JP3943564B2 - Method for chlorinating Se-containing materials - Google Patents
Method for chlorinating Se-containing materials Download PDFInfo
- Publication number
- JP3943564B2 JP3943564B2 JP2004251721A JP2004251721A JP3943564B2 JP 3943564 B2 JP3943564 B2 JP 3943564B2 JP 2004251721 A JP2004251721 A JP 2004251721A JP 2004251721 A JP2004251721 A JP 2004251721A JP 3943564 B2 JP3943564 B2 JP 3943564B2
- Authority
- JP
- Japan
- Prior art keywords
- chlorination
- platinum group
- amount
- group metal
- chlorine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 41
- 239000000463 material Substances 0.000 title claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 125
- 239000002184 metal Substances 0.000 claims description 125
- 238000005660 chlorination reaction Methods 0.000 claims description 115
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 86
- 229910052714 tellurium Inorganic materials 0.000 claims description 57
- 229910052711 selenium Inorganic materials 0.000 claims description 54
- 239000000460 chlorine Substances 0.000 claims description 52
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 50
- -1 platinum group metals Chemical class 0.000 claims description 50
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 48
- 229910052801 chlorine Inorganic materials 0.000 claims description 48
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 42
- 239000002994 raw material Substances 0.000 claims description 25
- 239000011780 sodium chloride Substances 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 18
- 238000002386 leaching Methods 0.000 claims description 18
- 150000003839 salts Chemical class 0.000 claims description 16
- 229910052799 carbon Inorganic materials 0.000 claims description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- 239000003638 chemical reducing agent Substances 0.000 claims description 4
- DKAGJZJALZXOOV-UHFFFAOYSA-N hydrate;hydrochloride Chemical compound O.Cl DKAGJZJALZXOOV-UHFFFAOYSA-N 0.000 claims description 3
- 238000003672 processing method Methods 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 239000011669 selenium Substances 0.000 description 96
- 239000010453 quartz Substances 0.000 description 41
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 41
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 25
- 239000000047 product Substances 0.000 description 24
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 23
- 229910001873 dinitrogen Inorganic materials 0.000 description 19
- 238000004821 distillation Methods 0.000 description 19
- 238000001035 drying Methods 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 15
- 239000000203 mixture Substances 0.000 description 13
- 230000003647 oxidation Effects 0.000 description 11
- 238000007254 oxidation reaction Methods 0.000 description 11
- 229910052741 iridium Inorganic materials 0.000 description 9
- 229910052763 palladium Inorganic materials 0.000 description 9
- 229910052703 rhodium Inorganic materials 0.000 description 9
- 229910052707 ruthenium Inorganic materials 0.000 description 9
- 229910052697 platinum Inorganic materials 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 150000001805 chlorine compounds Chemical class 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000004071 soot Substances 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052762 osmium Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 229910001510 metal chloride Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000003039 volatile agent Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101150003085 Pdcl gene Proteins 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- VIEXQFHKRAHTQS-UHFFFAOYSA-N chloroselanyl selenohypochlorite Chemical compound Cl[Se][Se]Cl VIEXQFHKRAHTQS-UHFFFAOYSA-N 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 229940065287 selenium compound Drugs 0.000 description 1
- 150000003343 selenium compounds Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 150000003498 tellurium compounds Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
本発明は、Se、Te、更に白金族金属(Pt、Pd、Ru、Rh、Ir、Os)を含む原料(以下Se含有物と称す。)、例えばSe蒸留塔の釜残を乾固した残渣(乾固蒸留器で残留セレンを蒸留分離した後、Se、Te、白金族金属を含む乾固残渣が得られた物(以下 Se蒸留塔乾固残渣と記す。))から効率良くSe、Teを除去し、白金族金属を回収する方法に関するものである。 The present invention relates to a raw material (hereinafter referred to as Se-containing material) containing Se, Te and platinum group metals (Pt, Pd, Ru, Rh, Ir, Os), for example, a residue obtained by drying the residue of a Se distillation column (Se / Te and Te / Platinum metal-containing dry residue obtained after distillation and separation of residual selenium with a dry distillation apparatus (hereinafter referred to as Se distillation tower dry residue)) Se and Te efficiently The present invention relates to a method of removing platinum and recovering a platinum group metal.
白金族金属は通常の条件ではすべての鉱酸に対して非常に溶解し難い。従来、これらの元素を溶解するためには、酸素または酸化剤の存在下にアルカリ融解し鉱酸で処理する方法、 Platinum group metals are very difficult to dissolve in all mineral acids under normal conditions. Conventionally, in order to dissolve these elements, a method of melting with an alkali in the presence of oxygen or an oxidizing agent and treating with a mineral acid,
Zn、Sn、Pb、Cuなどの金属と混合して融解した後、塩酸または硫酸により亜鉛等を溶解して活性微粉末を得て、この活性微粉末を王水により溶解する方法、 After mixing and melting with metals such as Zn, Sn, Pb, Cu, etc., a method of dissolving zinc or the like with hydrochloric acid or sulfuric acid to obtain an active fine powder, and dissolving this active fine powder with aqua regia,
白金族金属をNamMCl6(Mは白金族元素、mは2または3)で表される可溶性塩に転換する方法などが知られている。 A method of converting a platinum group metal into a soluble salt represented by Na m MCl 6 (M is a platinum group element, m is 2 or 3) is known.
特開2003−268457号公報(特許文献1)においては、Se、白金族金属を含む原料に苛性ソーダと硝酸ソーダの混合物を添加して溶融し、水浸出してSeを含む液分と白金族金属を含む残渣とに分離する方法が開示されている。しかし、原料にTeを含まないため、Teの分離方法について具体的に開示されていない。 In Japanese Patent Application Laid-Open No. 2003-268457 (Patent Document 1), a mixture of caustic soda and sodium nitrate is added to a raw material containing Se and a platinum group metal and melted. A method of separating into a residue containing is disclosed. However, since Te is not included in the raw material, a method for separating Te is not specifically disclosed.
一方、特開平2−205635号公報(特許文献2)においては、Ru又はその酸化物を含む処理物を塩化物の錯塩形成剤と混合し、加熱しながら塩素ガスを流すことによりRu又はその酸化物を塩化物にし、前記塩化物の錯塩形成剤との反応によりRu錯塩とした後、溶解分離しRuを回収する方法が開示されている。 On the other hand, in Japanese Patent Application Laid-Open No. 2-205635 (Patent Document 2), a processed product containing Ru or its oxide is mixed with a complex forming agent of chloride, and Ru or its oxidation is caused by flowing chlorine gas while heating. A method is disclosed in which a product is converted into a chloride, converted into a Ru complex salt by reaction with the complexing agent of the chloride, and then dissolved and separated to recover Ru.
また、特許第2505492号公報(特許文献3)においては、Ir単体と金属塩化物との混合物を塩素気流中で加熱して塩化イリジウム酸の金属塩に転換することから成るIrの溶解方法において、前記混合物にカーボンを添加して前記変換を行うようにしたことを特徴とするIrの溶解方法が開示されている。 In addition, in Japanese Patent No. 2505492 (Patent Document 3), in a method for dissolving Ir comprising heating a mixture of a simple substance of Ir and a metal chloride in a stream of chlorine to convert to a metal salt of chloroiridate, A method for dissolving Ir is disclosed in which the conversion is performed by adding carbon to the mixture.
しかし、Se、Te、白金族金属を含む原料から、Se、Teを分離し、かつPt、Pd、Rh、Osを加えたすべての白金族金属を同時に回収する方法については、具体的に開示されていない。 However, a method for separating Se and Te from raw materials containing Se, Te and platinum group metals and simultaneously recovering all platinum group metals added with Pt, Pd, Rh and Os is specifically disclosed. Not.
本発明の課題はSe、Te、更に白金族金属を含む原料から、効率よくSe、Teを分離し、かつ、すべての白金族金属を同時に浸出・回収する方法を見出すことである。 An object of the present invention is to find a method for efficiently separating Se and Te from a raw material containing Se, Te, and further a platinum group metal, and leaching / recovering all the platinum group metals at the same time.
:
本発明者らは、上記の問題を解決すべく、以下の発明を成した。
即ち本発明は、
(1)Se、Te、更に白金族金属を含む原料(以下Se含有物と称す。)を塩素雰囲気中で塩化揮発処理を行いSe、Teを除去し、該処理物に塩化ナトリウム及び炭素粉を添加し塩素雰囲気中で塩化焙焼処理を行い
さらにSe、Teを除去し、白金族金属を可溶性塩とし、次いで該処理物を水浸出し、白金族金属を浸出・回収するSe含有物の塩化処理方法。
:
In order to solve the above problems, the present inventors made the following invention.
That is, the present invention
(1) Se, Te, and a raw material containing platinum group metal (hereinafter referred to as “Se-containing material”) are subjected to a chlorination treatment in a chlorine atmosphere to remove Se and Te, and sodium chloride and carbon powder are added to the treated product. Add and perform chlorination roasting in a chlorine atmosphere, further remove Se and Te, convert platinum group metal into soluble salt, then leaching the treated product with water and leaching and recovering platinum group metal Processing method.
