JP5021331B2 - Method for recovering platinum group metals from waste - Google Patents

Method for recovering platinum group metals from waste Download PDF

Info

Publication number
JP5021331B2
JP5021331B2 JP2007036166A JP2007036166A JP5021331B2 JP 5021331 B2 JP5021331 B2 JP 5021331B2 JP 2007036166 A JP2007036166 A JP 2007036166A JP 2007036166 A JP2007036166 A JP 2007036166A JP 5021331 B2 JP5021331 B2 JP 5021331B2
Authority
JP
Japan
Prior art keywords
platinum group
group metal
molten salt
salt
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007036166A
Other languages
Japanese (ja)
Other versions
JP2008202063A (en
Inventor
鎗田  聡明
研滋 後藤
孝俊 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2007036166A priority Critical patent/JP5021331B2/en
Priority to PCT/JP2008/052012 priority patent/WO2008099747A1/en
Priority to TW97105133A priority patent/TWI445824B/en
Publication of JP2008202063A publication Critical patent/JP2008202063A/en
Application granted granted Critical
Publication of JP5021331B2 publication Critical patent/JP5021331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/02Obtaining noble metals by dry processes
    • C22B11/021Recovery of noble metals from waste materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/005Halides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/06Chloridising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • C22B7/002Dry processes by treating with halogens, sulfur or compounds thereof; by carburising, by treating with hydrogen (hydriding)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、ルテニウム、イリジウム等の白金族金属を含むスクラップ等の廃棄物から、白金族金属を再利用可能な状態で回収するための方法に関する。   The present invention relates to a method for recovering platinum group metals in a reusable state from wastes such as scraps containing platinum group metals such as ruthenium and iridium.

ルテニウム、イリジウム等の白金族金属は、高耐熱性、高耐食性を有することから各種無機材料融解用のるつぼ等の構造材料の他、電気的特性にも優れることから電子部品の電極材料等にも使用されている。   Since platinum group metals such as ruthenium and iridium have high heat resistance and high corrosion resistance, they have excellent electrical properties in addition to structural materials such as crucibles for melting various inorganic materials, and are also used as electrode materials for electronic parts. in use.

一方、これら白金族金属は、希少性が高く高価な金属であることから、無駄のない有効な利用・消費が必要であり、リサイクル技術の発展が求められる。白金族金属を含む固体状態の廃棄物からのルテニウム等の回収方法としては種々の工夫されたものが知られている。その中で本願出願人は、溶融塩による処理技術を利用し、下記リサイクル方法を開示している。
特開2004−99975号公報
On the other hand, since these platinum group metals are rare and expensive metals, they require efficient use and consumption without waste, and development of recycling technology is required. Various methods for recovering ruthenium and the like from solid-state waste containing platinum group metals are known. Among them, the applicant of the present application discloses the following recycling method using a processing technique using molten salt.
Japanese Patent Laid-Open No. 2004-99975

本出願人による、上記廃棄物からの白金族金属リサイクル法は、白金族金属(ルテニウム、イリジウム)を含む廃棄物を、少なくともセシウム塩を含むアルカリ金属塩化物とからなる溶融塩中に溶解させ、廃棄物中の白金族金属を、水に難溶性の塩化イリジウム酸塩セシウム(塩化ルテニウム酸塩セシウム)とし、反応後の溶融塩と水とを混合して塩化イリジウム酸塩セシウム(塩化ルテニウム酸塩セシウム)を分離回収する工程を含むものである。この溶融塩を用いた技術は、比較的少工程で白金族金属を回収することができる。   According to the present applicant's platinum group metal recycling method from waste, a waste containing a platinum group metal (ruthenium, iridium) is dissolved in a molten salt composed of an alkali metal chloride containing at least a cesium salt, The platinum group metal in the waste is cesium chloride iridium chloride (ruthenium chloride cesium), which is sparingly soluble in water. The molten salt after the reaction is mixed with water, and cesium chloride iridium (ruthenate chloride). A step of separating and recovering cesium). This technique using the molten salt can recover the platinum group metal in a relatively small number of steps.

ところで、白金族金属を含む廃棄物には、その使用履歴により種々の元素が含まれている。そして、各種廃棄物から白金族金属を回収するためには、それに含まれている不純物元素に応じたプロセスを適用させることが好ましい。   By the way, wastes containing platinum group metals contain various elements according to their usage history. And in order to collect | recover platinum group metals from various wastes, it is preferable to apply the process according to the impurity element contained in it.

この観点からみると、上記従来のリサイクル方法は、Fe、Ni、Co等の金属元素を不純物とする廃棄物のリサイクルに好適である。これら金属は、溶融塩中で塩化物を生成し易く、また、これらの塩化物は水溶性を有することから、反応後の溶融塩を水に混合することで回収目的の白金族金属化合物と容易に分離することができるからである。   From this point of view, the above-described conventional recycling method is suitable for recycling wastes having metal elements such as Fe, Ni, and Co as impurities. These metals easily form chlorides in the molten salt, and these chlorides are water-soluble. Therefore, mixing the molten salt after the reaction with water facilitates the recovery of the platinum group metal compound. It is because it can isolate | separate into.

しかし、廃棄物中には上記の金属だけが含まれているわけではない。これは、白金族金属がるつぼ材料や電子部品の電極材料として使用されていることから当然に予測され、このような使用履歴を有する廃棄物は、C、Si等の半金属を含むことが多い。そして、C、Siは、溶融塩中においても、塩化物を生成し難く、上記方法では分離回収が困難である。   However, the waste does not contain only the above metals. This is naturally predicted from the fact that platinum group metals are used as crucible materials and electrode materials for electronic parts, and waste having such a use history often contains semimetals such as C and Si. . C and Si hardly generate chloride even in the molten salt, and separation and recovery are difficult by the above method.

本発明は、以上のような背景の下になされたものであり、イリジウム、ルテニウム等の白金族金属を含有する廃棄物から白金族金属を回収する方法について、従来法では除去が困難であったC、Si等の半金属又は水溶性の塩化物を生成し難い元素を不純物として含む廃棄物を処理対象とすることができるものを提供とすることを目的とする。   The present invention has been made under the background as described above, and it has been difficult to remove the platinum group metal from the waste containing platinum group metal such as iridium and ruthenium by the conventional method. It is an object of the present invention to provide a material that can be treated as waste containing impurities such as C, Si, or other semi-metal or an element that is difficult to produce a water-soluble chloride.

上記課題を解決する本発明は、イリジウム、ルテニウム、ロジウム、パラジウム、オスミウムの少なくともいずれかの白金族金属を含む廃棄物より、前記白金族金属を回収する方法であって、塩化ナトリウムからなる溶融塩中、又は、塩化ナトリウムと塩化カリウムとからなる溶融塩中で、前記廃棄物に含まれる前記白金族金属と塩素とを反応させ、水に易溶性の白金族金属の塩化物を生成した後、反応後の前記溶融塩を水に混合し、固液分離して前記白金族金属の水溶液を得る工程を含む白金族金属の回収方法である。   The present invention for solving the above-mentioned problems is a method for recovering the platinum group metal from waste containing at least one platinum group metal of iridium, ruthenium, rhodium, palladium, osmium, and a molten salt comprising sodium chloride. In or in a molten salt consisting of sodium chloride and potassium chloride, after reacting the platinum group metal and chlorine contained in the waste to produce a platinum group metal chloride that is readily soluble in water, The platinum group metal recovery method includes a step of mixing the molten salt after the reaction with water and solid-liquid separation to obtain an aqueous solution of the platinum group metal.

本発明は、従来の回収法が溶融塩中で白金族金属を難溶性の塩化物にするのとは逆に、廃棄物中の白金族金属を水に易溶性の塩化物とする。そして、反応後の溶融塩と水とを混合することで、C、Si等のような不溶性の不純物を固体状態で分離し、回収目的の白金族金属を水溶液の状態で回収するものである。そのために本発明では、廃棄物の溶媒となる溶融塩の構成として、セシウムを含まないアルカリ金属塩を適用している。これは、従来技術についての検討から、セシウムは溶融塩中で白金族金属と反応すると難溶性のセシウム塩を生成するため、白金族金属とC、Si等の不溶性の不純物との分離を困難とするからである。   In the present invention, the platinum group metal in the waste is made into a water-soluble chloride, contrary to the conventional recovery method in which the platinum group metal is made into a hardly soluble chloride in the molten salt. Then, by mixing the molten salt after the reaction with water, insoluble impurities such as C and Si are separated in a solid state, and the platinum group metal for recovery is recovered in an aqueous solution state. Therefore, in this invention, the alkali metal salt which does not contain a cesium is applied as a structure of the molten salt used as a waste solvent. This is because it is difficult to separate the platinum group metal from insoluble impurities such as C and Si because cesium reacts with the platinum group metal in the molten salt to form a hardly soluble cesium salt from the examination of the prior art. Because it does.

以下、本発明について詳細に説明する。本発明においては、まず、溶融塩を溶媒とし、この溶媒中で処理対象となる廃棄物を塩素と反応させつつ溶解させる。処理対象となる廃棄物は、回収目的となる白金族金属を含むスクラップ等となるが、その含有量は特に限定されない。但し、後述のように、溶融塩中の白金族金属量は、反応速度に影響を与える。   Hereinafter, the present invention will be described in detail. In the present invention, first, a molten salt is used as a solvent, and a waste to be treated is dissolved in the solvent while reacting with chlorine. The waste to be treated is scrap or the like containing a platinum group metal to be collected, but the content is not particularly limited. However, as will be described later, the amount of platinum group metal in the molten salt affects the reaction rate.

溶融塩による塩素との反応工程において、溶媒となる溶融塩は、塩化ナトリウムからなる溶融塩、又は、塩化カリウムと塩化ナトリウムの2種のアルカリ金属塩化物を混合した溶融塩とする。特許文献1記載の溶融塩は、塩化カリウムと塩化ナトリウムに加えて塩化セシウムを含む、K−Na−Cs系3種混合塩が適用されているが、上記のように、セシウムは白金族金属に対し難溶性の塩化物を生成することから、本発明においてはセシウム塩の適用は除外される。   In the reaction step with chlorine using a molten salt, the molten salt serving as a solvent is a molten salt composed of sodium chloride or a molten salt obtained by mixing two alkali metal chlorides of potassium chloride and sodium chloride. As the molten salt described in Patent Document 1, K-Na-Cs mixed salt containing cesium chloride in addition to potassium chloride and sodium chloride is applied. As described above, cesium is a platinum group metal. In the present invention, the application of a cesium salt is excluded because it produces a hardly soluble chloride.

溶融塩を構成するカリウム、ナトリウムは、処理対象となる白金族金属に対し、それぞれ別種の塩化物を生成することとなる。ナトリウムは、ナトリウム塩化物(塩化イリジウム酸ナトリウム、塩化ルテニウム酸ナトリウム等)を生成し、カリウムは、カリウム塩化物(塩化イリジウム酸カリウム、塩化ルテニウム酸カリウム等)を生成する。各アルカリ金属を含む白金族金属塩化物は、その生成速度(白金族貴金属との反応速度)及び水に対する溶解度が異なる。本発明者等によれば、生成速度については、カリウム塩化物がナトリウム塩化物よりも生成速度が高い一方、水溶性に関していえば、ナトリウム塩化物の方がカリウム塩よりも溶解度が高い。   Potassium and sodium constituting the molten salt each generate a different type of chloride for the platinum group metal to be treated. Sodium produces sodium chloride (sodium chloroiridate, sodium chloride ruthenate, etc.) and potassium produces potassium chloride (potassium iridate, potassium ruthenate, etc.). Platinum group metal chlorides containing each alkali metal have different formation rates (reaction rates with platinum group noble metals) and solubility in water. According to the present inventors, as for the production rate, potassium chloride has a higher production rate than sodium chloride, while sodium chloride has a higher solubility than potassium salt in terms of water solubility.

