JP5043797B2 - エンジンの制御装置 - Google Patents

エンジンの制御装置 Download PDF

Info

Publication number
JP5043797B2
JP5043797B2 JP2008265644A JP2008265644A JP5043797B2 JP 5043797 B2 JP5043797 B2 JP 5043797B2 JP 2008265644 A JP2008265644 A JP 2008265644A JP 2008265644 A JP2008265644 A JP 2008265644A JP 5043797 B2 JP5043797 B2 JP 5043797B2
Authority
JP
Japan
Prior art keywords
throttle
pressure
downstream
upstream
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008265644A
Other languages
English (en)
Other versions
JP2010096035A (ja
Inventor
誠二 浅野
慎吾 木村
裕士 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2008265644A priority Critical patent/JP5043797B2/ja
Publication of JP2010096035A publication Critical patent/JP2010096035A/ja
Application granted granted Critical
Publication of JP5043797B2 publication Critical patent/JP5043797B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、エンジンの制御装置に係り、例えば、過給機等を装備したエンジンの過渡運転時にシリンダ(燃焼室)に流入する空気量を正確に算出ないし推定し、得られたシリンダ流入空気量を用いてエンジンの種々の制御を適正に行うことのできるエンジンの制御装置に関する。
従来、シリンダ(燃焼室)に流入する空気量を算出ないし推定する技術としては、例えば下記特許文献1に見られるように、スロットル弁(スロットルと略称する)の開度ないし開口面積、吸気通路におけるスロットル上流側及び下流側の圧力(スロットル上流圧、スロットル下流圧と称す)、及びスロットル上流側の温度に基づいて、スロットルを通過する空気量を算出するものがある。
特開平2005−194960号公報
しかしながら、前記従来技術では、スロットル上流圧及び下流圧とスロットルの開度ないし開口面積で、スロットルを通過する空気量を求め、推定された(若しくは計測された)スロットル上流圧より、推定されたスロットル下流圧が高くなった場合に、スロットル下流からスロットル上流への逆流が考慮されていないと、特に定常運転時において、最終的に求められるシリンダへの流入空気量がエアフローセンサで検出される吸入空気量に対してズレてしまうことがある。また逆流を考慮しても、エンジンコントロールユニットに内蔵されたマイクロコンピュータの計算周期の関係から正逆流の振幅が大きくなり、計算されたシリンダ流入空気量に悪影響を及ぼし、空燃比が所望値からずれる等、ドライバビリティを悪化させるおそれがあった。
本発明は、上記事情に鑑みてなされたもので、その目的とするところは、シリンダ流入空気量を求めるにあたり、スロットル下流側からスロットル上流側への逆流を考慮して、シリンダ流入空気量がエアフローセンサで検出される吸入空気量に対してズレを発生しないようにでき、もって、ドライバビリティ等を向上させることのできるエンジンの制御装置を提供することにある。
前記目的を達成すべく、本発明に係るエンジンの制御装置は、好ましくは、スロットル通過空気量を演算する際に、スロットル前後圧の比較により正逆流を計算し、また、スロットル前後圧の関係、特にスロットル前後圧の比により加重平均の重みを決定し、前記正逆流に加重平均を施し、正逆流を安定させるようにしたものである。
すなわち、本発明に係るエンジンの制御装置の基本構成は、吸入空気量を検出する手段と、エンジン回転数を検出する手段と、吸気通路におけるスロットルの上流側の圧力を推定する上流側圧力推定手段と、吸気通路におけるスロットルの下流側の圧力を推定する下流側圧力推定手段と、前記スロットルの開度ないし開口面積を検出する手段と、前記スロットル上流側の圧力、前記スロットル下流側の圧力、及び前記スロットルの開度ないし開口面積に基づいて前記スロットルを通過する空気量を計算する手段と、前記上流側の圧力と前記下流側の圧力との関係に基づいて前記スロットル部分における空気流の正逆を判断する手段と、前記上流側の圧力と前記下流側の圧力との関係に基づいて前記スロットル部分の空気流の正逆流量を抑制する手段と、前記抑制された正逆流に基づいて前記スロットル下流側の圧力を推定する手段と、前記スロットル下流側の圧力と前記エンジン回転数に基づいてシリンダに流入する空気量を計算する手段と、を備える。
前記上流側圧力推定手段は、好ましくは、前記検出吸入空気量と前記抑制されたスロットル部分における正逆流量との差分に基づいて前記スロットル上流側の圧力勾配を求めるとともに、該圧力勾配を積算し、この積算された圧力勾配に基づいて現在のスロットル上流側の圧力を推定するようにされる。
前記下流側圧力推定手段は、好ましくは、前記抑制されたスロットル部分における正逆流量と前記シリンダに流入する空気量との差分に基づいて前記スロットル下流側の圧力勾配を求めるとともに、該圧力勾配を積算し、この積算された圧力勾配に基づいて現在のスロットルの下流側の圧力を推定するようにされる。
前記スロットル部分における空気流の正逆を判断する手段は、好ましくは、前記スロットル上流側の圧力と前記スロットル下流側の圧力とを比較する手段で構成される。
前記スロットル部分における空気流の正逆流量を抑制する手段は、好ましくは、前記スロットル上流側の圧力が前記スロットル下流側の圧力より高い場合は、スロットル下流側の圧力をスロットル上流側の圧力で除した値を圧力比とし、前記スロットル上流側の圧力が前記スロットル下流側の圧力より低い場合は、スロットル上流側の圧力をスロットル下流側の圧力で除した値を圧力比とする手段と、該圧力比に応じた重みを求める手段と、前記重みで前記スロットル部分の空気流の正逆流に加重平均を施す手段と、を有する。
前記スロットル部分における空気流の正逆流量を抑制する手段は、好ましくは、前記スロットル上流側の圧力と前記スロットル下流側の圧力の差分の絶対値を求める手段と、前記差分の絶対値から加重平均の重みを決定する手段と、前記重みで前記スロットル部分の空気流の正逆流に加重平均を施す手段と、を有する。
本発明によれば、スロットル通過空気量の逆流が考慮されているため、エンジンの高負荷領域の定常運転時でスロットル前後圧が等しくなる近傍において、エアフローセンサ(H/Wセンサ等)で計測されるエンジンの吸入空気量とスロットル下流圧から計算されるシリンダへの流入空気量にズレが発生しない。また正逆流に対して、前記スロットル前後圧が等しくなる近傍で加重平均の重みを大きくすることで、正逆流の振幅を抑制できるので、シリンダ流入空気量を安定させることができ、ドライバビリティを向上させることができる。
以下、本発明のエンジンの制御装置の実施の形態を図面を参照しながら説明する。
図1は、本発明に係る制御装置の一実施形態を、それが適用された車載用エンジンの一例と共に示す概略構成図である。
図1において、本実施形態の制御装置1が適用されたエンジン10は、例えば4つの気筒#1、#2、#3、#4(図には#1を代表して示す)を有する火花点火式の多気筒ガソリンエンジンであって、シリンダヘッド及びシリンダブロックからなるシリンダ12と、このシリンダ12の各気筒#1、#2、#3、#4内に摺動自在に嵌挿されたピストン15と、を有し、ピストン15はコンロッド14を介してクランクシャフト13に連結されている。ピストン15上方には、所定形状の燃焼室(天井ないしルーフ部)を持つ燃焼作動室17が画成され、各気筒#1、#2、#3、#4の燃焼作動室17には、点火コイル34等からなる点火ユニットに接続された点火プラグ35が臨設されている。
燃料の燃焼に供せられる空気は、エアークリーナ(図示せず)から、ホットワイヤ(H/W)式等のエアフローセンサ53やスロットル(スロットル弁)25が配在された管状通路部分、コレクタ27、吸気マニホールド(多岐管)28、吸気ポート29等からなる吸気通路20を通り、その下流端(吸気ポート29端部)に配在された吸気弁21を介してシリンダ12(各気筒#1、#2、#3、#4の燃焼作動室17)に吸入される。
また、吸気通路20におけるエアフローセンサ53とスロットル25との間の部分(スロットル上流部分)には、吸入空気を加圧するための過給機60(の排気側タービンに同軸で連動するインペラ)が配在され、吸気通路20の下流部分(吸気マニホールド28)には、各気筒(#1、#2、#3、#4)毎に、吸気ポート29に向けて燃料を噴射する燃料噴射弁30が臨設され、さらに、吸気通路20のコレクタ27には吸気温度を検出する吸気温センサ52が配在されている。なお、ここでは、吸気通路20におけるスロットル25より下流部分を「吸気管」と称することがある。
燃焼作動室室17に吸入された空気と燃料噴射弁30から噴射された燃料との混合気は、点火プラグ35による火花点火により燃焼せしめられ、その燃焼廃ガス(排ガス)は、燃焼作動室17から排気弁41を介して排気ポート、排気マニホールド、排気浄化用触媒(例えば三元触媒)48が設けられた排気管等からなる排気通路40を通って外部(大気中)に排出される。排気通路40における触媒48より上流側には酸素濃度センサ(空燃比センサ)57が配在されている。
また、各気筒(#1、#2、#3、#4)毎に配備された燃料噴射弁30には、燃料タンク70内の燃料(ガソリン等)が燃料ポンプや燃圧レギュレータ等を備えた燃料供給機構により所定燃圧に調圧されて供給され、燃料噴射弁30は、後述するエンジンコントロールユニット(ECU)100から供給される、そのときの運転状態に応じたパルス幅(開弁時間に相当する)を持つ開弁パルス信号により開弁駆動され、その開弁時間に応じた量の燃料を吸気ポート29に向けて噴射するようになっている。
さらに、吸気通路20には、アイドル時の回転数を制御するための、スロットル25をバイパスする通路61とISCバルブ62からなるアイドルスピードコントロール機構が設けられている。なお、本例では、アイドル回転数はISCバルブ62を開閉制御することにより行うようになっているが、アイドル回転数は、前記スロットル25の開度を制御することにより行うこともできる。
一方、前記エンジン10の種々の制御、つまり、前記燃料噴射弁30における燃料噴射制御、前記点火プラグ35における点火時期制御等を行うべく、マイクロコンピュータを内蔵するエンジンコントロールユニット(ECU)100が備えられている。
コントロールユニット100は、基本的には、図2に示される如くに、それ自体はよく知られているもので、CPU90、ROM91、RAM92、入出力ポート(I.O)95、入力回路96、ドライバ(駆動回路)97等で構成される。コントロールユニット100においては、前記センサ類からの信号は入力回路96にてノイズ除去等の処理後、入出力ポート95に送られる。入力ポート95の値はRAM92に保管され、CPU90内で演算処理される。演算処理の内容を記述した制御プログラムはROM91に予め書き込まれている。制御プログラムに従って演算された各アクチュエータ操作量を表す値はRAM92に保管された後、出力ポート95に送られる。
コントロールユニット100には、入力信号として、エアフローセンサ53により検出される吸入空気量に応じた信号、スロットルセンサ58により検出されるスロットル25の開度(開口面積)に応じた信号、クランクシャフト13に添設されたクランク角センサ(回転数センサ)55から得られるクランクシャフト13の回転(エンジン回転数)・位相(クランク角)をあらわす信号(クランク角センサ55からは、例えば、回転角1度毎にパルス信号が出力される)、吸気カムシャフト23に添設されたカム角センサ56から得られるカムシャフト23の回転・位相をあらわす信号、排気通路40における三元触媒48より上流側に配在された酸素濃度センサ57からの酸素濃度(空燃比)に応じた信号、シリンダ12に配設された水温センサ54により検出されるエンジン冷却水温に応じた信号、エンジン10の運転、停止のメインスイッチであるイグニッションキースイッチ59からの信号、吸気通路20のコレクタ27部分に設けられた吸気温センサ52により検出される吸気温に応じた信号等が供給される。
コントロールユニット100は、前記各種の入力信号に基づいてエンジンの運転状態を認識し、この運転状態に基づいて、燃料噴射量及び点火時期等のエンジンの主要な操作量を演算する。
より詳細には、コントロールユニット100においては、エンジンの運転状態に基づいて、各気筒#1、#2、#3、#4毎に噴射すべき燃料噴射量が演算され、この演算された燃料噴射量量に相当するパルス幅を持つ開弁パルス信号が生成され、この開弁パルス信号がドライバ97で燃料噴射弁30を開弁するのに十分なエネルギーに増幅されて、燃料噴射弁駆動信号として各気筒#1、#2、#3、#4毎に所定のタイミングで燃料噴射弁30に供給される。また、コントロールユニット100で演算された点火時期で点火されるようにドライバ97から駆動信号が各気筒#1、#2、#3、#4の点火コイル34に送られる。さらに、アイドル回転数を目標値にすべく、ドライバ97からISCバルブ62に制御信号が送られる。
次に、コントロールユニット100が、シリンダ流入空気量を検出(推定計算)して、該空気量に基づいて前記した如くの各種の制御を行う場合の構成例を説明する。
コントロールユニット100は、図3に機能ブロック図で示されているように、エンジン回転数計算手段101、流入空気量計算手段102、基本噴射量計算手段103、基本噴射量補正係数計算手段104、基本点火時期計算手段105、加減速判定手段106、ISC制御手段107、空燃比帰還制御係数計算手段108、目標空燃比設定手段109、基本噴射量補正手段110、点火時期補正手段111を備える。
エンジン回転数計算手段101は、クランク角センサ55からのパルス信号の単位時間当たりの変化(例えばパルスの立ち上がりもしくは立ち下がり)の回数(到来数)をカウントして所定の演算処理を行うことにより単位時間あたりのエンジン回転数を計算する。
流入空気量計算手段102は、エアフローセンサ53の出力、吸気温センサ52の出力、及びスロットルセンサ58の出力に基づいて、過給機(インペラ)−スロットル間圧力推定値、スロットル通過空気量、及び吸気管(吸気通路20におけるスロットル25より下流部分)圧力推定値を演算し、それらを用いてのシリンダ流入空気量を計算する。
基本噴射量計算手段103は、エンジン回転数計算手段101及び流入空気量計算手段102で計算されたエンジンの回転数及びシリンダ流入空気量に基づいて、基本噴射量及びエンジン負荷(指標)を計算する。
基本噴射量補正係数計算手段104は、基本噴射量計算手段103で計算された基本噴射量に対する補正係数を計算する。
基本点火時期計算手段105、前述のエンジン回転数及びエンジン負荷に基づいてエンジンの各領域における最適な点火時期をマップ検索等で設定する。
加減速判定手段106は、前述のスロットル開度からエンジンが過渡運転状態あるか否かの判定を行い、過渡運転時に伴う加減速燃料補正量及び加減速点火補正量を計算する。
ISC制御手段107は、エンジン回転数、スロットル開度、エンジン冷却水温に基づいて、目標アイドル回転数を設定し、エンジン回転数を目標アイドル回転数にすべく、ISCバルブ62の開弁量及びISC点火時期補正量を計算する。
空燃比帰還制御係数計算手段108は、酸素濃度センサ57からの信号に基づき、燃焼に供せられる混合気が後述する目標空燃比に保たれるようにPID制御による空燃比帰還制御係数を計算する。なお、前記酸素濃度センサ57は、本例では、排気空燃比に対して比例的な信号を出力するものが使用されているが、排気ガスが理論空燃比に対して、リッチ側にあるか/リーン側にあるかでHigh-Lowレベル信号を出力するものでも差し支えはない。
目標空燃比設定手段109は、前述のエンジン回転数及びエンジン負荷によりエンジンの各領域における最適な目標空燃比をマップ検索等で決定する。ここで決定された目標空燃比は、前述の空燃比帰還制御係数計算手段108の空燃比帰還制御に用いられる。
基本噴射量補正手段110は、前述の基本噴射量に基本噴射量補正係数、加減速燃料補正量、及び空燃比帰還制御係数等による補正を施す。
点火時期補正手段は、前述の基本噴射量補正係数計算手段104でマップ検索された点火時期に前述の加減速判定手段106で計算された加減速燃料補正量等で補正を施す。
図4は、本実施形態における吸気系の物理モデルの一例を示す。本吸気系の入り口に設けられたエアフローセンサ53により吸入空気量QA00が検出され、吸入された空気は過給機60で加圧過給される。過給圧は、過給機−スロットル間圧力PMTRTHと示す。スロットル通過空気量QAMTHは、前記過給機−スロットル間圧力PMTRTHと吸気管圧力PMMHGの差圧、スロットル開口面積(開度)、及び吸気温等で決まる。シリンダ流入空気量QARは前記吸気管圧力PMMHG、エンジン回転数、エンジン排気量、吸気温、及び運転領域で決まる非線形な吸気効率で決まる。
図5は、シリンダ流入空気量を求める処理の一例を示すブロック図である。ブロック501では、過給機−スロットル間圧力PMTRTHを計算する。吸入空気量QA00、吸気温THA、前回計算されたスロットル通過空気量QAMTH、前回計算された過給機−スロットル間圧力PMTRTHを用いて、今回のPMTRTHを計算する。ブロック502では、スロットル通過空気量QAMTHを計算する。スロットル開口面積AA、吸気温THA、前記過給機−スロットル間圧力PMTRTH、及び前回計算された吸気管圧力PMMHGを用いて、QAMTHを計算する。ブロック503では、吸気管圧力PMMHGを計算する。吸気温THA、前記スロットル通過空気量QAMTH、前回計算されたシリンダ流入空気量QAR、及び前回計算されたPMMHGを用いて、今回のPMMHGを計算する。
ブロック504では、エンジン回転数Ne及び前記吸気管圧力PMMHGから非線形要素である吸気効率ηをマップ検索して求める。ηは前記吸気管圧力に基づいて求めるシリンダ流入空気量の理論値からのズレを補正するものである。ブロック505では、シリンダ流入空気量QARを求める。エンジン回転数Ne、吸気温THA、前記吸気管圧力PMMHG、及び前記吸気効率ηでQARを計算する。尚、本実施例では、過給機−スロットル間圧力を吸入空気量等から推定するとしているが、過給機−スロットル間圧力を検出する手段(例えば圧力センサ)を具備している場合は、その出力値を用いてもよい。
次に上記各ブロック501〜505における演算処理に用いられる計算式 (1)〜(6)を説明する。
Figure 0005043797
Figure 0005043797
上記式 (1)は、図5のブロック501での過給機−スロットル間圧力を求める理論式を示している。式(1)は、連続域での理論式を示しており、過給機−スロットル間への微小時間での空気の流入/流出が過給機−スロットル間の圧力勾配となることを示している。式(2)は、式(1)を離散化したものであり、本式を実行することで、過給機−スロットル間圧力PMTRTHを求めることができる。
Figure 0005043797
上記式(3)は、図5のブロック502でのスロットル通過空気量QAMTHを求める理論式を示している。
Figure 0005043797
Figure 0005043797
上記式(4)は、図5のブロック503での吸気管圧力PMMHGを求める理論式を示している。前述の式 (1)と同様に式(4)は連続域での理論式を示しており、吸気管(吸気通路20におけるスロットル25より下流部分)への微小時間での空気の流入/流出が吸気管内の圧力勾配となることを示している。式(5)は、前記式(4)を離散化したものであり、本式を実行することで、吸気管圧力PMMHGを求めることができる。
Figure 0005043797
上記式(6)は、図5のブロック505でのシリンダ流入空気量QARを求める理論式を示している。
図6は、スロットル通過空気量QAMTHを求める処理の一例を示すブロック図である。本例では、前述の式(3)に対して、スロットル前後の圧力比より標準流量をテーブル検索して求め、且つ前記圧力比の大きさに応じてスロットル通過空気量の正逆流を考慮する構成となっている。ブロック601では、圧力比1:吸気管圧力PMMHG/過給機−スロットル間圧力PMTRTHを演算する。ブロック602では、圧力比2:過給機−スロットル間圧力PMTRTH/吸気管圧力PMMHGを演算する。比較器603で吸気管圧力PMMHGと過給機−スロットル間圧力PMTRTHを比較し、過給機−スロットル間圧力の方が大きい場合は、圧力比1を選択し、且つスイッチ605で正逆流係数を1.0とする。比較器603で吸気管圧力の方が大きい場合は、圧力比2を選択し、且つスイッチ605で正逆流係数を-1.0とする。ブロック606では前記選択された圧力比で標準流量をテーブル検索する。ブロック607で吸気温THAから吸気温補正値をテーブル検索する。乗算器608、609、及び610で前記標準流量に、開口面積AA、前記吸気温補正値、及び正逆流係数を乗じて、スロットル通過空気量ベース値とする。ブロック611で前記スロットル通過空気量ベース値に加重平均処理を施し、スロットル通過空気量QAMTHとする。尚、本例では、標準流量を求めるのに、圧力比に対するテーブルで求めているが、圧力比及び正逆流係数をスロットル前後圧により本例のように切り換え、式(3)を用いて理論式で求めてもよい。
図7(A)は、図6の加重平均処理ブロック611の一構成例を示す。ブロック701では、前述の図6で選択された圧力比で加重平均重みをテーブル検索する。本例では、加重平均重みは、圧力比が小さくなる程(分母、分子の圧力が近くなる程)小さくなるように設定している。検索された加重平均重みは、乗算器702でスロットル通過空気量ベース値に乗じられる。加算器703では、1.0-加重平均重みを計算し、前回計算されたスロットル通過空気量QAMTHに乗じる。前記2つの乗算値を加算器705で加算し、今回のスロットル通過空気量QAMTHを算出する。
図7(B)は、図6の加重平均処理ブロック611の他の構成例を示す。前述の図7(A)に示される例と異なるのは、加重平均の重みを圧力比で検索していたのを、過給機ースロットル間圧PMTRTHと吸気管圧力PMMHGとの差分の絶対値で検索するようにした点である。
図8は、シリンダ流入空気量QARを従来の手法で算出した場合のタイムチャートの一例を示す。すなわち、本例は、エンジンが高負荷運転領域にあって、過給機−スロットル間圧力PMTRTH≒吸気管圧力PMMHG、且つスロットル前後の逆流を考慮せず、且つスロットル通過空気量の加重平均処理を行っていない場合を前提としている。
図8(A)のライン801は、過給機−スロットル間圧力PMTRTH、ライン802は吸気管圧力PMMHGを示す。本例の場合は、スロットル前後の逆流を考慮していないため、PMMHG≧PMTRTHとなった場合にエリア803で示すように、PMMHG≧PMTRTHの状態が顕著となる。
図8(B)のライン804は、スロットル通過空気量QAMTHを示している。逆流が考慮されていないため、エリア805で示すように、PMMHG≧PMTRTHとなった場合にスロットル通過空気量QAMTHが0となり、エンジン回転に従い、PMMHGが低下しPMMHG<PMTRTHとなった瞬間からQAMTHが急激に流れるようになっている。
図8(C)のライン807は、エアフローセンサ計測値(吸入空気量)QA00を示しており、ライン806はシリンダ流入空気量QARを示している。逆流が考慮されていないため、特に吸気効率誤差等により、エリア808の定常運転期間では吸入空気量QA00>シリンダ流入空気量QARとなり、結果的にはエンジンの空燃比に悪影響を与えることとなる。
図9は、シリンダ流入空気量QARを、スロットル前後の逆流を考慮した本発明に係る第1の手法で算出した場合のタイムチャートの一例を示す。
図9(A)のライン901は、過給機−スロットル間圧力PMTRTH、ライン902は吸気管圧力PMMHGを示す。本例の場合は、スロットル前後の逆流を考慮しているため、PMMHG≧PMTRTHとなった場合に、エリア903で示すように、PMMHG≧PMTRTHの状態が顕著にならない。
図9(B)のライン904は、スロットル通過空気量QAMTHを示している。逆流が考慮されているため、エリア905で示すように、PMMHG≧PMTRTHとなった場合にスロットル通過空気量QAMTHが負となり、PMMHG≒PMTRTHの近傍では、QAMTHが正負を繰り返すようになっている。
図9(C)のライン907は、エアフローセンサ計測値(吸入空気量)QA00を示しており、ライン906はシリンダ流入空気量QARを示している。エリア908の定常運転期間でのQA00とQARの定常誤差はないが、スロットル通過空気量QAMTHの正負の繰り返し幅が大きいため、QARの振幅が大きくなり、結果的にはドライバビリティに影響することとなる。
図10は、シリンダ流入空気量QARを、スロットル前後の逆流を考慮し、かつスロットル前後の正逆流に加重平均処理を施した本発明に係る第2の手法で算出した場合のタイムチャートの一例を示す。
図10(A)のライン1001は、過給機−スロットル間圧力PMTRTH、ライン1002は吸気管圧力PMMHGを示す。本例の場合は、スロットル前後の正逆流に対して加重平均処理を施しているため、PMMHG≒PMTRTHの近傍においてPMMHG、PMTRTHともに比較的安定している。
図10(B)のライン1004は、スロットル通過空気量QAMTHを示している。正逆流に加重平均処理が施されているため、エリア1005で示すように、正逆流の幅が比較的小さい。
図10(C)のライン1007は、H/Wセンサ計測値QA00を示しており、ライン1006はシリンダ流入空気量QARを示している。エリア1008の定常運転期間でのQA00とQARの定常誤差もなく、スロットル通過空気量QAMTHの正負の繰り返し幅が比較的小さく、QARの振幅は殆ど無く、ドライバビリティを向上させることができる。
図11は、コントロールユニット100が実行するシリンダ流入空気量の算出並びに燃料噴射制御や点火時期制御等の処理手順の一例を示すフローチャートである。ここでは、スタート(割り込み)後、ステップ1101でクランク角度センサ55からの信号を処理し、エンジン回転数を計算する。ステップ1102でエアフローセンサ53、吸気温センサ52、及びスロットルセンサ58の出力を読み込む。ステップ1103で今回の演算がエンジンKEY ON後初回の演算であるか否かを判断する。
初回の演算であると判断された場合は、ステップ1104で過給機−スロットル間圧力と吸気管圧力の推定値を初期化する。初期化は主に大気圧とするが、大気圧センサ等を具備している場合は、その出力値を用いてもよい。ステップ1105で、過給機−スロットル間圧力PMTRTHを計算する。ステップ1106で前記スロットルセンサの出力からスロットル開口面積AAを計算する。ステップ1107でスロットル通過空気量QAMTHを計算する。ステップ1108で吸気管圧力PMMHGを計算する。ステップ1109でシリンダ流入空気量QARを計算する。
さらに、続くステップ1110で、基本噴射量及びエンジン負荷を計算する。ステップ1111で基本噴射量補正係数をマップ検索する。ステップ1112で、スロットルセンサ出力で加減速判定を行い、ステップ1113で、加減速時燃料補正量を計算する。ステップ1114で、酸素濃度センサ57の出力を読み込む。ステップ1115で、目標空燃比を設定する。ステップ1116で、前記目標空燃比が実現できるよう空燃比帰還制御係数を計算する。ステップ1117で、前記基本噴射量補正係数、及び空燃比帰還制御係数等を基本噴射量に補正する。ステップ1118で、基本点火時期をマップ検索する。ステップ1119で、加減速点火時期補正量を計算し、ステップ1120で、基本点火時期を補正する。ステップ1121で、アイドル目標回転数を設定し、アイドル時にはこの目標回転数となるように、ステップ1122で、ISCバルブ62を制御(ISCバルブ制御量を計算)する。
図12は、シリンダ流入空気量QARを求める際の処理手順の一例を示すフローチャートである(前述した図5のブロック図に対応)。ここでは、スタート(割り込み)後、ステップ1201でエアフローセンサ出力QA00、吸気温センサ出力THA、前回計算されたスロットル通過空気量QAMTH、及び前回計算された過給機−スロットル間圧力PMTRTHを読み込む。ステップ1202で今回の過給機−スロットル間圧力PMTRTHを計算する。ステップ1203でスロットル開口面積AAを読み込む。ステップ1204で前記AA、THA、PMTRTH、及び前回計算された吸気管圧力PMMHGでスロットル通過空気量QAMTHを計算する。ステップ1205で前記THA、QAMTH、前回計算されたシリンダ流入空気量QAR、及び前回計算されたPMMHGで今回のPMMHGを計算する。ステップ1206でエンジン回転数Ne、及び前記PMMHGで吸気効率ηを検索する。ステップ1207でエンジン回転数Ne、THA、前記PMMHG、及び前記ηでシリンダ流入空気量QARを計算する。
図13は、スロットル通過空気量QAMTHを求める際の処理手順の一例を示すフローチャートである(前述した図6のブロック図に対応)。ここでは、スタート(割り込み)後、ステップ1301で吸気管圧力PMMHG、過給機−スロットル間圧力PMTRTHを読み込む。ステップ1302で圧力比1としてPMMHG/PMTRTHを計算する。ステップ1303で圧力比2としてPMTRTH/PMMHGを計算する。ステップ1304でPMTRTHとPMMHGを比較し、PMTRTHが大きい場合は、ステップ1305で圧力比1をpmratに選択し、ステップ1306で正逆流係数を1.0に選択する。PMMHGが大きい場合は、ステップ1307で圧力比2をpmratに選択し、ステップ1308で正逆流係数を-1.0に選択する。ステップ1309で前述の選択されたpmratで標準流量をテーブル検索する。ステップ1310でTHAにより吸気温補正係数を検索する。ステップ1311で前記標準流量にAA、前記吸気温補正係数、及前記正逆流係数を乗じて、スロットル通過空気量ベース値を計算する。ステップ1312で前記スロットル通過空気量ベース値に加重平均処理を施し、スロットル通過空気量QAMTHを計算する。
図14は、前述した図7に示される加重平均処理手順の一例を示すフローチャートである。ここでは、スタート(割り込み)後、ステップ1401で前記選択された圧力比pmratを読み込む。ステップ1402で前記圧力比pmratで加重平均重みを検索する。ステップ1403で前記加重平均重みを前述のスロットル通過空気量ベース値に乗じる。ステップ1404で1.0−加重平均重みを前回計算されたスロットル通過空気量QAMTHに乗ずる。ステップ1405で前記乗算値を加算し、今回のスロットル通過空気量QAMTHを計算する。
以上のように、本実施形態の制御装置1では、スロットル通過空気量の逆流が考慮されているため、スロットル上下流圧がほぼ等しくなる高負荷領域においても、エアフローセンサ(H/Wセンサ等)で計測される吸入空気量とスロットル下流圧から計算されるシリンダ流入空気量にズレが発生しない。また正逆流に対して、スロットル前後圧が等しくなる近傍で加重平均の重みを大きくすることで、正逆流の振幅を抑制できるので、シリンダ流入空気量を安定させることができ、ドライバビリティを向上させることができる。
本発明に係る制御装置の一実施形態を、それが適用された車載用エンジンの一例と共に示す概略構成図。 図1に示されるコントロールユニットの内部構成を示す概略図。 コントロールユニットが実行するシリンダ流入空気量算出及び燃料噴射制御等の概要を示す機能ブロック図。 実施形態における吸気系の物理モデルの一例を示す。 シリンダ流入空気量を求める処理の一例を示すブロック図。 スロットル通過空気量を求める処理の一例を示すブロック図。 図6に示される加重平均処理ブロック(611)の詳細構成例を示すブロック図。 シリンダ流入空気量を従来の手法で算出した場合の一例を示すタイムチャート。 シリンダ流入空気量を、スロットル前後の逆流を考慮した本発明に係る第1の手法で算出した場合の一例を示すタイムチャート。 シリンダ流入空気量を、スロットル前後の逆流を考慮し、かつスロットル前後の正逆流に加重平均処理を施した本発明に係る第2の手法で算出した場合の一例を示すタイムチャート。 コントロールユニットが実行するシリンダ流入空気量の算出並びに燃料噴射制御や点火時期制御等の処理手順の一例を示すフローチャート。 シリンダ流入空気量を求める際の処理手順の一例を示すフローチャート。 スロットル通過空気量を求める際の処理手順の一例を示すフローチャート。 図7に示される加重平均処理手順の一例を示すフローチャート。
符号の説明
1 制御装置
10 エンジン
12 シリンダ
15 ピストン
17 燃焼作動室
20 吸気通路
25 スロットル(スロットル弁)
30 燃料噴射弁
34 点火コイル
35 点火プラグ
40 排気通路
52 吸気温センサ
53 エアフローセンサ(H/Wセンサ)
54 水温センサ
55 クランク角センサ
57 酸素濃度センサ
58 スロットルセンサ
60 過給機(ターボチャージャ)
100 コントロールユニット
102 流入空気量計算手段
QA00 吸入空気量(エアフローセンサ出力)
PMTRTH 過給機−スロットル間圧力(スロットル上流圧)
QAMTH スロットル通過空気量
PMMHG 吸気管圧力(スロットル下流圧)
QAR シリンダ流入空気量

Claims (6)

  1. 吸入空気量を検出する手段と、
    エンジン回転数を検出する手段と、
    吸気通路におけるスロットルの上流側の圧力を推定する上流側圧力推定手段と、
    吸気通路におけるスロットルの下流側の圧力を推定する下流側圧力推定手段と、
    前記スロットルの開度ないし開口面積を検出する手段と、
    前記スロットル上流側の圧力、前記スロットル下流側の圧力、及び前記スロットルの開度ないし開口面積に基づいて前記スロットルを通過する空気量を計算する手段と、
    前記上流側の圧力と前記下流側の圧力との関係に基づいて前記スロットル部分における空気流の正逆を判断する手段と、
    前記上流側の圧力と前記下流側の圧力との関係に基づいて前記スロットル部分における空気流の正逆流量を抑制する手段と、
    前記抑制された正逆流に基づいて前記スロットル下流側の圧力を推定する手段と、
    前記スロットル下流側の圧力と前記エンジン回転数に基づいてシリンダに流入する空気量を計算する手段と、を備え
    前記スロットル部分における空気流の正逆流量を抑制する手段は、
    前記スロットル上流側の圧力が前記スロットル下流側の圧力より高い場合は、スロットル下流側の圧力をスロットル上流側の圧力で除した値を圧力比とし、
    前記スロットル上流側の圧力が前記スロットル下流側の圧力より低い場合は、スロットル上流側の圧力をスロットル下流側の圧力で除した値を圧力比とする手段と、
    前記圧力比に応じた重みを求める手段と、
    前記重みで前記スロットル部分における空気流の正逆流に加重平均を施す手段と、を有することを特徴とするエンジンの制御装置。
  2. 吸入空気量を検出する手段と、
    エンジン回転数を検出する手段と、
    吸気通路におけるスロットルの上流側の圧力を推定する上流側圧力推定手段と、
    吸気通路におけるスロットルの下流側の圧力を推定する下流側圧力推定手段と、
    前記スロットルの開度ないし開口面積を検出する手段と、
    前記スロットル上流側の圧力、前記スロットル下流側の圧力、及び前記スロットルの開度ないし開口面積に基づいて前記スロットルを通過する空気量を計算する手段と、
    前記上流側の圧力と前記下流側の圧力との関係に基づいて前記スロットル部分における空気流の正逆を判断する手段と、
    前記上流側の圧力と前記下流側の圧力との関係に基づいて前記スロットル部分における空気流の正逆流量を抑制する手段と、
    前記抑制された正逆流に基づいて前記スロットル下流側の圧力を推定する手段と、
    前記スロットル下流側の圧力と前記エンジン回転数に基づいてシリンダに流入する空気量を計算する手段と、を備え
    前記スロットル部分における空気流の正逆流量を抑制する手段は、
    前記スロットル上流側の圧力と前記スロットル下流側の圧力との差分の絶対値を求める手段と、
    前記差分の絶対値から加重平均の重みを決定する手段と、
    前記重みで前記スロットル部分における空気流の正逆流に加重平均を施す手段と、を有することを特徴とするエンジンの制御装置。
  3. 前記上流側圧力推定手段は、
    前記検出された吸入空気量と前記抑制されたスロットル部分における正逆流量との差分に基づいて前記スロットル上流側の圧力勾配を求めるとともに、該圧力勾配を積算し、この積算された圧力勾配に基づいて現在のスロットル上流側の圧力を推定することを特徴とする請求項1又は2に記載のエンジンの制御装置。
  4. 前記下流側圧力推定手段は、
    前記抑制されたスロットル部分における正逆流量と前記シリンダに流入する空気量との差分に基づいて前記スロットル下流側の圧力勾配を求めるとともに、該圧力勾配を積算し、この積算された圧力勾配に基づいて現在のスロットルの下流側の圧力を推定することを特徴とする請求項1から3のいずれか一項に記載のエンジンの制御装置。
  5. 前記スロットル部分における空気流の正逆を判断する手段は、
    前記スロットル上流側の圧力と前記スロットル下流側の圧力とを比較する手段で構成されていることを特徴とする請求項1からのいずれか一項に記載のエンジンの制御装置。
  6. 吸気通路におけるスロットルの上流側に過給機が配在されていることを特徴とする請求項1からのいずれか一項に記載のエンジンの制御装置。
JP2008265644A 2008-10-14 2008-10-14 エンジンの制御装置 Active JP5043797B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008265644A JP5043797B2 (ja) 2008-10-14 2008-10-14 エンジンの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008265644A JP5043797B2 (ja) 2008-10-14 2008-10-14 エンジンの制御装置

Publications (2)

Publication Number Publication Date
JP2010096035A JP2010096035A (ja) 2010-04-30
JP5043797B2 true JP5043797B2 (ja) 2012-10-10

Family

ID=42257900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008265644A Active JP5043797B2 (ja) 2008-10-14 2008-10-14 エンジンの制御装置

Country Status (1)

Country Link
JP (1) JP5043797B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6869663B2 (ja) * 2016-08-09 2021-05-12 新電元工業株式会社 駆動システム、および、駆動システムの制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2749226B2 (ja) * 1992-02-28 1998-05-13 株式会社日立製作所 内燃機関の流入空気量検出装置及びこれを利用した燃料噴射量制御装置
JP2002201998A (ja) * 2000-11-06 2002-07-19 Denso Corp 内燃機関の制御装置
JP4222308B2 (ja) * 2005-01-11 2009-02-12 トヨタ自動車株式会社 内燃機関の空気量推定装置

Also Published As

Publication number Publication date
JP2010096035A (ja) 2010-04-30

Similar Documents

Publication Publication Date Title
US9261031B2 (en) Control device for internal combustion engine and method for controlling internal combustion engine
US7047740B2 (en) Boost pressure estimation apparatus for internal combustion engine with supercharger
JP4733002B2 (ja) 内燃機関の排ガス浄化装置
JP5761379B2 (ja) 内燃機関の制御装置
JP5107963B2 (ja) エンジンの制御装置
EP2082124B1 (en) Fuel injection device and control method therefor
JP2013007375A (ja) 内燃機関の燃料噴射制御装置
JP6827974B2 (ja) 内燃機関の制御装置
JP4232524B2 (ja) エンジンの制御装置
JP5118247B2 (ja) 内燃機関の気筒吸入空気量算出装置
JP5146619B2 (ja) 内燃機関の制御装置
JP4747079B2 (ja) 内燃機関の排ガス浄化装置
JP4749292B2 (ja) 内燃機関の制御装置
JP5043797B2 (ja) エンジンの制御装置
JP2009002249A (ja) 内燃機関のスロットル上流圧推定装置
JP2009007940A (ja) 内燃機関の筒内充填空気量演算装置
JP2006291871A (ja) 内燃機関の制御装置
JP2006046071A (ja) 車両の大気圧推定装置
JP4986895B2 (ja) エンジンの燃料噴射制御装置
JP3925273B2 (ja) 内燃機関の排気浄化装置
JP6576520B1 (ja) 内燃機関の制御装置
JP6351784B1 (ja) 内燃機関の制御装置及び内燃機関の制御方法
JP2010248949A (ja) エンジンのシリンダ流入空気量計測装置を備えた燃料制御装置
JP3161288B2 (ja) ターボ過給機付エンジンの排気圧力検出装置および空気過剰率検出装置
JP4241560B2 (ja) 内燃機関の吸入空気量推定装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120712

R150 Certificate of patent or registration of utility model

Ref document number: 5043797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350