TW200848519A - Method for recovering platinum group metal from waste - Google Patents

Method for recovering platinum group metal from waste Download PDF

Info

Publication number
TW200848519A
TW200848519A TW97105133A TW97105133A TW200848519A TW 200848519 A TW200848519 A TW 200848519A TW 97105133 A TW97105133 A TW 97105133A TW 97105133 A TW97105133 A TW 97105133A TW 200848519 A TW200848519 A TW 200848519A
Authority
TW
Taiwan
Prior art keywords
platinum group
group metal
platinum
metal
waste
Prior art date
Application number
TW97105133A
Other languages
Chinese (zh)
Other versions
TWI445824B (en
Inventor
Somei Yarita
Kenji Goto
Takatoshi Ota
Original Assignee
Tanaka Precious Metal Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Precious Metal Ind filed Critical Tanaka Precious Metal Ind
Publication of TW200848519A publication Critical patent/TW200848519A/en
Application granted granted Critical
Publication of TWI445824B publication Critical patent/TWI445824B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/02Obtaining noble metals by dry processes
    • C22B11/021Recovery of noble metals from waste materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/005Halides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/06Chloridising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • C22B7/002Dry processes by treating with halogens, sulfur or compounds thereof; by carburising, by treating with hydrogen (hydriding)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

It is an object of the present invention to provide a method for recovering a platinum group metal from waste containing a semi-metal, e. g., C or Si or the like as an impurity, which is difficult for conventional methods to achieve. The method of the present invention for recovering a platinum group metal from waste which contains the platinum group metal, e. g., iridium, comprises the steps of: reacting the platinum group metal present in the waste with chlorine in a molten salt of sodium chloride or a mixture of sodium chloride and potassium chloride to form a chloride of the platinum group metal readily soluble in water; mixing the reacted molten salt with water; and treating the resulting mixture by solid-liquid separation to produce an aqueous solution of the platinum group metal. The molten salt composition is composed of sodium chloride and potassium chloride containing sodium chloride preferably at 50% by mol or more, more preferably containing sodium chloride at 75 to 90% by mol and potassium chloride at 10 to 25% by mol.

Description

200848519 九、發明說明: 【發明所屬之技術領域】 本發明係有關於從含有釕、銥等的白金族金屬的廢料 等的廢棄物以可再利用的狀態回收白金族金屬的方法。 【先前技術】 釘、銥等的白金族金屬,除了因為具有高耐熱性、高 耐蝕性而成為用於熔解各種無機材料的坩堝等的構造材料 之外,其亦因具有優異的電性而用於電子部件的電極材料 等等。 y 另一方面,由於這些貴金屬為稀少且高價的金屬,有 必要作不浪費而有效的利用·消費,而有發展回收技術的 需求。已知有各種精良的回收方法,從含有白金族金屬的 固體狀態的廢棄物回收釕等金屬。在此之中,本案申請人 揭路藉由溶融盘的處理技術的利用的下列的回收方法。 【專利文獻1】 特開第2004-99975號公報 本案申請人所揭露的從上述廢棄物的白金族金屬回收 法,是含有將含有白金族金屬(釕、銥)的廢棄物溶解於至 少含有鉋塩的鹼金族金屬氯化物所構成的熔融塩中,使廢 棄物中的白金族金屬成為難溶於水的鉋的氯化銥酸塩(铯 的氯化釕酸塩),將反應後的熔融塩與水混合而將鉋的氯化 銥酸塩(鉋的氯化釕酸塩)分離回收的步驟。此一使用熔融 塩的技術,可以使用較少的步驟來回收白金族金屬。 2169-9416-PF;Dwwang 6 200848519 然而含有白金族金屬的廢棄物,依其使用過程會含有 各種的元素。然後為了從各種的廢棄物回收白金族金屬, 較好為依據其所含有的雜質元素,選用適當的製程。 由此觀點來看,上述習知的回收方法,比較適合回收 含鐵、鎳、鈷等金屬元素雜質的廢棄物。上述金屬在熔融 垣中溶液生成氯化物,$外由於上述金屬的氯化物具有水 溶性,藉由將反應後的㈣塩與水混合,可以容易地舆回 收標的物之白金族金屬化合物分離。 、 但疋,在廢棄物中不僅僅只含有上述的金屬。其原因 在於可以預知白金族金屬當然會用於坩堝材料或電子部件 的電極材料,而具有上述使用過程的廢棄物,多數含有#、 石夕等的半金屬(semi,tal)。而碳、石夕即使在炫融盘:, 仍難以生成氯化物’藉由上述方法難以進行回收。 【發明内容】 L發明所欲解決的問題】 本發明是在上述#景下所產生, 含有釕、銥等的白金斿+M &amp; ,、目的疋提供一種從 手的白金知金屬的廢棄物回 法,可含有處理習知方法難以處理的含碳、的方 (semi- metal)或難以形成水溶性的氯化物的+金屬 的廢棄物。 、 的元素的雜質 【用以解決問題的手段】 為了解決上述問題, 白金族金屬的方法,適用 2169-9416-PP;Dwwang 本發明是提供一 於從含有銥、釕 種從廢棄物回收 铑、鈀、餓的 7 200848519 至少其中之一的白金族金屬的廢棄物,回收上述白金族金 屬的方法包3下列步驟:在由氯化鈉所構成的溶融垣中 或由氣化鈉與氯化鉀所構成的熔融塩中,使上述廢棄物所 包含的上述白金族金屬與氯反應,而生成易溶於水的白金 族金屬的氯化物之後;將反應後的上述熔融塩與水混合, 進行固液分離而得到上述白金族金屬的水溶液。 習知的回收方法是在熔融塩中,使白金族金屬成為難 溶性的氯化物;本發明則相反,使廢棄物中的白金族金屬 …成為易溶於水的氣化物。然後,藉由將反應後的熔融塩與 水混合,碳、矽等之類的不溶於水的雜質則為固體狀態而 與其分離,以水溶液的狀態將回收標的的白金族金屬回 收。為此在本發明中,作為廢棄物的溶劑的熔融塩的構成, 適用不含鉋的鹼金族金屬塩。其原因在於經檢視習知技 術,一旦鉋在熔融塩與白金族金屬反應,就會形成難溶性 的鉋塩,而難以將白金族金屬與碳、矽等的雜質分離。 【實施方式】 為讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳 細說明如下: 以下’針對本發明進行詳細說明。首先在本發明中, 熔融塩是作為溶劑,在此溶劑中使作為處理對象的廢棄物 一面與氯反應一面溶解。而作為處理對象的廢棄物是含有 作為回收標的的白金族金屬的廢料等物,其白金族金屬的 2169-9416-PF;Dwwang 8 200848519 含量並無特別限定。但是如後文所述,熔融塩中的白金族 金屬的量,會對反應速度造成影響。 藉由熔融塩與氯的反應步驟中,作為溶劑的熔融塩是 由氯化鈉所構成的熔融塩、或由氯化鈉與氯化鉀所構成的 熔融塩。專利文獻1所記載的熔融塩,除了氯化鉀與氯化 納之外’還含有氯化铯,是適用K-Na-Cs系三種的混合塩, 但如上所述,由於铯對於白金族金屬會生成難溶性的氯化 物’在本發明適用的熔融塩則排除鉋塩。 構成熔融塩的鉀、鈉對於作為處理對象的白金族金 屬,會分別形成其他種類的氯化物。鈉會生成鈉的氯化物 (氯化銥酸鈉、氯化釕酸鈉等),而鉀會生成鉀的氯化物(氯 化銥酸鉀、氯化釕酸鉀等)。含各鹼金族金屬的白金族金屬 氯化物具有不同的生成速度(與白金族金屬的反應速度)與 對水的溶解度。根據本案的發明人們的研究,關於生成速 度,鉀的氣化物高於鈉的氯化物;另一方面,關於水溶性, 鈉的氯化物則高於鉀的氯化物。 特別是適用混合氯化鈉與氯化鉀的熔融塩的情況,其 組成會對廢棄物甲的白金族金屬的溶解速度與反應後的熔 融垣的水溶性造成影響。例如若使鉀塩所佔比例增加,可 以增加白金族金屬的溶解速度,卻會使反應後的熔融塩(中 的白金族金屬塩)的溶解度降低。關於此點,若是從作業效 率(溶解速度)與白金族金屬回收率(溶解度)的觀點來看, 溶融盘的組成’較好是氯化鈉的濃度為50m〇i %以上,更好 疋由75〜90inol%的氯化鈉、1〇〜25m〇i%的氯化鉀所構成。 2169-9416-PF;Dwwang 9 200848519 另外,在相同組成的熔融塩中,白金族金屬的反應速 度亦會因熔融塩中的白金族金屬的量(廢棄物中的白金族 金屬的量)而變化,隨著白金族金屬的量增加,反應速度就 上升。其原因公認是伴隨著反應面積增加所帶來的效果。 在此處,相對於作為溶劑的熔融塩的莫爾數,參與反應的 白金族金屬的莫爾數較好為l5〜80m〇1%、更好為 30〜60mol%。白金族金屬的量未達此範圍,則反應速度低, 需要足夠的時間來溶解具經濟規模的量的白金族金屬;超 出此範圍,即使將白金族金屬溶解了,會留下過多實際上 為參與反應的白金族金屬,而在經濟方面較為不利。而此 處所指較佳的範圍是白金族金屬的重量,而不是廢棄物全 體的重量。因此,關於不易推測白金族金屬濃度的廢棄物, 較好為在處理前以感應耦合電漿(丨cp)等來分析白金族金 屬濃度,而成為濃度已知的狀態。 然後’在熔融塩中白金族金屬塩參與反應的温度,必 須以使構成熔融塩的氯化鈉與氯化鉀熔融為前提來作設 定。關於此點,氣化鈉的熔點約80 0°C,而氯化鉀的溶點 約776°C,二者比例相等(50%:50%)的混合塩的熔點則約 6 5 8 C,但若偏離此組成溶點則上升。根據本案發明人們的 研究,熔融塩的溫度較好為750〜850°C。上述溫度範圍為 較好的範圍的原因是在此溫度範圍中,可得到足夠的溶融 垣流動性,在將氯氣吹入的情況下,可以期待氯氣的氣泡 所帶來的攪拌效果。另外,還可得到足夠的在熔融迄中的 反應速度與已生成的白金族金屬氯化物的溶解速度。 2169-9416-PF;Dwwang 10 200848519 在本發明中,可以說較好為在熔融塩中溶解愈多的(高 浪度的)白金族金屬愈好。這是因為在本發明中,其後的處 理是將炼融塩與水混合而得到白金族金屬塩水溶液,為了 有效率地回收白金族金屬,白金族金屬塩水溶液的濃度、 即溶融盘中的白金族金屬的量愈多愈好。此一反應後的溶 融塩中的白金族金屬濃度的目標值,以投料時的鹼金族金 屬熔融塩的莫爾數與已溶解的白金族金屬莫爾數的合計莫 爾數為基準,較好為設定在5〜30mol%。如濃度未達5mol%, 則會造成回收效率惡化、成本效益不佳;製造濃度超過 30 mo U之含白金族金屬的溶融垣,在理論上來說有其困難 度,且熔融塩中的白金族金屬的溶解度亦會降低,在經濟 方面較為不利。 然後,相對於上述目標值的反應時間為8〜4()小時、較 好為10〜35小時、更好為14〜24小時。 而由於本發明中,是在熔融塩中使白金族金屬與氯反 應,在反應中一定要供應氣至熔融塩。此一氯的供應,較 好為將氯氣吹入熔融塩中。而氯氣的吹入,較好為使氯氣 與廢棄物直接接觸的方式來進行。具體而言,較好為將用 以供應氯氣的喷嘴的前端放置在廢棄物表面近接處。另 外’關於氯氣的供應量,較好為〜i〇L/mi n。 藉由以上所說明之在熔融塩的白金族金屬與熔融塩的 反應,是在熔融塩中生成水溶性的白金族金屬塩(氯化銥酸 鉀、氯化釕酸鈉等)。然後在此一熔融塩冷卻之後,將其與 水混合,而形成白金族金屬塩水溶液;另一方面,不溶性 2169-9416-PF;Dwwang 11 200848519 的碳、石夕等的雜質的固體則在水溶液中分散、沈殿。水溶 液的固液分離,較好為以過濾的方式進行。 關於溶融塩與水的混合,較好為混合時調整水的量, ^溶液中的白金族金屬為1〇〜1〇〇g/L、較好為2〇〜8〇g/L。 若白金族金屬的濃度太稀,回收效率會惡化&quot;農度太濃則 έ有I生沈赢(洛解殘渣)的疑慮。而如前所述,溶解於水 的過程中的水的混合量,因為是以形成水溶液後的水溶液 +的白金族金屬濃度為標準·目標,在溶解之前較好為事 先完成熔融塩中的白金族金屬的量或濃度的測定。 藉由以上的步驟所得到的水溶液中的白金族金屬塩 (氯化銥酸鈉、氯化銥酸鉀等),其本身具有利用價值。此 水/合液,可藉由進行離子交換、電解、濃縮等,而可以 成為得以直接利用的狀態。 另外,可以從此一水溶液以純金屬的形態回收白金族 金屬。關於純金屬的回收方法,較好為將水溶液濃縮所得 I 的白金族金屬塩在氫氣的氣氛中進行還原。關於此一氫還 原的溫度條件,較好為3〇〇〜65(rc的範圍。而氫還原後的 白金族金屬,可使用純水洗淨而將氯化鈉、氯化鉀除去, 而再度進行氫還原(二次氫還原處理),藉此可使其成為高 純度的金屬。 【發明的效果】 藉由以上說明所述的本發明,可從含釕、銥等的白金 方矢金屬廢料等的廢棄物進行有效率的白金族金屬的回收。 本發明的方法,可對含有碳、矽等的雜質的廢棄物進行回 2169-9416-PF;Dwwang 12 200848519 =用藉由以本發明為中心的回收系統,可達成資源的 ::,並可達成使用白金族金屬的製品的成本降低。 u對於舒、銥的回收特別有用。關於白金,在使 2、·與氣化卸的混合㈣情況中,使白金在溶融垣中 應並使其溶解於水溶液中而進行回收,有立困難 ^這是因為白金在與氯化鉀的反應令,會生成難溶於溶 融㈣氯化物。但是關於此點,對從含有白金與其他的白 金族金屬(釕、銀等)的廢棄物而將白金分離的技術來說, 部是有效的。特別是近年來,由於使用各種的白金合金(挺 銀口金在白錄合金等)的情況很多,本發明可以適用於從含 上述合金的廢棄物將白金分離、亦同時回收銥等金 況。 【發明實施的最佳形態】 第一實施例 在此處,進行銥的熔融塩處理、形成水溶液、氫還原, 而從廢棄物回收金屬銥。 A :以溶融盘進行處理 第1圖為本實施例所使用的熔融塩裝置的概略圖。此 一熔融塩處理裝置具有作為熔融塩1〇〇的容器的石墨製的 的坩堝10、容納坩堝10的加蓋反應室(本體21為石英製、 蓋子22為鐵氟龍(註冊商標)製)、從坩堝1〇至蓋子的 空間重疊設置的複數個遮蔽板3〇(石墨製、石英製、百麗 (pyrex;註冊商標)耐熱玻璃製)、與用以導入氣的喷嘴4〇。 喷嘴40的前端部是設置於坩堝1〇内的廢棄物5〇的表面的 2169—9416-PF;Dwwang 13 200848519 近接處、使氯氣直接接觸廢棄物5〇的狀態。 使用此一熔融塩處理裝置1來進行銥的回收·精製。 百先,將作為溶劑塩的氯化鈉1989g、氯化鉀2537g置入 石央製的容器中。接下來,投入銥含量200lg的混有碳的 廢料。 然後,將混合塩加熱至820 °C而溶解。接下來,以 2L/min的流量將100%的氣氣吹入此一熔融塩中’使其發生 反應’反應時間為14.2小時(851分鐘)。對反應後的溶融 迄作部分取樣,進们CP分析,測出熔㈣中的銀濃度為 26. 5 重量 °/〇。 以上述的相同步驟,而使成分加以變化,在熔融塩進 行處理,其結果示於表丨中。在此處為了比較,僅顯示以 只由氯化納組成的溶融迄進行處理的結果。 表1 溶劑塩 /mol%(莫爾數) Ir 投料量 反應 時間 /h Ir 溶解量 /mol 反應 速度 /mol/h 反應後 Ir濃度 wt% NaCl KC1 合計~ /mol 實施例1 50% (34. 0) 50% (34. 0) 100% (68.0) 10.4 14.2 10.3 0.73 26· 5% 實施例2 75% (51.0) —25% (17.0) ^00%~ (68. 0) 10.4 14.3 9.5 0. 66 25. 3% 實施例3 75% (52. 5) 25% (17.5) 100% (70. 0) 20.9 34. 4 19.5 0. 57 34. 4% 實施例4 74. 9% (48. 6) 25.1 (16.3) 100% (64. 9) 23.4 14.2 14.6 1.02 34.0% 實施例5 87. 5°/〇 (52. 4) 12. 5% (7.5) 100% (59. 9) 19.4 14.8 12.2 0.82 -------- 31.8% 實施例6 100% 1(39.9) 一 100% (39. 9) 12.9 14.3 6.00 0.42 26.3% 以下是從各實施例的結果所得知。首先,關於作為溶 2169—9416-PF;Dwwang 200848519 的每融运的組成’從11*投料量與反應時間近似的實施例 1與實施例2的比較,可瞭解將溶劑塩的氣化鉀的濃度提 高’反應速度就提高。另外,從熔融塩組成與反應時間相 同的實施例2與實施例4的對比,銥的投料量愈多,反應 速度有愈高的傾向。而即使使用只以氣化鈉構成的熔融塩 (實施例6),雖然可以回收銀,但由於反應速度較其他熔 融塩組成的情況為低,可瞭解若僅重視反應速度,較好為 在熔融塩中添加·混合氯化鈉。 ζ 〜 Β :白金族金屬塩水溶液的生成 接下來,將實施例1、3、5、6的反應終了後的熔融塩 與水混合,以銥塩水溶液的形態,從熔融塩回收銥。在此 處,基於熔融塩中的銥濃度,變化混合時所用的水量,使 水溶液中的銥濃度為20〜8〇%。然後,對與水混合後的水溶 液進订分析,測定銥等的濃度,一併檢視有無溶解殘餘物, 其結果不於表2。 表2 溶劑垣 Ir含量 目標Ir 遭度g/L 溶融垣 投入量g/L 溶液中Ir 濃度g/L 溶解歹 a/! NaCl kcT wt°/〇 實施例1 50% 50% 26. 5% 20 | 75.47 16.28 〇/ L/ 7.T~ —---- — —40 — 150. 94 28.04 27.2 實施例3 75% 25% 34.4% 20~ 58.14 19.76 0 40 80 116.28 9Q9 RR 35.92 l〇7〇~ m &gt;fei| R Q7 CO/ 1 0 r〇/ 〇 1 ΠΠ/ 20 LiOUm ΟΌ 57.47 OL· 18. 25 38. 8 0 〇 i · ϋ/0 1Z· 134 31. 8/^ _ 40 114.94 0 —- 實施例6 100% — 26. 3% 80 229. 89 16.05 66.70 ------— 20.0 0 40 80 152.09 304.18 38. 36 77.45 0' 0.4—' 2169-9416-PF;Dwwang 15 200848519 基本上,不提高溶液♦銥濃度的目標值,就可以製造 鬲純度的銥塩水溶液。但是就整體傾向而言,若提高目標 值則會生成/谷解殘餘物’可看到目標值與實際的水溶液中 ^濃度的差距有變大的傾向。關於此點,氣化鉀為5〇%的 貫施例1中,雖然熔融塩處理的階段中,顯示出不錯的結 果(溶解速度等),但在形成水溶液的階段,溶解殘餘物則 較多,另外水溶液的目標濃度與實際濃度的差異有較大的 傾向。另-方面,在實施例6之使用僅以氣化鈉構成的熔 融塩的情況中,溶解殘餘物與濃度值的差距則變少。其原 因-般公認4 :如上所述,與氯化納相比,a化卸的银塩 生成速度較高’而其對於水的溶解度則較低。 弟二實施例 在此處,評估以本發明實施例之方法’應用於廢棄物 中的白金分離操作的可能性在上述第—實施例的實施例 5、6中,形成水溶液後的水溶液中的白金濃度的分析結果 表3 不於表3。 溶! Η塩 目標Ir 濃度g/L 溶液中Ir 濃度g/L 溶液中Pt 濃度g/L 溶液中Pt濃度 (Pt/Ir+Pt)% NaCl KC1 實施例5 87. 5% 12.5% 20 18. 25 〇· 03 0.16 40 37.25 0.07 0.188 80 66.70 檢測界限以下 一 — 實施例6 100% 一 20 19.27 檢測界限以下 一 40 38. 36 0.03 0.078 80 77. 45 0.06 0.077 根據表3可瞭解,在實施例5中,在目標銥濃度為8〇g/L 的條件下,溶液中的白金濃度為檢測界限以下,而可以將 2169-9416-PF;Dwwang 16 200848519 白金分離。此預測的原因是若將形成溶液的目標濃度提 高,則容易生成溶解殘餘物,由於白金有比銥高的傾向殘 留在溶解殘餘物中,而抑制白金向溶液移動。 而在實施例6(熔融塩的組成為100%的氯化鈉)中,目 標銥濃度為20g/L的溶液中的白金濃度為檢測界限以下的 原因,認為與其說是白金濃度低,不如說是是含銥的貴金 屬全體的重量過少的因素。此預測的原因是在實施例6 中,即使將目標銥濃度提高,白金濃度(白金重量/銥重量+ 白金重量)。而根據實施例5與實施例6的對比,對於本實 施例中的主題為將白金完全分離的情況而言,關於熔融塩 的組成,本案發明人認為較好為與氯化鉀混合。 接下來為了確認此一檢視結果,以第一實施例同樣的 裝置、條件,將含5. 0%的白金的廢料金屬溶解至熔融塩中, 並形成水溶液。 表4[Technical Field] The present invention relates to a method for recovering a platinum group metal in a recyclable state from waste such as scrap containing a platinum group metal such as ruthenium or osmium. [Prior Art] A platinum group metal such as a nail or a crucible is used as a structural material for melting various inorganic materials because of its high heat resistance and high corrosion resistance, and it is also used because of its excellent electrical properties. Electrode materials for electronic components, etc. y On the other hand, since these precious metals are rare and expensive metals, it is necessary to use and consume them without waste, and there is a need to develop recycling technologies. Various sophisticated recovery methods are known, and metals such as ruthenium are recovered from wastes in a solid state containing platinum group metals. Among them, the applicant of the present invention unveiled the following recycling method by utilizing the processing technology of the molten disk. [Patent Document 1] Japanese Laid-Open Patent Publication No. 2004-99975 discloses a method for recovering a platinum group metal from the above-mentioned waste, which comprises dissolving waste containing a platinum group metal (钌, 铱) in at least a planer. In the molten bismuth composed of bismuth alkali metal chloride, the platinum group metal in the waste becomes a sparingly soluble bismuth ruthenate (barium strontium ruthenate) which is hardly soluble in water, and the reaction is carried out. The step of separating and recovering the ruthenium ruthenate (planed ruthenium ruthenate) by mixing the molten ruthenium with water. This technique using molten helium allows fewer steps to be used to recover the platinum group metals. 2169-9416-PF; Dwwang 6 200848519 However, waste containing platinum metal will contain various elements depending on its use. Then, in order to recover the platinum group metal from various wastes, it is preferred to select an appropriate process depending on the impurity elements contained therein. From this point of view, the above-mentioned conventional recovery method is more suitable for recovering waste containing metal element impurities such as iron, nickel, and cobalt. The metal is dissolved in a molten crucible to form a chloride. In addition, since the chloride of the above metal is water-soluble, the platinum group metal compound which can be easily returned to the collected product can be easily separated by mixing the reacted (tetra) hydrazine with water. But, in the waste, not only the above metals are contained in the waste. The reason for this is that it is possible to predict that the platinum metal will of course be used for the electrode material or the electrode material of the electronic component, and the waste having the above-mentioned use process mostly contains a semi-metal (semi, tal) such as #石石. On the other hand, carbon and Shixia are difficult to produce chlorides even if they are in a slab: 'It is difficult to recover by the above method. SUMMARY OF THE INVENTION Problems to be Solved by the Invention The present invention is produced by the above-mentioned #, and contains platinum, lanthanum, etc., and aims to provide a kind of waste from the hands of platinum metal. The recycling method may contain a waste of a metal containing a carbon-containing semi-metal or a metal salt which is difficult to form a water-soluble chloride which is difficult to handle by a conventional method. The impurity of the element [means to solve the problem] In order to solve the above problem, the method of the platinum metal is applicable to 2169-9416-PP; Dwwang The present invention provides a method for recovering waste from waste containing strontium and strontium, Palladium, hungry 7 200848519 At least one of the wastes of the platinum group metal, the method of recovering the above-mentioned platinum group metal package 3 the following steps: in the molten strontium composed of sodium chloride or by the gasification of sodium and potassium chloride In the molten crucible, the platinum group metal contained in the waste is reacted with chlorine to form a chloride of a platinum metal which is easily soluble in water, and the molten crucible after the reaction is mixed with water to carry out solidification. The liquid was separated to obtain an aqueous solution of the above platinum group metal. The conventional recovery method is to make the platinum group metal into a poorly soluble chloride in the molten crucible; in the present invention, the platinum group metal in the waste is made to be a water-soluble vapor. Then, by mixing the molten hydrazine after the reaction with water, the water-insoluble impurities such as carbon, hydrazine or the like are separated from the solid state, and the recovered platinum group metal is recovered as an aqueous solution. Therefore, in the present invention, as the composition of the molten ruthenium as a solvent of the waste, an alkali metal group ruthenium containing no planer is used. The reason for this is that, after inspection of conventional techniques, once the molten ruthenium reacts with the platinum group metal, a poorly soluble planer is formed, and it is difficult to separate the platinum group metal from impurities such as carbon and ruthenium. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, and advantages of the present invention will become more < Detailed instructions are given. First, in the present invention, the molten ruthenium is used as a solvent, and the waste to be treated is dissolved in the solvent while reacting with chlorine. The waste to be treated is a waste material containing a platinum group metal as a recovery target, and the content of the platinum metal of 2169-9416-PF and Dwwang 8 200848519 is not particularly limited. However, as will be described later, the amount of the platinum group metal in the molten crucible affects the reaction rate. In the reaction step of melting cerium and chlorine, the molten cerium as a solvent is a molten cerium composed of sodium chloride or a molten cerium composed of sodium chloride and potassium chloride. In addition to potassium chloride and sodium chloride, the melting enthalpy described in Patent Document 1 is a mixture of three types of K-Na-Cs, but as described above, Will produce poorly soluble chlorides. In the case of the melted crucible to which the present invention is applied, the planer is excluded. Potassium and sodium constituting the molten ruthenium form other kinds of chlorides for the platinum group metals to be treated. Sodium produces sodium chloride (sodium citrate, sodium citrate, etc.), while potassium produces potassium chloride (potassium chlorate, potassium citrate, etc.). The platinum group metal chloride containing each alkali metal group has a different rate of formation (reaction rate with the platinum group metal) and solubility in water. According to the study by the inventors of the present invention, with respect to the formation speed, the vapor of potassium is higher than that of sodium; on the other hand, regarding water solubility, the chloride of sodium is higher than that of potassium. In particular, in the case where molten strontium of sodium chloride and potassium chloride is mixed, the composition thereof affects the dissolution rate of the platinum group metal of the waste A and the water solubility of the molten ruthenium after the reaction. For example, if the proportion of potassium strontium is increased, the dissolution rate of the platinum group metal can be increased, but the solubility of the molten ruthenium (the platinum group metal ruthenium in the middle) after the reaction is lowered. In this regard, from the viewpoints of work efficiency (solution speed) and platinum metal recovery (solubility), the composition of the molten disk is preferably a concentration of sodium chloride of 50 m〇i % or more. 75~90 inol% of sodium chloride, 1〇~25m〇i% of potassium chloride. 2169-9416-PF; Dwwang 9 200848519 In addition, in the melting enthalpy of the same composition, the reaction rate of the platinum group metal also varies depending on the amount of the platinum group metal in the molten crucible (the amount of the platinum group metal in the waste). As the amount of platinum metal increases, the reaction rate increases. The reason for this is recognized to be accompanied by an increase in the reaction area. Here, the Moiré number of the platinum group metal participating in the reaction is preferably from 15 to 80 m〇1%, more preferably from 30 to 60 mol%, based on the mole number of the molten ruthenium as a solvent. If the amount of the platinum group metal does not reach this range, the reaction rate is low, and sufficient time is required to dissolve the platinum-type metal having an economical amount; beyond this range, even if the platinum group metal is dissolved, excessive excess is actually Platinum metals involved in the reaction are economically disadvantageous. The preferred range referred to herein is the weight of the platinum group metal, not the total weight of the waste. Therefore, regarding the waste which is not easy to infer the concentration of the platinum group metal, it is preferred to analyze the platinum group metal concentration by inductively coupled plasma (丨cp) or the like before the treatment, and the concentration is known. Then, the temperature at which the platinum group metal ruthenium participates in the reaction in the molten ruthenium must be set on the premise that the sodium chloride and potassium chloride constituting the molten ruthenium are melted. In this regard, the melting point of the vaporized sodium is about 80 ° C, and the melting point of potassium chloride is about 776 ° C, the ratio of the two equal (50%: 50%) mixed enthalpy is about 6 5 8 C, However, if it deviates from this composition, it will rise. According to the study by the inventors of the present invention, the temperature of the molten ruthenium is preferably from 750 to 850 °C. The reason why the above temperature range is in a preferable range is that in this temperature range, sufficient melt enthalpy fluidity can be obtained, and when chlorine gas is blown in, the stirring effect by the chlorine gas bubbles can be expected. Further, it is also possible to obtain a sufficient reaction rate in the melting direction and a dissolution rate of the formed platinum group metal chloride. 2169-9416-PF; Dwwang 10 200848519 In the present invention, it can be said that it is preferably the more (high-wavelength) platinum group metal which is dissolved in the molten crucible. This is because in the present invention, the subsequent treatment is to mix the smelting crucible with water to obtain an aqueous solution of a platinum group metal ruthenium. In order to efficiently recover the platinum group metal, the concentration of the platinum lanthanum metal lanthanum solution, that is, in the molten disk The greater the amount of platinum metal, the better. The target value of the platinum group metal concentration in the molten ruthenium after the reaction is based on the total number of moles of the molten metal of the alkali gold group metal and the molar number of the dissolved platinum group metal. Good to set at 5~30mol%. If the concentration is less than 5 mol%, the recovery efficiency will be deteriorated and the cost efficiency will be poor. The production of molten ruthenium containing platinum group metals with a concentration of more than 30 mo U is theoretically difficult, and the platinum group in the melting bismuth The solubility of metals is also reduced, which is economically disadvantageous. Then, the reaction time with respect to the above target value is 8 to 4 () hours, preferably 10 to 35 hours, more preferably 14 to 24 hours. Further, in the present invention, the platinum group metal is reacted with chlorine in the molten crucible, and it is necessary to supply the gas to the molten crucible in the reaction. The supply of this chlorine is preferably to blow chlorine into the molten crucible. The blowing of chlorine gas is preferably carried out in such a manner that chlorine gas is in direct contact with the waste. Specifically, it is preferred to place the front end of the nozzle for supplying chlorine gas at the vicinity of the surface of the waste. In addition, the supply of chlorine gas is preferably ~i〇L/mi n. The reaction of the molten platinum-derived platinum group metal and the molten ruthenium described above produces a water-soluble platinum group metal ruthenium (potassium chlorate, sodium ruthenate, etc.) in the molten ruthenium. Then, after the molten ruthenium is cooled, it is mixed with water to form an aqueous solution of a platinum group metal ruthenium; on the other hand, the insoluble 2169-9416-PF; Dwwang 11 200848519 is an aqueous solution of impurities of carbon, Shixia, etc. Dispersed, Shen Temple. The solid-liquid separation of the aqueous solution is preferably carried out by filtration. Regarding the mixing of the molten hydrazine and water, it is preferred to adjust the amount of water during mixing, and the platinum group metal in the solution is 1 〇 1 〇〇 g/L, preferably 2 〇 8 〇 g/L. If the concentration of the platinum group metal is too thin, the recovery efficiency will deteriorate. "If the farming degree is too strong, there will be doubts about the death of the I." As described above, the mixing amount of water in the process of dissolving in water is based on the concentration of the platinum metal in the aqueous solution + after the formation of the aqueous solution, and it is preferable to complete the platinum in the melting enthalpy before dissolution. Determination of the amount or concentration of a group of metals. The platinum group metal ruthenium (sodium citrate, potassium ruthenate, etc.) in the aqueous solution obtained by the above steps has its own use value. This water/liquid mixture can be directly utilized by ion exchange, electrolysis, concentration, and the like. Further, the platinum group metal can be recovered from the aqueous solution in the form of a pure metal. Regarding the method for recovering the pure metal, it is preferred to reduce the platinum group metal ruthenium obtained by concentrating the aqueous solution in a hydrogen atmosphere. The temperature condition for the hydrogen reduction is preferably in the range of 3 〇〇 to 65 (rc), and the platinum group metal after hydrogen reduction can be washed with pure water to remove sodium chloride and potassium chloride, and again. Hydrogen reduction (secondary hydrogen reduction treatment) can be used to make a high-purity metal. [Effect of the Invention] According to the invention described above, it is possible to use a platinum metal scrap containing ruthenium, osmium or the like. The waste of the same type is used for the recovery of the effective platinum group metal. The method of the present invention can return the waste containing impurities such as carbon and helium to 2169-9416-PF; Dwwang 12 200848519 = by using the present invention The recycling system of the center can achieve the resources::, and the cost reduction of the products using the platinum group metal can be achieved. u is particularly useful for the recovery of sputum and sputum. For platinum, the mixing of 2, and gasification (4) In the case, it is difficult to make platinum in a molten crucible and dissolve it in an aqueous solution. This is because platinum reacts with potassium chloride to form a hardly soluble (tetra) chloride. At this point, the pair contains It is effective in the technology of separating platinum from gold and other platinum metal (钌, silver, etc.), especially in recent years, due to the use of various platinum alloys (Taiyinkoujin in Bailu alloy, etc.) In the case of the present invention, the present invention can be applied to the separation of platinum from the waste containing the above-mentioned alloy, and also the recovery of gold such as ruthenium. [Best Mode for Carrying Out the Invention] In the first embodiment, the melting of ruthenium is carried out here. Treatment, formation of an aqueous solution, reduction of hydrogen, and recovery of metal ruthenium from waste. A: Treatment by a molten disk. Fig. 1 is a schematic view of a molten ruthenium apparatus used in the present embodiment. A crucible made of graphite in a one-inch container, a capped reaction chamber in which the crucible 10 is accommodated (the main body 21 is made of quartz, and the lid 22 is made of Teflon (registered trademark)), and the space from the crucible 1 to the lid overlaps. A plurality of shielding plates 3 (a graphite, a quartz, a pyrex (registered trademark) heat-resistant glass) and a nozzle 4 for introducing a gas are provided. The front end of the nozzle 40 is provided at 坩埚1 2169—9416-PF on the surface of the waste 5 ;; Dwwang 13 200848519. The chlorine gas is directly in contact with the waste 5 近. The enthalpy of the enthalpy treatment device 1 is used for the recovery and purification of hydrazine. Then, 1989 g of sodium chloride as a solvent and 2,537 g of potassium chloride were placed in a vessel made of Shifang. Next, a carbon-containing waste having a cerium content of 200 lg was charged. Then, the mixed mash was heated to 820 ° C to dissolve. Next, 100% of the gas was blown into the molten crucible at a flow rate of 2 L/min, and the reaction time was 14.2 hours (851 minutes). The molten portion of the reaction was partially sampled. 5重量度/〇。 The CP analysis, the concentration of silver in the melting (four) was 26. 5 weight ° / 〇. The components were changed in the same manner as described above, and the mixture was processed in the melting zone, and the results are shown in the table. Here, for comparison, only the results of treatment with a composition consisting of only sodium chloride chloride are shown. Table 1 Solvent 塩 / mol% (molar number) Ir Feed amount Reaction time / h Ir Dissolution amount / mol Reaction rate / mol / h Ir concentration after reaction wt% NaCl KC1 Total ~ / mol Example 1 50% (34. 0) 50% (34. 0) 100% (68.0) 10.4 14.2 10.3 0.73 26· 5% Example 2 75% (51.0) — 25% (17.0) ^00%~ (68. 0) 10.4 14.3 9.5 0. 66 25.3% Example 3 75% (55.2) 25% (17.5) 100% (70. 0) 20.9 34. 4 19.5 0. 57 34. 4% Example 4 74. 9% (48. 6 25.1 (16.3) 100% (64. 9) 23.4 14.2 14.6 1.02 34.0% Example 5 87. 5°/〇 (52.4) 12. 5% (7.5) 100% (59. 9) 19.4 14.8 12.2 0.82 -------- 31.8% Example 6 100% 1 (39.9) - 100% (39. 9) 12.9 14.3 6.00 0.42 26.3% The following are known from the results of the respective examples. First, regarding the composition of each melt as a solution of 2169-9416-PF; Dwwang 200848519, the comparison between Example 1 and Example 2, which approximates the reaction amount of 11*, can be used to understand the potassium hydride of the solvent. As the concentration increases, the reaction rate increases. Further, in comparison with Example 2 in which the melting enthalpy composition was the same as the reaction time, the more the amount of hydrazine was fed, the higher the reaction rate was. Further, even if a molten crucible composed only of vaporized sodium is used (Example 6), although silver can be recovered, since the reaction rate is lower than that of other molten crucibles, it is understood that if only the reaction rate is emphasized, it is preferably melted. Add and mix sodium chloride in the mash. ζ Β Β : Formation of aqueous solution of platinum group metal ruthenium Next, the molten ruthenium after the completion of the reactions of Examples 1, 3, 5, and 6 was mixed with water, and ruthenium was recovered from the ruthenium ruthenium in the form of a ruthenium aqueous solution. Here, the amount of water used in the mixing is varied based on the concentration of cerium in the molten crucible so that the concentration of cerium in the aqueous solution is 20 to 8 %. Then, the aqueous solution mixed with water was subjected to a binding analysis, and the concentration of hydrazine or the like was measured, and the presence or absence of the dissolved residue was examined together. The results are not shown in Table 2. Table 2 Solvent 垣Ir content target Ir degree g/L 垣 垣 input amount g / L Ir concentration in solution g / L dissolved 歹 a /! NaCl kcT wt ° / 〇 Example 1 50% 50% 26. 5% 20 75.47 16.28 〇/ L/ 7.T~ —---- — —40 — 150. 94 28.04 27.2 Example 3 75% 25% 34.4% 20~ 58.14 19.76 0 40 80 116.28 9Q9 RR 35.92 l〇7〇~ m &gt;fei| R Q7 CO/ 1 0 r〇/ 〇1 ΠΠ/ 20 LiOUm ΟΌ 57.47 OL· 18. 25 38. 8 0 〇i · ϋ/0 1Z· 134 31. 8/^ _ 40 114.94 0 — - Example 6 100% - 26. 3% 80 229. 89 16.05 66.70 ------- 20.0 0 40 80 152.09 304.18 38. 36 77.45 0' 0.4-' 2169-9416-PF; Dwwang 15 200848519 Basically The hydrazine aqueous solution of ruthenium purity can be produced without increasing the target value of the concentration of the solution ♦ 铱. However, as far as the overall tendency is concerned, if the target value is increased, the residue / glutamate residue is generated. It can be seen that the difference between the target value and the actual concentration in the aqueous solution tends to become large. In this regard, in Example 1 in which the vaporized potassium was 5 %, although good results (dissolution speed, etc.) were exhibited in the stage of the molten hydrazine treatment, in the stage of forming the aqueous solution, the dissolved residue was more In addition, there is a large tendency for the difference between the target concentration of the aqueous solution and the actual concentration. On the other hand, in the case of using the molten crucible composed only of vaporized sodium in Example 6, the difference between the dissolved residue and the concentration value was small. The reason for this is generally recognized as 4: as described above, the rate of formation of silver ruthenium is higher than that of sodium chloride, and its solubility for water is lower. Second Embodiment Here, the possibility of evaluating the platinum separation operation applied to the waste by the method of the embodiment of the present invention is evaluated in the aqueous solution after forming the aqueous solution in Examples 5 and 6 of the above-mentioned first embodiment. The analysis results of platinum concentration are shown in Table 3. Dissolved! Η塩 target Ir concentration g / L Ir concentration in solution g / L Pt concentration in solution g / L Pt concentration in solution (Pt / Ir + Pt) % NaCl KC1 Example 5 87. 5% 12.5% 20 18. 25 〇· 03 0.16 40 37.25 0.07 0.188 80 66.70 Detection limit 1 - Example 6 100% - 20 19.27 Detection limit below 40 38. 36 0.03 0.078 80 77. 45 0.06 0.077 According to Table 3, in Example 5 In the case where the target cerium concentration is 8 〇g/L, the platinum concentration in the solution is below the detection limit, and 2169-9416-PF; Dwwang 16 200848519 platinum can be separated. The reason for this prediction is that if the target concentration of the forming solution is increased, the dissolved residue is liable to be formed, and since platinum tends to remain higher in the dissolved residue than in the case of the ruthenium, the platinum is inhibited from moving to the solution. On the other hand, in Example 6 (100% sodium chloride having a composition of molten niobium), the platinum concentration in the solution having a target niobium concentration of 20 g/L is the reason below the detection limit, and it is considered that the concentration of platinum is lower than that of the platinum concentration. It is a factor that the weight of the precious metal containing niobium is too small. The reason for this prediction is that in Example 6, even if the target cerium concentration is increased, the platinum concentration (platinum weight / 铱 weight + platinum weight). On the other hand, according to the comparison between Example 5 and Example 6, in the case where the subject matter in the present embodiment is to completely separate the platinum, the inventors of the present invention thought that it is preferable to mix with potassium chloride with respect to the composition of the molten ruthenium. Next, in order to confirm the result of the inspection, the scrap metal containing 5.0% of platinum was dissolved in the molten crucible by the same apparatus and conditions as in the first embodiment, and an aqueous solution was formed. Table 4

熔融塩處理 形成水溶液處理 溶劑塩 /mol%(mol 數) 投入金屬量 反應時間 溶解量 溶液中 Ir濃度 /wt% 溶液中 Pt濃度 /wt% NaCl KC1 實施例7 87· 5% (52.4) 12. 5% (7.5) 2000g 18h 1163. lg 2. 89% 檢測界限 以下 *形成水溶液之時的目標 [r濃度為40g/L 在此實施例7中,銥塩水溶液中的白金濃·度極低,可 以確認在回收銥時,可有效率地與白金分離。 第三實施例 · 在此處是以含釕的廢料為對象,使用熔融塩進行處 2169-9416-PF;Dwwang 17 200848519 理。使用與第一實施例相同的炫融塩處理裝置,並改變溶 融盘的組成而進行處理。此處的處理條件是:溶融盘溫度 為820°C、以流量2L/min吹入氯氣。而處理對象之廢料是 含3%的碳的釕廢料。其結果顯示於表5 表5 溶劑垣 /mol%(莫爾 數) Ru 投料量 /mol 反應 時間 /h Ru 溶解量 /mol 反應 速度 /mol/h 反應後 Ru濃度 wt% NaCl KC1 合計 實施例8 55% (33. 0) 45% (27. 0) 100% (60.0) 21.0 17.2 21.0 1.22 25. 9% 實施例9 87. 5% (52. 5) 12. 5% (7.5) 100% (60.0) 20.6 24.5 19.9 0.81 24. 9% 此結果確認即使是處理含釕的廢料,也可以進行舒的 回收。另外’在本實施例中也是含氯化鉀較多(45m〇1%)的 實施例8在溶解速度等方面的表現較佳。 上述實施例9中,將溶有釕的熔融塩形成水溶液(形成 水溶液之時的目標RU濃度為50g/L),再以蒸發器 (evaporator)將所得的釕塩水溶液濃縮而成為釕塩,再將 【 舒塩置於氫氣氛圍下加熱進行還原處理。此一還原處理, 首先在一次處理中將釕塩在60(rc下加熱6小時。然後將 所得的金屬釕以純水洗淨,在700艺下加熱6小時進行二 次氫還原處理。處理後的釕粉末的純度為g9· 9之高純产 的物質。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何本發明所屬技術領域中具有通常知識 者,在不脫離本發明之精神和範圍内,當可作些許之更動 2169-9416-PF/Dwwang 18 200848519 與潤飾,因此本發明之保護範圍當視後附之申請專利範圍 所界定者為準。 【圖式簡單說明】 第1圖為一示意圖 塩處理裝置。 ,係顯示本實施例中所使用的熔融 【主要元件符號說明】 1〜熔融塩處理裝置; 10〜坩堝; 21〜本體; 22〜蓋子; 30〜遮蔽板; 40〜喷嘴; 5 0〜廢棄物; 100〜熔融塩。 2169-9416-PF;Dwwang 19Melting enthalpy treatment to form aqueous solution treatment solvent 塩 / mol% (mol number) input metal amount reaction time dissolved amount solution Ir concentration / wt% Pt concentration in solution / wt% NaCl KC1 Example 7 87 · 5% (52.4) 12. 5% (7.5) 2000g 18h 1163. lg 2. 89% Below the detection limit * The target at the time of forming an aqueous solution [r concentration is 40 g/L. In this Example 7, the concentration of platinum in the hydrazine aqueous solution is extremely low, It can be confirmed that it can be efficiently separated from platinum when the crucible is recovered. THIRD EMBODIMENT · Here, the waste containing ruthenium is used as a target, and the molten ruthenium is used for 2169-9416-PF; Dwwang 17 200848519. The treatment was carried out using the same sputum processing apparatus as in the first embodiment and changing the composition of the molten disk. The treatment conditions here were as follows: the temperature of the molten disk was 820 ° C, and chlorine gas was blown at a flow rate of 2 L/min. The waste material to be treated is waste material containing 3% carbon. The results are shown in Table 5. Table 5 Solvent 垣/mol% (Mor number) Ru Feed amount/mol Reaction time/h Ru Dissolution amount/mol Reaction rate/mol/h Post-reaction concentration Ru% wt% NaCl KC1 Total Example 8 55% (33. 0) 45% (27. 0) 100% (60.0) 21.0 17.2 21.0 1.22 25. 9% Example 9 87. 5% (52. 5) 12. 5% (7.5) 100% (60.0 20.6 24.5 19.9 0.81 24. 9% This result confirms that even if it is used to treat waste containing strontium, it can be recycled. Further, in the present embodiment, Example 8 which contains a large amount of potassium chloride (45 m〇1%) is preferred in terms of dissolution rate and the like. In the above-mentioned Example 9, the molten ruthenium in which ruthenium was dissolved was formed into an aqueous solution (the target RU concentration at the time of forming the aqueous solution was 50 g/L), and the obtained hydrazine aqueous solution was concentrated by an evaporator to become hydrazine. [Shu sputum is heated under hydrogen atmosphere for reduction treatment. In this reduction treatment, first, the crucible is heated at 60 (rc for 6 hours) in one treatment. Then, the obtained metal crucible is washed with pure water, and heated at 700 ° for 6 hours for secondary hydrogen reduction treatment. The purity of the tantalum powder is a high purity product of g9·9. Although the invention has been disclosed in the preferred embodiments as above, it is not intended to limit the invention, and any one of ordinary skill in the art to which the invention pertains Without departing from the spirit and scope of the present invention, the scope of protection of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic diagram of a processing apparatus, showing the melting [main element symbol description] used in the present embodiment 1 to a melting crucible processing apparatus; 10~坩埚; 21~ body; 22~ cover; 30~shading plate; 40~nozzle; 5 0~ waste; 100~fused 塩. 2169-9416-PF; Dwwang 19

Claims (1)

200848519 十、申請專利範圍: 1 · 一種回收白金族金屬的方法,適用於從含有銥、舒、 姥、鈀、锇的至少其中之一的白金族金屬的廢棄物,回收 該白金族金屬的方法,包含下列步驟: 在由氣化鈉所構成的溶融垣中或由氯化納與氣化卸所 構成的熔融塩中,使該廢棄物所包含的該白金族金屬與氯 反應,而生成易溶於水的白金族金屬的氯化物之後; 將反應後的δ亥仏融包與水混合,進行固液分離而得到 &quot; 該白金族金屬的水溶液。 2 ·如申請專利範圍第1項所述之回收白金族金屬的方 法,其中為t融每是由氣化納與氣化钾所構成,且含有 5 0inol%以上的氯化鈉。 3 ·如申睛專利範圍第1項所述之回收白金族金屬的方 法,其中该熔融塩是由氯化鈉與氯化鉀所構成,且由 75〜90mol%的氯化鈉、1〇〜25mol%的氯化鉀所構成。 4·如申请專利範圍第1至3項任一項所述之回收白金 無金屬的方法,其中該熔融塩的溫度為75〇〜85〇它。 5·如申請專利範圍第1至4項任一項所述之回收白金 私金屬的方法,其中是以氣氣來供應氯,使氯氣與該廢棄 物直接接觸。 卜6·如申請專利範圍第1至5項任一項所述之回收白金 私主屬的方法,其中將回收的濾液濃縮、乾涸後,以氫還 原而成為白金族金屬。 2169-9416-PF;Dwwang200848519 X. Patent application scope: 1 · A method for recovering platinum metal, suitable for recycling platinum metal from waste containing at least one of bismuth, bismuth, bismuth, palladium and bismuth The method comprises the steps of: reacting the platinum group metal contained in the waste with chlorine in a molten crucible composed of vaporized sodium or a molten crucible composed of sodium chloride and a gasification discharge, thereby generating an easy After being dissolved in the chloride of the platinum group metal of water, the δ 仏 仏 反应 反应 反应 反应 反应 反应 混合 混合 混合 混合 混合 混合 混合 混合 混合 混合 混合 混合 混合 混合 反应 反应 反应 反应 反应 反应 反应 反应 反应 反应 反应 反应2. The method for recovering a platinum group metal as described in claim 1, wherein the t melt is composed of gasified sodium and vaporized potassium, and contains 50% by mole or more of sodium chloride. 3. The method for recovering a platinum group metal according to claim 1, wherein the molten crucible is composed of sodium chloride and potassium chloride, and is composed of 75 to 90 mol% of sodium chloride, 1 〇~ 25 mol% potassium chloride. 4. The method of recovering platinum metal-free according to any one of claims 1 to 3, wherein the molten crucible has a temperature of 75 Å to 85 Å. The method of recovering platinum private metal according to any one of claims 1 to 4, wherein the chlorine is supplied by air gas to directly contact the chlorine gas with the waste. The method for recovering platinum private ownership according to any one of claims 1 to 5, wherein the recovered filtrate is concentrated, dried, and reduced to hydrogen to form a platinum group metal. 2169-9416-PF; Dwwang
TW97105133A 2007-02-16 2008-02-14 Method for recovering platinum group metal from waste TWI445824B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007036166A JP5021331B2 (en) 2007-02-16 2007-02-16 Method for recovering platinum group metals from waste

Publications (2)

Publication Number Publication Date
TW200848519A true TW200848519A (en) 2008-12-16
TWI445824B TWI445824B (en) 2014-07-21

Family

ID=39689983

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97105133A TWI445824B (en) 2007-02-16 2008-02-14 Method for recovering platinum group metal from waste

Country Status (3)

Country Link
JP (1) JP5021331B2 (en)
TW (1) TWI445824B (en)
WO (1) WO2008099747A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4514807B2 (en) * 2008-04-10 2010-07-28 山本貴金属地金株式会社 Method for producing noble metal fine particles
JP5408993B2 (en) * 2008-12-24 2014-02-05 山本貴金属地金株式会社 Method for recovering platinum group elements
KR101091699B1 (en) * 2009-05-18 2011-12-08 한국지질자원연구원 Leaching method of platinum group metals from spent automotive catalyst
JP5361759B2 (en) * 2010-02-15 2013-12-04 山本貴金属地金株式会社 Method for producing noble metal fine particles
CN104056841A (en) * 2013-07-10 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Processing method of titanium extraction tailings
EP3085796B1 (en) * 2015-04-21 2017-07-19 Heraeus Deutschland GmbH & Co. KG Extraction method for a metallic, iridium and/or iridium oxide comprising mixture of solid particles
KR101817079B1 (en) 2017-09-25 2018-02-21 케이에스메탈주식회사 process of recovering Platinum group metal from waste sludge generated from refining process of precious metal ore
CN111900425B (en) 2020-07-03 2021-12-17 广东邦普循环科技有限公司 Method for recycling hydrogen fuel cell of new energy automobile
CN113462900B (en) * 2021-07-04 2022-06-21 贵研资源(易门)有限公司 Method for recovering rhodium from waste rhodium park catalyst

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5168493A (en) * 1974-12-10 1976-06-14 Japan Carlit Co Ltd Ruteniumu mataha sonokagobutsuofukumu nanyoseibutsushitsuno kayokaho
JPS58194745A (en) * 1982-05-06 1983-11-12 Tanaka Kikinzoku Kogyo Kk Recovery of ruthenium
JPS6092433A (en) * 1983-10-26 1985-05-24 Daido Steel Co Ltd Method for recovering noble metal
JP2692882B2 (en) * 1988-08-23 1997-12-17 田中貴金属工業株式会社 How to recover precious metals from spent catalysts
JP3564852B2 (en) * 1996-02-19 2004-09-15 三菱マテリアル株式会社 Method for producing high purity metal ruthenium powder
JP4607303B2 (en) * 2000-09-13 2011-01-05 株式会社フルヤ金属 Method for recovering platinum group metals from metal electrodes
JP3943564B2 (en) * 2004-01-30 2007-07-11 日鉱金属株式会社 Method for chlorinating Se-containing materials

Also Published As

Publication number Publication date
JP2008202063A (en) 2008-09-04
JP5021331B2 (en) 2012-09-05
TWI445824B (en) 2014-07-21
WO2008099747A1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
TW200848519A (en) Method for recovering platinum group metal from waste
JP5427452B2 (en) Method for producing titanium metal
Zhang et al. A perspective on thermochemical and electrochemical processes for titanium metal production
EP2446065B1 (en) USE OF A BINARY SALT FLUX OF NaCl AND MgCI2 FOR THE PURIFICATION OF ALUMINUM OR ALUMINUM ALLOYS, AND METHOD THEREOF
Schreier et al. Separation of Ir, Pd and Rh from secondary Pt scrap by precipitation and calcination
JP2009057611A (en) Method for recovering ruthenium
US677209A (en) Purified crystalline alumina.
EP3554998B1 (en) Process for the production of commercial grade silicon
TW200936508A (en) Method of reclaiming ruthenium from waste containing ruthenium
AU2006224012B2 (en) Method of high-melting-point metal separation and recovery
CN105350027A (en) Method for preparing titanium powder
JP2001192711A (en) Method for producing powdery titanium
JP2002129250A (en) Method for producing metallic titanium
JP2019527769A (en) Concentrating and recovering precious metals
JP2009191309A (en) Method for collecting crude indium
CN111057846A (en) Method for separating and recovering cobalt, copper and iron in white alloy
JP2003268457A (en) Method for dissolving substance containing selenium and platinum group element
JP5408993B2 (en) Method for recovering platinum group elements
Li et al. An approach to prepare high-purity TiSi 2 for clean utilization of Ti-bearing blast furnace slag
JP4042095B2 (en) High purity metal powder manufacturing method and high purity metal powder manufacturing apparatus
RU2401874C2 (en) Procedure by volkov for production of chemically active metals and device for implementation of this procedure
RU2629121C1 (en) Method for titanium silicides production
JPH027381B2 (en)
JP3214836B2 (en) Manufacturing method of high purity silicon and high purity titanium
JP2784324B2 (en) Manufacturing method of titanium