特に、塩化ナトリウムと塩化カリウムとを混合した溶融塩を適用する場合、その組成は、廃棄物中の白金族金属の溶解速度と、反応後の溶融塩の水溶性に影響を及ぼす。例えば、カリウム塩の割合を増加させると、白金族金属の溶解速度を高くすることができるものの、反応後の溶融塩(中の白金族金属塩)の溶解度を低下させることとなる。この点について、作業効率(溶解速度)と、白金族金属回収率(溶解度)との観点からみれば、溶融塩の組成は、塩化ナトリウム濃度が50mol%以上のものが好ましく、75〜90mol%の塩化ナトリウムと、10〜25mol%の塩化カリウムからなる溶融塩がより好ましい。   In particular, when a molten salt obtained by mixing sodium chloride and potassium chloride is applied, the composition affects the dissolution rate of the platinum group metal in the waste and the water solubility of the molten salt after the reaction. For example, when the proportion of the potassium salt is increased, the dissolution rate of the platinum group metal can be increased, but the solubility of the molten salt (the platinum group metal salt therein) after the reaction is decreased. In this regard, from the viewpoint of work efficiency (dissolution rate) and platinum group metal recovery rate (solubility), the composition of the molten salt preferably has a sodium chloride concentration of 50 mol% or more, preferably 75 to 90 mol%. A molten salt composed of sodium chloride and 10 to 25 mol% of potassium chloride is more preferable.

また、同じ組成の溶融塩中においては、白金族金属の反応速度は、溶融塩中の白金族金属量(廃棄物中の白金族金属量)によっても変化し、白金族金属量の増大により反応速度が上昇する。これは、反応面積の増大に伴うものと考えられる。そこで、反応させる白金族金属のモル量を、溶媒となる溶融塩のモル量に対して、15〜80モル%とすることが好ましく、30〜60モル%が特に好ましい。この範囲未満の白金族金属では反応速度が低下し、十分に経済的な量の白金族金属を溶解するための時間を要し、この範囲を超える白金族金属を溶解しようとしても、実際には反応に寄与しない白金族金属を過剰に保有することになり、経済的に不利であるからである。尚、ここで好ましいとする範囲は白金族金属の重量であって、廃棄物全体の重量ではない。従って、白金族金属濃度の推測が容易でない廃棄物については、処理前にICP等で白金族金属濃度を分析するし濃度既知の状態にしておくことが好ましい。   In molten salt with the same composition, the reaction rate of the platinum group metal also varies depending on the amount of platinum group metal in the molten salt (the amount of platinum group metal in the waste). Increases speed. This is considered to accompany an increase in the reaction area. Therefore, the molar amount of the platinum group metal to be reacted is preferably 15 to 80 mol%, particularly preferably 30 to 60 mol%, based on the molar amount of the molten salt serving as a solvent. If the platinum group metal is less than this range, the reaction rate decreases, and it takes time to dissolve a sufficiently economical amount of the platinum group metal. This is because the platinum group metal that does not contribute to the reaction is excessively held, which is economically disadvantageous. The preferred range here is the weight of the platinum group metal, not the total weight of the waste. Therefore, it is preferable to analyze the platinum group metal concentration by ICP or the like and make the concentration known for wastes whose platinum group metal concentration is not easily estimated.

そして、溶融塩中で白金族金属塩を反応させる温度は、溶融塩を構成する塩化ナトリウムと塩化カリウムとの混合塩を溶融させることを前提としてその設定が必要である。この点、塩化ナトリウムの融点は、約800℃であり、塩化カリウムの融点は約776℃であり、両者の比率が等しい(50%:50%)混合塩の融点は約658℃となるが、この組成から外れると融点が上昇する。本発明者等によれば、溶融塩の温度は、750〜850℃とすることが好ましい。かかる温度範囲を好ましい範囲とするのは、この温度範囲において溶融塩の流動性が十分に得られ、塩素ガスを吹き込んだ場合にその気泡による攪拌効果を期待できるからである。また、溶融塩中での反応速度、及び、生成した白金族金属塩化物の溶解速度が十分なものとなるからである。   The temperature for reacting the platinum group metal salt in the molten salt needs to be set on the premise that the mixed salt of sodium chloride and potassium chloride constituting the molten salt is melted. In this regard, the melting point of sodium chloride is about 800 ° C., the melting point of potassium chloride is about 776 ° C., and the ratio of both is equal (50%: 50%), the melting point of the mixed salt is about 658 ° C. If it deviates from this composition, the melting point increases. According to the present inventors, the temperature of the molten salt is preferably 750 to 850 ° C. The reason why such a temperature range is a preferable range is that sufficient fluidity of the molten salt is obtained in this temperature range, and when chlorine gas is blown, the stirring effect by the bubbles can be expected. Further, the reaction rate in the molten salt and the dissolution rate of the produced platinum group metal chloride are sufficient.

本発明においては、溶融塩にできるだけ多くの(高濃度の)白金族金属を溶解させることが好ましいといえる。本発明では、その後の処理において、溶融塩を水に混合し白金族金属塩水溶液を得るものであるが、効率的に白金族金属を回収するには、白金族金属塩水溶液の濃度、つまり、溶融塩中の白金族金属量が多いことが好ましいからである。この反応後の溶融塩中の白金族金属濃度の目標値としては、投入時のアルカリ金属溶融塩モル量と溶解した白金族金属モル量との合計モル量を基準として、5〜30モル%に設定するのが好ましい。5%未満では回収効率が悪化し処理コストの低下の要因となる。また、30%を超える白金族金属を含む溶融塩を製造するのは理論的にも困難であり、溶融塩中の白金族金属の溶解速度も低下し経済的に不利である。   In the present invention, it is preferable to dissolve as much (high concentration) platinum group metal as possible in the molten salt. In the present invention, in the subsequent treatment, the molten salt is mixed with water to obtain a platinum group metal salt aqueous solution. To recover the platinum group metal efficiently, the concentration of the platinum group metal salt aqueous solution, that is, This is because it is preferable that the amount of platinum group metal in the molten salt is large. The target value of the platinum group metal concentration in the molten salt after this reaction is 5 to 30 mol% on the basis of the total molar amount of the alkali metal molten salt at the time of charging and the dissolved platinum group metal molar amount. It is preferable to set. If it is less than 5%, the recovery efficiency is deteriorated and the processing cost is lowered. In addition, it is theoretically difficult to produce a molten salt containing more than 30% of a platinum group metal, and the dissolution rate of the platinum group metal in the molten salt is lowered, which is economically disadvantageous.

そして、この目標値に対する反応時間は、8〜40時間、好ましくは10〜35時間、より好ましくは14〜24時間とするのが好ましい。   The reaction time for this target value is 8 to 40 hours, preferably 10 to 35 hours, more preferably 14 to 24 hours.

尚、本発明では、溶融塩中で白金族金属と塩素を反応させることから、反応中、溶融塩に塩素を供給する必要がある。この塩素の供給は、溶融塩に塩素ガスを吹き込むことによるのが好ましい。そして、塩素ガスの吹き込みは、塩素ガスが廃棄物に直接接触するように行なうのが好ましい。具体的には、塩素ガス供給のためのノズルを、その先端部が廃棄物表面近傍に位置するように設置するのが好ましい。また、塩素ガスの供給量としては、0.5〜10L/minとするのが好ましい。   In the present invention, since the platinum group metal and chlorine are reacted in the molten salt, it is necessary to supply chlorine to the molten salt during the reaction. This supply of chlorine is preferably by blowing chlorine gas into the molten salt. The blowing of chlorine gas is preferably performed so that the chlorine gas is in direct contact with the waste. Specifically, it is preferable to install a nozzle for supplying chlorine gas so that the tip thereof is located in the vicinity of the waste surface. The supply amount of chlorine gas is preferably 0.5 to 10 L / min.

以上説明した溶融塩中における白金族金属と塩素との反応により、溶融塩中には水溶性の白金族金属塩(塩化イリジウム酸カリウム、塩化ルテニウム酸ナトリウム等)が生成される。そして、この溶融塩を冷却後、水に混合することで、白金族金属塩は水溶液となる一方、不溶性のC、Si等の不純物が固体として水溶液中に分散・沈澱する。水溶液の固液分離は、ろ過によるのが好ましい。   By the reaction of the platinum group metal and chlorine in the molten salt described above, a water-soluble platinum group metal salt (potassium chloroiridate, sodium ruthenate, etc.) is generated in the molten salt. The molten salt is cooled and mixed with water, whereby the platinum group metal salt becomes an aqueous solution, while insoluble impurities such as C and Si are dispersed and precipitated as a solid in the aqueous solution. The solid-liquid separation of the aqueous solution is preferably by filtration.

溶融塩と水との混合においては、溶液中の白金族金属濃度が10〜100g/L、好ましくは20〜80g/Lとなるように、水の量を調整して混合することが好ましい。白金族金属濃度が薄すぎると回収効率が悪化し、濃すぎると沈澱(溶解残渣)の発生が懸念されるからである。尚、前記のように、水溶液化における水の混合量は、製造後の水溶液の白金族貴金属濃度を目安・目標にすることから、水溶液化の前において、溶融塩中の白金族金属量、又は、濃度を測定しておくことが好ましい。   In mixing the molten salt and water, it is preferable to adjust the amount of water so that the platinum group metal concentration in the solution is 10 to 100 g / L, preferably 20 to 80 g / L. This is because if the platinum group metal concentration is too low, the recovery efficiency is deteriorated, and if it is too high, the occurrence of precipitation (dissolved residue) is concerned. As described above, the amount of water mixed in the aqueous solution is based on the platinum group noble metal concentration of the aqueous solution after production as a standard / target, so the amount of platinum group metal in the molten salt before the aqueous solution, or It is preferable to measure the concentration.

以上の工程により得られる水溶液中の白金族金属塩(塩化イリジウム酸ナトリウム、塩化イリジウム酸カリウム等)は、それ自体、利用価値がある。この水溶液は、イオン交換、電解、濃縮等を行なうことで、より高純度の白金族金属塩溶液又は白金族金属塩結晶とすることができ、そのまま利用可能な状態とすることができる。   The platinum group metal salt (sodium chloride iridate, potassium chloride iridate, etc.) in the aqueous solution obtained by the above steps is useful in itself. By performing ion exchange, electrolysis, concentration, etc., this aqueous solution can be made into a higher purity platinum group metal salt solution or platinum group metal salt crystal and can be used as it is.

また、この水溶液から白金族金属を純金属の形態で回収することも可能である。純金属回収の方法としては、水溶液を濃縮して得られる白金族金属塩を水素雰囲気で還元することによるのが好ましい。この水素還元の温度条件としては、300〜650℃の範囲とするのが好ましい。尚、水素還元後の白金族金属は、純水で洗浄して塩化ナトリウム、塩化カリウムを除去し、再度、水素還元(二次水素還元処理)することで更に高純度のものとすることができる。   It is also possible to recover the platinum group metal from this aqueous solution in the form of a pure metal. As a pure metal recovery method, it is preferable to reduce a platinum group metal salt obtained by concentrating an aqueous solution in a hydrogen atmosphere. The temperature condition for this hydrogen reduction is preferably in the range of 300 to 650 ° C. The platinum group metal after hydrogen reduction can be further purified by washing with pure water to remove sodium chloride and potassium chloride, and hydrogen reduction (secondary hydrogen reduction treatment) again. .

以上説明したように本発明によれば、ルテニウム、イリジウム等の白金族金属を含むスクラップ等の廃棄物から白金族金属を効率的に回収することができる。本発明に係る方法は、不純物としてC、Si等の半金属を含む廃棄物のリサイクル処理を可能とする。本発明を中心としたリサイクルシステムによれば、資源の有効利用を図ると共に白金族金属を使用する製品のコスト低下を図ることができる。   As described above, according to the present invention, platinum group metals can be efficiently recovered from wastes such as scraps containing platinum group metals such as ruthenium and iridium. The method according to the present invention makes it possible to recycle wastes containing metalloids such as C and Si as impurities. According to the recycling system centering on the present invention, it is possible to effectively use resources and reduce the cost of products using platinum group metals.

本発明は、ルテニウム、イリジウムの回収において特に有用である。白金については、塩化ナトリウムと塩化カリウムの混合塩を用いた場合において、溶融塩中に白金を反応させこれを水溶液中に溶解させて回収することが困難となる。白金は塩化カリウムとの反応において溶融塩に溶解し難い塩化物を生成するからである。但し、このことは白金と他の白金族金属(ルテニウム、イリジウム等)を含む廃棄物から、白金を分離する技術として有効なものとなる。とりわけ、近年では、各種の白金合金(白金−イリジウム合金、白金−ロジウム合金等)が使用されることが多いことから、これらの合金を含む廃棄物から白金を分離しつつ、イリジウム等を回収する場合において本発明は有用である。   The present invention is particularly useful in the recovery of ruthenium and iridium. As for platinum, when a mixed salt of sodium chloride and potassium chloride is used, it is difficult to recover platinum by reacting it in the molten salt and dissolving it in an aqueous solution. This is because platinum produces a chloride that is difficult to dissolve in the molten salt in the reaction with potassium chloride. However, this is effective as a technique for separating platinum from waste containing platinum and other platinum group metals (ruthenium, iridium, etc.). In particular, since various platinum alloys (platinum-iridium alloy, platinum-rhodium alloy, etc.) are often used in recent years, iridium and the like are recovered while separating platinum from waste containing these alloys. In some cases, the present invention is useful.

第1実施形態:ここでは、イリジウムの溶融塩処理、水溶液化、水素還元を行い、廃棄物から金属イリジウムを回収した。 First Embodiment : Here, molten iridium salt treatment, aqueous solution, and hydrogen reduction were performed, and metal iridium was recovered from waste.

A:溶融塩による処理
図1は、本実施形態で使用した溶融塩処理装置の概略図である。この溶融塩処理装置は、溶融塩100の容器となるグラファイト製のるつぼ10と、るつぼ10を収容する蓋付チャンバー(本体21は石英製、蓋22はテフロン(登録商標)製)、るつぼから蓋にかけて設置される複数枚の遮蔽版30(グラファイト製、石英製、パイレックス(登録商標)製)、そして、塩素を導入するためのノズル40を備える。ノズル40の先端部は、るつぼ10内の廃棄物50の表面に近接するようになっており、廃棄物50に塩素ガスが直接接触するようになっている。
A: Treatment with Molten Salt FIG. 1 is a schematic view of the molten salt treatment apparatus used in this embodiment. This molten salt treatment apparatus includes a graphite crucible 10 serving as a container for the molten salt 100, a chamber with a lid for accommodating the crucible 10 (the main body 21 is made of quartz, and the lid 22 is made of Teflon (registered trademark)), and the crucible is covered with a lid. A plurality of shielding plates 30 (made of graphite, quartz, Pyrex (registered trademark)) and a nozzle 40 for introducing chlorine are provided. The tip of the nozzle 40 is close to the surface of the waste 50 in the crucible 10 so that chlorine gas is in direct contact with the waste 50.

この溶融塩処理装置1を使用し、イリジウムの回収・精製を行った。まず、溶媒塩となる塩化ナトリウム1989g、塩化カリウム2537gを石英製の容器に入れた。更に、イリジウム含有量2001gのカーボン混在スクラップを投入した。   Using this molten salt processing apparatus 1, iridium was recovered and purified. First, 1989 g of sodium chloride as a solvent salt and 2537 g of potassium chloride were placed in a quartz container. Furthermore, carbon mixed scrap having an iridium content of 2001 g was added.

そして、混合塩を820℃まで加熱し溶融させた。次に、この溶融塩に100%塩素ガスを2L/minの流量で吹き込み、14.2時間(851分間)反応させた。反応後の溶融塩を一部採取し、ICP分析を行なったところ、溶融塩中のイリジウム濃度は26.5重量%であった。   The mixed salt was heated to 820 ° C. and melted. Next, 100% chlorine gas was blown into the molten salt at a flow rate of 2 L / min and reacted for 14.2 hours (851 minutes). A part of the molten salt after the reaction was collected and subjected to ICP analysis. As a result, the iridium concentration in the molten salt was 26.5% by weight.

上記と同様の工程にて、組成を変化させた溶融塩での処理を行った結果を表1に示す。ここでは、比較として塩化ナトリウムのみからなる溶融塩による処理の結果も示している。   Table 1 shows the results of the treatment with the molten salt with the composition changed in the same process as above. Here, the result of the process by the molten salt which consists only of sodium chloride is also shown as a comparison.

Figure 0005021331
Figure 0005021331

各実施例の結果から以下の点がわかる。まず、溶媒となる溶融塩の組成に関して、Ir投入量と反応時間が近似している実施例1と実施例2との比較から、溶媒塩の塩化カリウム濃度が上昇することで、反応速度が上昇することがわかる。また、溶融塩組成と反応時間が同じ、実施例2と実施例4との対比から、投入するイリジウム量が多いほど反応速度が高くなる傾向がある。尚、塩化ナトリウムのみからなる溶融塩(実施例6)を用いても、イリジウムの回収は可能ではあるが、反応速度が他の組成の場合よりも低いことから、反応速度のみを重視するのであれば、溶媒塩に塩化カリウムを添加・混合するのがより好ましいことがわかる。   The following points can be understood from the results of the examples. First, regarding the composition of the molten salt used as the solvent, the reaction rate increases as the potassium chloride concentration of the solvent salt increases from the comparison between Example 1 and Example 2 in which the Ir input amount and the reaction time are approximated. I understand that In addition, from the comparison between Example 2 and Example 4 in which the reaction time is the same as the molten salt composition, the reaction rate tends to increase as the amount of iridium added increases. It should be noted that iridium can be recovered even using a molten salt consisting of only sodium chloride (Example 6), but since the reaction rate is lower than in the case of other compositions, only the reaction rate should be emphasized. In other words, it is more preferable to add and mix potassium chloride to the solvent salt.

B:白金族金属塩水溶液の生成
次に、実施例1,3,5,6の反応終了後の溶融塩を水に混合し、溶融塩からイリジウムをイリジウム塩水溶液の形態で回収した。ここでは、溶融塩中のイリジウム濃度を基に、水溶液中のイリジウム濃度が20〜80%になるように水の量を変化させて混合した。そして、水を混合した後の水溶液の分析を行ない、イリジウム等の濃度を測定すると共に、溶解残物の有無を検討した。表2にその結果を示す。
B: Generation of platinum group metal salt aqueous solution Next, the molten salts after completion of the reactions of Examples 1, 3, 5, and 6 were mixed with water, and iridium was recovered from the molten salt in the form of an iridium salt aqueous solution. Here, based on the iridium density | concentration in molten salt, the quantity of water was changed and mixed so that the iridium density | concentration in aqueous solution might be 20 to 80%. And the aqueous solution after mixing water was analyzed, and while measuring the density | concentrations, such as iridium, the presence or absence of the dissolution residue was examined. Table 2 shows the results.

Figure 0005021331
Figure 0005021331

基本的に、溶液中イリジウム濃度の目標値によらず、高純度のイリジウム塩水溶液が製造できた。但し、全体的な傾向として、目標値が高くなると溶解残物が生じ、実際の水溶液中の濃度とのズレが大きくなる傾向も見られる。この点について、塩化カリウムを50%とした実施例1では、溶融塩処理の段階では好適な結果(溶解速度等)を示していたが、水溶液化の段階で溶解残物が比較的多く、また、水溶液の目標濃度と実際の濃度とのズレが大きくなる傾向がある。一方、実施例6の塩化ナトリウムのみからなる溶融塩を適用した場合においては、溶解残物や濃度値のズレが少なくなっている。これは、上記で述べたように、塩化カリウムは、塩化ナトリウムと比してイリジウム塩の生成速度は高いものの、その水に対する溶解度が低いことによるものと考えられる。   Basically, a high-purity iridium salt aqueous solution could be produced regardless of the target value of the iridium concentration in the solution. However, as a general tendency, when the target value becomes high, a dissolved residue is generated, and a deviation from the actual concentration in the aqueous solution tends to increase. In this regard, Example 1 with 50% potassium chloride showed favorable results (dissolution rate, etc.) at the stage of molten salt treatment, but there were relatively many dissolution residues at the stage of aqueous solution, The difference between the target concentration of the aqueous solution and the actual concentration tends to increase. On the other hand, in the case where the molten salt consisting only of sodium chloride of Example 6 is applied, there is little difference between the dissolved residue and the concentration value. As described above, this is considered to be due to the fact that potassium chloride has a higher production rate of iridium salt than sodium chloride, but its solubility in water is low.

第2実施形態:ここでは、本発明に係る方法について、廃棄物中の白金の分離操作への適用可能性を検討した。上記第1実施形態の実施例5、6において、水溶液化した後の水溶液中の白金濃度を分析したときの結果を表3に示す。 Second Embodiment : Here, the applicability of the method according to the present invention to the separation operation of platinum in waste was examined. In Examples 5 and 6 of the first embodiment, Table 3 shows the results when the platinum concentration in the aqueous solution after the aqueous solution was analyzed.

Figure 0005021331
Figure 0005021331

表3から、実施例5においては、目標イリジウム濃度を80g/Lとすることで、溶液中の白金濃度を検出限界以下とし、白金を分離することができたことがわかる。これは、溶液化の目標濃度を高くすると、溶解残渣が発生し易くなるものの、白金がイリジウムよりも溶解残渣中に残留する傾向にあるため、溶液中への白金の同伴が抑制されたためと予測される。   From Table 3, it can be seen that in Example 5, the target iridium concentration was 80 g / L, so that the platinum concentration in the solution could be made below the detection limit and platinum could be separated. It is predicted that when the target concentration of the solution is increased, dissolution residues are more likely to occur, but platinum tends to remain in the dissolution residue rather than iridium, so that platinum entrainment in the solution was suppressed. Is done.

尚、実施例6(溶融塩組成を塩化ナトリウム100%とする)において、目標イリジウム濃度20g/Lの溶液中の白金濃度が検出限界以下となっているのは、白金濃度が低いというよりも、イリジウムを含めた貴金属全体の重量が少な過ぎたことによると考えられる。これは、実施例6において、目標イリジウム濃度を高くしても白金濃度(白金重量/(イリジウム重量+白金重量))が殆ど変化していないことから予測される。そして、実施例5と実施例6との対比から、本実施形態においては、白金を完全に分離することを主題とする場合には、溶融塩組成として、塩化カリウムを混合させることが好ましいと考えられる。   In Example 6 (the molten salt composition is 100% sodium chloride), the platinum concentration in the solution having a target iridium concentration of 20 g / L is below the detection limit, rather than the platinum concentration being low. This is probably due to the fact that the total weight of noble metals including iridium was too small. This is predicted from the fact that in Example 6, the platinum concentration (platinum weight / (iridium weight + platinum weight)) hardly changed even when the target iridium concentration was increased. From the comparison between Example 5 and Example 6, in this embodiment, when the subject matter is to completely separate platinum, it is preferable to mix potassium chloride as the molten salt composition. It is done.

次に、この検討結果を確認するため、白金を5.0%含有するスクラップ金属について、第1実施形態と同様の装置、条件により、溶融塩への溶解及び水溶液化を行った。   Next, in order to confirm this examination result, a scrap metal containing 5.0% platinum was dissolved in a molten salt and made into an aqueous solution using the same apparatus and conditions as in the first embodiment.

Figure 0005021331
Figure 0005021331

この実施例7においても、イリジウム塩水溶液中の白金濃度は極めて低くなっており、イリジウム回収と同時に白金との分離を効率的に行なうことができることが確認できた。   Also in Example 7, the platinum concentration in the iridium salt aqueous solution was extremely low, and it was confirmed that the separation from platinum can be efficiently performed simultaneously with the recovery of iridium.

第3実施形態:ここでは、ルテニウムを含むスクラップを対象に、溶融塩による処理を行なった。第1実施形態と同じ溶融塩処理装置を用い、溶融塩の組成を変えて処理を行なった。ここでの処理条件は、溶融塩温度を820℃とし、塩素を流量2L/minで吹き込んだ。尚、処理対象であるスクラップは、3%のカーボンを含むルテニウムのスクラップである。表5はその結果を示す。 Third Embodiment : Here, treatment with molten salt was performed on scrap containing ruthenium. Using the same molten salt treatment apparatus as in the first embodiment, the treatment was performed by changing the composition of the molten salt. The treatment conditions here were such that the molten salt temperature was 820 ° C. and chlorine was blown at a flow rate of 2 L / min. The scrap to be processed is ruthenium scrap containing 3% carbon. Table 5 shows the results.

Figure 0005021331
Figure 0005021331

この結果、ルテニウムを含むスクラップに対しても、ルテニウムの回収が可能であることが確認された。また、本実施形態でも、塩化カリウムを比較的多く(45mol%)含む実施例8は溶解速度等において優れていた。   As a result, it was confirmed that ruthenium can be recovered even for scraps containing ruthenium. Also in this embodiment, Example 8 containing a relatively large amount (45 mol%) of potassium chloride was excellent in dissolution rate and the like.

上記実施例9でルテニウムを溶解させた溶融塩を水溶液化し(水溶液化の際の目標Ru濃度は、50g/Lとした)、得られたルテニウム塩水溶液をエバポレーターで濃縮してルテニウム塩とし、これを水素雰囲気下で加熱して還元処理した。この還元処理は、まず一次処理としてルテニウム塩を600℃で6時間加熱した。そして、得られた金属ルテニウムを純水で洗浄し、700℃で6時間加熱する二次水素還元処理を行なった。処理後のルテニウム粉末の純度は、99.97%と高純度のものであった。   The molten salt in which ruthenium is dissolved in Example 9 is made into an aqueous solution (the target Ru concentration at the time of making the aqueous solution is 50 g / L), and the obtained ruthenium salt aqueous solution is concentrated with an evaporator to obtain a ruthenium salt. Was reduced in a hydrogen atmosphere. In this reduction treatment, the ruthenium salt was first heated at 600 ° C. for 6 hours as a primary treatment. Then, the obtained metal ruthenium was washed with pure water and subjected to secondary hydrogen reduction treatment by heating at 700 ° C. for 6 hours. The purity of the ruthenium powder after the treatment was as high as 99.97%.

本実施形態で使用した溶融塩処理装置の構造を示す図。The figure which shows the structure of the molten salt processing apparatus used by this embodiment.

Claims (4)

イリジウム、ルテニウム、ロジウム、パラジウム、オスミウムの少なくともいずれかの白金族金属を含む廃棄物より、前記白金族金属を回収する方法であって、
75〜90mol%の塩化ナトリウムと、10〜25mol%の塩化カリウムからなる溶融塩中で、前記廃棄物に含まれる前記白金族金属と塩素とを反応させ、水に易溶性の白金族金属の塩化物を生成した後、
反応後の前記溶融塩を水に混合し、固液分離して前記白金族金属の水溶液を得る工程を含む白金族金属の回収方法。
A method of recovering the platinum group metal from waste containing at least one platinum group metal of iridium, ruthenium, rhodium, palladium, and osmium,
In a molten salt composed of 75 to 90 mol% sodium chloride and 10 to 25 mol% potassium chloride, the platinum group metal and chlorine contained in the waste are reacted, and the platinum group metal is readily soluble in water. After producing
A method for recovering a platinum group metal comprising a step of mixing the molten salt after the reaction with water and solid-liquid separation to obtain an aqueous solution of the platinum group metal.
溶融塩の温度を750〜850℃とする請求項1に記載の白金族金属の回収方法。 The method for recovering a platinum group metal according to claim 1 , wherein the temperature of the molten salt is 750 to 850 ° C. 塩素を塩素ガスとして供給し、塩素ガスと廃棄物とが直接接触するようにする請求項1又は請求項2に記載の白金族金属の回収方法。 The method for recovering a platinum group metal according to claim 1 or 2 , wherein chlorine is supplied as chlorine gas so that the chlorine gas and waste are in direct contact with each other. 回収したろ液を濃縮及び乾固した後、水素還元して白金族金属とする請求項1〜請求項3のいずれかに記載の白金族金属の回収方法。 The method for recovering a platinum group metal according to any one of claims 1 to 3 , wherein the recovered filtrate is concentrated and dried, and then reduced to hydrogen to form a platinum group metal.
JP2007036166A 2007-02-16 2007-02-16 Method for recovering platinum group metals from waste Active JP5021331B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007036166A JP5021331B2 (en) 2007-02-16 2007-02-16 Method for recovering platinum group metals from waste
PCT/JP2008/052012 WO2008099747A1 (en) 2007-02-16 2008-02-07 Method for recovering platinum group metal from waste
TW97105133A TWI445824B (en) 2007-02-16 2008-02-14 Method for recovering platinum group metal from waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007036166A JP5021331B2 (en) 2007-02-16 2007-02-16 Method for recovering platinum group metals from waste

Publications (2)

Publication Number Publication Date
JP2008202063A JP2008202063A (en) 2008-09-04
JP5021331B2 true JP5021331B2 (en) 2012-09-05

Family

ID=39689983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007036166A Active JP5021331B2 (en) 2007-02-16 2007-02-16 Method for recovering platinum group metals from waste

Country Status (3)

Country Link
JP (1) JP5021331B2 (en)
TW (1) TWI445824B (en)
WO (1) WO2008099747A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4514807B2 (en) * 2008-04-10 2010-07-28 山本貴金属地金株式会社 Method for producing noble metal fine particles
JP5408993B2 (en) * 2008-12-24 2014-02-05 山本貴金属地金株式会社 Method for recovering platinum group elements
KR101091699B1 (en) * 2009-05-18 2011-12-08 한국지질자원연구원 Leaching method of platinum group metals from spent automotive catalyst
JP5361759B2 (en) * 2010-02-15 2013-12-04 山本貴金属地金株式会社 Method for producing noble metal fine particles
CN104056841A (en) * 2013-07-10 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Processing method of titanium extraction tailings
EP3085796B1 (en) * 2015-04-21 2017-07-19 Heraeus Deutschland GmbH & Co. KG Extraction method for a metallic, iridium and/or iridium oxide comprising mixture of solid particles
KR101817079B1 (en) 2017-09-25 2018-02-21 케이에스메탈주식회사 process of recovering Platinum group metal from waste sludge generated from refining process of precious metal ore
CN111900425B (en) * 2020-07-03 2021-12-17 广东邦普循环科技有限公司 Method for recycling hydrogen fuel cell of new energy automobile
CN113462900B (en) * 2021-07-04 2022-06-21 贵研资源(易门)有限公司 Method for recovering rhodium from waste rhodium park catalyst

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5168493A (en) * 1974-12-10 1976-06-14 Japan Carlit Co Ltd Ruteniumu mataha sonokagobutsuofukumu nanyoseibutsushitsuno kayokaho
JPS58194745A (en) * 1982-05-06 1983-11-12 Tanaka Kikinzoku Kogyo Kk Recovery of ruthenium
JPS6092433A (en) * 1983-10-26 1985-05-24 Daido Steel Co Ltd Method for recovering noble metal
JP2692882B2 (en) * 1988-08-23 1997-12-17 田中貴金属工業株式会社 How to recover precious metals from spent catalysts
JP3564852B2 (en) * 1996-02-19 2004-09-15 三菱マテリアル株式会社 Method for producing high purity metal ruthenium powder
JP4607303B2 (en) * 2000-09-13 2011-01-05 株式会社フルヤ金属 Method for recovering platinum group metals from metal electrodes
JP3943564B2 (en) * 2004-01-30 2007-07-11 日鉱金属株式会社 Method for chlorinating Se-containing materials

Also Published As

Publication number Publication date
JP2008202063A (en) 2008-09-04
TWI445824B (en) 2014-07-21
TW200848519A (en) 2008-12-16
WO2008099747A1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP5021331B2 (en) Method for recovering platinum group metals from waste
JP5904459B2 (en) Manufacturing method of high purity nickel sulfate
JP4219947B2 (en) How to recover lead
CN100497674C (en) Method for processing cunico
JP6780448B2 (en) How to recover high-grade rhodium powder
JP5132226B2 (en) Ruthenium recovery method
JP2001316736A (en) Method for recovering silver
JP6011809B2 (en) Method for producing gold powder with high bulk density
CN110616330A (en) Method for recovering rare and noble metals in rhenium-containing high-temperature alloy waste
JP5217480B2 (en) Recovery method of crude indium
JP2019527769A (en) Concentrating and recovering precious metals
EP3575420A1 (en) Bismuth purification method
JP5447357B2 (en) Chlorine leaching method for copper electrolytic slime
JP6475403B2 (en) How to recover tellurium
JP4087196B2 (en) Method for recovering ruthenium and / or iridium
US20170044644A1 (en) Process of extracting gold and silver from ores and mining by-products
JP2009235513A (en) Method for recovering ruthenium
JP2007277591A (en) Chlorination leaching method for lead electrolytic slime
JP5315103B2 (en) Method for concentrating and recovering ruthenium
JP6750454B2 (en) Method for removing impurities from bismuth electrolyte
US6337056B1 (en) Process for refining noble metals from auriferous mines
JP5498040B2 (en) Ruthenium recovery method
JP2019135318A (en) Manufacturing method of gold dust
CN108505069A (en) A method of recycling iridium, rhodium from iridium-rhodium alloy waste material
JP2019085618A (en) Recovery method of antimony

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5021331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250