:
(2)上記(1)記載の塩化揮発処理に用いる塩素量が、Se、Te、白金族金属の塩化反応に必要とする量の0.8〜4倍であり、加熱温度が600〜900℃で行うSe含有物の塩化処理方法。
(3)上記(1)〜(2)の何れかに記載の塩化焙焼処理に用いる塩化ナトリウムの添加量が、白金族金属の可溶性塩化反応に必要とする量の1〜7倍であり、炭素粉の添加量が白金族金属に対し必要とする量の0.5〜12倍であるSe含有物の塩化処理方法。
:
(2) The amount of chlorine used for the chlorination treatment described in (1) above is 0.8 to 4 times the amount required for the chlorination reaction of Se, Te and platinum group metals, and the heating temperature is 600 to 900 ° C. A method for chlorinating Se-containing materials.
(3) The amount of sodium chloride used in the chlorination roasting treatment according to any one of the above (1) to (2) is 1 to 7 times the amount required for a soluble chlorination reaction of a platinum group metal, A method for chlorinating Se-containing materials in which the amount of carbon powder added is 0.5 to 12 times the amount required for platinum group metals.
:
(4)上記(1)〜(3)の何れかに記載の塩化焙焼処理に用いる塩素量が、Se、Teの塩化反応、白金族金属の可溶性塩化反応に必要とする量の0.8〜4倍であり、加熱温度が700〜900℃で行うSe含有物の塩化処理方法。
(5)上記(1)〜(4)の何れかに記載の塩化焙焼処理において、還元剤として炭素粉を添加する代わりにカーボン製の容器を用いるか、または板状や棒状などに成型されたカーボンを炉内に入れるSe含有物の塩化処理方法。
:
(4) The amount of chlorine used in the chlorination roasting treatment according to any one of the above (1) to (3) is 0.8 to 4 which is an amount required for a chlorination reaction of Se or Te or a soluble chlorination reaction of a platinum group metal. This is a method for chlorinating Se-containing materials at a heating temperature of 700 to 900 ° C.
(5) In the chlorination roasting treatment according to any one of the above (1) to (4), a carbon container is used instead of adding carbon powder as a reducing agent, or it is molded into a plate shape or a rod shape. Method for chlorinating Se-containing materials by putting carbon into the furnace.
:
(6)上記(1)〜(5)の何れかに記載の水浸出に替えて温水または希塩酸で浸出処理を行うSe含有物の塩化処理方法。
(7)上記(1)〜(6)の何れかに記載の塩化揮発処理および塩化焙焼処理において原材料を予め十分に乾燥しておくSe含有物の塩化処理方法。
:
(6) A method for chlorinating Se-containing material, wherein the leaching treatment is carried out with warm water or dilute hydrochloric acid instead of the water leaching described in any one of (1) to (5) above.
(7) A method for chlorinating Se-containing materials in which raw materials are sufficiently dried in advance in the chlorination volatilization treatment and the chlorination roasting treatment according to any one of (1) to (6) above.
:
(8)上記(1)〜(7)の何れかに記載の塩化揮発処理において加熱温度に達する前に、100〜217℃で30分〜3時間保持することを特徴とするSe含有物の塩化処理方法。
(9)上記(1)〜(8)の何れかに記載の塩化揮発処理において加熱温度に達する前に、400〜450℃で30分〜3時間保持するSe含有物の塩化処理方法。
(10)上記(1)〜(9)の何れかに記載の塩化揮発処理ならびに塩化焙焼処理において昇温中、温度保持中および降温中においては550℃以上で塩素雰囲気とするSe含有物の塩化処理方法。
:
(8) Chlorination of Se-containing material characterized by holding at 100 to 217 ° C. for 30 minutes to 3 hours before reaching the heating temperature in the chlorination volatilization treatment according to any one of (1) to (7) above Processing method.
(9) A method for chlorinating Se-containing materials, which is maintained at 400 to 450 ° C. for 30 minutes to 3 hours before reaching the heating temperature in the chlorination volatilization treatment according to any one of (1) to (8) above.
(10) The Se-containing material having a chlorine atmosphere at 550 ° C. or higher during temperature rise, temperature maintenance, and temperature drop in the chlorination volatilization treatment and chlorination roasting treatment according to any one of (1) to (9) above Chlorination treatment method.
上記発明により、
(1)Se、Te、更に白金族金属を含む原料から、効率良くSe、Teを除去し、白金族金属を浸出・回収することが可能になった。
(2)Pt、Pd、Ru、Rh、Ir、Osの白金族金属を90%以上の高い回収率を得ることができる。
According to the above invention,
(1) Se and Te can be efficiently removed from a raw material containing Se, Te, and further a platinum group metal, and the platinum group metal can be leached and recovered.
(2) A high recovery rate of 90% or more of platinum group metals of Pt, Pd, Ru, Rh, Ir, and Os can be obtained.
以下本発明を詳細に説明する。
本発明の目的はSe、Te、白金族金属を含む原料から、Se、Teを除去し、白金族金属を浸出・回収することである。
例えば、銅電解スライムを通常の方法で脱銅した後、塩化浸出しAuを溶媒抽出で回収した後、SeをSO2で還元し溶液から濾別する。濾別したSeは純度を上げるため蒸留精製するが、Seの中に一部混ざっている白金族金属がSe蒸留塔乾固残渣(主にSe、Pt、Pd、Ru、Rh、Ir)として回収される。あるいはSe還元した後、Teを同様に還元するが、この還元滓を苛性ソーダでTeを浸出して濾別した残渣は、未溶解のSe、Te、白金族金属を含むTe還元滓アルカリ浸出残渣(主にSe、Te、Ru、Rh、Ir)として回収される。
The present invention will be described in detail below.
An object of the present invention is to remove Se and Te from a raw material containing Se, Te, and a platinum group metal, and to leach and recover the platinum group metal.
For example, after removing copper electrolytic slime by a usual method, leaching with chloride and recovering Au by solvent extraction, then reducing Se with SO 2 and filtering from the solution. Se that has been filtered off is purified by distillation to increase purity, but platinum group metals partially mixed in Se are recovered as Se distillation tower dry residue (mainly Se, Pt, Pd, Ru, Rh, Ir). Is done. Alternatively, after Te reduction, Te is reduced in the same manner, but the residue obtained by leaching this reduced soot with caustic soda and filtering it off is a Te reduced soot leaching residue containing undissolved Se, Te and platinum group metals ( It is mainly recovered as Se, Te, Ru, Rh, Ir).
本発明においては、前記Se蒸留塔乾固残渣またはTe還元滓アルカリ浸出残渣を原料とする。原料は水分を含むと塩素気流中で加熱する際に水蒸気を放出して、塩素分圧を一時的に低下させたり、酸化物を生成させたりする可能性があるので、予め十分に乾燥しておくことが望ましい。乾燥条件は特に限定されるものではないが、100〜120℃において、6〜15時間である。なお、水分が極めて少ない原料を用いる場合は、乾燥工程を省略できることはいうまでもない。 In the present invention, the above-mentioned Se distillation tower dry residue or Te-reduced alkaline leaching residue is used as a raw material. If the raw material contains moisture, water vapor is released when heated in a chlorine stream, and the partial pressure of chlorine may be temporarily reduced or oxides may be generated. It is desirable to keep it. The drying conditions are not particularly limited, but are 6 to 15 hours at 100 to 120 ° C. In addition, when using the raw material with very little moisture, it cannot be overemphasized that a drying process can be skipped.
この原料を塩素気流中で昇温、加熱し、塩化揮発処理を行うと、蒸気圧の高いSe、Teの塩化物は除去され、白金族金属は残留する。Seの融点が217℃、Teの融点が450℃であるが、昇温中に融解すると原料の粒子間が密着して塩素ガスの通りが悪くなることがあるので、各々の融点直下の温度で保持して、Se、Teの大部分を塩化物で除去する。Seを除去する温度は150〜217℃で、保持時間は30分〜3時間である。Teを除去する温度は400〜450℃で、保持時間は30分〜3時間である。Se、Teの一部はセレン化合物、テルル化合物を生成しているため、塩化物にして除去しにくい。Se、Teを十分に除去するために、さらに高い温度で加熱する。望ましい加熱温度は、600〜900℃であり、特に望ましくは700℃から800℃の範囲である。 When this raw material is heated and heated in a chlorine stream and subjected to chlorination and volatilization, chlorides of Se and Te having a high vapor pressure are removed and platinum group metals remain. The melting point of Se is 217 ° C and the melting point of Te is 450 ° C, but if the material melts during the temperature rise, the particles of the raw material may be in close contact with each other and the passage of chlorine gas may be deteriorated. Hold and remove most of Se and Te with chloride. The temperature for removing Se is 150 to 217 ° C., and the holding time is 30 minutes to 3 hours. The temperature for removing Te is 400 to 450 ° C., and the holding time is 30 minutes to 3 hours. Since part of Se and Te forms selenium compounds and tellurium compounds, it is difficult to remove them as chlorides. In order to sufficiently remove Se and Te, heating is performed at a higher temperature. A desirable heating temperature is 600 to 900 ° C, particularly desirably in the range of 700 ° C to 800 ° C.
温度範囲を限定した理由を説明する。塩化セレンは196℃で昇華し、塩化テルルの沸点は414℃であるが、処理温度を600℃より低くするとSe、Te除去率が低くなるためである。また、900℃を超えると、一般に白金族金属の塩化物も蒸気圧が高いために一部が揮発すること、塩化物が解離して水浸出しにくいメタルとなることから、回収率が低下するためである。
また、処理時間は特に限定されるものではないが、1〜10時間程度が望ましく、特に3〜6時間程度とすることが望ましい。
The reason for limiting the temperature range will be described. This is because selenium chloride sublimates at 196 ° C., and the boiling point of tellurium chloride is 414 ° C., but when the processing temperature is lower than 600 ° C., the Se and Te removal rates are lowered. In addition, when the temperature exceeds 900 ° C., platinum group metal chlorides generally have high vapor pressure, so some of them volatilize, and chlorides dissociate and become a metal that is difficult to leach out. Because.
The treatment time is not particularly limited, but is preferably about 1 to 10 hours, and particularly preferably about 3 to 6 hours.
塩素の量は、Se、Te、白金族金属の塩化反応に必要とする量の0.8〜4倍が望ましい。Se、Teの除去効果は、塩化焙焼工程でも同様の効果が得られるため、原料と塩素が接触しやすい条件であれば、必要とする量の0.8倍あれば十分であり、4倍以上流しても塩素の消費量が増加するだけである。Se、Teの塩化反応は室温近傍の低い温度から徐々に始まるので、昇温中、加熱保持中は塩素雰囲気を維持しなければならない。また、白金族元素の塩化物は550℃以上の温度で解離して塩素を放出することがあるので、塩素雰囲気を維持しなければならない。降温時は塩素ガスを消費しないので、塩素雰囲気を維持するために必要最小限の塩素ガスがあればよい。降温時に550℃以下の温度で窒素やアルゴンの不活性ガスに切り替えても差し支えない。なお、塩素雰囲気中に空気の混入があると白金族金属表面が酸化してしまい、炭素を混合していても酸化層の還元がなされず、回収率が低下することがあるので、気密性を十分に保つことが望しい。 The amount of chlorine is desirably 0.8 to 4 times the amount required for the chlorination reaction of Se, Te and platinum group metals. Since the same effect can be obtained in the chlorination roasting process, the removal effect of Se and Te is 0.8 times the required amount under conditions where the raw material and chlorine are in contact with each other. But it only increases the consumption of chlorine. Since the chlorination reaction of Se and Te starts gradually from a low temperature around room temperature, a chlorine atmosphere must be maintained during heating and heating. In addition, the chloride of platinum group elements may dissociate and release chlorine at temperatures of 550 ° C. or higher, so a chlorine atmosphere must be maintained. Since chlorine gas is not consumed when the temperature is lowered, it is sufficient if the minimum amount of chlorine gas is required to maintain the chlorine atmosphere. It is possible to switch to an inert gas such as nitrogen or argon at a temperature of 550 ° C or lower when the temperature falls. In addition, if air is mixed in the chlorine atmosphere, the platinum group metal surface is oxidized, and even if carbon is mixed, the oxide layer is not reduced, and the recovery rate may be lowered. I want to keep enough.
塩化揮発処理の主な反応を以下に示す:
Se+2Cl2→SeCl4
(2Se+Cl2→Se2Cl2)
Te+2Cl2→TeCl4
The main reactions of the chlorination treatment are as follows:
Se + 2Cl 2 → SeCl 4
(2Se + Cl 2 → Se 2 Cl 2 )
Te + 2Cl 2 → TeCl 4
次に、該処理物に塩化ナトリウムと炭素粉を添加して塩素気流中で加熱し、塩化焙焼処理を行うと、塩化揮発処理で残留していたSe、Teはさらに塩化物として除去され、白金族金属は可溶性塩となる。望ましい加熱温度は、700〜900℃であり、特に望ましくは750℃から850℃の範囲である。 Next, when sodium chloride and carbon powder are added to the treated product and heated in a stream of chlorine and subjected to chlorination roasting treatment, Se and Te remaining in the chlorination volatilization treatment are further removed as chloride, The platinum group metal becomes a soluble salt. A desirable heating temperature is 700 to 900 ° C, particularly preferably in the range of 750 to 850 ° C.
処理温度を700℃より低くするとSe、Te除去率が低くなるとともに、白金族金属の可溶性塩化反応が十分に進まず歩留まりが悪くなるためであり、900℃を超えると一部が揮発してしまい、回収率が低下することがあるからである。 This is because when the treatment temperature is lower than 700 ° C, the removal rate of Se and Te is lowered, and the soluble chlorination reaction of the platinum group metal does not proceed sufficiently and the yield is deteriorated. This is because the recovery rate may decrease.
また、処理時間は特に限定されるものではないが、1〜10時間程度が望ましく、特に3〜6時間程度とすることが望ましい。 The treatment time is not particularly limited, but is preferably about 1 to 10 hours, and particularly preferably about 3 to 6 hours.
塩素の量は、Se、Teの塩化反応、白金族金属の可溶性塩化反応に必要とする量の0.8〜4倍が望ましい。なお、塩化揮発工程でも塩化がなされているので、原料と塩素が接触しやすい条件であれば、必要とする量の0.8倍で十分である。 The amount of chlorine is preferably 0.8 to 4 times the amount required for the chlorination reaction of Se and Te and the soluble chlorination reaction of platinum group metals. In addition, since chlorination is performed in the chlorination volatilization step, 0.8 times the required amount is sufficient as long as the raw material and chlorine are in contact with each other.
塩化ナトリウムの添加量は、白金族金属の可溶性塩化反応に必要とする量の1〜7倍が望ましい。なお、塩化ナトリウムの添加量が増えると、炉に装入できる総量に対して被塩化揮発処理物の割合が少なくなり、処理効率が悪くなるため、特に望ましくは3〜5倍の範囲である。市販の塩化ナトリウムは水分を含んでいるので、十分に乾燥して使用することが望ましい。乾燥条件は特に限定されるものではないが、100〜150℃において、6〜15時間である。 The amount of sodium chloride added is preferably 1 to 7 times the amount required for the soluble chlorination reaction of platinum group metals. In addition, when the addition amount of sodium chloride increases, the ratio of the chlorinated volatile material to be charged to the total amount that can be charged into the furnace decreases, and the processing efficiency deteriorates. Therefore, the range of 3 to 5 times is particularly desirable. Since commercially available sodium chloride contains moisture, it is desirable to use it after it is sufficiently dried. The drying conditions are not particularly limited, but are 6 to 15 hours at 100 to 150 ° C.
炭素粉の添加量は、白金族金属の酸化の抑制に必要とする量の0.5〜12倍が望ましい。炭素粉は、白金族金属表面の酸化層を還元して可溶性塩化反応を促進し、かつ昇温途中での酸化層形成を抑制するためのものであり、12倍を超える量を添加しても効果にほとんど変化が無い。また、還元剤として炭素粉を添加する代わりにカーボン製の容器を用いるか、または板状や棒状などに成型されたカーボンを炉内に入れることにより、炭素粉を添加した場合と同様の効果を得ることができる。尚、塩化焙焼処理時に炉内に混入する酸素量を低減させれば、炭素粉の添加量を減ずることが可能であることは言うまでもない。市販の塩化ナトリウム、炭素粉は水分を含んでいるので、塩化揮発物と混合して塩化焙焼を行う前に十分に乾燥して使用することが望ましい。乾燥条件は特に限定されるものではないが、100〜120℃において、6〜15時間である。なお、予め水分の少ない塩化ナトリウム、炭素粉を用いて水分を混入しないようにして塩化揮発物を混合すれば、乾燥を省略することは可能である。 The amount of carbon powder added is desirably 0.5 to 12 times the amount required for suppressing oxidation of the platinum group metal. Carbon powder is for reducing the oxide layer on the surface of the platinum group metal to promote the soluble chlorination reaction, and to suppress the formation of the oxide layer during the temperature rise. There is almost no change in the effect. In addition, instead of adding carbon powder as a reducing agent, a carbon container is used, or by putting carbon molded into a plate shape or rod shape into the furnace, the same effect as when carbon powder is added can be obtained. Obtainable. Needless to say, if the amount of oxygen mixed in the furnace during the chlorination roasting treatment is reduced, the amount of carbon powder added can be reduced. Since commercially available sodium chloride and carbon powder contain moisture, it is desirable to use them after being sufficiently dried before being mixed with chloride volatiles and subjected to chlorination roasting. The drying conditions are not particularly limited, but are 6 to 15 hours at 100 to 120 ° C. In addition, drying can be omitted if chloride chloride volatiles are mixed using sodium chloride and carbon powder with low moisture in advance so as not to mix moisture.
白金族金属の可溶性塩化反応が十分に進まず歩留まりが悪く、水浸出での回収率が低い場合、塩化焙焼処理を行った処理物を粉砕し、塩素気流中で加熱する操作を何回か繰り返すことにより、回収率を上げることができる。 If the soluble chlorination reaction of the platinum group metal does not proceed sufficiently, the yield is poor, and the recovery rate by water leaching is low, the chlorinated roasted material is pulverized and heated in a chlorine stream several times. By repeating, the recovery rate can be increased.
