JP4882125B2 - Silver recovery method - Google Patents

Silver recovery method Download PDF

Info

Publication number
JP4882125B2
JP4882125B2 JP2005179539A JP2005179539A JP4882125B2 JP 4882125 B2 JP4882125 B2 JP 4882125B2 JP 2005179539 A JP2005179539 A JP 2005179539A JP 2005179539 A JP2005179539 A JP 2005179539A JP 4882125 B2 JP4882125 B2 JP 4882125B2
Authority
JP
Japan
Prior art keywords
silver
chloride
acid
bismuth
nitric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005179539A
Other languages
Japanese (ja)
Other versions
JP2006348375A (en
Inventor
健治 一箭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Eco Systems Co Ltd
Original Assignee
Dowa Eco Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Eco Systems Co Ltd filed Critical Dowa Eco Systems Co Ltd
Priority to JP2005179539A priority Critical patent/JP4882125B2/en
Publication of JP2006348375A publication Critical patent/JP2006348375A/en
Application granted granted Critical
Publication of JP4882125B2 publication Critical patent/JP4882125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、ビスマスを含有する銀化合物から、効率よく、かつ純度の高い銀を回収する銀回収方法に関する。   The present invention relates to a silver recovery method for efficiently recovering highly pure silver from a silver compound containing bismuth.

近年、電子機器等の廃棄物から、再利用を目的として貴金属を回収する技術が求められており、実用化されている方法も含め、様々な回収方法が提案されている。一般に、貴金属を回収する場合には、貴金属元素ごとに分別回収する方法が採られている。   In recent years, there has been a demand for a technique for recovering noble metals from wastes such as electronic devices for the purpose of reuse, and various recovery methods have been proposed including methods that have been put into practical use. Generally, when collecting noble metals, a method of separating and collecting each noble metal element is employed.

前記電子機器等の廃棄物中には、電子部品を製造するために使用される接合ペースト(貴金属ペースト)が導電材等として含まれており、該貴金属ペーストは、貴金属以外にも種々の金属元素が含まれている。
例えば、前記貴金属ペーストとして代表的な銀ペーストには、ビスマス等が含まれているため、該銀ペーストから銀を金属として回収しようとすると、電解精製時にビスマスが銀と挙動を共にして、回収した銀の中に不純物としてビスマスが含まれ、銀の純度が低下するという問題がある。
In the wastes of the electronic equipment and the like, a joining paste (noble metal paste) used for manufacturing an electronic component is included as a conductive material, and the noble metal paste includes various metal elements in addition to the noble metal. It is included.
For example, since the silver paste typical as the noble metal paste contains bismuth and the like, when attempting to recover silver as a metal from the silver paste, bismuth behaves together with silver during electrorefining and is recovered. There is a problem that bismuth is contained as an impurity in the silver and the purity of the silver is lowered.

この問題に対し、例えば、粗銀を硝酸で溶解した浸出液に鉄化合物を添加し、ビスマスを水酸化鉄と共に沈殿させて、除去する方法(例えば、特許文献1参照。)等が提案されている。しかしながら、この方法によると、鉄化合物や、該鉄化合物と共沈させるためのpHを調整するために添加するアルカリ剤のコストがかかることに加え、銀が塩化銀の状態である場合には適合しない方法であるという問題がある。さらに、この方法では、ビスマスの含有量を微量(例えば、0.3重量%未満)まで除去できる可能性は不明である。   To solve this problem, for example, a method of adding an iron compound to a leachate obtained by dissolving crude silver with nitric acid and precipitating bismuth together with iron hydroxide to remove it (see, for example, Patent Document 1) has been proposed. . However, according to this method, in addition to the cost of the iron compound and the alkali agent added to adjust the pH for coprecipitation with the iron compound, it is suitable when the silver is in the state of silver chloride. There is a problem that it is a method that does not. Furthermore, in this method, the possibility that the bismuth content can be removed to a very small amount (for example, less than 0.3% by weight) is unknown.

したがって、銀ペースト等のビスマスを含有する銀化合物から、効率よく、かつ純度の高い銀を回収する銀回収方法は、未だ提供されていないのが現状である。   Therefore, the present condition is that the silver collection method which collect | recovers highly efficient highly efficient silver from silver compounds containing bismuth, such as a silver paste, is not yet provided.

国際公開WO98/58089号パンフレットInternational Publication WO 98/58089 Pamphlet

本発明は従来における前記問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、ビスマスを含有する銀化合物から、効率よく、かつ純度の高い銀を回収する銀回収方法を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. That is, an object of the present invention is to provide a silver recovery method for efficiently recovering highly pure silver from a silver compound containing bismuth.

前記課題を解決するため、本発明者らが鋭意検討を重ねた結果、ビスマスを含む銀化合物から銀を回収する工程において、前記銀化合物中の銀を、銀含有塩化物として析出させて酸洗浄を行うことにより達成でき、更に該酸洗浄時の前記銀含有塩化物含有液のpH及び酸化還元電位を調整することにより、効率よくビスマスを除去することができ、かつビスマスの含有量が極めて少ない純度の高い銀が回収できることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have made extensive studies and, as a result, in the step of recovering silver from a silver compound containing bismuth, the silver in the silver compound is precipitated as a silver-containing chloride and washed with an acid. Bismuth can be efficiently removed by adjusting the pH and oxidation-reduction potential of the silver-containing chloride-containing solution during the acid washing, and the bismuth content is extremely low. The present inventors have found that high purity silver can be recovered and have completed the present invention.

