試料台には、上記突起部の中心軸に対して任意角度傾斜できる支持具が取り付けられており、
上記支持具を支える保持筒の少なくとも一部が、上記電子レンズの上極と下極の間に配置され、
上記試料台を上記保持筒とは独立して上記突起部の中心軸まわりに傾斜させながら、上記観察対象に電子線を照射して、上記観察対象の全方向の投影像を得る三次元構造観察方法。
A method for observing a three-dimensional structure of a sample using a transmission electron microscope,
Producing a sample having a cylindrical or conical protrusion including an observation target by a focused ion beam;
Installing a sample stage on which the sample is placed between the upper and lower poles of the electron lens of the transmission electron microscope;
Irradiating the observation target with an electron beam while tilting the support fixture fixing the sample stage in one axis in all directions with respect to the sample tilt axis to obtain a projection image in all directions of the observation target;
Reconstructing the three-dimensional structure of the sample from the omnidirectional projection image;
A support that can be tilted at an arbitrary angle with respect to the central axis of the protrusion is attached to the sample stage.
At least a part of the holding cylinder that supports the support is disposed between the upper pole and the lower pole of the electronic lens,
Three-dimensional structure observation for irradiating the observation object with an electron beam while tilting the sample stage around the central axis of the protrusion independently of the holding cylinder to obtain an omnidirectional projection image of the observation object Method.
請求項2に記載の三次元構造観察方法であって、
上記試料傾斜軸と上記突起部の中心軸を一致させて上記試料は上記試料台に固定される三次元構造観察方法。
The three-dimensional structure observation method according to claim 2,
A three-dimensional structure observation method in which the sample is fixed to the sample stage with the sample tilt axis and the central axis of the protrusion aligned.
請求項1又は2に記載の三次元構造観察方法であって、
上記傾斜により生ずる上記試料と上記試料台との位置ずれを追跡するように上記突起部の中心軸回りの傾斜と同期させながら上記集束イオンビームを照射する三次元構造観察方法。
The three-dimensional structure observation method according to claim 1 or 2,
A three-dimensional structure observation method of irradiating the focused ion beam in synchronization with an inclination around the central axis of the projection so as to track a positional deviation between the sample and the sample stage caused by the inclination.
請求項1又は2に記載の三次元構造観察方法であって、
上記試料に集束イオンビームを照射して得られる観察像を表示装置に表示する工程と、
上記表示した観察像に基づいて上記集束イオンビームにより上記試料にマーキングを行う工程と、を有する三次元構造観察方法。
The three-dimensional structure observation method according to claim 1 or 2,
Displaying an observation image obtained by irradiating the sample with a focused ion beam on a display device;
Marking the sample with the focused ion beam based on the displayed observation image.
請求項1又は2に記載の三次元構造観察方法であって、
上記突起部の中心軸と上記集束イオンビームの入射方向とが直交する三次元構造観察方法。
The three-dimensional structure observation method according to claim 1 or 2,
A three-dimensional structure observation method in which the central axis of the protrusion is orthogonal to the incident direction of the focused ion beam.
請求項1又は2に記載の三次元構造観察方法であって、
上記突起部を有する上記試料を集束イオンビームにより作製する工程は、
上記集束イオンビームにより上記試料を加工後、上記透過電子顕微鏡により上記観察対象を特定する工程と、
上記集束イオンビームにより上記特定された観察対象を含む上記突起部に加工する工程と、を有する三次元構造観察方法。
The three-dimensional structure observation method according to claim 1 or 2,
The step of producing the sample having the protrusion by a focused ion beam is as follows.
After the sample is processed by the focused ion beam, the observation target is specified by the transmission electron microscope;
And processing the protrusions including the specified observation object with the focused ion beam.
JP2009051471A 2009-03-05 2009-03-05 Three-dimensional structure observation method Expired - Fee Related JP4433092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009051471A JP4433092B2 (en) 2009-03-05 2009-03-05 Three-dimensional structure observation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009051471A JP4433092B2 (en) 2009-03-05 2009-03-05 Three-dimensional structure observation method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008182177A Division JP2008262921A (en) 2008-07-14 2008-07-14 Three-dimensional structure observation sample formation device, electron microscope, and its method

Publications (2)

Publication Number Publication Date
JP2009122122A JP2009122122A (en) 2009-06-04
JP4433092B2 true JP4433092B2 (en) 2010-03-17

Family

ID=40814400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009051471A Expired - Fee Related JP4433092B2 (en) 2009-03-05 2009-03-05 Three-dimensional structure observation method

Country Status (1)

Country Link
JP (1) JP4433092B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5339368B2 (en) * 2009-09-18 2013-11-13 独立行政法人産業技術総合研究所 3D image construction image processing method in electron microscope
JP5517559B2 (en) 2009-10-26 2014-06-11 株式会社日立ハイテクノロジーズ Charged particle beam apparatus and display method of three-dimensional information in charged particle beam apparatus
KR101564610B1 (en) 2013-11-11 2015-10-30 국립대학법인 울산과학기술대학교 산학협력단 Jig for loading samples on in-situ tip
US11226273B2 (en) * 2016-02-03 2022-01-18 Hitachi High-Tech Corporation Sample holder, ion milling apparatus, sample processing method, sample observing method, and sample processing and observing method

Also Published As

Publication number Publication date
JP2009122122A (en) 2009-06-04

Similar Documents

Publication Publication Date Title
US8476588B2 (en) Method of electron diffraction tomography
US9733164B2 (en) Lamella creation method and device using fixed-angle beam and rotating sample stage
JP3287858B2 (en) Electron microscope device and electron microscope method
US8227781B2 (en) Variable-tilt specimen holder and method and for monitoring milling in a charged-particle instrument
JP4699168B2 (en) Electron microscope sample preparation method
JP3677895B2 (en) Sample preparation apparatus for three-dimensional structure observation, electron microscope and method thereof
JP2003014667A (en) Apparatus and method for observing using electron beam
US9627176B2 (en) Fiducial formation for TEM/STEM tomography tilt-series acquisition and alignment
WO2013108711A1 (en) Charged particle beam microscope, sample holder for charged particle beam microscope, and charged particle beam microscopy
JP4433092B2 (en) Three-dimensional structure observation method
JP4654216B2 (en) Sample holder for charged particle beam equipment
US9514913B2 (en) TEM sample mounting geometry
JP5851318B2 (en) Sample holding device and sample analyzing device
JP4393352B2 (en) electronic microscope
JP4232848B2 (en) Sample preparation apparatus for three-dimensional structure observation, electron microscope and method thereof
JP4988175B2 (en) Sample table for charged particle equipment
JP2008262921A (en) Three-dimensional structure observation sample formation device, electron microscope, and its method
JP2004301852A (en) Device for manufacturing sample for observing three-dimensional structure, electron microscope and sample manufacturing method using the device
JP4845452B2 (en) Sample observation method and charged particle beam apparatus
JP2004301851A (en) Device for manufacturing sample for observing three-dimensional structure, electron microscope and sample manufacturing method using the device
JP2020064780A (en) Charged particle beam device and sample processing observation method
US9947506B2 (en) Sample holder and focused ion beam apparatus
JP2023076412A (en) Method of imaging and milling sample
JP6487294B2 (en) Compound charged particle beam system
JP2001289754A (en) Three-dimensional atomic arrangement observation sample forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees