JP6780448B2 - How to recover high-grade rhodium powder - Google Patents

How to recover high-grade rhodium powder Download PDF

Info

Publication number
JP6780448B2
JP6780448B2 JP2016215049A JP2016215049A JP6780448B2 JP 6780448 B2 JP6780448 B2 JP 6780448B2 JP 2016215049 A JP2016215049 A JP 2016215049A JP 2016215049 A JP2016215049 A JP 2016215049A JP 6780448 B2 JP6780448 B2 JP 6780448B2
Authority
JP
Japan
Prior art keywords
rhodium
roasting
cake
grade
dissolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016215049A
Other languages
Japanese (ja)
Other versions
JP2018070978A (en
Inventor
秀昌 永井
秀昌 永井
中井 隆行
隆行 中井
諭 松原
諭 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016215049A priority Critical patent/JP6780448B2/en
Publication of JP2018070978A publication Critical patent/JP2018070978A/en
Application granted granted Critical
Publication of JP6780448B2 publication Critical patent/JP6780448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、ニッケル・銅原料中の貴金属元素を回収する工程において発生する王水にも不溶の難溶性残渣から、白金族元素精製工程における微粉のロジウムブラックを経て、高純度のロジウム粉末を回収する方法に関する。 The present invention recovers high-purity rhodium powder from a sparingly soluble residue that is insoluble in aqua regia generated in the step of recovering noble metal elements in nickel / copper raw materials through fine rhodium black in the platinum group element purification step. Regarding how to do it.

ロジウムは、R系熱電対、電気接点、自動車排ガス触媒などの用途に広く利用されているが、近年は、その品質面においてますます高純度のものが要求されている。かかる高純度のロジウムの生産方法として、ニッケル・銅原料からの貴金属回収工程で発生する難溶性残渣からロジウムを回収する方法が知られている。 Rhodium is widely used in applications such as R-based thermocouples, electrical contacts, and automobile exhaust gas catalysts, but in recent years, rhodium has been required to have higher purity in terms of its quality. As a method for producing such high-purity rhodium, a method for recovering rhodium from a poorly soluble residue generated in a precious metal recovery step from a nickel / copper raw material is known.

特許文献1には、ロジウム粉末の回収方法が示されている。特許文献1に係る方法は、ニッケル・銅原料からの貴金属回収工程で発生する難溶性残渣から高品位ロジウム粉を工業的に回収するためには非常に有効な方法である。 Patent Document 1 discloses a method for recovering rhodium powder. The method according to Patent Document 1 is a very effective method for industrially recovering high-grade rhodium powder from a poorly soluble residue generated in a precious metal recovery step from a nickel / copper raw material.

また特許文献2には、白金族とともに不純物元素を含む白金族溶解液から不純物元素を分離する方法であって、塩化カリウムを添加して、白金族元素をカリウム塩として沈殿、回収する技術が記載されている。 Further, Patent Document 2 describes a method for separating an impurity element from a platinum group solution containing an impurity element together with a platinum group, which is a technique of adding potassium chloride to precipitate and recover the platinum group element as a potassium salt. Has been done.

特開2011−038165号公報Japanese Unexamined Patent Publication No. 2011-038165 特開2012−172182号公報Japanese Unexamined Patent Publication No. 2012-172182

しかし、従来の技術にはジブチルカルビトール抽出工程(以下DBC抽出工程)が含まれており、溶媒抽出工程特有の問題点があった。すなわち、ロジウム溶解液中の鉄を分離するために、有機溶媒であると同時に危険物でもあるジブチルカルビトール(以下DBC)を使用していたので、危険物管理上のコストが必要であった。また、ミキサセトラ等の専用設備を使用していたため、設備コストやメンテナンスコストが必要であるという問題があった。 However, the conventional technique includes a dibutyl carbitol extraction step (hereinafter referred to as DBC extraction step), and has a problem peculiar to the solvent extraction step. That is, since dibutyl carbitol (hereinafter referred to as DBC), which is both an organic solvent and a dangerous substance, was used to separate iron in the rhodium solution, a cost for managing dangerous substances was required. In addition, since a dedicated facility such as a mixer-settler was used, there was a problem that equipment cost and maintenance cost were required.

また、原料種類への対応能力が低く、ニッケル・銅原料からの貴金属回収工程で発生する難溶性残渣であれば、不純物の種類や濃度が一定の範囲に制御されているため原料として問題なく使用できるが、これ以外の原料は、たとえ製品ロジウム粉末として製造され出荷検査で除外された不良品であっても、使いにくいという問題があった。簡単に言い換えれば、あまりに汚れすぎた有機溶媒中に、不純物濃度の低い抽出始液を装入しても、かえって抽出始液が汚れてしまい、有機溶媒の側にとっても担持する不純物濃度のバランスが崩れ安定した操業が困難になるという点で、同一の設備(同一の有機溶媒)で操業することができず、対応方法として、複数の溶媒抽出設備を準備するか、原料の不純物濃度の変動にあわせて有機溶媒を入れ替えるといった実操業上は現実的でない方法しか選択できなかった。別の観点では、有機溶媒の一般的特性として独特の臭気があり、法的規制とは無関係であり、個人差があるものの、作業者にとって決して好ましい環境とは言えない場合もあった。 In addition, if the ability to handle raw material types is low and the sparingly soluble residue generated in the precious metal recovery process from nickel / copper raw materials is used, the type and concentration of impurities are controlled within a certain range, so it can be used as a raw material without problems. However, there is a problem that other raw materials are difficult to use even if they are defective products manufactured as product rhodium powder and excluded by shipping inspection. In other words, even if the extraction starting solution with a low impurity concentration is charged into an organic solvent that is too dirty, the extraction starting solution becomes dirty, and the balance of the impurity concentration carried on the organic solvent side is balanced. It is not possible to operate with the same equipment (same organic solvent) because it collapses and stable operation becomes difficult, and as a countermeasure, prepare multiple solvent extraction equipment or change the impurity concentration of the raw material. At the same time, it was only possible to select a method that was not realistic in actual operation, such as replacing the organic solvent. From another point of view, the general characteristic of organic solvents is that they have a peculiar odor, are unrelated to legal regulations, and although there are individual differences, they may not be a favorable environment for workers.

また特許文献2では、王水で溶解した白金族溶解液から不純物を除去するものであり、またロジウムのみを回収し高品位のロジウム粉を得る技術ではなく、ロジウム粉末を製造する方法でもない。 Further, Patent Document 2 removes impurities from a platinum group solution dissolved in aqua regia, is not a technique for recovering only rhodium to obtain high-quality rhodium powder, and is not a method for producing rhodium powder.

本発明は、上記問題点を解決するため、溶媒抽出工程を経ず、かつロジウム粉のみを回収することができる高品位ロジウムの回収方法を提供することを目的とする。 In order to solve the above problems, an object of the present invention is to provide a method for recovering high-grade rhodium, which can recover only rhodium powder without going through a solvent extraction step.

上記目的を達成するために、本発明の一態様は、白金族元素を含有する難溶性残渣からロジウムを沈殿分離して回収する、高品位ロジウム粉の回収方法であって、前記難溶性残渣を鉄と共に還元焙焼する還元焙焼工程と、該還元焙焼工程で得られた焙焼生成物を硫酸浸出する硫酸浸出工程と、該硫酸浸出工程で得られた浸出残渣を塩酸と過酸化水素水で溶解する溶解工程と、該溶解工程で得られた溶解液をケーキ化するケーキ化工程と、該ケーキ化工程で得られた沈殿物からロジウムブラックを得るロジウム精製工程とを有し、前記ケーキ化工程で塩化カリウムを添加し、ロジウムを塩化ロジウム酸カリウムとして沈殿分離し、前記ロジウム精製工程にて、前記塩化ロジウム酸カリウムに苛性ソーダを添加し、ロジウムを水酸化ロジウムとして沈殿分離することを特徴とする。 In order to achieve the above object, one aspect of the present invention is a method for recovering high-grade rhodium powder by precipitating and separating rhodium from a poorly soluble residue containing a platinum group element and recovering the poorly soluble residue. A reduction roasting step in which reduction roasting is carried out together with iron, a sulfuric acid leaching step in which the roasting product obtained in the reduction roasting step is leached with sulfuric acid, and a leaching residue obtained in the sulfuric acid leaching step is hydrochloric acid and hydrogen peroxide. It has a dissolution step of dissolving in water, a cake-making step of cake-forming the solution obtained in the dissolution step, and a rhodium purification step of obtaining rhodium black from the precipitate obtained in the cake-making step. In the cake making step, potassium chloride is added and rhodium is precipitated and separated as potassium rhodium chloride, and in the rhodium purification step, caustic soda is added to the potassium rhodium chloride and rhodium is precipitated and separated as rhodium hydroxide. It is a feature.

このようにすれば、DBC抽出工程を経ずにロジウム粉を回収でき、危険物管理上のコスト、設備コスト及びメンテナンスコストの増加を防止でき、更には原料の不純物の変動に対する対応能力を向上することができる。 In this way, rhodium powder can be recovered without going through the DBC extraction process, it is possible to prevent an increase in hazardous material management cost, equipment cost and maintenance cost, and further, the ability to respond to fluctuations in raw material impurities is improved. be able to.

このとき、本発明の一態様では、前記ケーキ化工程で沈殿分離して得られた濾液に苛性ソーダを添加して沈殿分離し、得られた沈殿を、前記還元焙焼工程に戻し入れることとしても良い。 At this time, in one aspect of the present invention, caustic soda may be added to the filtrate obtained by precipitation separation in the cake-making step to separate the precipitate, and the obtained precipitate may be returned to the reduction roasting step. good.

このようにすれば、沈殿分離しきれなかったロジウムを短期間で回収できるので、ロジウムの回収効率を向上させることができる。また沈殿物にはロジウム塩だけでなく分離対象となる鉄が多く含まれているので、還元焙焼で添加する鉄分を補充することができる。 In this way, rhodium that could not be completely separated by precipitation can be recovered in a short period of time, so that the recovery efficiency of rhodium can be improved. Moreover, since the precipitate contains not only rhodium salt but also a large amount of iron to be separated, the iron content added by reduction roasting can be replenished.

また、本発明の一態様では、前記ケーキ化工程で使用するタンクは、前記溶解工程で使用する溶解槽と兼用であり、前記溶解槽に塩化カリウムを添加し、ロジウムを塩化ロジウム酸カリウムとして沈殿物を分離してもよい。 Further, in one aspect of the present invention, the tank used in the cake making step is also used as the melting tank used in the melting step, and potassium chloride is added to the melting tank to precipitate rhodium as potassium rhodium chloride. You may separate things.

このようにすれば、設備点数を減らすことができる。 In this way, the number of equipment can be reduced.

また、本発明の一態様では、前記ケーキ化工程で添加する塩化カリウムの濃度は、前記溶解工程で得られた溶解液の量に対し100〜150g/Lであり、酸化還元電位が900mV以上としてもよい。 Further, in one aspect of the present invention, the concentration of potassium chloride added in the cake-making step is 100 to 150 g / L with respect to the amount of the dissolution liquid obtained in the dissolution step, and the redox potential is 900 mV or more. May be good.

このようにすれば、ロジウムの沈殿率を向上させることができる。 In this way, the precipitation rate of rhodium can be improved.

また、本発明の一態様では、前記還元焙焼工程は白金族元素を含有する難溶性残渣を鉄と共に行い、前記鉄を前記硫酸浸出工程により脱鉄し、前記溶解工程は、前記硫酸工程で得られた浸出残渣を塩酸と過酸化水素水とで溶解し、更に前記ロジウム精製工程の後に前処理加熱焙焼工程を有し、該前処理加熱焙焼工程は200℃より高く400℃以下の温度で行い、前記前処理加熱焙焼工程の後に第1段加熱焙焼工程を有し、該第1段加熱焙焼工程は600〜800℃の温度で行い、前記第1段加熱焙焼工程の後に第2段加熱焙焼工程を有し、該第2段加熱焙焼工程は900〜1100℃の温度で行うこととしてもよい。 Further, in one aspect of the present invention, in the reduction roasting step, a sparingly soluble residue containing a platinum group element is carried out together with iron, the iron is deironed by the sulfuric acid leaching step, and the melting step is performed in the sulfuric acid step. The obtained leachate residue is dissolved in hydrochloric acid and hydrogen peroxide solution, and further has a pretreatment heat roasting step after the rhodium purification step, and the pretreatment heat roasting step is higher than 200 ° C. and 400 ° C. or lower. Performed at a temperature, the pretreatment heat roasting step is followed by a first stage heat roasting step, the first stage heat roasting step is performed at a temperature of 600 to 800 ° C., and the first stage heat roasting step is performed. The second stage heating roasting step may be performed after the above, and the second stage heating roasting step may be performed at a temperature of 900 to 1100 ° C.

このようにすれば、ロジウム粉を所望の比表面積とすることができる。 In this way, the rhodium powder can have a desired specific surface area.

本発明によれば、溶媒抽出工程を経ず、かつ高品位のロジウム粉のみを回収することができる。 According to the present invention, only high-quality rhodium powder can be recovered without going through a solvent extraction step.

図1は、本発明の一実施形態に係る高品位ロジウム粉の回収方法の概略を示す工程図である。FIG. 1 is a process diagram showing an outline of a method for recovering high-grade rhodium powder according to an embodiment of the present invention. 図2は、従来技術に係るロジウム粉の回収方法の概略を示す工程図である。FIG. 2 is a process diagram showing an outline of a method for recovering rhodium powder according to the prior art.

以下、本発明の好適な実施の形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本発明の要旨を逸脱しない範囲で変更が可能である。また、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail. The present embodiment described below does not unreasonably limit the content of the present invention described in the claims, and can be modified without departing from the gist of the present invention. Moreover, not all of the configurations described in the present embodiment are indispensable as the means for solving the present invention.

図1は本発明の一実施形態に係る高品位ロジウム粉の回収方法の概略を示す工程図である。先ず還元焙焼工程S11において、白金族元素を含有する難溶性残渣を鉄と共に還元焙焼し、可溶性の鉄合金を含む焙焼生成物を得る。ここで難溶性残渣とは、ニッケル・銅原料中の貴金属を回収する工程において発生する、王水にも不要な金属を含む残渣物をいう。よって本発明の一実施形態に係る高品位ロジウムの回収方法では、王水にも不要な難溶性残渣を鉄と共に還元焙焼する。次に硫酸浸出工程S12において、還元焙焼工程S11で得られた焙焼生成物に硫酸を混合して鉄を浸出し、浸出液と浸出残渣に分離する。次に溶解工程S13において、浸出残渣を塩酸と過酸化水素水とに溶解して溶解液を得る。 FIG. 1 is a process diagram showing an outline of a method for recovering high-grade rhodium powder according to an embodiment of the present invention. First, in the reduction roasting step S11, a sparingly soluble residue containing a platinum group element is reduced and roasted together with iron to obtain a roasting product containing a soluble iron alloy. Here, the poorly soluble residue refers to a residue containing a metal unnecessary for aqua regia, which is generated in the process of recovering a noble metal in a nickel / copper raw material. Therefore, in the method for recovering high-grade rhodium according to the embodiment of the present invention, a sparingly soluble residue that is unnecessary for aqua regia is reduced and roasted together with iron. Next, in the sulfuric acid leaching step S12, iron is leached by mixing sulfuric acid with the roasting product obtained in the reduction roasting step S11, and the leaching liquid and the leaching residue are separated. Next, in the dissolution step S13, the leaching residue is dissolved in hydrochloric acid and hydrogen peroxide solution to obtain a dissolution liquid.

この溶解液中にはロジウムと合金化していた鉄が溶解しているため、これを分離除去することが望ましい。そこで、その後のケーキ化工程S14において、溶解液に塩化カリウムを添加し、溶解液中のロジウムを塩化ロジウム酸カリウムとして沈殿させ、反応後液に残存する鉄の大部分とロジウムを分離する。以下ケーキ化工程S14について詳細に説明する。 Since iron alloyed with rhodium is dissolved in this solution, it is desirable to separate and remove it. Therefore, in the subsequent cake-making step S14, potassium chloride is added to the solution, rhodium in the solution is precipitated as potassium chloride, and most of the iron remaining in the solution after the reaction is separated from rhodium. The cake making step S14 will be described in detail below.

ケーキ化工程S14では、溶解液の中のロジウムを分離する際に、当該溶液に塩化カリウムを添加し、ロジウムを塩化ロジウム酸カリウムとして沈殿物を分離する。このようにすればDBCでの溶媒抽出工程を経ずに、かつロジウム粉のみを回収することができ、水溶液として上述したようにロジウムを沈殿分離することができる。 In the cake making step S14, when separating rhodium in the solution, potassium chloride is added to the solution, and rhodium is used as potassium rhodium chloride to separate the precipitate. In this way, only the rhodium powder can be recovered without going through the solvent extraction step in DBC, and rhodium can be precipitated and separated as an aqueous solution as described above.

すなわち、従来法の溶解工程で得られた溶解液を溶媒抽出工程で処理するのではなく、ケーキ化工程S14において、溶解液に塩化カリウムを添加し、溶解液の中のロジウムを塩化ロジウム酸カリウムとして沈殿させ、溶解液中に含まれる鉄の大部分とロジウムを分離する。このようにすれば、DBC抽出工程を経ずに、かつロジウム粉のみを選択的に回収することができ、危険物管理上のコスト、設備コスト及びメンテナンスコストの増加を防止できる。更には、不純物濃度のバランスが崩れることなく、安定した創業が容易になり、原料の不純物の変動に対する対応能力を向上することができる。その工業的価値は極めて大きい。 That is, instead of treating the solution obtained in the conventional dissolution step in the solvent extraction step, potassium chloride is added to the solution in the cake forming step S14, and the rhodium in the solution is potassium chloride. It is precipitated as, and most of the iron contained in the solution and rhodium are separated. By doing so, it is possible to selectively recover only the rhodium powder without going through the DBC extraction step, and it is possible to prevent an increase in the cost for managing dangerous substances, the equipment cost and the maintenance cost. Furthermore, stable establishment can be facilitated without disturbing the balance of impurity concentrations, and the ability to respond to fluctuations in impurities in raw materials can be improved. Its industrial value is extremely high.

従来の溶媒抽出で用いられる装置は複雑であり、使用される溶媒の危険物の使用に関する問題があった。本発明の一実施形態に係る高品位ロジウム粉の回収方法においては、溶媒抽出工程を無くすことができた。それは本発明者らが、前述のケーキ化条件を究明したことにより、溶解液中のロジウムを選択的にケーキ化することが可能となり、更に塩化ロジウム酸カリウムのケーキを水酸化ロジウムに変換することが可能となったためである。 The equipment used in conventional solvent extraction is complex and has problems with the use of hazardous materials in the solvents used. In the method for recovering high-grade rhodium powder according to the embodiment of the present invention, the solvent extraction step could be eliminated. By investigating the above-mentioned cake-forming conditions, the present inventors can selectively cake rhodium in the solution, and further convert the cake of potassium rhodium chloride into rhodium hydroxide. This is because it has become possible.

また、ケーキ化工程S14後の濾液には、沈殿分離しきれなかったロジウムが残留しており、これを回収する方法に制限はなく、難溶性残渣を得る上流工程のニッケル・銅原料からの貴金属回収工程(不図示)に戻し入れても良いし、更に上流工程のニッケル・銅製錬工程(不図示)に戻し入れても良い。 Further, rhodium that could not be completely separated by precipitation remains in the filtrate after the cake making step S14, and there is no limitation on the method for recovering this, and the noble metal from the nickel / copper raw material in the upstream step for obtaining the sparingly soluble residue. It may be returned to the recovery process (not shown), or may be further returned to the nickel / copper smelting process (not shown) in the upstream process.

しかし、残留したロジウムを効率良く回収するために、図1に示すように、ケーキ化工程S14で沈殿分離して得られた濾液に苛性ソーダを添加して沈殿を生成させ分離し、得られた沈殿を還元焙焼工程S11に戻し入れることが好ましい。上記の上流工程(不図示)に戻し入れるよりも短期間でロジウムを回収することができ、より高品位のロジウムを回収することができ、回収効率を向上させることが可能となる。更に上記沈殿物にはロジウム塩だけでなく、分離対象となる鉄が多く含まれており、還元焙焼工程S11で添加する鉄分を補充することができる。よってより高品位なロジウムの回収率の向上、生産効率の向上が可能となる。 However, in order to efficiently recover the residual rhodium, as shown in FIG. 1, caustic soda was added to the filtrate obtained by precipitation separation in the cake making step S14 to generate a precipitate, and the precipitate was obtained. Is preferably returned to the reduction roasting step S11. Rhodium can be recovered in a shorter period of time than when it is returned to the above-mentioned upstream process (not shown), higher quality rhodium can be recovered, and recovery efficiency can be improved. Further, the precipitate contains not only rhodium salt but also a large amount of iron to be separated, and the iron content added in the reduction roasting step S11 can be replenished. Therefore, it is possible to improve the recovery rate of higher quality rhodium and the production efficiency.

また、ケーキ化工程S14は、溶解液を導入するタンクと、塩化カリウムを添加する装置と、沈殿生成後に得られるスラリーを固液分離する装置を、溶媒抽出の装置と置き換えて操業すればよいが、ケーキ化工程S14で使用する設備が、前工程の溶解工程S13の設備を利用し、溶解工程S13から得られた溶解液を溶解工程S13の溶解槽に戻し入れて、塩化カリウムを添加し、ロジウムを塩化ロジウム酸カリウムとして沈殿分離することが好ましい。本発明の一実施形態に係る高品位ロジウム粉の回収方法の実施にあたって、上記の塩化カリウムを添加する装置と固液分離する装置は必要だが、溶解液を戻し入れる送液ポンプさえあれば、溶解工程S13で使用する溶解槽と、ケーキ化工程S14で使用するタンクは兼用が可能となり、設備点数を減らすことができる。 Further, in the cake making step S14, the tank for introducing the dissolution liquid, the apparatus for adding potassium chloride, and the apparatus for solid-liquid separation of the slurry obtained after the precipitation may be replaced with the apparatus for solvent extraction may be operated. The equipment used in the cake making step S14 uses the equipment of the dissolution step S13 of the previous step, puts the dissolution liquid obtained from the dissolution step S13 back into the dissolution tank of the dissolution step S13, adds potassium chloride, and adds potassium chloride. It is preferable to precipitate and separate rhodium as potassium chloride. In carrying out the method for recovering high-grade rhodium powder according to one embodiment of the present invention, the above-mentioned device for adding potassium chloride and a device for solid-liquid separation are required, but if there is a liquid feed pump for returning the dissolved solution, it will dissolve. The melting tank used in the step S13 and the tank used in the cake making step S14 can be shared, and the number of equipment can be reduced.

従来の方法では、溶媒抽出にDBCを用いていたため、設備は別々でかつ複雑であったが、本発明の一実施形態に係る高品位ロジウム粉の回収方法では、DBC溶媒抽出工程を経ないため、上述したように設備点数を減らすことができ、コストを抑えることができる。 In the conventional method, since DBC was used for solvent extraction, the equipment was separate and complicated, but the method for recovering high-grade rhodium powder according to one embodiment of the present invention does not go through the DBC solvent extraction step. As described above, the number of equipment can be reduced and the cost can be suppressed.

また、ケーキ化工程S14で添加される塩化カリウムの濃度は、溶解工程S13で得られた溶解液の量に対し100〜150g/Lが好ましい。そうすることでロジウムの沈殿率を高くすることができる。塩化カリウムの濃度が100g/L未満の場合には、ロジウムに反応する塩化カリウムの量が不十分となり、塩化ロジウム酸カリウムの沈殿率が低くなる。一方、150g/Lを超える場合には、ロジウムに反応する塩化カリウムの量は十分であるが、コストが増加する。 The concentration of potassium chloride added in the cake-making step S14 is preferably 100 to 150 g / L with respect to the amount of the dissolution liquid obtained in the dissolution step S13. By doing so, the precipitation rate of rhodium can be increased. When the concentration of potassium chloride is less than 100 g / L, the amount of potassium chloride that reacts with rhodium becomes insufficient, and the precipitation rate of potassium rhodium chloride becomes low. On the other hand, if it exceeds 150 g / L, the amount of potassium chloride that reacts with rhodium is sufficient, but the cost increases.

次にロジウム(Rh)精製工程S15において、上記ケーキ化工程S14で得られた塩化ロジウム酸カリウムとしての沈殿物に苛性ソーダを添加し中和させ、ロジウムを水酸化ロジウムへ変換して沈殿させる。そして水酸化ロジウムとしての沈殿物を精製してロジウムブラックを得る。 Next, in the rhodium (Rh) purification step S15, caustic soda is added to the precipitate as potassium rhodium chloride obtained in the cake making step S14 to neutralize it, and rhodium is converted to rhodium hydroxide and precipitated. Then, the precipitate as rhodium hydroxide is purified to obtain rhodium black.

ロジウム(Rh)精製工程S15で得られるロジウムブラックは湿潤な状態であり、そのまま真空乾燥した場合は、比表面積12〜14m/g程度の微細な粉末となる。この湿潤状態のロジウムブラックを、後述する第1段加熱焙焼を行う前に前処理加熱焙焼工程S16に供給し、前処理の加熱焙焼を行う。その際、第1段加熱焙焼工程S18の温度よりも低い温度、具体的には200℃より高く400℃以下の温度で加熱焙焼を行う。前処理加熱焙焼工程S16で得られた焙焼生成物は、必要に応じて前処理篩解砕工程S17において、篩解砕、即ち解砕と例えば目開き1mmの篩別とを行ってもよい。 The rhodium black obtained in the rhodium (Rh) purification step S15 is in a wet state, and when vacuum dried as it is, it becomes a fine powder having a specific surface area of about 12 to 14 m 2 / g. This wet rhodium black is supplied to the pretreatment heat roasting step S16 before the first stage heat roasting described later, and the pretreatment heat roasting is performed. At that time, heating roasting is performed at a temperature lower than the temperature of the first stage heating roasting step S18, specifically, a temperature higher than 200 ° C. and 400 ° C. or lower. The roasted product obtained in the pretreatment heat roasting step S16 may be subjected to sieving, that is, sieving and sieving with a mesh opening of, for example, 1 mm in the pretreatment sieving step S17, if necessary. Good.

前処理加熱焙焼工程S16で加熱温度を200より高く400℃以下で行う理由としては所望の比表面積とするためである。加熱温度が200℃以下の場合、比表面積があまり変化しなく、一方400℃より高い場合、比表面積が変化しすぎて微細な粉末が強固に焼結する。より好ましくは300℃〜400℃であり、そうすることで前述した比表面積12〜14m/g程度の微細な粉末を十分に無くすことができる。 The reason why the heating temperature is higher than 200 and 400 ° C. or lower in the pretreatment heat roasting step S16 is to obtain a desired specific surface area. When the heating temperature is 200 ° C. or lower, the specific surface area does not change much, while when it is higher than 400 ° C., the specific surface area changes too much and the fine powder is strongly sintered. More preferably, it is 300 ° C. to 400 ° C., so that the above-mentioned fine powder having a specific surface area of about 12 to 14 m 2 / g can be sufficiently eliminated.

前処理の加熱焙焼に要する時間は、被焙焼物の投入量や炉のサイズによって異なるが、被焙焼部の温度が処理温度に到達してから20〜80分程度保持することが好ましい。20分未満であれば、前処理としての加熱焙焼の効果が不十分であり、80分より長いと過焼結が生じる恐れがある。また生産効率が低下する。 The time required for the pretreatment by heating and roasting varies depending on the amount of the material to be roasted and the size of the furnace, but it is preferable to keep the temperature of the portion to be roasted for about 20 to 80 minutes after reaching the treatment temperature. If it is less than 20 minutes, the effect of heat roasting as a pretreatment is insufficient, and if it is longer than 80 minutes, oversintering may occur. In addition, production efficiency is reduced.

次に前処理加熱焙焼工程S16で得られたロジウムブラックを第1段加熱焙焼工程S18に供給し、600〜800℃の温度で不活性ガス雰囲気により第1段加熱焙焼を行う。これにより、粉末の比表面積は0.7〜1.4m/g程度となる。 Next, the rhodium black obtained in the pretreatment heat roasting step S16 is supplied to the first stage heat roasting step S18, and the first stage heat roasting is performed at a temperature of 600 to 800 ° C. in an inert gas atmosphere. As a result, the specific surface area of the powder is about 0.7 to 1.4 m 2 / g.

続いて、湿式粉砕・洗浄工程S19に供給し、湿式粉砕すると共に洗浄によりナトリウムや塩素などの不純物を除去する。湿式粉砕処理及び洗浄処理された粉末に対しては、必要に応じて篩解砕を行ってもよい。 Subsequently, it is supplied to the wet pulverization / cleaning step S19, and the impurities such as sodium and chlorine are removed by wet pulverization and cleaning. The powder that has been wet-milled and washed may be screened if necessary.

次に、第2段加熱工程S20に供給し、900〜1100℃の温度で不活性ガス雰囲気中により第2段の加熱焙焼を行う。これにより、製品の粒度まで粗粒化されると同時に、湿式粉砕では除去できない酸素が解離される。最後に、実質的な検査工程としての篩解砕工程S21に供給し、目開き1mmの篩別を行って製品ロジウム粉末を得る。 Next, it is supplied to the second-stage heating step S20, and the second-stage heating roasting is performed at a temperature of 900 to 1100 ° C. in an inert gas atmosphere. As a result, the particles are coarsened to the particle size of the product, and at the same time, oxygen that cannot be removed by wet pulverization is dissociated. Finally, it is supplied to the sieving step S21 as a substantial inspection step, and sieved with a mesh opening of 1 mm to obtain a product rhodium powder.

また、前処理加熱焙焼工程S16における加熱焙焼は、第1段加熱焙焼工程S18及び第2段加熱工程S20と同様に、アルゴンなどの不活性ガス雰囲気で行うことが好ましい。そうすることでロジウム粉末の酸化を防止することができる。また、これら加熱焙焼は、いずれも石英製の反応管内で行うことが好ましい。更に、各加熱焙焼後の冷却は、例えば一晩掛けて徐冷される炉冷によって行うのが更に好ましい。これにより、再酸化を防止することができる。 Further, the heating roasting in the pretreatment heating roasting step S16 is preferably performed in an inert gas atmosphere such as argon as in the first stage heating roasting step S18 and the second stage heating step S20. By doing so, oxidation of the rhodium powder can be prevented. Moreover, it is preferable that all of these heat roasting are performed in a reaction tube made of quartz. Further, it is more preferable that the cooling after each heating and roasting is performed by, for example, furnace cooling in which the mixture is slowly cooled overnight. Thereby, reoxidation can be prevented.

このように、第1段加熱焙焼を行う前に、前処理として、第1段加熱焙焼工程S18で行う温度よりも低い温度条件の下で加熱焙焼を行うことにより、その後の工程での粉砕が困難な粗粒化した規格外れの粉末が生じにくくなる。即ち、上記前処理加熱焙焼工程S16を施すことによって、ロジウム(Rh)精製工程S15によって得られる比表面積12〜14m/g程度の微細な粉末を、強固に焼結させることなく、その後の工程で粉砕可能な程度までの比較的緩やかな程度で焼結させることができる。これに加えて、同時に、第1段加熱焙焼に投入される中間物中に、比表面積12〜14m/g程度の微細な粉末を実質的に含まないようにすることができる。例えば、適切に温度条件を設定することによって、この中間物の比表面積を、およそ6〜9m/g程度にすることができる。 As described above, before the first-stage heat roasting is performed, as a pretreatment, the heat roasting is performed under a temperature condition lower than the temperature performed in the first-stage heat roasting step S18, so that in the subsequent steps. Coarse-grained non-standard powder that is difficult to crush is less likely to occur. That is, by performing the pretreatment heat roasting step S16, the fine powder having a specific surface area of about 12 to 14 m 2 / g obtained by the rhodium (Rh) refining step S15 is not strongly sintered, but thereafter. It can be sintered to a relatively loose degree to the extent that it can be crushed in the process. In addition to this, at the same time, it is possible to substantially eliminate fine powder having a specific surface area of about 12 to 14 m 2 / g in the intermediate material to be charged into the first stage heating roasting. For example, by setting the temperature conditions appropriately, the specific surface area of this intermediate can be set to about 6 to 9 m 2 / g.

ここで従来技術について図2を用いて説明する。図2は、従来技術に係るロジウム粉の回収方法の概略を示す工程図である。図2に示す通り、この回収方法では、先ず、還元焙焼工程S111において白金族元素を含有する難溶性残渣を鉄と共に還元焙焼し、硫酸浸出工程S112において硫酸で鉄を浸出して浸出液と浸出残渣を得る。次に、溶解工程S113において浸出残渣を塩酸と過酸化水素で溶解して溶解液を得、ジブチルカルビトール抽出工程(以下DBC抽出工程)S114において溶解液中に残った大部分の鉄をジブチルカルビトール(以下DBC)で抽出・分離除去したうえ、その抽出残液をロジウム(Rh)精製工程S115において精製してロジウムブラックを得ている。 Here, the prior art will be described with reference to FIG. FIG. 2 is a process diagram showing an outline of a method for recovering rhodium powder according to the prior art. As shown in FIG. 2, in this recovery method, first, in the reduction roasting step S111, the sparingly soluble residue containing a platinum group element is reduced and roasted together with iron, and in the sulfuric acid leaching step S112, iron is leached with sulfuric acid to form a leachate. Obtain leaching residue. Next, in the dissolution step S113, the leachate residue was dissolved with hydrochloric acid and hydrogen peroxide to obtain a solution, and in the dibutylcarbitol extraction step (hereinafter referred to as DBC extraction step) S114, most of the iron remaining in the solution was dibutylcarbi. After extraction / separation / removal with Thor (hereinafter referred to as DBC), the extraction residual liquid is purified in the rhodium (Rh) purification step S115 to obtain rhodium black.

しかし、従来の技術にはDBC抽出工程S114が含まれており、溶媒抽出工程特有の問題点があった。すなわち、ロジウム溶解液中の鉄を分離するために、有機溶媒であると同時に危険物でもあるDBCを使用していたので、危険物管理上のコストが必要であった。また、ミキサセトラ等の専用設備を使用していたため、設備コストやメンテナンスコストが必要であるという問題があった。そこで本発明の一実施形態に係る高品位ロジウムの回収方法では、DBC溶媒抽出工程を経ずに溶解工程S113で得られた溶解液をケーキ化している。 However, the conventional technique includes the DBC extraction step S114, which has a problem peculiar to the solvent extraction step. That is, in order to separate iron in the rhodium solution, DBC, which is both an organic solvent and a dangerous substance, was used, so that a cost for managing dangerous substances was required. In addition, since a dedicated facility such as a mixer-settler was used, there was a problem that equipment cost and maintenance cost were required. Therefore, in the method for recovering high-grade rhodium according to one embodiment of the present invention, the solution obtained in the dissolution step S113 is made into a cake without going through the DBC solvent extraction step.

そのようにすることで、危険物管理上のコスト、設備コスト及びメンテナンスコストの増加を防止できる。更には、不純物濃度のバランスが崩れることなく、安定した創業が容易になり、原料の不純物の変動に対する対応能力を向上することができ、高品位のロジウム粉のみを回収することができる。 By doing so, it is possible to prevent an increase in dangerous goods management cost, equipment cost and maintenance cost. Furthermore, stable establishment can be facilitated without disturbing the balance of impurity concentration, the ability to respond to fluctuations in impurities of raw materials can be improved, and only high-grade rhodium powder can be recovered.

また、ケーキ化工程S14で得られた濾液に苛性ソーダを添加して沈殿分離し、得られた沈殿を還元焙焼に戻し入れることで、より高品位なロジウムの回収率の向上、生産効率の向上が可能となる。更にケーキ化工程S14では、溶解工程S13で得られた溶解液を、溶解工程S13で使用した溶解槽に戻し入れ再利用することで、設備点数を減らすことができる。 Further, caustic soda is added to the filtrate obtained in the cake making step S14 to separate the precipitate, and the obtained precipitate is returned to reduction roasting to improve the recovery rate of higher quality rhodium and improve the production efficiency. Is possible. Further, in the cake making step S14, the number of equipment can be reduced by returning the dissolution liquid obtained in the dissolution step S13 to the dissolution tank used in the dissolution step S13 and reusing it.

また、前処理加熱焙焼によってこのような顕著な効果が現れる理由として、加熱焙焼前のロジウムブラックは、前述したように比表面積12〜14m/g程度の微細な粉末であるため、前処理加熱焙焼を行うことなく第1段加熱焙焼を行った場合は、比表面積が約10分の1程度まで低減し、粗粒化が生じる。その結果、引き続いて行われる処理において、適切な粒度制御が行われにくくなり、粗粒化した粉末が粉砕されることなくそのまま残留するものと考えられる。 Further, the reason why such a remarkable effect is exhibited by the pretreatment heat roasting is that the rhodium black before the heat roasting is a fine powder having a specific surface area of about 12 to 14 m 2 / g as described above. When the first-stage heat roasting is performed without performing the treatment heat roasting, the specific surface area is reduced to about 1/10, and coarse graining occurs. As a result, it is considered that it becomes difficult to appropriately control the particle size in the subsequent treatment, and the coarse-grained powder remains as it is without being pulverized.

特に、ロジウム(Rh)精製工程S15における微妙な条件変動により、ロジウムブラックの比表面積が14m/gの上限近傍、即ち、想定されている粒度範囲のうち最も微細な粉末に変動したり、粒度分布が微細な方向に広がったりする場合がある。このような場合は、第1段加熱焙焼時に、より多くの微細な粉末が強固に焼結すると考えられる。 In particular, due to subtle changes in conditions in the rhodium (Rh) purification step S15, the specific surface area of rhodium black changes to near the upper limit of 14 m 2 / g, that is, to the finest powder in the assumed particle size range, or the particle size. The distribution may spread in a fine direction. In such a case, it is considered that more fine powders are firmly sintered during the first stage heating roasting.

次に、本発明の一実施形態に係る高品位ロジウム粉の回収方法について実施例により詳しく説明する。なお、本発明は、これらの実施例に限定されるものではない。 Next, a method for recovering high-grade rhodium powder according to an embodiment of the present invention will be described in detail with reference to Examples. The present invention is not limited to these examples.

(実施例1)
原料として表1に示す高鉄品位ロジウム粉組成の難溶性残渣を使用した。各組成の濃度は重量%で表記した。還元焙焼工程では、この高鉄品位ロジウム粉12gと鉄粉60gをナイロン袋に入れてシール封印し、よく混合した後に混合粉を黒鉛ルツボに装入した。この黒鉛ルツボを小型の電気炉にて1000℃まで加熱し、昇温後3時間保持した後、放冷した。
(Example 1)
As a raw material, a sparingly soluble residue having a high iron grade rhodium powder composition shown in Table 1 was used. The concentration of each composition is expressed in% by weight. In the reduction roasting step, 12 g of this high iron grade rhodium powder and 60 g of iron powder were placed in a nylon bag, sealed and sealed, and after being mixed well, the mixed powder was charged into a graphite crucible. The graphite crucible was heated to 1000 ° C. in a small electric furnace, held for 3 hours after raising the temperature, and then allowed to cool.

Figure 0006780448
Figure 0006780448

硫酸浸出工程では、取り出した焙焼物をステンレスの乳鉢にて細かく粉砕し、0.6Lの純水に薄硫酸(79%)を0.1L加えた溶液中に装入し、余分な鉄分を除去した。この硫酸溶解液の鉄溶解液組成を表2に示した。なお、各組成の濃度はg/Lで示した。表2に示した通り、ロジウムの濃度は0.01g/L未満でありロジウムのロスは見られず、49.0g/Lの濃度の鉄のみが溶解し、添加した60gの鉄粉の約7割を除去できた。 In the sulfuric acid leaching step, the roasted product taken out is finely crushed in a stainless steel mortar and charged into a solution of 0.6 L of pure water plus 0.1 L of dilute sulfuric acid (79%) to remove excess iron. did. The composition of the iron solution of this sulfuric acid solution is shown in Table 2. The concentration of each composition was shown in g / L. As shown in Table 2, the concentration of rhodium was less than 0.01 g / L and no loss of rhodium was observed. Only iron having a concentration of 49.0 g / L was dissolved, and about 7 of the added 60 g of iron powder was dissolved. I was able to remove the crack.

Figure 0006780448
Figure 0006780448

溶解工程では、鉄溶解後の溶解残渣をビーカーに装入し、これに濃塩酸0.8Lを添加し、70℃まで昇温後、過酸化水素水0.2Lを徐々に添加した。この時の液温は100℃近くまで上昇した。過酸化水素水添加後は冷却して溶解残渣を濾過した。得られた溶解残渣は0.8gであった。塩酸と過酸化水素水で溶解した溶解液の組成を表3に示す。なお、各組成の濃度はg/Lで示した。表3で示した通り、塩酸溶解液中のロジウムの濃度は9.9g/Lとロジウム浸出率は約97%であり、良好な結果を得た。また、硫酸による脱鉄で取り切れなかった鉄は、ロジウム等と合金化しているものと考えられ、溶液中の鉄濃度は11.8g/Lと非常に高かった。 In the dissolution step, the dissolution residue after iron dissolution was charged into a beaker, 0.8 L of concentrated hydrochloric acid was added thereto, the temperature was raised to 70 ° C., and then 0.2 L of hydrogen peroxide solution was gradually added. The liquid temperature at this time rose to nearly 100 ° C. After the addition of the hydrogen peroxide solution, the mixture was cooled and the dissolved residue was filtered. The obtained dissolution residue was 0.8 g. Table 3 shows the composition of the solution dissolved in hydrochloric acid and hydrogen peroxide solution. The concentration of each composition was shown in g / L. As shown in Table 3, the concentration of rhodium in the hydrochloric acid solution was 9.9 g / L and the rhodium leaching rate was about 97%, and good results were obtained. Further, the iron that could not be removed by iron removal with sulfuric acid was considered to be alloyed with rhodium or the like, and the iron concentration in the solution was very high at 11.8 g / L.

Figure 0006780448
Figure 0006780448

ケーキ化工程では、ロジウムと鉄の分離のため、塩化カリウム(粉)添加によるケーキ化を実施した。溶解残渣を濾過した塩酸溶解液1.1Lに酸化剤である亜塩素酸ソーダ溶液を3mL添加することで、溶解液の酸化還元電位を900mV以上に保持した後、常温(24℃)にて撹拌した状態で塩化カリウムを138g(溶解液に対して125g/L)添加することでロジウムのケーキ化処理を実施した。得られたケーキ化濾液の分析結果を表4に示す。なお、各組成の濃度はg/Lで示した。表4に示した通り、ケーキ化濾液中のロジウムの濃度は、1.3g/Lとロジウムの沈殿率が約87%となり、鉄については約2%となり、良好な結果となった。 In the cake-making step, in order to separate rhodium and iron, cake-making was carried out by adding potassium chloride (powder). By adding 3 mL of sodium chlorate solution, which is an oxidizing agent, to 1.1 L of the hydrochloric acid solution obtained by filtering the dissolution residue, the oxidation-reduction potential of the solution is maintained at 900 mV or higher, and then the solution is stirred at room temperature (24 ° C). In this state, 138 g of potassium chloride (125 g / L with respect to the solution) was added to carry out the cake-forming treatment of rhodium. The analysis results of the obtained cake-forming filtrate are shown in Table 4. The concentration of each composition was shown in g / L. As shown in Table 4, the concentration of rhodium in the cake-forming filtrate was 1.3 g / L, and the rhodium precipitation rate was about 87%, and that of iron was about 2%, which were good results.

Figure 0006780448
Figure 0006780448

ロジウム(Rh)精製工程では、上記工程で得られたケーキ86gに、苛性ソーダを添加し、中和殿物として、水酸化ロジウム35gを得て、亜硫酸ナトリウム添加による亜硝酸中和処理(中和終点のpH=6)、硫化ナトリウム添加による硫化処理(温度=常温、硫化ナトリウム添加量/Rh量=50g/kg)を経て、塩化アンモニウム添加による澱物ケーキを生成(塩化アンモニウム添加量/Rh量=2.5kg/kg)し、蟻酸還元処理(温度80℃、蟻酸添加量/Rh量=2.5リットル/kg)によって、ロジウム量として約20gの湿潤状態のロジウムブラックを得た。 In the rhodium (Rh) purification step, caustic soda was added to 86 g of the cake obtained in the above step to obtain 35 g of rhodium hydroxide as a neutralization product, and nitrite neutralization treatment by adding sodium sulfite (neutralization end point). PH = 6) and neutralization treatment by adding sodium sulfide (temperature = normal temperature, amount of sodium sulfide added / amount of Rh = 50 g / kg) to produce a starch cake by adding ammonium chloride (amount of ammonium chloride added / amount of Rh =) 2.5 kg / kg), and rhodium reduction treatment (temperature 80 ° C., amount of formic acid added / amount of Rh = 2.5 liters / kg) gave rhodium black in a wet state of about 20 g as the amount of rhodium.

解砕工程では、目開き1mm篩を通過させる程度の力を加えて解砕し、その全量を目開き1mm篩に通過させた。 In the crushing step, crushing was performed by applying a force sufficient to pass through a 1 mm mesh sieve, and the entire amount was passed through a 1 mm mesh sieve.

前処理加熱焙焼工程では、1mの均熱帯をもつ石英製の管状炉で、350℃、30分保持した後、一晩炉冷した。第1段加熱焙焼工程では、上記管状炉で、700℃、30分保持した後、一晩炉冷した。そして湿式・洗浄工程では、取り出した焙焼物に対して湿式粉砕及び水洗浄を行った。第2段加熱工程では、上記管状炉で1000℃、30分保持した後、一晩炉冷した。 In the pretreatment heat roasting step, the tube furnace was kept at 350 ° C. for 30 minutes in a quartz tube furnace having a 1 m flat tropics, and then cooled overnight. In the first stage heating roasting step, the tube furnace was held at 700 ° C. for 30 minutes and then cooled overnight. Then, in the wet / washing step, the roasted product taken out was wet-crushed and washed with water. In the second stage heating step, the tube furnace was held at 1000 ° C. for 30 minutes and then cooled overnight.

篩解砕工程では、最終的に実質的な検査工程である目開き1mmの篩別を行った。その結果、得られた高品位ロジウム粉の組成を表5に示す。なお、各組成の濃度は重量%で示した。表5に示した通り、得られたロジウムの濃度は99.95重量%以上の高品位ロジウム粉が得られた。またロジウム以外のIr、Ru、Au、Pt、Ag、Feの濃度は、全て0.01重量%未満となり、本発明の一実施形態に係る高品位ロジウム粉の回収方法では、不純物の少ない高品位のロジウム粉を得られた。また得られた高品位ロジウム粉末の重量は9g、比表面積は0.7m/g以上(粒径720μ以上のため測定不可能)であり、組成、粒径ともに製品規格を満たしていた。 In the sieving step, a sieving with a mesh size of 1 mm was finally performed, which is a substantial inspection step. As a result, the composition of the obtained high-grade rhodium powder is shown in Table 5. The concentration of each composition is shown in% by weight. As shown in Table 5, a high-grade rhodium powder having a rhodium concentration of 99.95% by weight or more was obtained. Further, the concentrations of Ir, Ru, Au, Pt, Ag, and Fe other than rhodium are all less than 0.01% by weight, and the high-grade rhodium powder recovery method according to the embodiment of the present invention has a high-grade quality with few impurities. Rhodium powder was obtained. The weight of the obtained high-grade rhodium powder was 9 g, the specific surface area was 0.7 m 2 / g or more (measurable because the particle size was 720 μ or more), and both the composition and the particle size satisfied the product specifications.

Figure 0006780448
Figure 0006780448

以上より、本発明の一実施形態に係る高品位ロジウム粉の回収方法によれば、溶媒抽出工程を経ずに、かつ製品規格を満足する高品位ロジウム粉のみを選択的に製造することができた。これにより危険物管理上のコスト、設備コスト及びメンテナンスコストの増加を防止でき、更には原料の不純物の変動に対する対応能力を向上することができた。 From the above, according to the method for recovering high-grade rhodium powder according to the embodiment of the present invention, only high-grade rhodium powder satisfying the product standard can be selectively produced without going through the solvent extraction step. It was. As a result, it was possible to prevent an increase in hazardous material management costs, equipment costs, and maintenance costs, and further improve the ability to respond to fluctuations in raw material impurities.

なお、上記のように本発明の各実施形態及び各実施例について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。 Although each embodiment and each embodiment of the present invention have been described in detail as described above, those skilled in the art can understand that many modifications that do not substantially deviate from the novel matters and effects of the present invention are possible. , Will be easy to understand. Therefore, all such modifications are included in the scope of the present invention.

例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また高品位ロジウム粉の回収方法の構成、動作も本発明の各実施形態及び各実施例で説明したものに限定されず、種々の変形実施が可能である。 For example, a term described at least once in a specification or drawing with a different term in a broader or synonymous manner may be replaced by that different term anywhere in the specification or drawing. Further, the configuration and operation of the method for recovering high-grade rhodium powder are not limited to those described in each embodiment and each embodiment of the present invention, and various modifications can be carried out.

S11 還元焙焼工程 S12硫酸浸出工程 S13 溶解工程 S14 ケーキ化工程 S15 ロジウム(Rh)精製工程 S16 前処理加熱焙焼工程 S17 前処理篩解砕工程 S18 第1段加熱焙焼工程 S19 湿式粉砕・洗浄工程 S20 第2段加熱焙焼工程 S21 篩解砕工程
S111 還元焙焼工程 S112 硫酸浸出工程 S113 溶解工程 S114 DBC抽出工程 S115 Rh精製工程
S11 Reduction roasting process S12 Sulfate leaching process S13 Dissolving process S14 Cake making process S15 Rodium (Rh) purification process S16 Pretreatment heat roasting process S17 Pretreatment sieve crushing process S18 First stage heating roasting process S19 Wet crushing / washing Step S20 Second stage heat roasting step S21 Sieve crushing step S111 Reduction roasting step S112 Sulfate leaching step S113 Dissolution step S114 DBC extraction step S115 Rh purification step

Claims (5)

白金族元素を含有する難溶性残渣からロジウムを沈殿分離して回収する、高品位ロジウム粉の回収方法であって、
前記難溶性残渣を鉄と共に還元焙焼する還元焙焼工程と、
該還元焙焼工程で得られた焙焼生成物を硫酸浸出する硫酸浸出工程と、
該硫酸浸出工程で得られた浸出残渣を塩酸と過酸化水素水で溶解する溶解工程と、
該溶解工程で得られた溶解液をケーキ化するケーキ化工程と、
該ケーキ化工程で得られた沈殿物からロジウムブラックを得るロジウム精製工程とを有し、
前記ケーキ化工程で塩化カリウムを添加し、ロジウムを塩化ロジウム酸カリウムとして沈殿分離し、
前記ロジウム精製工程にて、前記塩化ロジウム酸カリウムに苛性ソーダを添加し、ロジウムを水酸化ロジウムとして沈殿分離することを特徴とする高品位ロジウム粉の回収方法。
A method for recovering high-grade rhodium powder by precipitating and separating rhodium from a poorly soluble residue containing a platinum group element.
A reduction roasting step of reducing and roasting the poorly soluble residue together with iron ,
A sulfuric acid leaching step of leaching the roasted product obtained in the reduction roasting step with sulfuric acid,
A dissolution step of dissolving the leaching residue obtained in the sulfuric acid leaching step with hydrochloric acid and hydrogen peroxide solution, and
A cake-making step of cake-making the dissolution liquid obtained in the melting step, and
It has a rhodium purification step of obtaining rhodium black from the precipitate obtained in the cake making step.
Potassium chloride was added in the cake-making step, and rhodium was precipitated and separated as potassium rhodium chloride.
A method for recovering high-grade rhodium powder, which comprises adding caustic soda to the potassium chloride in the rhodium purification step and precipitating and separating rhodium as rhodium hydroxide.
前記ケーキ化工程で沈殿分離して得られた濾液に苛性ソーダを添加して沈殿分離し、
得られた沈殿を、前記還元焙焼工程に戻し入れることを特徴とする請求項1に記載の高品位ロジウム粉の回収方法。
Caustic soda was added to the filtrate obtained by precipitation separation in the cake making step, and precipitation separation was performed.
The method for recovering high-grade rhodium powder according to claim 1, wherein the obtained precipitate is returned to the reduction roasting step.
前記ケーキ化工程で使用するタンクは、前記溶解工程で使用する溶解槽と兼用であり
前記溶解槽に塩化カリウムを添加し、ロジウムを塩化ロジウム酸カリウムとして沈殿物を分離することを特徴とする請求項1又は2に記載の高品位ロジウム粉の回収方法。
The tank used in the cake-making step is also used as the melting tank used in the melting step .
The method for recovering high-grade rhodium powder according to claim 1 or 2, wherein potassium chloride is added to the dissolution tank and the precipitate is separated using rhodium as potassium rhodium chloride.
前記ケーキ化工程で添加する塩化カリウムの濃度は、前記溶解工程で得られた溶解液の量に対し100〜150g/Lであり、酸化還元電位が900mV以上とすることを特徴する請求項1乃至3の何れか1項に記載の高品位ロジウム粉の回収方法。 The concentration of potassium chloride added in the cake-making step is 100 to 150 g / L with respect to the amount of the solution obtained in the dissolution step, and the redox potential is 900 mV or more. The method for recovering high-grade rhodium powder according to any one of 3. 前記還元焙焼工程は白金族元素を含有する難溶性残渣を鉄と共に行い、
前記鉄を前記硫酸浸出工程により脱鉄し、
前記溶解工程は、前記硫酸工程で得られた浸出残渣を塩酸と過酸化水素水とで溶解し、
更に前記ロジウム精製工程の後に前処理加熱焙焼工程を有し、該前処理加熱焙焼工程は200℃より高く400℃以下の温度で行い、
前記前処理加熱焙焼工程の後に第1段加熱焙焼工程を有し、該第1段加熱焙焼工程は600〜800℃の温度で行い、
前記第1段加熱焙焼工程の後に第2段加熱焙焼工程を有し、該第2段加熱焙焼工程は900〜1100℃の温度で行うことを特徴とする請求項1乃至4の何れか1項に記載の高品位ロジウム粉の回収方法。
In the reduction roasting step, a sparingly soluble residue containing a platinum group element is carried out together with iron.
The iron is deironed by the sulfuric acid leaching step.
In the dissolution step, the leaching residue obtained in the sulfuric acid step is dissolved in hydrochloric acid and hydrogen peroxide solution.
Further, the rhodium purification step is followed by a pretreatment heat roasting step, and the pretreatment heat roasting step is performed at a temperature higher than 200 ° C. and 400 ° C. or lower.
The pretreatment heat roasting step is followed by a first stage heat roasting step, and the first stage heat roasting step is performed at a temperature of 600 to 800 ° C.
Any of claims 1 to 4, wherein the second stage heating roasting step is performed after the first stage heating roasting step, and the second stage heating roasting step is performed at a temperature of 900 to 1100 ° C. The method for recovering high-grade rhodium powder according to item 1.
JP2016215049A 2016-11-02 2016-11-02 How to recover high-grade rhodium powder Active JP6780448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016215049A JP6780448B2 (en) 2016-11-02 2016-11-02 How to recover high-grade rhodium powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016215049A JP6780448B2 (en) 2016-11-02 2016-11-02 How to recover high-grade rhodium powder

Publications (2)

Publication Number Publication Date
JP2018070978A JP2018070978A (en) 2018-05-10
JP6780448B2 true JP6780448B2 (en) 2020-11-04

Family

ID=62114605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016215049A Active JP6780448B2 (en) 2016-11-02 2016-11-02 How to recover high-grade rhodium powder

Country Status (1)

Country Link
JP (1) JP6780448B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109022794B (en) * 2018-06-24 2020-09-08 聊城市鲁西化工工程设计有限责任公司 Process and device for recovering precious metals in waste catalyst
JP7400443B2 (en) 2019-02-19 2023-12-19 住友金属鉱山株式会社 Mutual separation method of platinum group elements
CN109930006B (en) * 2019-04-16 2020-12-25 福建工程学院 Method for recovering noble metal platinum in TDI tar residue
CN111020210A (en) * 2019-12-19 2020-04-17 浙江省冶金研究院有限公司 Method for recovering rhodium from waste homogeneous rhodium catalyst
CN114427027A (en) * 2020-09-30 2022-05-03 中国石油化工股份有限公司 Method for preparing rhodium trichloride by recovering rhodium from waste rhodium residues and obtained rhodium trichloride
CN113087027A (en) * 2021-04-14 2021-07-09 成都光明派特贵金属有限公司 Rhodium powder dissolving method
CN114231749B (en) * 2021-12-28 2023-11-21 金川集团股份有限公司 Method for recovering platinum and rhodium from platinum and rhodium-containing waste liquid

Also Published As

Publication number Publication date
JP2018070978A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP6780448B2 (en) How to recover high-grade rhodium powder
JP5376437B2 (en) Method for recovering ruthenium from materials containing ruthenium or ruthenium oxide or ruthenium-containing noble metal concentrates
TWI388670B (en) Separation of rhodium with platinum and / or palladium
US7479262B2 (en) Method for separating platinum group element
TWI540209B (en) A method for recovering rhenium and other metals from rhenium-bearing materials
JP6030005B2 (en) Method for recovering platinum group elements
JP2001316735A (en) Method for treating anode slime
JP4313361B2 (en) Method of chlorinating Ru and / or Rh
JP5021331B2 (en) Method for recovering platinum group metals from waste
JP5556701B2 (en) Method for separating impurity elements from platinum group solution
JP4016680B2 (en) Method for dissolving selenium platinum group element-containing material
JP6264566B2 (en) Method for producing leaching product liquid containing platinum group element
JP5423230B2 (en) How to recover high-quality rhodium powder
EP1577408B1 (en) Method for separating platinum group elements from selenum/tellurium bearing materials
JP4715598B2 (en) Chloride leaching method of lead electrolysis slime
JP6475403B2 (en) How to recover tellurium
JP4158706B2 (en) Processing method and manufacturing method for separating gold from platinum group-containing solution
CN1132946C (en) Noble metal smelting slag wet metallurgical process
JP6442674B2 (en) Method for producing platinum group hydrochloric acid solution
JP6400047B2 (en) Method for treating metal-containing acidic aqueous solution
JP2011208248A (en) Method for separating platinum group element
CN110036122B (en) Method for recovering platinum group metals from spent catalyst
JP2004190133A (en) Method of treating selenium, tellurium, and platinum group-containing material
JP3763286B2 (en) How to recover high-quality rhodium powder
JP2004218001A (en) Treatment method for selenium and tellurium

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200928

R150 Certificate of patent or registration of utility model

Ref document number: 6780448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150