本発明は、本発明者による前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
<1> ビスマスを含有する銀化合物を、焼却する工程と、
焼却された前記銀化合物に硝酸を添加し、硝酸溶解成分と硝酸不溶成分とに分離する工程と、
前記硝酸溶解成分に塩素化合物を添加し、銀含有塩化物を析出させる工程と、
前記銀含有塩化物を含む銀含有塩化物含有液に酸を添加し、前記銀含有塩化物を酸洗浄する工程と、
を少なくとも含むことを特徴とする銀回収方法である。
<2> 酸洗浄する工程の後、酸洗浄した銀含有塩化物を還元する工程と、
得られた還元銀を電解精製する工程とを含む前記<1>に記載の銀回収方法である。
<3> 還元銀を、酸化焙焼した後、電解精製する前記<2>に記載の銀回収方法である。
<4> 酸洗浄時の銀含有塩化物含有液のpHが2以下である前記<1>から<3>のいずれかに記載の銀回収方法である。
<5> 酸洗浄時の銀含有塩化物含有液の酸化還元電位(ORP、塩化銀電極)が+150mV以上である前記<1>から<4>のいずれかに記載の銀回収方法である。
<6> 酸洗浄時の銀含有塩化物含有液のpHが1.5以下であり、かつ酸化還元電位が+200mV以上である前記<1>から<5>のいずれかに記載の銀回収方法である。
<7> 塩酸で酸洗浄を行う前記<1>から<6>のいずれかに記載の銀含有方法である。
<8> 塩素化合物が、塩化ナトリウム、及び塩化カリウムの少なくともいずれかである前記<1>から<7>のいずれかに記載の銀回収方法である。
<9> 還元剤を用いて還元工程を行う前記<2>から<8>に記載の銀回収方法である。
<10> 還元剤が、水酸化ナトリウムである前記<9>に記載の銀回収方法である。
<11> 銀化合物が、銀ペーストである前記<1>から<10>のいずれかに記載の銀回収方法である。
This invention is based on the said knowledge by this inventor, and as a means for solving the said subject, it is as follows. That is,
<1> a step of incinerating a silver compound containing bismuth;
Adding nitric acid to the incinerated silver compound and separating it into a nitric acid soluble component and a nitric acid insoluble component;
Adding a chlorine compound to the nitric acid-dissolved component and precipitating a silver-containing chloride;
Adding an acid to the silver-containing chloride-containing liquid containing the silver-containing chloride, and acid-washing the silver-containing chloride;
A silver recovery method characterized by comprising at least
<2> After the acid cleaning step, the step of reducing the acid-washed silver-containing chloride;
The method for recovering silver according to <1>, further including a step of electrolytically purifying the obtained reduced silver.
<3> The silver recovery method according to <2>, wherein the reduced silver is subjected to electrolytic roasting and then subjected to electrolytic purification.
<4> The silver recovery method according to any one of <1> to <3>, wherein the pH of the silver-containing chloride-containing solution during acid cleaning is 2 or less.
<5> The silver recovery method according to any one of <1> to <4>, wherein an oxidation-reduction potential (ORP, silver chloride electrode) of the silver-containing chloride-containing liquid during acid cleaning is +150 mV or more.
<6> The silver recovery method according to any one of <1> to <5>, wherein the pH of the silver-containing chloride-containing solution during acid cleaning is 1.5 or less and the oxidation-reduction potential is +200 mV or more. is there.
<7> The silver-containing method according to any one of <1> to <6>, wherein the acid cleaning is performed with hydrochloric acid.
<8> The silver recovery method according to any one of <1> to <7>, wherein the chlorine compound is at least one of sodium chloride and potassium chloride.
<9> The silver recovery method according to <2> to <8>, wherein the reduction step is performed using a reducing agent.
<10> The silver recovery method according to <9>, wherein the reducing agent is sodium hydroxide.
<11> The silver recovery method according to any one of <1> to <10>, wherein the silver compound is a silver paste.

本発明によると、ビスマスを含有する銀化合物から、効率よく、かつ純度の高い銀を回収する銀回収方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the silver collection | recovery method which collect | recovers silver highly efficiently from the silver compound containing bismuth can be provided.

(銀回収方法)
本発明の銀回収方法は、ビスマスを含有する銀化合物の焼却工程と、硝酸溶解成分分離工程と、銀含有塩化物析出工程と、酸洗浄工程とを少なくとも含み、更に必要に応じて、還元工程、電解精製工程、及びその他の工程を含む。
(Silver recovery method)
The silver recovery method of the present invention includes at least a incineration step of a silver compound containing bismuth, a nitric acid-soluble component separation step, a silver-containing chloride precipitation step, and an acid washing step, and if necessary, a reduction step , Electrolytic purification process, and other processes.

前記ビスマスを含有する銀化合物としては、特に制限はなく、目的に応じて適宜選択することができ、ビスマス以外の成分を含んでいてもよく、例えば、銀ペースト等が挙げられる。前記銀ペーストは、一般的に、銀成分を10〜90質量%、ビスマスを0.1〜5質量%程度含有し、その他の成分として有機バインダー、及び有機溶媒等を含有している。また、銀とビスマスとは、金属間化合物又は合金を形成していることがある。   There is no restriction | limiting in particular as a silver compound containing the said bismuth, According to the objective, it can select suitably, Components other than bismuth may be included, for example, silver paste etc. are mentioned. The silver paste generally contains about 10 to 90% by mass of a silver component and about 0.1 to 5% by mass of bismuth, and contains an organic binder, an organic solvent, and the like as other components. Silver and bismuth may form an intermetallic compound or alloy.

<焼却工程>
前記焼却工程は、前記銀化合物を高温下で酸化処理する工程である。
該焼却工程により、前記銀化合物中の有機物は酸化され、減量されるため、金属成分からの前記有機物の分離除去が容易になるとともに、その後の工程における各反応に対する前記有機物の影響を防止することができる。
<Incineration process>
The incineration step is a step of oxidizing the silver compound at a high temperature.
The organic matter in the silver compound is oxidized and reduced by the incineration step, so that the organic matter is easily separated and removed from the metal component, and the influence of the organic matter on each reaction in the subsequent step is prevented. Can do.

焼却温度としては、前記銀化合物が酸素と充分に反応できる温度であればよく、前記銀化合物の組成に応じて適宜設定設計することができ、例えば、300〜950℃が好ましい。
また、前記焼却工程における焼却雰囲気としては、前記銀化合物が酸素と反応する酸化反応のために充分な酸素量が供給されていることが好ましい。
焼却の方法としては、前記銀化合物を高温で酸化処理することが可能な方法であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、酸化炉等を用い、酸素含有ガスを供給しながら加熱する方法、酸素バーナーを用いる方法等が挙げられる。
前記焼却工程により焼却された前記銀化合物は、炭化物及び粒状の金属成分からなる。
The incineration temperature may be a temperature at which the silver compound can sufficiently react with oxygen, and can be appropriately set and designed according to the composition of the silver compound. For example, 300 to 950 ° C. is preferable.
Moreover, as an incineration atmosphere in the said incineration process, it is preferable that oxygen amount sufficient for the oxidation reaction in which the said silver compound reacts with oxygen is supplied.
The incineration method is not particularly limited as long as it is a method capable of oxidizing the silver compound at a high temperature, and can be appropriately selected according to the purpose. The method of heating while supplying gas, the method of using an oxygen burner, etc. are mentioned.
The silver compound incinerated in the incineration step is composed of a carbide and a granular metal component.

<硝酸溶解成分分離工程>
前記硝酸溶解成分分離工程は、焼却された前記銀化合物に硝酸を添加し、硝酸溶解成分と硝酸不溶成分とに分離する工程である。前記硝酸溶解成分は金属成分であり、前記硝酸中にイオン状となって溶解する。
<Nitric acid-soluble component separation step>
The nitric acid-soluble component separation step is a step of adding nitric acid to the incinerated silver compound to separate into a nitric acid-soluble component and a nitric acid-insoluble component. The nitric acid-dissolving component is a metal component and dissolves in ionic form in the nitric acid.

前記硝酸溶解成分と前記硝酸不溶成分とを分離する方法としては、少なくとも前記硝酸溶解成分のみを回収可能な方法であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、フィルターろ過、デカンテーション等の方法が挙げられる。
また、前記硝酸溶解成分分離工程の温度条件としては、室温(10〜40℃)であってもよく、反応を促進するために液温を40〜80℃に加温してもよい。
The method for separating the nitric acid-soluble component and the nitric acid-insoluble component is not particularly limited as long as it is a method capable of recovering at least the nitric acid-soluble component, and can be appropriately selected according to the purpose. Examples thereof include filter filtration and decantation.
Moreover, as temperature conditions of the said nitric acid melt | dissolution component separation process, room temperature (10-40 degreeC) may be sufficient, and in order to accelerate | stimulate reaction, you may heat liquid temperature to 40-80 degreeC.

<銀含有塩化物析出工程>
前記銀含有塩化物析出工程は、前記硝酸溶解成分に塩素化合物を添加し、銀含有塩化物を析出させる工程である。前記塩素化合物により、前記硝酸溶解成分中の金属成分が塩化物として沈殿し、少なくとも塩化銀が沈殿する。
<Silver-containing chloride precipitation process>
The silver-containing chloride precipitation step is a step of adding a chlorine compound to the nitric acid-dissolved component to precipitate a silver-containing chloride. By the chlorine compound, the metal component in the nitric acid-dissolved component is precipitated as a chloride, and at least silver chloride is precipitated.

前記塩素化合物としては、前記硝酸溶解成分中の金属成分を塩化物の沈殿物として析出させ、かつ他の沈殿物を生成させないものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、塩化ナトリウム、塩化カリウム等が挙げられる。
前記塩素化合物の添加量としては、出発原料である前記銀化合物中の銀濃度に応じて適宜選択することができる。また、沈殿物の生成を観察しながら前記塩素化合物の添加を行い、沈殿物の生成が観られなくなるまで添加することにより、添加量を調節してもよい。
The chlorine compound is not particularly limited as long as the metal component in the nitric acid-dissolved component is precipitated as a chloride precipitate and does not generate other precipitates. Examples thereof include sodium chloride and potassium chloride.
The addition amount of the chlorine compound can be appropriately selected according to the silver concentration in the silver compound as a starting material. Alternatively, the amount of addition may be adjusted by adding the chlorine compound while observing the formation of a precipitate, and adding until the formation of the precipitate is not observed.

前記塩化物を析出させる方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記塩素化合物を添加して攪拌する方法、及び前記塩化物を反応中の液に戻して析出粒径を粗大化させる液循環方法などが挙げられる。
また、前記銀含有塩化物析出工程の温度条件としては、室温(10〜40℃)であってもよく、反応を促進するために液温を40〜80℃に加温してもよい。
The method for precipitating the chloride is not particularly limited and may be appropriately selected depending on the purpose. For example, the method of adding and stirring the chlorine compound, and returning the chloride to the liquid during the reaction. And a liquid circulation method for coarsening the precipitated particle size.
Moreover, as temperature conditions of the said silver containing chloride precipitation process, room temperature (10-40 degreeC) may be sufficient, and in order to accelerate | stimulate reaction, you may heat liquid temperature to 40-80 degreeC.

<酸洗浄工程>
前記酸洗浄工程は、前記銀含有塩化物析出工程において、少なくとも銀含有塩化物を析出させて得た前記銀含有塩化物含有液に、酸を添加し、前記銀含有塩化物を酸洗浄する工程である。
該酸洗浄工程においては、前記銀含有塩化物析出工程において生成した他の金属成分(ビスマス等)の塩化物の沈殿物を溶解させる。
また、酸洗浄時においては、酸の添加量により、前記銀含有塩化物含有液のpH、及び酸化還元電位を調整し、ビスマスの溶解を促進することが好ましい。
<Acid cleaning process>
The acid washing step is a step of adding an acid to the silver-containing chloride-containing liquid obtained by precipitating at least silver-containing chloride in the silver-containing chloride precipitation step, and washing the silver-containing chloride with an acid. It is.
In the acid washing step, a chloride precipitate of other metal components (such as bismuth) generated in the silver-containing chloride precipitation step is dissolved.
Further, at the time of acid washing, it is preferable to promote the dissolution of bismuth by adjusting the pH and oxidation-reduction potential of the silver-containing chloride-containing liquid according to the amount of acid added.

前記酸洗浄工程の洗浄時間(反応時間)としては、10〜600分が好ましい。
また、前記酸洗浄工程の温度条件としては、室温(10〜40℃)であってもよく、反応を促進するために液温を40〜80℃に加温してもよい。
The washing time (reaction time) in the acid washing step is preferably 10 to 600 minutes.
Moreover, as temperature conditions of the said acid washing | cleaning process, room temperature (10-40 degreeC) may be sufficient, and in order to accelerate | stimulate reaction, you may heat liquid temperature to 40-80 degreeC.

前記酸洗浄時の前記銀含有塩化物含有液のpHとしては、2以下が好ましく、0〜1.5がより好ましい。pHが2を超える値であると、ビスマスが溶解せず、沈殿物中にビスマスが多量に残留することがある。一方、pHが0未満であると、ビスマスの溶解性を高めることができる反面、排水処理時の中和に薬剤を要するため、コスト増となることがある。   As pH of the said silver containing chloride containing liquid at the time of the said acid washing, 2 or less are preferable and 0-1.5 are more preferable. If the pH is greater than 2, bismuth may not dissolve, and a large amount of bismuth may remain in the precipitate. On the other hand, if the pH is less than 0, the solubility of bismuth can be increased, but on the other hand, since a chemical is required for neutralization during wastewater treatment, the cost may increase.

前記酸洗浄時の前記銀含有塩化物含有液の酸化還元電位(ORP、塩化銀電極)としては、+150mV以上が好ましく、+200〜+1400mVがより好ましい。酸化還元電位が、+150mV未満であると、ビスマスが溶解せず、沈殿物中にビスマスが多量に残留することがある。   The oxidation-reduction potential (ORP, silver chloride electrode) of the silver-containing chloride-containing liquid during the acid cleaning is preferably +150 mV or more, and more preferably +200 to +1400 mV. When the oxidation-reduction potential is less than +150 mV, bismuth may not be dissolved, and a large amount of bismuth may remain in the precipitate.

前記酸洗浄時の前記銀含有塩化物含有液は、ビスマスの溶解を促進する観点から、pHが1.5以下、かつ酸化還元電位(ORP、塩化銀電極)が+200mV以上であることが特に好ましい。   The silver-containing chloride-containing solution at the time of the acid cleaning is particularly preferably pH of 1.5 or less and an oxidation-reduction potential (ORP, silver chloride electrode) of +200 mV or more from the viewpoint of promoting dissolution of bismuth. .

前記酸洗浄に用いる酸としては、例えば、塩酸が好ましく、前記銀含有塩化物含有液のpH及び酸化還元電位の調整を容易にする観点から、濃度1〜5%の塩酸がより好ましい。
ただし、塩酸の添加量が精密に制御可能である場合は、用いる塩酸の濃度は制限されない。
As the acid used for the acid cleaning, for example, hydrochloric acid is preferable, and hydrochloric acid having a concentration of 1 to 5% is more preferable from the viewpoint of facilitating adjustment of pH and oxidation-reduction potential of the silver-containing chloride-containing solution.
However, the concentration of hydrochloric acid to be used is not limited when the amount of hydrochloric acid added can be precisely controlled.

−沈殿物の分離回収−
前記酸洗浄工程後の前記銀含有塩化物含有液から、沈殿物を分離して回収する。
前記沈殿物の分離方法としては、前記沈殿物以外の液体成分を除去可能な方法であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、フィルターろ過、デカンテーション等が挙げられる。
また、酸洗浄後の前記銀含有塩化物含有液に水を添加しながら、前記沈殿物の分離を繰り返し行ってもよい。これにより、前記沈殿物が添加した水で洗浄され、前記沈殿物表面の酸が除去されるため、例えば、次の工程で行われる前記沈殿物の還元を、効率よくおこなうことができる。
-Separation and collection of precipitates-
A precipitate is separated and recovered from the silver-containing chloride-containing liquid after the acid washing step.
The method for separating the precipitate is not particularly limited as long as it is a method capable of removing liquid components other than the precipitate, and can be appropriately selected according to the purpose. For example, filter filtration, decantation, etc. Can be mentioned.
Further, the precipitate may be repeatedly separated while adding water to the silver-containing chloride-containing solution after the acid cleaning. Thereby, since the precipitate is washed with the added water and the acid on the surface of the precipitate is removed, for example, the reduction of the precipitate performed in the next step can be efficiently performed.

前記沈殿物は、ビスマスが十分に除去された純度の高い塩化銀であり、後述の還元工程及び電解精製工程を行うことにより、より純度の高い銀を回収することができる。   The precipitate is high-purity silver chloride from which bismuth has been sufficiently removed, and higher-purity silver can be recovered by performing a reduction step and an electrolytic purification step described later.

<還元工程>
前記還元工程は、前記酸洗浄工程後の前記沈殿物を、還元剤で還元する工程である。
前記還元剤としては、例えば、アルカリ等が挙げられ、水酸化ナトリウムが好ましい。
還元方法としては、前記塩化銀を還元し、金属銀とすることができれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記塩化銀に水酸化ナトリウム溶液を添加して還元反応させた後、ろ過等により回収する方法等が挙げられる。
<Reduction process>
The reduction step is a step of reducing the precipitate after the acid washing step with a reducing agent.
Examples of the reducing agent include alkali, and sodium hydroxide is preferable.
The reduction method is not particularly limited as long as the silver chloride can be reduced to metal silver, and can be appropriately selected according to the purpose. For example, a sodium hydroxide solution is added to the silver chloride. Examples of the method include a method of recovering by filtration after the reduction reaction.

前記還元工程における還元反応の時間としては、1〜600分が好ましい。
また、前記還元反応の温度条件としては、室温(10〜40℃)であってもよく、反応を促進するために液温を40〜80℃に加温してもよい。
The time for the reduction reaction in the reduction step is preferably 1 to 600 minutes.
The temperature condition for the reduction reaction may be room temperature (10 to 40 ° C.), and the liquid temperature may be increased to 40 to 80 ° C. in order to promote the reaction.

前記還元工程により得られた還元銀は、ごく微量のビスマス、及び上述の各工程で使用した成分等の不純物を含有しているため、後述の電解精製工程を行なうことにより、極めて純度の高い金属銀を回収することができる。   The reduced silver obtained by the reduction step contains a very small amount of bismuth and impurities such as the components used in each of the above steps. Silver can be recovered.

<電解精製工程>
前記電解精製工程は、前記還元工程で得られた前記還元銀を、電解精製する工程である。前記電解精製の方法としては、特に制限はなく、公知の方法により行うことができる。
前記還元銀は、酸化焙焼して粗銀とし、アノードの形状に鋳造して電解精製を行うことが好ましい。
<Electrolytic purification process>
The electrolytic purification step is a step of electrolytically purifying the reduced silver obtained in the reduction step. There is no restriction | limiting in particular as the method of the said electrolytic purification, It can carry out by a well-known method.
The reduced silver is preferably subjected to oxidation roasting to obtain rough silver, which is cast into the shape of an anode and subjected to electrolytic purification.

前記電解精製の浴液としては、硝酸水溶液が好ましい。
前記浴液の温度としては、室温(20〜40℃)であってもよく、反応を促進するために液温を40〜60℃に加温してもよい。
前記カソードの材質としては、電解液に溶解しない電気伝導体であれば、特に制限はなく、目的に応じて適宜選択することができるが、例えば、ステンレス等が好適に挙げられる。
また、アノード及びカソードの電流密度としては、20〜100A/dmが好ましい。
As the bath solution for electrolytic purification, an aqueous nitric acid solution is preferable.
The temperature of the bath liquid may be room temperature (20 to 40 ° C.), and the liquid temperature may be heated to 40 to 60 ° C. in order to promote the reaction.
The material of the cathode is not particularly limited as long as it is an electric conductor that does not dissolve in the electrolytic solution, and can be appropriately selected according to the purpose. For example, stainless steel and the like are preferable.
The current density of the anode and cathode is preferably 20 to 100 A / dm.

電解精製により、カソードに電着銀が析出する。前記電着銀は、純度が99.99質量%以上の純銀である。   Electrodeposition causes electrodeposited silver to deposit on the cathode. The electrodeposited silver is pure silver having a purity of 99.99% by mass or more.

<その他の工程>
前記その他の工程としては、例えば、前記電着銀をカソードから回収された後、水等で洗浄し、乾燥する工程、粉砕する工程、所定の形状への再溶解する工程、及び鋳造する工程等が挙げられる。
<Other processes>
Examples of the other steps include, after the electrodeposited silver is recovered from the cathode, washed with water and the like, dried, pulverized, re-dissolved into a predetermined shape, and casted. Is mentioned.

回収された銀は、公知の化学分析法や、電子顕微鏡による観察、及びX線回折同定法等により、銀であることを確認することができ、さらに純度等を評価することができる。また、回収した銀の重量と、前記銀化合物中の銀の重量とを比較することにより、前記銀の回収率を評価することができる。   The recovered silver can be confirmed to be silver by a known chemical analysis method, observation with an electron microscope, an X-ray diffraction identification method, and the like, and further the purity and the like can be evaluated. Moreover, the recovery rate of the said silver can be evaluated by comparing the weight of the collect | recovered silver with the weight of the silver in the said silver compound.

本発明の銀回収方法により回収された銀は、リサイクル性に優れ、例えば、導電材料、抗菌用材料、粉末冶金、塗料、電池材料、及びメッキ品などに好適に使用することができる。   Silver recovered by the silver recovery method of the present invention is excellent in recyclability, and can be suitably used for, for example, conductive materials, antibacterial materials, powder metallurgy, paints, battery materials, and plated products.

以下、本発明の実施例について説明するが、本発明はこの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(実施例1)
−焼却工程−
銀含有量が20質量%、ビスマス含有量が2質量%の銀ペーストを、850℃で3時間酸化処理し、1kgの焼却物を得た。
前記焼却物中の銀含有量は50g(5質量%)、ビスマス含有量は3g(0.3質量%)であった。
Example 1
-Incineration process-
A silver paste having a silver content of 20% by mass and a bismuth content of 2% by mass was oxidized at 850 ° C. for 3 hours to obtain 1 kg of an incinerated product.
The incinerated product had a silver content of 50 g (5% by mass) and a bismuth content of 3 g (0.3% by mass).

−硝酸溶解成分分離工程−
前記焼却物に硝酸2Lを添加して、室温(25℃)で60分間攪拌し、懸濁液を得た。前記懸濁液を孔径1μmのフィルターを用いて濾過し、硝酸溶解成分と硝酸不溶成分とを分離し、前記硝酸溶解成分である液体(硝酸銀溶液)を回収した。
-Nitrate dissolved component separation process-
2 L of nitric acid was added to the incinerated product and stirred at room temperature (25 ° C.) for 60 minutes to obtain a suspension. The suspension was filtered using a filter having a pore size of 1 μm to separate a nitric acid-soluble component and a nitric acid-insoluble component, and a liquid (silver nitrate solution) that was the nitric acid-soluble component was recovered.

−銀含有塩化物析出工程−
前記硝酸銀溶液に、塩化ナトリウム130gを添加し、5分間攪拌して銀含有塩化物を析出させた。析出した前記銀含有塩化物は、微細な粒子状物として液中に懸濁していた。
-Silver-containing chloride precipitation process-
To the silver nitrate solution, 130 g of sodium chloride was added and stirred for 5 minutes to precipitate a silver-containing chloride. The silver-containing chloride thus precipitated was suspended in the liquid as fine particles.

−酸洗浄工程−
析出した前記銀含有塩化物を含む銀含有塩化物含有液に、2%塩酸を添加して酸洗浄を行った。前記塩酸は、前記銀含有塩化物含有液のpH1.0となるように添加して5分間攪拌した。攪拌後の前記銀含有塩化物含有液の酸化還元電位(ORP、塩化銀電極)は、+700mVであった。
酸洗浄後の前記銀含有塩化物含有液に水を1000mL添加した後、デカンテーションにより上澄み液を除去し、沈殿物を分離した。水の添加及びデカンテーションは、2回繰り返して行った。
酸洗浄後の前記沈殿物を乾燥した後、銀とビスマスとの組成比を測定したところ、ビスマス含有量は、銀含有量に対して0.003質量%であり、ビスマスが除去されていることがわかった。
-Acid cleaning process-
2% hydrochloric acid was added to the silver-containing chloride-containing liquid containing the silver-containing chloride thus deposited, and acid cleaning was performed. The hydrochloric acid was added so that the pH of the silver-containing chloride-containing solution was 1.0 and stirred for 5 minutes. The redox potential (ORP, silver chloride electrode) of the silver-containing chloride-containing liquid after stirring was +700 mV.
After adding 1000 mL of water to the silver-containing chloride-containing solution after acid washing, the supernatant was removed by decantation, and the precipitate was separated. Water addition and decantation were repeated twice.
After drying the precipitate after acid washing, the composition ratio of silver and bismuth was measured. The bismuth content was 0.003% by mass with respect to the silver content, and bismuth was removed. I understood.

−還元工程−
前記沈殿物270gに、5%水酸化ナトリウム水溶液を添加して前記沈殿物を還元し、還元銀として沈降させてろ過により回収した。
-Reduction process-
A 5% aqueous sodium hydroxide solution was added to 270 g of the precipitate to reduce the precipitate, which was precipitated as reduced silver and collected by filtration.

−電解精製工程−
前記還元銀を、酸化焙焼して、粗銀とし、電解精製にもちいるアノードの形状に鋳造した。該アノードと、ステンレスからなるカソードを、浴液として5%硝酸水溶液を充填した電解槽に浸漬し、浴液の温度を35℃、電流密度2A/dmとして電解精製を行った。
前記カソードに析出した電着銀190gを回収し、これを洗浄した後、乾燥して、銀の純度をICPにより測定したところ、99.99%であった。
一方、前記電着銀中のビスマスの含有量を測定したところ、0.005質量%以下であり、極めて高純度の銀が回収できたことがわかった。
-Electrolytic purification process-
The reduced silver was oxidized and baked to obtain crude silver, which was cast into the shape of an anode used for electrolytic purification. The anode and a cathode made of stainless steel were immersed in an electrolytic bath filled with a 5% nitric acid aqueous solution as a bath solution, and electrolytic purification was performed at a bath solution temperature of 35 ° C. and a current density of 2 A / dm.
190 g of electrodeposited silver deposited on the cathode was collected, washed, dried, and the purity of the silver was measured by ICP to be 99.99%.
On the other hand, when the content of bismuth in the electrodeposited silver was measured, it was 0.005% by mass or less, and it was found that extremely high-purity silver could be recovered.

(実施例2〜14)
実施例1の酸洗浄工程において、前記銀含有塩化物含有液のpH及び酸化還元電位を、下記表1に示す条件とした以外は、実施例1と同様にして銀ペーストから銀の回収を行い、酸洗浄後の前記沈殿物中の銀含有量に対するビスマス含有量をそれぞれ測定した。結果を表1にあわせて示す。
(Examples 2 to 14)
In the acid washing step of Example 1, silver was recovered from the silver paste in the same manner as in Example 1 except that the pH and oxidation-reduction potential of the silver-containing chloride-containing liquid were changed to the conditions shown in Table 1 below. The bismuth content relative to the silver content in the precipitate after acid washing was measured. The results are shown in Table 1.

Figure 0004882125
*1:銀含有塩化物中の銀含有量に対するビスマス含有量の比率
*2:塩化銀電極による
Figure 0004882125
* 1: Ratio of bismuth content to silver content in silver-containing chloride * 2: By silver chloride electrode

表1の結果から、実施例1〜14の本発明の銀回収方法は、不純物であるビスマスの含有量が少ない銀を回収することができ、特に、前記銀含有塩化物含有液のpHが1.5以下、かつ酸化還元電位が+200mVである実施例1及び実施例3〜9では、ビスマスの含有量が極めて少なく、純度の高い銀を回収することができることがわかった。   From the results of Table 1, the silver recovery methods of the present invention of Examples 1 to 14 can recover silver with a low content of bismuth as an impurity. In particular, the pH of the silver-containing chloride-containing liquid is 1 In Example 1 and Examples 3 to 9 in which the oxidation-reduction potential is +200 mV or less and the oxidation-reduction potential is +200 mV, it was found that the bismuth content is extremely small and high-purity silver can be recovered.

本発明の銀回収方法は、ビスマスを含有する銀化合物から、効率よく、かつ純度の高い銀を回収することができるため、銀ペーストを使用した電子部品や電子機器からの銀回収処理に好適である。
また、本発明の銀回収方法により回収された前記銀粉末は、純度が高く、リサイクル性に優れ、導電材料、抗菌用材料、粉末冶金、塗料、電池材料、などの原料として好適である。
The silver recovery method of the present invention can efficiently recover high-purity silver from a silver compound containing bismuth, and is therefore suitable for silver recovery processing from electronic components and electronic devices using silver paste. is there.
The silver powder recovered by the silver recovery method of the present invention has high purity and excellent recyclability, and is suitable as a raw material for conductive materials, antibacterial materials, powder metallurgy, paints, battery materials, and the like.

図1は、実施例2〜14において得られた銀含有塩化物中のビスマスの含有量(銀に対する質量比)を示すグラフである。FIG. 1 is a graph showing the bismuth content (mass ratio to silver) in the silver-containing chlorides obtained in Examples 2-14.

Claims (5)

ビスマスを含有する銀ペーストを、焼却する工程と、
焼却された前記銀ペーストに硝酸溶液を添加し、硝酸溶解成分と硝酸不溶成分とに分離する工程と、
前記硝酸溶解成分に塩素化合物を添加し、銀含有塩化物を析出させる工程と、
前記銀含有塩化物を含む銀含有塩化物含有液に酸を添加し、前記銀含有塩化物を酸洗浄する工程と、
を少なくとも含むことを特徴とする銀回収方法。
Incineration of silver paste containing bismuth;
Adding a nitric acid solution to the incinerated silver paste and separating it into a nitric acid soluble component and a nitric acid insoluble component;
Adding a chlorine compound to the nitric acid-dissolved component and precipitating a silver-containing chloride;
Adding an acid to the silver-containing chloride-containing liquid containing the silver-containing chloride, and acid-washing the silver-containing chloride;
The silver collection method characterized by including at least.
酸洗浄する工程の後、酸洗浄した銀含有塩化物を還元し、還元銀を得る工程と、
得られた還元銀を電解精製する工程とを含む請求項1に記載の銀回収方法。
After the acid washing step, the acid-washed silver-containing chloride is reduced to obtain reduced silver;
The method for recovering silver according to claim 1, further comprising a step of electrolytically purifying the obtained reduced silver.
酸洗浄時の銀含有塩化物含有液のpHが2以下である請求項1から2のいずれかに記載の銀回収方法。   The silver recovery method according to any one of claims 1 to 2, wherein the pH of the silver-containing chloride-containing liquid during acid cleaning is 2 or less. 酸洗浄時の銀含有塩化物含有液の酸化還元電位(ORP、塩化銀電極)が+150mV以上である請求項1から3のいずれかに記載の銀回収方法。   The silver recovery method according to any one of claims 1 to 3, wherein an oxidation-reduction potential (ORP, silver chloride electrode) of the silver-containing chloride-containing liquid during acid cleaning is +150 mV or more. ビスマスを含有する銀ペーストが、使用済みも含む銀ペーストである請求項1から4のいずれかに記載の銀回収方法。 The silver recovery method according to any one of claims 1 to 4, wherein the silver paste containing bismuth is a silver paste including used ones.
JP2005179539A 2005-06-20 2005-06-20 Silver recovery method Active JP4882125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005179539A JP4882125B2 (en) 2005-06-20 2005-06-20 Silver recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005179539A JP4882125B2 (en) 2005-06-20 2005-06-20 Silver recovery method

Publications (2)

Publication Number Publication Date
JP2006348375A JP2006348375A (en) 2006-12-28
JP4882125B2 true JP4882125B2 (en) 2012-02-22

Family

ID=37644516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005179539A Active JP4882125B2 (en) 2005-06-20 2005-06-20 Silver recovery method

Country Status (1)

Country Link
JP (1) JP4882125B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5790408B2 (en) * 2011-10-27 2015-10-07 住友金属鉱山株式会社 Method for recovering silver from halide aqueous solution
KR20150081253A (en) 2012-08-30 2015-07-13 코닝 인코포레이티드 Solvent-free syntheses of silver and silver products produced thereby
KR20150110458A (en) 2012-08-31 2015-10-02 코닝 인코포레이티드 Low-temperature dispersion-based syntheses of silver and silver products produced thereby
WO2014036270A1 (en) 2012-08-31 2014-03-06 Corning Incorporated Silver recovery methods and silver products produced thereby

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19880534C2 (en) * 1997-06-16 2002-10-10 Mitsubishi Materials Corp Process for cleaning precious metals
JP4842426B2 (en) * 2000-09-07 2011-12-21 Jx日鉱日石金属株式会社 Method for producing high purity silver
JP2004162082A (en) * 2002-11-08 2004-06-10 Yasuharu Matsushita Pre-treating method for recovering noble metal
JP2005090832A (en) * 2003-09-17 2005-04-07 Koichi Kawase Ion spraying device, and ion spraying method

Also Published As

Publication number Publication date
JP2006348375A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
JP3879126B2 (en) Precious metal smelting method
JP5796716B2 (en) Method for removing impurities from cobalt-containing liquid
JP3087758B1 (en) Method for recovering valuable metals from copper electrolytic slime
KR102427533B1 (en) How to Dispose of Lithium Ion Waste Batteries
JP6011809B2 (en) Method for producing gold powder with high bulk density
WO2019102765A1 (en) Method for treating lithium ion battery waste
CN112695200B (en) Method for recovering selenium, gold and silver from copper anode slime
Oishi et al. Hydrometallurgical recovery of high-purity copper cathode from highly impure crude copper
JP4882125B2 (en) Silver recovery method
JP2012246198A (en) Method for purifying selenium by wet process
JP6233478B2 (en) Purification method of bismuth
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
JP5339967B2 (en) Method for removing chlorine from acidic liquid
JP2012246197A (en) Method for purifying selenium by wet process
JP4715598B2 (en) Chloride leaching method of lead electrolysis slime
JP2011132562A (en) METHOD FOR RECOVERING Co COMPOUND
JP2020105587A (en) Treatment method of acidic solution containing noble metal, selenium and tellurium
JP2008127604A (en) Method of recovering noble metal element
JP2007224400A (en) Method of recovering electrolytic iron from aqueous ferric chloride solution
JP2008127627A (en) Method for electrowinning copper
JP4506660B2 (en) Silver recovery method in wet copper smelting process
JP2007231397A (en) Method for refining silver chloride
JPH0781172B2 (en) Silver refining ore mud purification method
JP6127902B2 (en) Method for leaching nickel and cobalt from mixed sulfides
JP2018044201A (en) Method of treating metal-containing hydrochloric acidic liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4882125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250