塩化焙焼処理の主な反応を塩化物塩として塩化ナトリウムを例に取り以下に示す:
Se+2Cl2→SeCl4
(2Se+Cl2→Se2Cl2)
Te+2Cl2→TeCl4
Pt+2NaCl+2Cl2→Na2PtCl6
Pd+2NaCl+2Cl2→Na2PdCl6
2Ru+6NaCl+3Cl2→2Na3RuCl6
2Rh+6NaCl+3Cl2→2Na3RhCl6
Ir+2NaCl+2Cl2→Na2IrCl6
Os+2NaCl+2Cl2→Na2OsCl6
The main reaction of the chlorination roasting treatment is shown below taking sodium chloride as an example of chloride salt:
Se + 2Cl 2 → SeCl 4
(2Se + Cl 2 → Se 2 Cl 2 )
Te + 2Cl 2 → TeCl 4
Pt + 2NaCl + 2Cl 2 → Na 2 PtCl 6
Pd + 2NaCl + 2Cl 2 → Na 2 PdCl 6
2Ru + 6NaCl + 3Cl 2 → 2Na 3 RuCl 6
2Rh + 6NaCl + 3Cl 2 → 2Na 3 RhCl 6
Ir + 2NaCl + 2Cl 2 → Na 2 IrCl 6
Os + 2NaCl + 2Cl 2 → Na 2 OsCl 6
その後、該処理物を水浸出し、白金族金属の可溶性塩を浸出する。この時の条件としては特に限定されるものではないが、温水または希塩酸が望ましい。
温水の温度は、50〜90℃が望ましい。
希塩酸の濃度は、該処理物を水浸出するだけでも、遊離する塩素により塩酸酸性になる場合もある。このため、必要に応じて、0.5〜1.5Nになるように調整することがより好ましい。
Thereafter, the treated product is leached with water, and a soluble salt of a platinum group metal is leached. The conditions at this time are not particularly limited, but warm water or dilute hydrochloric acid is desirable.
The temperature of the hot water is preferably 50 to 90 ° C.
The concentration of dilute hydrochloric acid may become acidic due to free chlorine even if the treated product is only leached with water. For this reason, it is more preferable to adjust so that it may become 0.5-1.5N as needed.
過剰な塩化ナトリウム、未反応の炭素粉、および未反応の白金族金属等を含む残渣を濾別し、白金族金属の浸出液が得られる。白金族金属の浸出液から、白金族金属を通常の方法でスポンジとして回収する。ろ過残渣は塩化焙焼処理工程に戻すことにより、未回収の白金族金属の収率を上げ、薬品の使用量を減少させることができる。 A residue containing excess sodium chloride, unreacted carbon powder, unreacted platinum group metal, and the like is filtered off to obtain a platinum group metal leachate. From the leaching solution of the platinum group metal, the platinum group metal is recovered as a sponge by an ordinary method. By returning the filtration residue to the chlorination roasting treatment step, the yield of unrecovered platinum group metal can be increased and the amount of chemicals used can be reduced.
実施例は図1に示すフローで実施した。以下実施例1を表1及び図2に基づいて、具体的に説明する。
100℃に設定した乾燥機内で12時間乾燥したSe蒸留塔乾固残渣150gを石英製ボートに装入し、炉心管が石英製である管状炉内で、図2に示すように塩素ガスを流しながら200℃および440℃にてそれぞれ1時間保持し、さらに700℃に加熱し、塩素量をSe、Te、白金族金属の塩化反応に必要とする量の2倍量を流して5時間の塩化揮発処理を行なった。なお、降温時500℃にて窒素ガスで置換した。Seは83%、Teは99%程度が除去された。
The example was carried out according to the flow shown in FIG. Hereinafter, Example 1 will be described in detail with reference to Table 1 and FIG.
150g of Se distillation tower dry residue, which was dried for 12 hours in a dryer set at 100 ° C, was charged into a quartz boat, and chlorine gas was allowed to flow as shown in Fig. 2 in a tubular furnace whose quartz core tube was made of quartz. While maintaining at 200 ° C and 440 ° C for 1 hour, respectively, heat to 700 ° C and let the amount of chlorine flow twice as much as required for the chlorination reaction of Se, Te and platinum group metals for 5 hours. Volatilization was performed. In addition, nitrogen gas was substituted at 500 ° C. when the temperature was lowered. About 83% of Se and 99% of Te were removed.
次に、該処理物に塩化ナトリウムを白金族金属の可溶性塩化反応に必要とする量の3倍量の170g、炭素粉を白金族金属の酸化の抑制に必要とする量の3.2g添加し、よく混合する。これを100℃に設定した乾燥機内で12時間乾燥した。乾燥後、石英製ボートに装入し、炉心管が石英製である管状炉内で塩素ガスを流しながら850℃に加熱し、塩素量をSe、Teの塩化反応、白金族金属の可溶性塩化反応に必要とする量の2倍量流して3時間の塩化焙焼処理を行なった。なお、降温時500℃にて窒素ガスで置換した。 Next, 170 g of sodium chloride is added to the treated product, which is three times the amount required for the soluble chlorination reaction of the platinum group metal, and 3.2 g of carbon powder is added to suppress the oxidation of the platinum group metal, Mix well. This was dried in a dryer set at 100 ° C. for 12 hours. After drying, it is placed in a quartz boat and heated to 850 ° C while flowing chlorine gas in a tubular furnace whose quartz core tube is made of quartz. Chlorine content is chlorinated by Se and Te and soluble chlorinated by platinum group metals. The chlorination roasting treatment was carried out for 3 hours by flowing twice as much as required. In addition, nitrogen gas was substituted at 500 ° C. when the temperature was lowered.
その後、該処理物を80℃の温水420mLで浸出し、白金族金属の可溶性塩を浸出した。残渣をろ別し、白金族金属の浸出液が得られた。表1に示すように、浸出液中のSeは19
mg/L、Teは0.1mg/L以下であり、Se蒸留塔乾固残渣から99%以上除去されていた。
表1に示すように、白金族金属の分配率は、Pt92%、Pd90%、Ru90%、Rh93%、Ir95%であった。原料にはOsを含まないが、Ruと非常に挙動が似ているため、同様に回収できる。
Thereafter, the treated product was leached with 420 mL of warm water at 80 ° C. to leach soluble salts of platinum group metals. The residue was filtered off to obtain a platinum group metal leachate. As shown in Table 1, Se in the leachate was 19
mg / L and Te were 0.1 mg / L or less, and 99% or more were removed from the Se distillation tower dry residue.
As shown in Table 1, the distribution ratio of the platinum group metal was Pt 92%, Pd 90%, Ru 90%, Rh 93%, and Ir 95%. The raw material does not contain Os, but it can be recovered in the same way because it behaves very similar to Ru.
以下実施例2を説明する。塩化揮発処理での塩素量がSe、
Te、白金族金属の塩化反応に必要とする量であることと、図3
に示すように塩化焙焼処理での炭素粉の添加量、添加方法を変
えること以外は実施例1と同様にして実施した。
Example 2 will be described below. Chlorine content in the chlorination treatment is Se,
Te, the amount necessary for the chlorination reaction of platinum group metals, and FIG.
The same procedure as in Example 1 was performed except that the amount and method of addition of carbon powder in the chlorination roasting treatment were changed.
100℃に設定した乾燥機内で12時間乾燥したSe蒸留塔乾固残渣6000gを石英製ボートに装入し、炉心管が石英製である管状炉内で塩素ガスを流しながら200℃および440℃にてそれぞれ1時間保持し、さらに700℃に加熱し、塩素量をSe、Te、白金族金属の塩化反応に必要とする量を流して5時間の塩化揮発処理を行った。なお、降温時500℃にて窒素ガスで置換した。 6000 g of Se distillation tower dry residue dried in a dryer set at 100 ° C. for 12 hours is charged into a quartz boat and heated to 200 ° C. and 440 ° C. while flowing chlorine gas in a tubular furnace whose quartz core tube is made of quartz. Each was held for 1 hour, further heated to 700 ° C., and chlorinated and volatilized for 5 hours by flowing the amount of chlorine necessary for the chlorination reaction of Se, Te and platinum group metals. In addition, nitrogen gas was substituted at 500 ° C. when the temperature was lowered.
次に、該処理物30gに塩化ナトリウムを白金族金属の可溶性塩化反応に必要とする量の5倍量の104g添加し、よく混合する。これを100℃に設定した乾燥機内で12時間乾燥した。ここで、(1)炭素粉の添加量を白金族金属の酸化の抑制に必要とする量の1倍量添加、(2)炭素粉10倍量添加、(3)カーボン板を装入、(4)カーボン製の蓋をして石英製るつぼに装入した試料、(5)カーボンるつぼに装入した試料をそれぞれ準備し、炉心管が石英製である管状炉内で塩素ガスを流しながら850℃に加熱し、塩素量をSe、Teの塩化反応、白金族金属の可溶性塩化反応に必要とする量の2倍量を流して5時間の塩化焙焼処理を行った。なお、降温時500℃にて窒素ガスで置換した。 Next, 104 g of sodium chloride is added to 30 g of the treated product, 5 times the amount required for the soluble chlorination reaction of the platinum group metal, and mixed well. This was dried in a dryer set at 100 ° C. for 12 hours. Here, (1) the amount of carbon powder added is one time the amount required to suppress oxidation of the platinum group metal, (2) carbon powder is added 10 times the amount, (3) the carbon plate is inserted, ( 4) Prepare a sample charged in a quartz crucible with a carbon lid, and (5) prepare a sample charged in a carbon crucible, and 850 while flowing chlorine gas in a tubular furnace whose core tube is made of quartz. The mixture was heated to ℃, and the amount of chlorine was passed through twice the amount required for the chlorination reaction of Se and Te and the soluble chlorination reaction of platinum group metals, and the chlorination roasting treatment was performed for 5 hours. In addition, nitrogen gas was substituted at 500 ° C. when the temperature was lowered.
その後、該処理物を80℃の温水で浸出し、白金族金属の可溶性塩を浸出した。
残渣をろ別し、得られた浸出液中には、表2に示すように、Pt、Pd、Ru、Rh、Irの全てについて、極めて高い分配率を示した。特に(5)のカーボンるつぼを使用した場合は、全ての金属に関して、99%以上の分配率であった。
炭素粉は、12倍を超える量を添加しても効果にほとんど変化が無い。また、還元剤として炭素粉を添加する代わりにカーボン製の容器を用いるか、または板状や棒状などに成型されたカーボンを炉内に入れることにより、炭素粉を添加した場合と同様もしくはそれ以上の効果を得ることができる。
Thereafter, the treated product was leached with hot water at 80 ° C. to leach soluble salts of platinum group metals.
The residue was filtered off, and in the obtained leachate, as shown in Table 2, a very high distribution rate was shown for all of Pt, Pd, Ru, Rh, and Ir. In particular, when the carbon crucible (5) was used, the distribution ratio was 99% or more for all metals.
Carbon powder has almost no effect even when added in an amount exceeding 12 times. Also, instead of adding carbon powder as a reducing agent, use a carbon container, or put carbon formed into a plate shape or rod shape into the furnace, or more than when adding carbon powder or more The effect of can be obtained.
以下実施例3について表3を基に説明する。原料は前述した
Te還元滓アルカリ浸出残渣を用いた。
100℃に設定した乾燥機内で12時間乾燥したTe還元滓アルカリ浸出残渣6,000gを石英製ボートに装入し、炉心管が石英製である管状炉内で塩素ガスを流しながら200℃および440℃にてそれぞれ1時間保持し、さらに780℃に加熱し、塩素量をSe、Te、白金族金属の塩化反応に必要とする量の2倍量を流して5時間の塩化揮発処理を行なった。なお、降温時500℃にて窒素ガスで置換した。Se、Teは99%以上が除去された。
Hereinafter, Example 3 will be described based on Table 3. Raw materials mentioned above
Te reduced soot alkali leaching residue was used.
6,000 g of Te reduction soot leach residue, dried for 12 hours in a dryer set at 100 ° C, was charged into a quartz boat and 200 ° C and 440 ° C while flowing chlorine gas in a tubular furnace with a quartz core tube. Each was held at ℃ for 1 hour, further heated to 780 ℃, and the amount of chlorine was flowed twice as much as required for the chlorination reaction of Se, Te, and platinum group metals, and the chlorination volatilization treatment was performed for 5 hours. . In addition, nitrogen gas was substituted at 500 ° C. when the temperature was lowered. More than 99% of Se and Te were removed.
次に、該処理物2,650gに塩化ナトリウムを白金族金属の可溶性塩化反応に必要とする量の5倍量の7,500g、炭素粉を白金族金属の酸化の抑制に必要とする量の2倍量204g添加し、よく混合する。これを100℃に設定した乾燥機内で12時間乾燥した。乾燥後、これを石英製ボートに装入し、炉心管が石英製である管状炉内で塩素ガスを流しながら780℃に加熱し、塩素量をSe、Teの塩化反応、白金族金属の可溶性塩化反応に必要とする量の1.9倍量流して5時間の塩化焙焼処理を行なった。なお、降温時500℃にて窒素ガスで置換した。 Next, 2,500 g of the treated product is 7,500 g of sodium chloride 5 times the amount required for the soluble chlorination reaction of the platinum group metal, and carbon powder is an amount necessary for suppressing the oxidation of the platinum group metal. Add 204 g of double amount and mix well. This was dried in a dryer set at 100 ° C. for 12 hours. After drying, this is loaded into a quartz boat and heated to 780 ° C while flowing chlorine gas in a tubular furnace whose quartz core tube is made of quartz. The chlorine content is chlorinated by Se and Te, soluble in platinum group metals. The chlorination roasting treatment was carried out for 5 hours by flowing 1.9 times the amount required for the chlorination reaction. In addition, nitrogen gas was substituted at 500 ° C. when the temperature was lowered.
その後、該処理物を80℃の温水22Lで浸出し、白金族金属の可溶性塩を浸出した。残渣をろ別し、白金族金属の浸出液が21.7L得られた。表3に示すように、浸出液中のSeは22mg/L、Teは34mg/Lであり、Te還元滓アルカリ浸出残渣から99.9%以上除去されていた。
表3に示すように、白金族金属の分配率は、Pt98%、Pd95%、Ru96%、Rh99%、Ir92%であった。原料の性状が異なってもSe、Teを分離でき、浸出液中に白金族金属を90%以上の効率で回収することができる。
Thereafter, the treated product was leached with 22 L of warm water at 80 ° C. to leach soluble salts of platinum group metals. The residue was filtered off to obtain 21.7 L of a platinum group metal leachate. As shown in Table 3, Se in the leachate was 22 mg / L and Te was 34 mg / L, and 99.9% or more was removed from the Te-reduced alkaline leaching residue.
As shown in Table 3, the distribution ratio of the platinum group metal was Pt 98%, Pd 95%, Ru 96%, Rh 99%, Ir 92%. Even if the properties of the raw materials are different, Se and Te can be separated, and platinum group metals can be recovered in the leachate with an efficiency of 90% or more.
以下比較例1を表4及び図4を基に説明する。塩化揮発処理を行わないで、Se蒸留塔乾固残渣に塩化ナトリウムと炭素粉を添加し、塩化焙焼処理のみで白金族金属の浸出液を得た。 Hereinafter, Comparative Example 1 will be described based on Table 4 and FIG. Without performing chlorination and volatilization treatment, sodium chloride and carbon powder were added to the Se distillation tower dry residue, and a platinum group metal leachate was obtained only by chlorination roasting treatment.
Se蒸留塔乾固残渣150gに塩化ナトリウムを白金族金属の可溶性塩化反応に必要とする量の10倍量の750g、炭素粉を白金族金属の酸化の抑制に必要とする量の2.8g添加し、よく混合する。これを100℃に設定した乾燥機内で12時間乾燥した。乾燥後、これを石英製ボートに装入し、炉心管が石英製である管状炉内で塩素ガスを流しながら850℃に加熱し、塩素量をSe、Teの塩化反応、白金族金属の可溶性塩化反応に必要とする量の2倍量を流して3時間の塩化焙焼処理を行った。なお、降温時500℃にて窒素ガスで置換した。 750g of 10 times the amount required for the soluble chlorination reaction of platinum group metals and 2.8g of carbon powder required for suppressing oxidation of platinum group metals are added to 150g of the Se distillation tower dry residue. Mix well. This was dried in a dryer set at 100 ° C. for 12 hours. After drying, this is loaded into a quartz boat and heated to 850 ° C while flowing chlorine gas in a tubular furnace whose quartz core tube is made of quartz. The chlorination roasting treatment was performed for 3 hours by flowing twice the amount required for the chlorination reaction. In addition, nitrogen gas was substituted at 500 ° C. when the temperature was lowered.
その後、該処理物を80℃の温水825mLで浸出し、白金族金属の可溶性塩を浸出した。残渣をろ別し、白金族金属の浸出液が得られた。
表4に示すように、浸出液中のSeは13mg/L、Teは0.1mg/Lより少なく、Se蒸留塔乾固残渣から99%以上除去されていた。
表4に示すように、白金族金属の分配率はPt84%、Pd93%、Ru59%、Rh80%、Ir70%であった。実施例と比較して、白金族金属の分配率が低く好ましくない。塩化揮発処理を行わないため、Se、Teの塩化反応が優先的に起こるため、白金族金属の可溶性塩化反応が十分に進まず歩留まりが悪くなるためである。
Thereafter, the treated product was leached with 825 mL of warm water at 80 ° C. to leach soluble salts of platinum group metals. The residue was filtered off to obtain a platinum group metal leachate.
As shown in Table 4, Se in the leachate was less than 13 mg / L, Te was less than 0.1 mg / L, and 99% or more was removed from the Se distillation tower dry residue.
As shown in Table 4, the platinum group metal distribution ratios were Pt 84%, Pd 93%, Ru 59%, Rh 80%, and Ir 70%. Compared with the examples, the distribution ratio of the platinum group metal is low and not preferable. This is because the chlorination reaction of Se and Te takes place preferentially because no chlorination volatilization treatment is performed, so that the soluble chlorination reaction of the platinum group metal does not proceed sufficiently and the yield deteriorates.
以下表5に基づいて、比較例2を説明する。塩化揮発処理の処理温度を500℃にする以外は実施例1と同様にして実施した。
100℃に設定した乾燥機内で12時間乾燥したSe蒸留塔乾固残渣150gを石英製ボートに装入し、炉心管が石英製である管状炉内で塩素ガスを流しながら200℃および440℃にてそれぞれ1時間保持し、さらに500℃に加熱し、塩素量をSe、Te、白金族金属の塩化反応に必要とする量の2倍量を流して5時間の塩化揮発処理を行ない、窒素ガスで置換した。なお、降温時500℃にて窒素ガスで置換した。表5に示すように、実施例と比較して、Seの除去率が43%、Teは27%と低く好ましくない。
Hereinafter, Comparative Example 2 will be described based on Table 5. The same procedure as in Example 1 was performed except that the treatment temperature for the chlorinated volatile treatment was changed to 500 ° C.
150g of Se distillation tower dried residue dried in a dryer set at 100 ° C for 12 hours is charged into a quartz boat and heated to 200 ° C and 440 ° C while flowing chlorine gas in a tubular furnace whose core is made of quartz. Hold for 1 hour each, then heat to 500 ° C, and flow chlorine twice for the chlorination reaction of Se, Te, and platinum group metals for 5 hours of chlorination and volatilization, nitrogen gas Replaced with. In addition, nitrogen gas was substituted at 500 ° C. when the temperature was lowered. As shown in Table 5, as compared with the examples, the removal rate of Se is 43%, and Te is 27%, which is not preferable.
(比較例3)
(Comparative Example 3)
以下比較例3を説明する。塩化揮発処理での塩素量がSe、Te、
白金族金属の塩化反応に必要とする量の2倍量であることと、
塩化焙焼処理で炭素粉を添加しないこと以外は実施例2と同様
にして実施した。
100℃に設定した乾燥機内で12時間乾燥したSe蒸留塔残渣150gを石英製ボートに装入し、炉心管が石英製である管状炉内で塩素ガスを流しながら200℃および440℃にてそれぞれ1時間保持し、さらに700℃に加熱し、塩素量をSe、Te、白金族金属の塩化反応に必要とする量の2倍量を流して5時間の塩化揮発処理を行った。
Hereinafter, Comparative Example 3 will be described. Chlorine content in chlorination treatment is Se, Te,
2 times the amount required for the chlorination reaction of platinum group metals,
It implemented like Example 2 except not adding carbon powder by a chlorination roasting process.
150g Se distillation column residue dried in a dryer set at 100 ° C for 12 hours is charged into a quartz boat, and at 200 ° C and 440 ° C while flowing chlorine gas in a tubular furnace whose quartz core tube is made of quartz. This was maintained for 1 hour, further heated to 700 ° C., and subjected to chlorination volatilization treatment for 5 hours by flowing twice the amount of chlorine required for the chlorination reaction of Se, Te and platinum group metals.
次に、該処理物に塩化ナトリウムを白金族金属の可溶性塩化反応に必要とする量の7倍量の281g添加し、よく混合する。ここで、炭素粉は添加しなかった。これを100℃に設定した乾燥機内で12時間乾燥した。乾燥後、これを石英製ボートに装入し、炉心管が石英製である管状炉内で塩素ガスを流しながら850℃に加熱し、塩素量をSe、Teの塩化反応、白金族金属の可溶性塩化反応に必要とする量の2倍量を流して3時間の塩化焙焼処理を行った。なお、降温時500℃にて窒素ガスで置換した。 Next, 281 g of 7 times the amount required for the soluble chlorination reaction of platinum group metals is added to the treated product and mixed well. Here, carbon powder was not added. This was dried in a dryer set at 100 ° C. for 12 hours. After drying, this is loaded into a quartz boat and heated to 850 ° C while flowing chlorine gas in a tubular furnace whose quartz core tube is made of quartz. The chlorination roasting treatment was performed for 3 hours by flowing twice the amount required for the chlorination reaction. In addition, nitrogen gas was substituted at 500 ° C. when the temperature was lowered.
その後、該処理物を80℃の温水359mLで浸出し、白金族金属の可溶性塩を浸出した。残渣をろ別し、白金族金属の浸出液が得られた。表6に示すように、浸出液中のSeは0.1mg/Lより少なく、Teは0.1mg/Lより少なく、Se蒸留塔残渣から99%以上除去されていた。
表6に示すように、白金族金属の回収率はPt85%、Pd89%、Ru55%、Rh82%、Ir80%であった。実施例と比較して、白金族金属の分配率が低く好ましくない。炭素粉を添加しなかったため、白金族金属表面の酸化層の還元、昇温途中での酸化層形成の抑制が行われず、白金族金属の可溶性塩化反応が十分に進まず歩留まりが悪くなるためである。
Thereafter, the treated product was leached with 359 mL of hot water at 80 ° C. to leach soluble salts of platinum group metals. The residue was filtered off to obtain a platinum group metal leachate. As shown in Table 6, Se in the leachate was less than 0.1 mg / L, Te was less than 0.1 mg / L, and 99% or more was removed from the Se distillation column residue.
As shown in Table 6, the recovery rates of platinum group metals were Pt85%, Pd89%, Ru55%, Rh82%, and Ir80%. Compared with the examples, the distribution ratio of the platinum group metal is low and not preferable. Because carbon powder was not added, the oxide layer on the surface of the platinum group metal was not reduced, and the formation of the oxide layer during the temperature increase was not suppressed, and the soluble chlorination reaction of the platinum group metal did not proceed sufficiently, resulting in poor yield. is there.
以下表7に基づいて、比較例4を説明する。塩化焙焼処理で炭素粉の添加量が白金族金属の酸化の抑制に必要とする量の0.1倍量であること以外は実施例2と同様にして実施した。
100℃に設定した乾燥機内で12時間乾燥したSe蒸留塔乾固残渣6000gを石英製ボートに装入し、炉心管が石英製である管状炉内で塩素ガスを流しながら200℃および440℃にてそれぞれ1時間保持し、さらに700℃に加熱し、塩素量をSe、Te、白金族金属の塩化反応に必要とする量を流して5時間の塩化揮発処理を行った。なお、降温時500℃にて窒素ガスで置換した。
Hereinafter, Comparative Example 4 will be described based on Table 7. The same procedure as in Example 2 was performed except that the amount of carbon powder added in the chlorination roasting treatment was 0.1 times the amount required for suppressing oxidation of the platinum group metal.
6000 g of Se distillation tower dry residue dried in a dryer set at 100 ° C. for 12 hours is charged into a quartz boat and heated to 200 ° C. and 440 ° C. while flowing chlorine gas in a tubular furnace whose quartz core tube is made of quartz. Each was held for 1 hour, further heated to 700 ° C., and chlorinated and volatilized for 5 hours by flowing the amount of chlorine necessary for the chlorination reaction of Se, Te and platinum group metals. In addition, nitrogen gas was substituted at 500 ° C. when the temperature was lowered.
次に、該処理物30gに塩化ナトリウムを白金族金属の可溶性塩化反応に必要とする量の5倍量の104g、炭素粉を白金族金属の酸化の抑制に必要とする量の0.1倍量の0.12g添加し、よく混合する。100℃に設定した乾燥機内で12時間乾燥した。乾燥後、これを炉心管が石英製である管状炉内で塩素ガスを流しながら850℃に加熱し、塩素量をSe、Teの塩化反応、白金族金属の可溶性塩化反応に必要とする量の2倍量を流して5時間の塩化焙焼処理を行った。なお、降温時500℃にて窒素ガスで置換した。 Next, 30 g of the treated product is 104 g of sodium chloride 5 times the amount required for the soluble chlorination reaction of the platinum group metal, and carbon powder 0.1 times the amount required for suppressing the oxidation of the platinum group metal. Add 0.12g and mix well. It dried for 12 hours in the dryer set to 100 degreeC. After drying, this is heated to 850 ° C while flowing chlorine gas in a tubular furnace whose core tube is made of quartz, and the amount of chlorine is the amount necessary for the chlorination reaction of Se and Te and the soluble chlorination reaction of platinum group metals. The chlorination roasting treatment was carried out for 5 hours while flowing twice the amount. In addition, nitrogen gas was substituted at 500 ° C. when the temperature was lowered.
その後、該処理物を80℃の温水で水浸出し、白金族金属の可溶性塩を浸出した。残渣をろ別し、白金族金属の浸出液が得られた。
表7に示すように、Pt81%、Pd68%、Ru67%、Rh49%と実施例2と比較して、白金族金属の分配率が低く好ましくない。炭素粉は、0.5倍量より少ない量を添加してもほとんど効果が無い。炭素粉を添加しなかった場合と同様に、白金族金属表面の酸化層の還元、昇温途中での酸化層形成の抑制が行われないか、不十分であるため、白金族金属の可溶性塩化反応が十分に進まず歩留まりが悪くなるためである。
Thereafter, the treated product was leached with hot water at 80 ° C. to leach soluble salts of platinum group metals. The residue was filtered off to obtain a platinum group metal leachate.
As shown in Table 7, compared with Example 2, Pt81%, Pd68%, Ru67%, Rh49%, the platinum group metal distribution ratio is low, which is not preferable. Carbon powder is almost ineffective even when added in an amount less than 0.5 times. As with the case where no carbon powder was added, the reduction of the oxide layer on the surface of the platinum group metal and the suppression of the formation of the oxide layer during the temperature increase were not performed or were insufficient. This is because the reaction does not proceed sufficiently and the yield deteriorates.
以下表8に基づいて、比較例5を説明する。ここでは原料および塩化ナトリウムを乾燥せずに用いて実施例2と比較した。
乾燥していないSe蒸留塔乾固残渣6000gを石英製ボートに装入し、炉心管が石英製である管状炉内で塩素ガスを流しながら200℃および440℃にてそれぞれ1時間保持し、さらに700℃に加熱し、塩素量をSe、Te、白金族金属の塩化反応に必要とする量を流して5時間の塩化揮発処理を行った。なお、降温時500℃にて窒素ガスで置換した。
Hereinafter, Comparative Example 5 will be described based on Table 8. Here, the raw material and sodium chloride were used without drying, and compared with Example 2.
6000 g of Se distillation tower dry residue, which has not been dried, is charged into a quartz boat and kept at 200 ° C. and 440 ° C. for 1 hour while flowing chlorine gas in a tubular furnace whose core tube is made of quartz. The sample was heated to 700 ° C., and chlorine was volatilized for 5 hours with the amount of chlorine required for the chlorination reaction of Se, Te and platinum group metals. In addition, nitrogen gas was substituted at 500 ° C. when the temperature was lowered.
次に、該処理物1,730gに市販品を購入したままの乾燥していない塩化ナトリウムを白金族金属の可溶性塩化反応に必要とする量の5倍量の5,780g、炭素粉を白金族金属の酸化の抑制に必要とする量の10倍量の696g添加し、よく混合する。これを乾燥しないままで、炉心管が石英製である管状炉内で塩素ガスを流しながら850℃に加熱し、塩素量をSe、Teの塩化反応、白金族金属の可溶性塩化反応に必要とする量の2倍量を流して5時間の塩化焙焼処理を行った。なお、降温時500℃にて窒素ガスで置換した。 Next, 1,780 g of the treated product, 5780 g of the sodium chloride which has not been dried yet purchased as a commercial product, 5 times the amount required for the soluble chlorination reaction of the platinum group metal, and carbon powder in the platinum group Add 696 g of 10 times the amount required to suppress metal oxidation and mix well. Heated to 850 ° C while flowing chlorine gas in a tube furnace whose core tube is made of quartz without drying it, and the amount of chlorine is necessary for the chlorination reaction of Se and Te and the soluble chlorination reaction of platinum group metals The chlorination roasting treatment was performed for 5 hours by flowing twice the amount. In addition, nitrogen gas was substituted at 500 ° C. when the temperature was lowered.
その後、該処理物を80℃の温水で水浸出し、白金族金属の可溶性塩を浸出した。残渣をろ別し、白金族金属の浸出液が得られた。
表8に示すように、Pt9%、Pd99%以上、Ru51%、Rh94%、Ir53%と実施例2と比較して、Pt、Ru、Irの分配率が低く好ましくない。浸出残渣をX線回折測定した結果、白金族金属の酸化物が検出された。原料中に水分が多く含まれていたため、昇温途中での酸化物を形成したが炭素粉による還元が不十分であった結果、白金族金属の可溶性塩化反応が十分に進まず歩留まりが悪くなるためである。
Thereafter, the treated product was leached with hot water at 80 ° C. to leach soluble salts of platinum group metals. The residue was filtered off to obtain a platinum group metal leachate.
As shown in Table 8, compared with Example 2, Pt9%, Pd99% or more, Ru51%, Rh94%, Ir53%, and the distribution ratios of Pt, Ru, Ir are not preferable. As a result of X-ray diffraction measurement of the leaching residue, platinum group metal oxides were detected. Since the raw material contained a lot of moisture, an oxide was formed during the temperature increase, but the reduction with carbon powder was insufficient. As a result, the soluble chlorination reaction of the platinum group metal did not proceed sufficiently, resulting in poor yield. Because.
以下表9に基づいて、比較例6を説明する。ここでは塩化焙焼工程で加熱温度700℃まで連続して昇温して比較した。
100℃に設定した乾燥機内で12時間乾燥したSe蒸留塔乾固残渣6000gを石英製ボートに装入し、炉心管が石英製である管状炉内で塩素ガスを流しながら連続して昇温して700℃に加熱し、塩素量をSe、Te、白金族金属の塩化反応に必要とする量を流して5時間の塩化揮発処理を行った。なお、降温時500℃にて窒素ガスで置換した。
Hereinafter, Comparative Example 6 will be described based on Table 9. Here, the temperature was continuously increased up to a heating temperature of 700 ° C. in the chlorination roasting process and compared.
6000 g of Se distillation tower drying residue dried in a dryer set at 100 ° C. for 12 hours is charged into a quartz boat, and the temperature is continuously raised while flowing chlorine gas in a tubular furnace whose core tube is made of quartz. The mixture was heated to 700 ° C., and the chlorine amount was flowed in the amount required for the chlorination reaction of Se, Te and platinum group metals, and the chlorination volatilization treatment was carried out for 5 hours. In addition, nitrogen gas was substituted at 500 ° C. when the temperature was lowered.
次に、該処理物1,741gに塩化ナトリウムを白金族金属の可溶性塩化反応に必要とする量の5倍量の5,770g、炭素粉を白金族金属の酸化の抑制に必要とする量の70gを添加し、よく混合する。100℃に設定した乾燥機内で12時間乾燥した。乾燥後、炉心管が石英製である管状炉内で塩素ガスを流しながら850℃に加熱し、塩素量をSe、Teの塩化反応、白金族金属の可溶性塩化反応に必要とする量の2倍量を流して5時間の塩化焙焼処理を行った。なお、降温時500℃にて窒素ガスで置換した。 Next, 5,770 g of sodium chloride is necessary for the soluble chlorination reaction of the platinum group metal to 5,741 g of the treated product, and the amount of carbon powder is necessary for suppressing the oxidation of the platinum group metal. Add 70g and mix well. It dried for 12 hours in the dryer set to 100 degreeC. After drying, the furnace core tube is heated to 850 ° C while flowing chlorine gas in a tubular furnace made of quartz, and the amount of chlorine is twice that required for Se and Te chlorination reactions and platinum group metals soluble chlorination reactions The chlorination roasting treatment was carried out for 5 hours while flowing the amount. In addition, nitrogen gas was substituted at 500 ° C. when the temperature was lowered.
その後、該処理物を80℃の温水で水浸出し、白金族金属の可溶性塩を浸出した。残渣をろ別し、白金族金属の浸出液が得られた。
表9に示すように、Pt71%、Pd81%、Ru99%以上、Rh99%以上、Ir97%と実施例2と比較して、Pt、Pdの分配率が低く好ましくない。浸出残渣をX線回折測定した結果、メタルの白金族金属が検出された。これは昇温中に原料中に多く含まれていたSeが融解して原料の粒子間が密着して塩素ガスの通りが悪くした結果、白金族金属の可溶性塩化反応が十分に進まず歩留まりが悪くなるためである。
Thereafter, the treated product was leached with hot water at 80 ° C. to leach soluble salts of platinum group metals. The residue was filtered off to obtain a platinum group metal leachate.
As shown in Table 9, compared with Example 2, Pt71%, Pd81%, Ru99% or more, Rh99% or more, and Ir97%, the distribution ratios of Pt and Pd are low, which is not preferable. As a result of X-ray diffraction measurement of the leach residue, a platinum group metal of metal was detected. This is because Se, which was contained in the raw material during melting, melted and the particles of the raw material were in close contact with each other and the passage of chlorine gas was poor. As a result, the soluble chlorination reaction of platinum group metals did not proceed sufficiently and the yield was low. This is because it gets worse.
以下表10に基づいて、比較例7を説明する。ここでは塩化揮発工程および塩化焙焼工程において加熱温度で所定時間保持後、降温を開始した直後に雰囲気ガスを塩素から窒素に切り替えて比較した。
100℃に設定した乾燥機内で12時間乾燥したSe蒸留塔乾固残渣6000gを石英製ボートに装入し、炉心管が石英製である管状炉内で塩素ガスを流しながら連続して昇温して700℃に加熱し、塩素量をSe、Te、白金族金属の塩化反応に必要とする量を流して5時間の塩化揮発処理を行ない、降温開始直後に窒素ガスを流して置換した。
Hereinafter, Comparative Example 7 will be described based on Table 10. Here, after maintaining for a predetermined time at the heating temperature in the chlorination volatilization step and the chlorination roasting step, the atmosphere gas was switched from chlorine to nitrogen immediately after the temperature reduction was started for comparison.
6000 g of Se distillation tower drying residue dried in a dryer set at 100 ° C. for 12 hours is charged into a quartz boat, and the temperature is continuously raised while flowing chlorine gas in a tubular furnace whose quartz core tube is made of quartz. The mixture was heated to 700 ° C., and the chlorine amount was changed to 5% for chlorination reaction of Se, Te and platinum group metals, and the nitrogen gas was supplied and replaced immediately after the start of cooling.
次に、該処理物1,741gに塩化ナトリウムを白金族金属の可溶性塩化反応に必要とする量の5倍量の4,360g、炭素粉を白金族金属の酸化の抑制に必要とする量の10倍量である525gを添加し、よく混合する。これを100℃に設定した乾燥機内で12時間乾燥した。乾燥後、炉心管が石英製である管状炉内で塩素ガスを流しながら820℃に加熱し、塩素量をSe、Teの塩化反応、白金族金属の可溶性塩化反応に必要とする量の2倍量を流して5時間の塩化焙焼処理を行ない、降温開始直後に窒素ガスを流して置換した。 Next, 4,360 g of sodium chloride is added to the treated product 1,741 g, 5 times the amount required for the soluble chlorination reaction of the platinum group metal, and carbon powder is required to suppress the oxidation of the platinum group metal. Add 10 times the amount of 525g and mix well. This was dried in a dryer set at 100 ° C. for 12 hours. After drying, the furnace core tube is heated to 820 ° C while flowing chlorine gas in a tubular furnace made of quartz, and the amount of chlorine is twice that required for the chlorination reaction of Se and Te and the soluble chlorination reaction of platinum group metals. The chlorination roasting treatment was carried out for 5 hours while flowing the amount, and nitrogen gas was flowed and replaced immediately after the start of temperature decrease.
その後、該処理物を80℃の温水で水浸出し、白金族金属の可溶性塩を浸出した。残渣をろ別し、白金族金属の浸出液が得られた。
表10に示すように、Pt52%、Pd57%、Ru68%、Rh72%、Ir64%と実施例2と比較して、白金族金属の分配率が低く好ましくない。浸出残渣をX線回折測定した結果、メタルの白金族金属が検出された。これは、白金族元素の塩化物は550℃以上の温度で解離して塩素を放出することがあるが、降温中の高い温度で窒素ガスを流したために塩素分圧が低下したため、メタルの白金族金属に分解したことを示す。その結果、白金族金属の可溶性塩化物が減少して歩留まりが悪くなるためである。
Thereafter, the treated product was leached with hot water at 80 ° C. to leach soluble salts of platinum group metals. The residue was filtered off to obtain a platinum group metal leachate.
As shown in Table 10, compared with Example 2, Pt52%, Pd57%, Ru68%, Rh72%, and Ir64%, the platinum group metal distribution ratio is low, which is not preferable. As a result of X-ray diffraction measurement of the leach residue, a platinum group metal of metal was detected. This is because platinum group element chlorides can dissociate and release chlorine at temperatures above 550 ° C, but the nitrogen partial pressure drops due to the flow of nitrogen gas at a high temperature during the temperature drop. Indicates decomposition into a group metal. As a result, the soluble chloride of the platinum group metal decreases and the yield deteriorates.
Claims (10)
さらにSe、Teを除去し、白金族金属を可溶性塩とし、次いで該処理物を水浸出し、白金族金属を浸出・回収することを特徴とするSe含有物の塩化処理方法。 Raw materials containing Se, Te, and platinum group metals (hereinafter referred to as “Se-containing materials”) are subjected to chlorination and volatilization treatment in a chlorine atmosphere to remove Se and Te, and sodium chloride and carbon powder are added to the treatment products to produce chlorine. Se-containing material characterized in that it is subjected to chlorination roasting treatment in an atmosphere, further removing Se and Te, converting the platinum group metal into a soluble salt, then leaching the treated product with water, and leaching and collecting the platinum group metal. Chlorination treatment method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004251721A JP3943564B2 (en) | 2004-01-30 | 2004-08-31 | Method for chlorinating Se-containing materials |
CNB2004100817220A CN1280433C (en) | 2004-01-30 | 2004-12-21 | Chlorination treatment process of Se contg. substance |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004023423 | 2004-01-30 | ||
JP2004251721A JP3943564B2 (en) | 2004-01-30 | 2004-08-31 | Method for chlorinating Se-containing materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005240170A JP2005240170A (en) | 2005-09-08 |
JP3943564B2 true JP3943564B2 (en) | 2007-07-11 |
Family
ID=35010657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004251721A Expired - Lifetime JP3943564B2 (en) | 2004-01-30 | 2004-08-31 | Method for chlorinating Se-containing materials |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3943564B2 (en) |
CN (1) | CN1280433C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011074457A (en) * | 2009-09-30 | 2011-04-14 | Jx Nippon Mining & Metals Corp | EFFICIENT OPERATING METHOD IN Ru-Rh REFINING PROCESS |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4313361B2 (en) * | 2005-12-05 | 2009-08-12 | 日鉱金属株式会社 | Method of chlorinating Ru and / or Rh |
JP4789001B2 (en) * | 2006-03-01 | 2011-10-05 | Jx日鉱日石金属株式会社 | Method for separating ruthenium and tantalum from ruthenium-tantalum alloys |
JP5021331B2 (en) * | 2007-02-16 | 2012-09-05 | 田中貴金属工業株式会社 | Method for recovering platinum group metals from waste |
JP5223085B2 (en) * | 2007-03-13 | 2013-06-26 | 国立大学法人秋田大学 | Separation and purification of rare metals by chloride volatilization method |
JP2010077510A (en) | 2008-09-29 | 2010-04-08 | Nippon Mining & Metals Co Ltd | Method of separating rhodium from platinum and/or palladium |
JP5560440B2 (en) * | 2010-06-03 | 2014-07-30 | 一般財団法人生産技術研究奨励会 | Method for recovering platinum group metals |
JP5591749B2 (en) * | 2011-03-30 | 2014-09-17 | パンパシフィック・カッパー株式会社 | Method for recovering tellurium from alkaline leaching residue containing tellurium |
JP5591748B2 (en) * | 2011-03-30 | 2014-09-17 | パンパシフィック・カッパー株式会社 | How to recover tellurium |
CN105441691A (en) * | 2015-11-18 | 2016-03-30 | 金川集团股份有限公司 | Method for extracting precious metals from low-grade gold (Au)-palladium (Pd)-platinum (Pt) materials |
CN114737063A (en) * | 2022-03-22 | 2022-07-12 | 咸阳欧冶科技有限公司 | Platinum alloy purification process |
CN116161629B (en) * | 2023-04-03 | 2024-07-02 | 昆明理工大学 | Method for purifying selenium |
-
2004
- 2004-08-31 JP JP2004251721A patent/JP3943564B2/en not_active Expired - Lifetime
- 2004-12-21 CN CNB2004100817220A patent/CN1280433C/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011074457A (en) * | 2009-09-30 | 2011-04-14 | Jx Nippon Mining & Metals Corp | EFFICIENT OPERATING METHOD IN Ru-Rh REFINING PROCESS |
Also Published As
Publication number | Publication date |
---|---|
CN1280433C (en) | 2006-10-18 |
JP2005240170A (en) | 2005-09-08 |
CN1661120A (en) | 2005-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI388670B (en) | Separation of rhodium with platinum and / or palladium | |
JP4313361B2 (en) | Method of chlorinating Ru and / or Rh | |
JP3943564B2 (en) | Method for chlorinating Se-containing materials | |
JP4715627B2 (en) | Method for recovering platinum group element from ion exchange resin adsorbed platinum group element | |
JP3474526B2 (en) | How to recover silver | |
TWI411581B (en) | Method for recovering ruthenium from waste containing ruthenium | |
JPS6344810B2 (en) | ||
WO2008062785A1 (en) | Method for recovering ruthenium | |
Nagai et al. | Development of methods for concentration and dissolution of Rh and Ru from copper slime | |
JP2012246198A (en) | Method for purifying selenium by wet process | |
WO2016104594A1 (en) | Method for leaching valuable metals contained in copper removal slime | |
JP6636819B2 (en) | Treatment method of metal-containing acidic aqueous solution | |
JP6264566B2 (en) | Method for producing leaching product liquid containing platinum group element | |
JP4715598B2 (en) | Chloride leaching method of lead electrolysis slime | |
JP5447357B2 (en) | Chlorine leaching method for copper electrolytic slime | |
JP4882125B2 (en) | Silver recovery method | |
JP2011132562A (en) | METHOD FOR RECOVERING Co COMPOUND | |
JP7006332B2 (en) | How to make gold powder | |
JP2007231397A (en) | Method for refining silver chloride | |
JP4738572B2 (en) | Improvements in refining | |
JP6708065B2 (en) | Tellurium separation and recovery method | |
US6337056B1 (en) | Process for refining noble metals from auriferous mines | |
JP2004190133A (en) | Method of treating selenium, tellurium, and platinum group-containing material | |
JP2017133084A (en) | Method of treating gold and silver slag | |
JP7331744B2 (en) | Method for leaching sparingly soluble platinum group elements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060510 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060707 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060718 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060912 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070403 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070405 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3943564 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100413 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110413 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110413 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110413 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120413 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120413 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130413 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |