JP5026025B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP5026025B2
JP5026025B2 JP2006227748A JP2006227748A JP5026025B2 JP 5026025 B2 JP5026025 B2 JP 5026025B2 JP 2006227748 A JP2006227748 A JP 2006227748A JP 2006227748 A JP2006227748 A JP 2006227748A JP 5026025 B2 JP5026025 B2 JP 5026025B2
Authority
JP
Japan
Prior art keywords
conductive portion
hole
substrate
semiconductor device
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006227748A
Other languages
Japanese (ja)
Other versions
JP2008053430A (en
Inventor
道和 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2006227748A priority Critical patent/JP5026025B2/en
Publication of JP2008053430A publication Critical patent/JP2008053430A/en
Application granted granted Critical
Publication of JP5026025B2 publication Critical patent/JP5026025B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は、貫通電極を備えた半導体装置に関する。
The present invention relates to a semiconductor equipment provided with a through electrode.

近年、携帯電話等の電子機器の高機能化が進み、これらの機器に用いられるICやLSI等の電子デバイス、及びOEICや光ピックアップ等の光デバイスにおいて、デバイス自体の小型化や高機能化を図るための開発が各所で進められている。例えば、このようなデバイスを積層して設ける技術が提案されており、具体的には、何らかの機能素子が一方の面に設けられている基板に対し、該基板の一方の面から他方の面に貫通してなる貫通電極を用いる技術が挙げられる。   In recent years, electronic devices such as mobile phones have been improved in functionality, and in electronic devices such as ICs and LSIs and optical devices such as OEICs and optical pickups used in these devices, the devices themselves have been reduced in size and functionality. Development for planning is underway at various locations. For example, a technique of stacking such devices has been proposed. Specifically, a substrate on which one functional element is provided on one surface is provided from one surface of the substrate to the other surface. A technique using a penetrating electrode that penetrates may be mentioned.

また、これらの基板の配線材料として、銅や銀等が次世代材料として期待されている。特に、銅は比抵抗が低いこと、エレクトロマイグレーション耐性がアルミニウム系合金に比べて高いこと、銀に比べて安価である等の理由により、最も期待され、配線材料として用いられている。   In addition, copper, silver, and the like are expected as next-generation materials as wiring materials for these substrates. In particular, copper is most expected and used as a wiring material because of its low specific resistance, high electromigration resistance compared to aluminum alloys, and low cost compared to silver.

図4は、従来の貫通電極を用いた半導体装置の一例を概略説明する部分断面図である。
図4に示す半導体装置においては、セラミックスやシリコン等の硬質材からなる基板101と、基板101の両面を貫通して設けられた貫通孔102と、貫通孔102の内側面に配され、銅材等からなる導電部103と、貫通孔102内に露呈するようにして半導体装置100の一方の面に配される電極104と、から概略構成されている。
半導体装置100は、電極104と電気的に接続された導電部103を介して基板両面が電気的に接続可能となっている。
FIG. 4 is a partial cross-sectional view schematically illustrating an example of a semiconductor device using a conventional through electrode.
In the semiconductor device shown in FIG. 4, a substrate 101 made of a hard material such as ceramics or silicon, a through hole 102 provided through both surfaces of the substrate 101, and an inner surface of the through hole 102, are made of a copper material. A conductive portion 103 made of the like, and an electrode 104 disposed on one surface of the semiconductor device 100 so as to be exposed in the through hole 102 are roughly configured.
In the semiconductor device 100, both surfaces of the substrate can be electrically connected via the conductive portion 103 electrically connected to the electrode 104.

このような貫通電極の形成方法として、超先端電子技術開発機構(ASET)の技術が従来技術として挙げられる(非特許文献1参照)。これは貫通電極として、貫通孔内に電解めっきにて均一にCu膜を形成した例であるが、この技術の問題点としては、Cu膜が厚膜であるため、熱等による膨張収縮により発生する応力が大きく、導電部の破壊ひいては断線等の損傷を引き起こし、電気的信頼性の確保が非常に難しい。また、孔内への均一なめっきは技術的に難易度が高く手間がかかる(特にアスペクト比が高い微細孔の場合めっき加工が困難である)などといったことが挙げられる。
http://www.aset.or.jp/press_release/si_20040218/si_20040218.html
As a method of forming such a through electrode, a technology of an ultra-advanced electronic technology development organization (ASET) is cited as a conventional technology (see Non-Patent Document 1). This is an example in which a Cu film is uniformly formed by electrolytic plating in the through hole as a through electrode. However, the problem with this technology is that the Cu film is thick, and is caused by expansion and contraction due to heat, etc. Therefore, it is very difficult to ensure the electrical reliability because the stress to be generated is large, causing the destruction of the conductive portion and the damage such as the disconnection. In addition, uniform plating in the holes is technically difficult and time-consuming (particularly, in the case of fine holes having a high aspect ratio, plating is difficult).
http://www.aset.or.jp/press_release/si_20040218/si_20040218.html

本発明は、このような従来の実情に鑑みて考案されたものであり、熱変化等により導電部にかかる応力を低減し、導電部の破壊や断線等の損傷を防止して、貫通電極における電気的な接続信頼性を向上した半導体装置を提供することを第一の目的とする。
また、本発明は、簡便な方法により、貫通孔内の側面部に導電部を薄くかつ均一に形成することが可能な半導体装置の製造方法を提供することを第二の目的とする。
The present invention has been devised in view of such a conventional situation, and reduces stress applied to the conductive portion due to thermal change or the like, prevents damage to the conductive portion or breakage, and the like in the through electrode. A first object is to provide a semiconductor device with improved electrical connection reliability.
In addition, a second object of the present invention is to provide a method for manufacturing a semiconductor device in which a conductive portion can be formed thinly and uniformly on a side surface in a through hole by a simple method.

本発明の請求項1に記載の半導体装置は、基板の一方の面に配された第一の導電部と、前記基板の他方の面から前記第一の導電部の少なくとも一部が露呈するように、前記基板内に設けられた貫通孔と、前記貫通孔内の側面および露呈された前記第一の導電部を覆うとともに、前記基板の他方の面上を覆うように延びて配され、前記第一の導電部と電気的に接続される第二の導電部と、前記基板の他方の面上においてのみ、前記第二の導電部上に配され電気的に接続される第三の導電部と、を備えてなる半導体装置であって、前記第二の導電部の厚さが、前記第三の導電部の厚さよりも薄く、前記貫通孔内には、前記第二の導電部を被覆するように封止樹脂が配されている、ことを特徴とする
発明の請求項に記載の半導体装置は、請求項1において、前記封止樹脂は、前記貫通孔内の側面に沿うように配され、半導体装置の外部へ連通する空間を有することを特徴とする。
According to a first aspect of the present invention, in the semiconductor device, the first conductive portion disposed on one surface of the substrate and at least a part of the first conductive portion are exposed from the other surface of the substrate. And covering the through hole provided in the substrate, the side surface in the through hole and the exposed first conductive portion, and extending so as to cover the other surface of the substrate, A second conductive part electrically connected to the first conductive part, and a third conductive part disposed on and electrically connected to the second conductive part only on the other surface of the substrate A thickness of the second conductive portion is smaller than a thickness of the third conductive portion, and the second conductive portion is covered in the through hole. A sealing resin is arranged as described above .
A semiconductor device according to a second aspect of the present invention is the semiconductor device according to the first aspect, wherein the sealing resin is disposed along the side surface in the through hole and has a space communicating with the outside of the semiconductor device. And

本発明では、第三の導電部を、基板の他方の面上において第二の導電部上に配することにより、貫通孔内の側面部に形成された第二の導電部の厚さを薄くすることができる。これにより、熱変化等により第二の導電部にかかる応力を低減することができる。その結果、第二の導電部の破壊ひいては断線等の損傷を防止して、貫通電極における電気的な接続信頼性を向上した半導体装置を提供することができる
In the present invention, the third conductive portion is disposed on the second conductive portion on the other surface of the substrate, thereby reducing the thickness of the second conductive portion formed on the side surface portion in the through hole. can do. Thereby, the stress concerning a 2nd electroconductive part by a heat change etc. can be reduced. As a result, it is possible to provide a semiconductor device in which the electrical connection reliability in the through electrode is improved by preventing the second conductive portion from being broken and thus being damaged .

以下、本発明に係る半導体装置の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of a semiconductor device according to the present invention will be described with reference to the drawings.

図1は、本発明の半導体装置の一例を示す断面図である。
この半導体装置1は、基板2の一方の面2aに配された第一の導電部(電極部)3と、前記基板2の他方の面2bから前記電極部3の少なくとも一部が露呈するように、前記基板2内に設けられた貫通孔4と、少なくとも前記貫通孔4の内側面および開口部周辺に配された絶縁層5と、前記貫通孔4内の側面および露呈された前記電極部3を覆うとともに、前記基板2の他方の面2b上を覆うように延びて配され、前記電極部3と電気的に接続される第二の導電部6と、前記基板2の他方の面2b上において、前記第二の導電部6上に配され電気的に接続される第三の導電部8と、を備える。
上記半導体基板2の一方の面2aから他方の面2bに向かう貫通孔4が形成され、この貫通孔4に第二の導電部6が形成されることにより貫通電極7が形成されている。
FIG. 1 is a cross-sectional view showing an example of a semiconductor device of the present invention.
In the semiconductor device 1, at least a part of the electrode portion 3 is exposed from the first conductive portion (electrode portion) 3 disposed on one surface 2 a of the substrate 2 and the other surface 2 b of the substrate 2. In addition, the through hole 4 provided in the substrate 2, the insulating layer 5 disposed at least around the inner side surface and the opening of the through hole 4, the side surface in the through hole 4 and the exposed electrode part 3, and a second conductive portion 6 that extends and covers the other surface 2 b of the substrate 2 and is electrically connected to the electrode portion 3, and the other surface 2 b of the substrate 2. And a third conductive portion 8 disposed on and electrically connected to the second conductive portion 6.
A through hole 4 is formed from one surface 2 a of the semiconductor substrate 2 toward the other surface 2 b, and a second conductive portion 6 is formed in the through hole 4, thereby forming a through electrode 7.

そして本発明の半導体装置1は、第三の導電部8を、前記基板2の他方の面上において、前記第二の導電部6上に配している。これにより、貫通孔4内の側面部に形成される第二の導電部6を薄膜化することができる。
本発明では、第二の導電部6を薄膜化することで、熱などによる膨張収縮に起因して第二の導電部6にかかる応力を低減することができる。その結果、第二の導電部6の破壊ひいては断線等の損傷を防止して、貫通電極7における電気的な接続信頼性を向上することができる。
In the semiconductor device 1 of the present invention, the third conductive portion 8 is disposed on the second conductive portion 6 on the other surface of the substrate 2. Thereby, the 2nd electroconductive part 6 formed in the side part in the through-hole 4 can be thinned.
In the present invention, the stress applied to the second conductive portion 6 due to expansion and contraction due to heat or the like can be reduced by making the second conductive portion 6 thin. As a result, it is possible to prevent breakage of the second conductive portion 6 and thus damage such as disconnection, and improve electrical connection reliability in the through electrode 7.

前記基板2の他方の面上において、前記第三の導電部8が前記第二の導電部6の上に積層形成されていることにより、配線の段差の影響を受けず、第三の導電部8の断線等の損傷を抑制することができる。
また、前記基板2の他方の面上において、前記第二の導電部6の厚さが、前記第三の導電部8の厚さよりも薄いことが好ましい。具体的には、第三の導電部8の厚さは、二の導電部6の厚さの10倍以上であることが好ましい。これにより、熱などによる膨張収縮に起因して第二の導電部6にかかる応力をより効果的に低減して、第二の導電部6の破壊ひいては断線等の損傷をより確実に抑制することができる。
Since the third conductive portion 8 is laminated on the second conductive portion 6 on the other surface of the substrate 2, the third conductive portion is not affected by the step of the wiring. It is possible to suppress damage such as disconnection 8.
Moreover, it is preferable that the thickness of the second conductive portion 6 is thinner than the thickness of the third conductive portion 8 on the other surface of the substrate 2. Specifically, the thickness of the third conductive portion 8 is preferably 10 times or more the thickness of the second conductive portion 6. Thereby, the stress applied to the second conductive portion 6 due to expansion and contraction due to heat or the like is more effectively reduced, and damage such as breakage of the second conductive portion 6 and breakage is more reliably suppressed. Can do.

前記第二の導電部6および前記第三の導電部8を被覆するように、前記貫通孔4内および基板2の他方の面2b上に、封止樹脂層9が配されている。封止樹脂が配されることにより、熱などによる膨張収縮に起因して第二の導電部6および前記第三の導電部8にかかる応力をより効果的に低減して、導電部の破壊ひいては断線等の損傷をより確実に抑制することができる。
また、前記封止樹脂層9は、前記貫通孔4内の側面に沿うように配されていることが好ましい。貫通孔4内の側面部に配される封止樹脂を薄くすることができるので、第二の導電部6にかかる熱応力の影響をさらに受けにくくすることができる。
A sealing resin layer 9 is disposed in the through hole 4 and on the other surface 2 b of the substrate 2 so as to cover the second conductive portion 6 and the third conductive portion 8. By disposing the sealing resin, the stress applied to the second conductive part 6 and the third conductive part 8 due to expansion and contraction due to heat or the like can be reduced more effectively, and the conductive part can be destroyed. Damage such as disconnection can be more reliably suppressed.
The sealing resin layer 9 is preferably arranged along the side surface in the through hole 4. Since the sealing resin disposed on the side surface portion in the through hole 4 can be thinned, the influence of the thermal stress on the second conductive portion 6 can be further less affected.

基板2は、例えばシリコン(Si)等からなる半導体基材や、ガラス基材、セラミック基材等、絶縁性の硬質材料からなる。
基板2の厚さは、例えば数百μm程度である。
図1に示す例では、基板2をSi等の半導体基材から構成し、貫通孔4と第二の導電部6との間に絶縁層5を配し、基板2と第二の導電部6とを電気的に絶縁した構成とされている。また、基板2を半導体基材から構成する場合は、基板2の一方の面2aおよび他方の面2bに加え、貫通孔4の側面の表層部が絶縁化された領域をなすように構成としてもよい。
The substrate 2 is made of an insulating hard material such as a semiconductor base made of silicon (Si), a glass base, a ceramic base, or the like.
The thickness of the substrate 2 is, for example, about several hundred μm.
In the example shown in FIG. 1, the substrate 2 is made of a semiconductor base material such as Si, the insulating layer 5 is disposed between the through hole 4 and the second conductive portion 6, and the substrate 2 and the second conductive portion 6 are arranged. And are electrically insulated. Further, when the substrate 2 is formed of a semiconductor base material, the surface layer portion on the side surface of the through hole 4 may form an insulated region in addition to the one surface 2a and the other surface 2b of the substrate 2. Good.

貫通孔4は、図1に示すように、基板2において、他方の面2bから一方の面2aに配された後述する第一の導電部(電極部)3が孔内に露呈するように、基板2内に開けられてなる。
貫通孔4の口径は、例えば数十μm程度である。
また、基板2上に設けられる貫通孔4の数は、特に限定されない。
As shown in FIG. 1, the through-hole 4 is formed so that a first conductive portion (electrode portion) 3, which will be described later, disposed from the other surface 2 b to the one surface 2 a in the substrate 2 is exposed in the hole. It is opened in the substrate 2.
The diameter of the through hole 4 is, for example, about several tens of μm.
Further, the number of through holes 4 provided on the substrate 2 is not particularly limited.

第一の導電部(電極部)3は、基板2の一方の面2aに設けられ、露呈部が貫通孔4の一方の開口部から孔内に露呈するようにして設けられている。
第一の導電部3は、一方の面2a上に設けられた配線部(樹脂略)を介して、該一方の面2a内にある後述の機能素子(図示略)と電気的に接続されている。
第一の導電部3の材質としては、例えばアルミニウム(Al)や銅(Cu)、アルミニウム−シリコン(Al−Si)合金、アルミニウム−シリコン−銅(Al−Si−Cu)合金等の導電性に優れる材質が好適に用いられる。
The first conductive portion (electrode portion) 3 is provided on one surface 2 a of the substrate 2, and is provided so that the exposed portion is exposed from one opening portion of the through hole 4 into the hole.
The first conductive portion 3 is electrically connected to a later-described functional element (not shown) in the one surface 2a via a wiring portion (resin omitted) provided on the one surface 2a. Yes.
Examples of the material of the first conductive portion 3 include conductivity such as aluminum (Al), copper (Cu), aluminum-silicon (Al-Si) alloy, aluminum-silicon-copper (Al-Si-Cu) alloy, and the like. An excellent material is preferably used.

機能素子(図示略)は、本実施形態では、例えばICチップや、CCD素子等の光素子からなる。
また、機能素子の他の例としては、例えばマイクロリレー、マイクロスイッチ、圧力センサ、加速度センサ、高周波フィルタ、マイクロミラー、マイクロリアクター、μ−TDS、DNAチップ、MEMSデバイス、マイクロ燃料電池等が挙げられる。
In the present embodiment, the functional element (not shown) is an optical element such as an IC chip or a CCD element.
Other examples of functional elements include micro relays, micro switches, pressure sensors, acceleration sensors, high frequency filters, micro mirrors, micro reactors, μ-TDS, DNA chips, MEMS devices, micro fuel cells, and the like. .

第二の導電部6は、貫通孔4内の側面の少なくとも一部に配されることにより、導電体として有効に働く。
図1の断面図に示す例では、第二の導電部6は、側面の全体を覆うように配されているが、これには限定されない。例えば、第二の導電部6が、側面の一部に、基板2の一方の面2aと他方の面2bとの間に渡って配された構成としてもよい。
The second conductive portion 6 works effectively as a conductor by being disposed on at least a part of the side surface in the through hole 4.
In the example shown in the cross-sectional view of FIG. 1, the second conductive portion 6 is disposed so as to cover the entire side surface, but is not limited thereto. For example, the 2nd electroconductive part 6 is good also as a structure distribute | arranged to a part of side surface between one surface 2a of the board | substrate 2, and the other surface 2b.

第二の導電部6および第三の導電部8の材質としては、導電性に優れた材料を用いることが好ましい。また、第二の導電部6および第三の導電部8は、第一の導電部(電極部)3との密着性に優れるとともに、第二の導電部6および第三の導電部8を構成する元素が電極部や基板2内に拡散しない材料を用いれば、さらに好ましい。例えば、Al、Cu、Ni、Au等の金属材料を用いれば、導電性や電極部との密着性等の点で好ましい。   As the material of the second conductive portion 6 and the third conductive portion 8, it is preferable to use a material having excellent conductivity. The second conductive portion 6 and the third conductive portion 8 are excellent in adhesion to the first conductive portion (electrode portion) 3 and constitute the second conductive portion 6 and the third conductive portion 8. It is more preferable to use a material that does not diffuse into the electrode part or the substrate 2. For example, use of a metal material such as Al, Cu, Ni, or Au is preferable in terms of conductivity and adhesion to the electrode portion.

封止樹脂層9は、例えばポリイミド樹脂、エポキシ樹脂、シリコーン樹脂等からなり、その厚さは例えば1〜50μmである。封止樹脂層9には、外部への端子を出力するための開口部9aが設けられる。さらに、封止樹脂層9の上に、バンプ10等の外部への出力端子等の構造物を付加することができる。   The sealing resin layer 9 is made of, for example, polyimide resin, epoxy resin, silicone resin, etc., and the thickness thereof is, for example, 1 to 50 μm. The sealing resin layer 9 is provided with an opening 9a for outputting a terminal to the outside. Furthermore, a structure such as an output terminal to the outside such as the bump 10 can be added on the sealing resin layer 9.

次に、上述したような半導体装置1の製造方法について、図2および図3を用いて説明する。
本発明の半導体装置の製造方法は、一方の面に第一の導電部(電極部)3が配された基板2の、他方の面2bから前記第一の導電部3の少なくとも一部が露呈するように、前記基板2内に貫通孔4を形成する工程と、前記貫通孔4内の側面および露呈された前記第一の導電部3を覆うとともに、前記基板2の他方の面上を覆うように延びて配され、前記第一の導電部3と電気的に接続される第二の導電部6を形成する工程と、前記第二の導電部6を被覆するようにめっきレジストを形成する工程と、前記基板2の他方の面上において、前記第二の導電部6上に配され電気的に接続される第三の導電部8をめっきにより形成する工程と、を少なくとも備えることを特徴とする。
Next, a method for manufacturing the semiconductor device 1 as described above will be described with reference to FIGS.
In the method for manufacturing a semiconductor device of the present invention, at least a part of the first conductive portion 3 is exposed from the other surface 2b of the substrate 2 on which the first conductive portion (electrode portion) 3 is arranged on one surface. As described above, the step of forming the through hole 4 in the substrate 2, the side surface in the through hole 4 and the exposed first conductive portion 3 are covered, and the other surface of the substrate 2 is covered. A step of forming a second conductive portion 6 that extends and is electrically connected to the first conductive portion 3, and a plating resist is formed so as to cover the second conductive portion 6. And a step of forming, on the other surface of the substrate 2, a third conductive portion 8 disposed on the second conductive portion 6 and electrically connected thereto by plating. And

本発明では、意図的に貫通孔4の内側をめっきしない、という手法を採用する。しかしながら、一般的にバンプ材料として用いられる半田(SnAgCuなど)は、非常にCuに拡散しやすいため、半田バンプと接触する部分のCu膜はある程度以上の膜厚が必要となる。ある程度以上の厚膜のCu膜を形成するためには、やはりめっき等の手法が適している。
そのため、本発明では第二の導電部6をめっき以外の方法により形成し、第三の導電部8は選択的めっきにより形成する手法を採る。
In this invention, the method of not intentionally plating the inside of the through-hole 4 is employ | adopted. However, since solder (SnAgCu or the like) generally used as a bump material is very easily diffused into Cu, the Cu film in contact with the solder bump needs to have a certain thickness. In order to form a Cu film having a certain thickness or more, a technique such as plating is also suitable.
Therefore, in the present invention, the second conductive portion 6 is formed by a method other than plating, and the third conductive portion 8 is formed by selective plating.

本発明では、貫通孔4の内側をめっきする必要がないため、特殊な前処理、プロセス条件または特殊なめっき液、添加剤等の材料が必要なく、従来のめっき技術がそのまま応用できるため簡便である。そのため、本方法は、めっきでは配線形成が難しいアスペクト比の高い微細孔でも、問題なく適用が可能である。   In the present invention, since it is not necessary to plate the inside of the through-hole 4, there is no need for special pretreatment, process conditions or materials such as a special plating solution or additive, and the conventional plating technique can be applied as it is, which is convenient. is there. Therefore, the present method can be applied without any problem even in a fine hole having a high aspect ratio, which is difficult to form wiring by plating.

具体的な実施例として、ウエハレベルパッケージでの貫通電極形成例を示す。
まず、基板2を用意し、その一方の面2aに第一の導電部(電極部)3(I/Oパッド)を形成する。
基板2は、シリコンウエハ等の半導体ウエハでもよく、半導体ウエハをチップ寸法に切断(ダイシング)した半導体チップであってもよい。基板2が半導体チップである場合は、まず、半導体ウエハの上に、各種半導体素子やIC、機能素子等を複数組、形成した後、チップ寸法に切断することで複数の半導体チップを得ることができる。
第一の導電部(電極部)3としては、例えばAlパッドが用いられる。
As a specific embodiment, an example of forming a through electrode in a wafer level package is shown.
First, a substrate 2 is prepared, and a first conductive portion (electrode portion) 3 (I / O pad) is formed on one surface 2a thereof.
The substrate 2 may be a semiconductor wafer such as a silicon wafer, or may be a semiconductor chip obtained by cutting (dicing) the semiconductor wafer into chip dimensions. When the substrate 2 is a semiconductor chip, first, a plurality of sets of various semiconductor elements, ICs, functional elements, etc. are formed on a semiconductor wafer and then cut into chip dimensions to obtain a plurality of semiconductor chips. it can.
As the first conductive portion (electrode portion) 3, for example, an Al pad is used.

次いで、基板2に、貫通孔4を形成する(図2(a)参照)。
この貫通孔4は、前記基板2の他方の面2b側から、前記第一の導電部3が露呈するように形成される。孔の縦断面形状は、基板2の表面に対して90°(垂直)であることが理想的だが、80〜100°程度であってもよい。
貫通孔4の形成にはドライエッチング、DRIE(Deep−RIE)、レーザー加工、PAECEなど、孔を垂直に形成できる方法を用いることができる。
貫通孔4を、基板2に対して垂直に形成するため、後述する工程において、孔底面に形成された絶縁層5のエッチングの際に、側面に形成された絶縁層5がエッチングされないので、貫通電極と基板2との絶縁を確実に取ることができる。
Next, the through hole 4 is formed in the substrate 2 (see FIG. 2A).
The through hole 4 is formed so that the first conductive portion 3 is exposed from the other surface 2 b side of the substrate 2. The vertical cross-sectional shape of the hole is ideally 90 ° (perpendicular) with respect to the surface of the substrate 2, but may be about 80 to 100 °.
The through hole 4 can be formed by a method that can form the hole vertically, such as dry etching, DRIE (Deep-RIE), laser processing, and PAECE.
Since the through hole 4 is formed perpendicular to the substrate 2, the insulating layer 5 formed on the side surface is not etched when the insulating layer 5 formed on the bottom surface of the hole is etched in the process described later. Insulation between the electrode and the substrate 2 can be ensured.

次いで、少なくとも前記貫通孔4の内側面および開口部周辺に絶縁層5を形成する。
この絶縁層5としては、例えばSiOをプラズマCVD等により成膜される。
次いで、前記絶縁層5のうち、前記貫通孔4の底面を覆う部分を除去する(図2(b)参照)。
上記絶縁層5形成の際には、孔底面にも絶縁層5が形成されてしまうため、これをドライエッチングによる異方性エッチングで除去する。
孔底面の絶縁層5のエッチングは、イオン性の高い反応性イオンエッチング(RIE)で行うことが一般的だが、物理的にイオンを照射するようなイオンミリングや逆スパッタのような方法も使用可能である。
貫通孔4は、基板2に対してほぼ垂直に形成されているため、孔底面に形成された絶縁層5を除去する際に行われる、ドライプロセスの異方性エッチングにおいて、側面に形成された絶縁層5はイオン照射を受けにくい(受けない)ためエッチングされない。これにより貫通電極7と基板2との絶縁を確実に取ることができる。
Next, an insulating layer 5 is formed at least on the inner side surface of the through hole 4 and around the opening.
As this insulating layer 5, for example, SiO 2 is formed by plasma CVD or the like.
Next, a portion of the insulating layer 5 that covers the bottom surface of the through hole 4 is removed (see FIG. 2B).
When the insulating layer 5 is formed, the insulating layer 5 is also formed on the bottom of the hole, and is removed by anisotropic etching using dry etching.
Etching of the insulating layer 5 at the bottom of the hole is generally performed by reactive ion etching (RIE) with high ionicity, but methods such as ion milling and reverse sputtering that physically irradiate ions can also be used. It is.
Since the through hole 4 is formed substantially perpendicular to the substrate 2, the through hole 4 is formed on the side surface in the anisotropic etching of the dry process performed when the insulating layer 5 formed on the bottom surface of the hole is removed. The insulating layer 5 is not etched because it is difficult (not) to receive ion irradiation. Thereby, the insulation between the through electrode 7 and the substrate 2 can be surely taken.

次いで、図2(c)に示すように、前記絶縁層5を覆うように、前記貫通孔4内に第二の導電部6を形成するとともに、該第二の導電部6を前記第一の導電部3と電気的に接続する。
すなわち、スパッタリング法等により、電解めっき用の薄い(第二の導電部6)を少なくとも前記貫通孔4の内側面および開口部周辺に形成する。シード層は、例えばスパッタリング法により形成されたCr/CuあるいはTiN/Cu、TiW/Cu等からなる積層体である。また、無電解Cuめっき層でもよいし、蒸着法、塗布法または化学気相成長法(CVD)等により形成された金属薄膜層であってもよいし、上記の金属層形成方法を組み合わせてもよい。
貫通電極7ではこの薄膜がそのまま配線(第二の導電部6)となるため、配線抵抗等を考慮して形成膜厚を決定する。第二の導電部6の厚さとしては、通常はCr500nm、Cu500nm前後だが、状況に応じて変更可能である。
Next, as shown in FIG. 2C, a second conductive portion 6 is formed in the through hole 4 so as to cover the insulating layer 5, and the second conductive portion 6 is connected to the first conductive portion 6. It is electrically connected to the conductive part 3.
That is, a thin (second conductive portion 6) for electrolytic plating is formed at least on the inner surface of the through hole 4 and the periphery of the opening by sputtering or the like. The seed layer is a laminated body made of, for example, Cr / Cu, TiN / Cu, TiW / Cu, or the like formed by a sputtering method. Further, it may be an electroless Cu plating layer, a metal thin film layer formed by a vapor deposition method, a coating method, a chemical vapor deposition method (CVD), or the like, or a combination of the above metal layer forming methods. Good.
In the through electrode 7, since this thin film becomes the wiring (second conductive portion 6) as it is, the formation film thickness is determined in consideration of wiring resistance and the like. The thickness of the second conductive portion 6 is usually around Cr 500 nm and Cu 500 nm, but can be changed depending on the situation.

次に、第二の導電部6の上であって配線不要箇所および貫通孔4上部に、電解めっき用のレジスト膜20を形成する(図2(d)参照)。このレジスト膜には第三の導電部8の形成すべき領域に開口部20aを設け、該開口部20aにおいて、前記第二の導電部6を露出させておく。レジスト膜20は、例えば、フォトリソグラフィ技術によるパターニング、フィルムレジストをラミネートする方法、液体レジストを回転塗布する方法等により形成することができる。
貫通孔4を有する構造へのレジスト形成は、ワニスを用いると孔上の膜形成が困難なため、ドライフィルムタイプのレジストが適する。このとき、貫通孔4内へめっきを行なう必要がないため、特殊な前処理等は必要なく、通常のウエハレベルパッケージと同様にセミアディティブ法でめっきを行うことができる。
Next, a resist film 20 for electrolytic plating is formed on the second conductive portion 6 and on the wiring unnecessary portion and the upper portion of the through hole 4 (see FIG. 2D). The resist film is provided with an opening 20a in a region where the third conductive portion 8 is to be formed, and the second conductive portion 6 is exposed in the opening 20a. The resist film 20 can be formed, for example, by patterning using a photolithography technique, a method of laminating a film resist, a method of spin-coating a liquid resist, or the like.
For forming the resist on the structure having the through-holes 4, when a varnish is used, it is difficult to form a film on the hole, and thus a dry film type resist is suitable. At this time, since it is not necessary to perform plating into the through-hole 4, no special pretreatment or the like is necessary, and plating can be performed by a semi-additive method as in the case of a normal wafer level package.

そして、前記レジスト膜20をマスクとして露出した第二の導電部6上に、電解めっき法等により、Cu等から構成された第三の導電部8を形成する(図3(a)参照)。第三の導電部8の厚さとしては、通常は10μm膜厚前後で形成する。このように、所望の領域に第三の導電部8が形成された後、貫通電極部のみ、または貫通電極部および第三の導電部8をレジストで保護し、不要なレジスト膜や第二の導電層等のみをエッチングにて除去する(図3(b)参照)。   Then, a third conductive portion 8 made of Cu or the like is formed on the second conductive portion 6 exposed using the resist film 20 as a mask by an electrolytic plating method or the like (see FIG. 3A). The third conductive portion 8 is usually formed with a thickness of about 10 μm. As described above, after the third conductive portion 8 is formed in a desired region, only the through electrode portion or the through electrode portion and the third conductive portion 8 are protected with a resist so that an unnecessary resist film or second conductive portion 8 is protected. Only the conductive layer and the like are removed by etching (see FIG. 3B).

そして、貫通電極7を覆うような形で第三の導電部8上に、外部への端子を出力するための開口部9aを有する絶縁性の封止樹脂層9を形成する。その厚さは、例えば1〜50μmである。
このような封止樹脂層9は、例えば、感光性ポリイミド樹脂等の感光性樹脂をフォトリソグラフィ技術によりパターニングすることによって、所望の位置に開口部9aを有する封止樹脂層9を形成することができる。なお、封止樹脂層9の形成方法は、この方法に限定されるものではなく、例えば窒化シリコン等の薄膜で保護してもよい。
次いで、開口部9a上に、ボール搭載法または印刷法により半田ペーストを載置した後、リフロー工程を行い、半田バンプ10を形成する(図3(c)参照)。
これにより、図3(c)に示す構成、すなわち、封止樹脂層9が、貫通孔4内を満たすとともに、第三の導電部8側において基板2を平坦に覆うように配されている構成、からなる半導体装置が得られる。
その後、前記封止樹脂層9のうち、前記貫通孔4内に配された封止樹脂を、該貫通孔4の側面に沿うように薄くする(図3(d)参照)。貫通孔4内の側面部に形成される封止樹脂層を薄くすることで、第二の導電部6にかかる熱応力の影響をさらに受けにくくすることができる。
従って、本発明によれば、図3(d)に示す構成、すなわち、封止樹脂層9が、貫通孔4内の側面に沿うように配され、半導体装置の外部へ連通する空間を有する構成、からなる半導体装置の提供が可能となる。
Then, an insulating sealing resin layer 9 having an opening 9 a for outputting a terminal to the outside is formed on the third conductive portion 8 so as to cover the through electrode 7. The thickness is, for example, 1 to 50 μm.
Such a sealing resin layer 9 can form the sealing resin layer 9 having the opening 9a at a desired position by patterning a photosensitive resin such as a photosensitive polyimide resin by a photolithography technique, for example. it can. In addition, the formation method of the sealing resin layer 9 is not limited to this method, For example, you may protect with thin films, such as a silicon nitride.
Next, after a solder paste is placed on the opening 9a by a ball mounting method or a printing method, a reflow process is performed to form solder bumps 10 (see FIG. 3C).
Thereby, the configuration shown in FIG. 3C, that is, the configuration in which the sealing resin layer 9 fills the through-hole 4 and covers the substrate 2 flatly on the third conductive portion 8 side. A semiconductor device comprising:
Thereafter, in the sealing resin layer 9, the sealing resin disposed in the through hole 4 is thinned along the side surface of the through hole 4 (see FIG. 3D). By reducing the thickness of the sealing resin layer formed on the side surface portion in the through hole 4, it is possible to further reduce the influence of thermal stress on the second conductive portion 6.
Therefore, according to the present invention, the configuration shown in FIG. 3D, that is, the configuration in which the sealing resin layer 9 is disposed along the side surface in the through hole 4 and has a space communicating with the outside of the semiconductor device. It is possible to provide a semiconductor device comprising:

上述したとおり、本発明に係る半導体装置の製造方法は、一方の面に第一の導電部が配された基板の、他方の面から前記第一の導電部の少なくとも一部が露呈するように、前記基板内に貫通孔を形成する工程と、前記貫通孔内の側面および露呈された前記第一の導電部を覆うとともに、前記基板の他方の面上を覆うように延びて配され、前記第一の導電部と電気的に接続される第二の導電部を形成する工程と、前記第二の導電部を被覆するようにめっきレジストを形成する工程と、前記基板の他方の面上において、前記第二の導電部上に配され電気的に接続される第三の導電部をめっきにより形成する工程と、を少なくとも備えてなる。
本発明では、前記貫通孔内の側面および前記基板の他方の面上を覆うように第二の導電部を形成し、第三の導電部を基板の他方の面上において第二の導電部上にめっきにより形成することにより、貫通孔内の側面部において導電部(第二の導電部)を薄くかつ均一に形成することが可能な半導体装置の製造方法を提供することができる。
このようにして作製された半導体装置1では、貫通孔4の側面部に配された第二の導電部6を極限まで薄くすることができる。これにより、熱などによる膨張収縮に起因する第二の導電部6にかかる応力を低減することができる。その結果、第二の導電部の破壊ひいては断線等の損傷を防止して、貫通配線7における電気的な接続信頼性を向上することができる。


As described above, in the method of manufacturing a semiconductor device according to the present invention, at least a part of the first conductive portion is exposed from the other surface of the substrate on which the first conductive portion is disposed on one surface. A step of forming a through hole in the substrate, a side surface in the through hole and the exposed first conductive portion, and extending so as to cover the other surface of the substrate, Forming a second conductive part electrically connected to the first conductive part, forming a plating resist so as to cover the second conductive part, and on the other surface of the substrate And a step of forming, by plating, a third conductive portion that is disposed on and electrically connected to the second conductive portion.
In the present invention, a second conductive portion is formed so as to cover the side surface in the through hole and the other surface of the substrate, and the third conductive portion is placed on the second conductive portion on the other surface of the substrate. By forming by plating, it is possible to provide a method of manufacturing a semiconductor device capable of forming the conductive portion (second conductive portion) thinly and uniformly at the side surface portion in the through hole.
In the semiconductor device 1 manufactured in this way, the second conductive portion 6 disposed on the side surface portion of the through hole 4 can be made as thin as possible. Thereby, the stress concerning the 2nd electroconductive part 6 resulting from expansion / contraction by heat etc. can be reduced. As a result, it is possible to prevent damage to the second conductive portion and thus damage such as disconnection, and improve electrical connection reliability in the through wiring 7.


以上、本発明の半導体装置について説明してきたが、本発明は上記の例に限定されるものではなく、必要に応じて適宜変更が可能である。   Although the semiconductor device of the present invention has been described above, the present invention is not limited to the above example, and can be appropriately changed as necessary.

例えば、本発明は、機能素子の有無にかかわらず、貼り合わせ基板等についても適用可能である。また、貼り合わせのない基板に対してもこの方法は適用可能である。   For example, the present invention is applicable to a bonded substrate or the like regardless of the presence or absence of a functional element. This method can also be applied to a substrate without bonding.

本発明は、貫通電極を備えた半導体装置およびその製造方法に広く適用可能である。   The present invention is widely applicable to a semiconductor device having a through electrode and a method for manufacturing the same.

本発明に係る半導体装置の一例を示す断面図である。It is sectional drawing which shows an example of the semiconductor device which concerns on this invention. 図1に示す半導体装置の製造工程の一例を示す断面図である。FIG. 7 is a cross-sectional view showing an example of a manufacturing process of the semiconductor device shown in FIG. 1. 図2に示す工程に続く、製造工程の一例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of a manufacturing process following the process shown in FIG. 2. 従来の半導体装置の一例を示す断面図である。It is sectional drawing which shows an example of the conventional semiconductor device.

符号の説明Explanation of symbols

1 半導体装置、2 基板、3 第一の導電部(電極部)、4 貫通孔、5 絶縁層、6 第二の導電部、7 貫通電極、8 第三の導電部、9 封止樹脂層、10 半田バンプ。
DESCRIPTION OF SYMBOLS 1 Semiconductor device, 2 board | substrate, 3 1st electroconductive part (electrode part), 4 through-hole, 5 insulating layer, 6 2nd electroconductive part, 7 through electrode, 8 3rd electroconductive part, 9 sealing resin layer, 10 Solder bump.

Claims (2)

基板の一方の面に配された第一の導電部と、
前記基板の他方の面から前記第一の導電部の少なくとも一部が露呈するように、前記基板内に設けられた貫通孔と、
前記貫通孔内の側面および露呈された前記第一の導電部を覆うとともに、前記基板の他方の面上を覆うように延びて配され、前記第一の導電部と電気的に接続される第二の導電部と、
前記基板の他方の面上においてのみ、前記第二の導電部上に配され電気的に接続される第三の導電部と、を備えてなる半導体装置であって、
前記第二の導電部の厚さが、前記第三の導電部の厚さよりも薄く、
前記貫通孔内には、前記第二の導電部を被覆するように封止樹脂が配されている、
ことを特徴とする半導体装置。
A first conductive portion disposed on one side of the substrate;
A through-hole provided in the substrate such that at least a part of the first conductive portion is exposed from the other surface of the substrate;
Covering the side surface in the through hole and the exposed first conductive part, and extending so as to cover the other surface of the substrate, the first conductive part is electrically connected to the first conductive part Two conductive parts;
A third conductive portion disposed on and electrically connected to the second conductive portion only on the other surface of the substrate, and a semiconductor device comprising:
The thickness of the second conductive part is thinner than the thickness of the third conductive part,
In the through hole, a sealing resin is disposed so as to cover the second conductive portion .
A semiconductor device.
前記封止樹脂は、前記貫通孔内の側面に沿うように配され、半導体装置の外部へ連通する空間を有することを特徴とする請求項1に記載の半導体装置。   2. The semiconductor device according to claim 1, wherein the sealing resin is disposed along a side surface in the through hole and has a space communicating with the outside of the semiconductor device.
JP2006227748A 2006-08-24 2006-08-24 Semiconductor device Expired - Fee Related JP5026025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227748A JP5026025B2 (en) 2006-08-24 2006-08-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006227748A JP5026025B2 (en) 2006-08-24 2006-08-24 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2008053430A JP2008053430A (en) 2008-03-06
JP5026025B2 true JP5026025B2 (en) 2012-09-12

Family

ID=39237197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227748A Expired - Fee Related JP5026025B2 (en) 2006-08-24 2006-08-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5026025B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7527079B1 (en) 2024-05-14 2024-08-02 ディーエヌダブリュー リミテッド Functional cover for air circulation type electric roaster and air circulation type electric roaster equipped with the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4766143B2 (en) 2008-09-15 2011-09-07 株式会社デンソー Semiconductor device and manufacturing method thereof
KR101058685B1 (en) * 2009-02-26 2011-08-22 삼성전기주식회사 Package Substrate and Manufacturing Method Thereof
JP5985136B2 (en) 2009-03-19 2016-09-06 ソニー株式会社 SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP5773379B2 (en) * 2009-03-19 2015-09-02 ソニー株式会社 SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP2011096918A (en) * 2009-10-30 2011-05-12 Oki Semiconductor Co Ltd Semiconductor device and method of manufacturing the same
WO2013160976A1 (en) 2012-04-26 2013-10-31 パナソニック株式会社 Semiconductor device and method for manufacturing same
JP6021441B2 (en) 2012-05-25 2016-11-09 ラピスセミコンダクタ株式会社 Semiconductor device
EP3460835B1 (en) * 2017-09-20 2020-04-01 ams AG Method for manufacturing a semiconductor device and semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3724110B2 (en) * 1997-04-24 2005-12-07 三菱電機株式会社 Manufacturing method of semiconductor device
JP4936695B2 (en) * 2004-09-29 2012-05-23 オンセミコンダクター・トレーディング・リミテッド Semiconductor device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7527079B1 (en) 2024-05-14 2024-08-02 ディーエヌダブリュー リミテッド Functional cover for air circulation type electric roaster and air circulation type electric roaster equipped with the same

Also Published As

Publication number Publication date
JP2008053430A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP5026025B2 (en) Semiconductor device
TWI662670B (en) Electronic device package and fabrication method thereof
KR100906065B1 (en) Semiconductor chip, method of fabricating the same and stack package having the same
JP5143451B2 (en) Semiconductor device and manufacturing method thereof
EP1372193B1 (en) Method of manufacturing a semiconductor device having a stacked configuration
JP4373866B2 (en) Manufacturing method of semiconductor device
KR100917745B1 (en) Semiconductor device and manufacturing method thereof
US7342320B2 (en) Electronic component with semiconductor chips, electronic assembly composed of stacked semiconductor chips, and methods for producing an electronic component and an electronic assembly
JP3975194B2 (en) Package manufacturing method
JP2005327984A (en) Electronic component and method of manufacturing electronic-component mounting structure
JP2005303258A (en) Device and method for manufacturing the same
JP2006245226A (en) Semiconductor device and manufacturing method therefor
JP2010212297A (en) Semiconductor device and its manufacturing method
JP2007157844A (en) Semiconductor device, and method of manufacturing same
JP2006237594A (en) Semiconductor device and manufacturing method thereof
JP2007036060A (en) Semiconductor device and manufacturing method thereof
WO2011125935A1 (en) Semiconductor device and manufacturing method thereof
US20060192299A1 (en) Manufacturing method for electronic device
JP4828261B2 (en) Semiconductor device and manufacturing method thereof
JP2016152260A (en) Electronic device
JP2006339232A (en) Circuit board and its manufacturing method, and semiconductor device and its manufacturing method
JP2019149507A (en) Semiconductor device and manufacturing method thereof
JP2007096233A (en) Semiconductor device and manufacturing method therefor
WO2005114729A1 (en) Semiconductor device and wiring board
JP4920231B2 (en) WIRING BOARD AND ITS MANUFACTURING METHOD, AND ELECTRONIC COMPONENT PACKAGE AND ITS MANUFACTURING METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees