JP5423230B2 - How to recover high-quality rhodium powder - Google Patents
How to recover high-quality rhodium powder Download PDFInfo
- Publication number
- JP5423230B2 JP5423230B2 JP2009187700A JP2009187700A JP5423230B2 JP 5423230 B2 JP5423230 B2 JP 5423230B2 JP 2009187700 A JP2009187700 A JP 2009187700A JP 2009187700 A JP2009187700 A JP 2009187700A JP 5423230 B2 JP5423230 B2 JP 5423230B2
- Authority
- JP
- Japan
- Prior art keywords
- rhodium
- roasting
- powder
- heating
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
本発明は、ニッケル・銅原料中の貴金属元素を回収する工程において発生する王水にも不溶の難溶性残渣から、白金族元素精製工程における微粉のロジウムブラックを経て、高純度のロジウム粉末を回収する方法に関する。 The present invention recovers high-purity rhodium powder from hardly soluble residue that is insoluble in aqua regia generated in the process of recovering precious metal elements in nickel and copper raw materials, through fine rhodium black in the platinum group element refining process. On how to do.
ロジウムは、R系熱電対、電気接点、自動車排ガス触媒などの用途に広く利用されているが、近年は、その品質面においてますます高純度のものが要求されている。かかる高純度のロジウムの生産方法として、ニッケル・銅原料からの貴金属回収工程で発生する難溶性残渣からロジウムを回収する方法が知られており、例えば特許文献1(特開2003−321717号公報)には、図2の概略ブロックフロー図に示すようなロジウム粉末の回収方法が示されている。 Rhodium is widely used for applications such as R-type thermocouples, electrical contacts, and automobile exhaust gas catalysts, but in recent years, those of higher purity are required in terms of quality. As a method for producing such high-purity rhodium, a method for recovering rhodium from a hardly soluble residue generated in a noble metal recovery process from nickel / copper raw materials is known. For example, Patent Document 1 (Japanese Patent Laid-Open No. 2003-321717) Shows a method for recovering rhodium powder as shown in the schematic block flow diagram of FIG.
この回収方法では、先ず、還元焙焼工程1において白金族元素を含有する難溶性残渣を鉄と共に還元焙焼し、硫酸浸出工程2において硫酸で鉄を浸出して浸出液と浸出残渣を得る。次に、溶解工程3において浸出残渣を塩酸と過酸化水素で溶解して溶解液を得、DBC抽出工程4において溶解液中に残った大部分の鉄をジブチルカルビトール(DBC)で抽出・分離除去したうえ、その抽出残液をロジウム(Rh)精製工程5において精製してロジウムブラックを得ている。
In this recovery method, first, a hardly soluble residue containing a platinum group element is reduced and roasted together with iron in the reduction roasting
ロジウム精製工程5で得られたロジウムブラックは、比表面積12〜14m2/g程度の微粉末であるので、その後の取扱いによっては酸化されやすい。また、ロジウムブラックの段階では、ナトリウムや塩素などの不純物を含んでいる。そこで、ロジウムブラックを第1段加熱工程6において600〜800℃の不活性ガス雰囲気中で加熱焙焼し、得られた焙焼生成物を湿式粉砕・洗浄工程7において湿式粉砕すると共に洗浄し、必要に応じて篩解砕を行う。更に、第2段加熱工程8において900〜1100℃の不活性ガス雰囲気中で加熱焙焼する。
Since the rhodium black obtained in the
かかる一連の工程により、ナトリウム、塩素などの不純物や酸素の品位が低く、適度な粒度を有する高品位ロジウム粉末が回収できると記載されている。即ち、第1段加熱工程6の加熱焙焼によって比表面積が0.7〜1.4m2/g程度となり、引き続き行われる湿式粉砕・洗浄工程7における湿式粉砕及び洗浄により、ナトリウムや塩素などの不純物が除去される。更に、第2段加熱工程8の加熱焙焼によって、製品の粒度まで粗粒化すると同時に、湿式粉砕では除去できない酸素を解離することできると記載されている。
According to the series of steps, it is described that impurities such as sodium and chlorine and oxygen are low in quality, and high-quality rhodium powder having an appropriate particle size can be recovered. That is, the specific surface area becomes about 0.7 to 1.4 m 2 / g by heating and roasting in the first stage heating step 6, and the wet pulverization and washing in the subsequent wet pulverization /
上記に説明したとおり、特許文献1に係る方法は、ニッケル・銅原料からの貴金属回収工程で発生する難溶性残渣から高品位ロジウム粉を工業的に回収するためには非常に有効な方法である。
As described above, the method according to
一方、粉末のハンドリングの観点から、ロジウム粉の粒径を目開き1mm篩下のサイズにすることが市場で要請されている。そのため、実操業においては製品規格としてロジウム粉の粒径が管理されており、上記特許文献1の第2段加熱工程8の次に、製品規格の検査工程として目開き1mmの篩別を行う篩解砕工程9が付加されており、この篩下のロジウム粉末が製品ロジウム粉末とされている。
On the other hand, from the viewpoint of handling the powder, there is a demand in the market for making the particle size of rhodium powder an opening of 1 mm. Therefore, in actual operation, the particle size of rhodium powder is managed as a product standard. Next to the second
ところが、かかる製品規格の検査工程としての目開き1mmの篩別を行う篩解砕工程9において、規格外れ品、即ち、粗粒化により目開き1mmの篩を通過できないロジウム粉末が発生する場合がある。一般的に、篩別作業においては、篩の目を通過させるため、篩通過前のロジウム粉末に例えばゴム製のヘラなどで比較的弱い解砕力を加える作業が行なわれているが、上記規格外れの粉末は上記程度の解砕力では細粒とならず、規格外れ粉末となる場合が多い。 However, in the crushing and crushing step 9 that performs sieving with a 1 mm opening as the inspection process of the product standard, a non-standard product, that is, rhodium powder that cannot pass through a 1 mm opening due to coarsening may be generated. is there. In general, in the sieving operation, in order to pass the sieve mesh, a relatively weak crushing force is applied to the rhodium powder before passing through the sieve, for example, with a rubber spatula. In many cases, the powder does not become fine particles with the above-mentioned crushing force, but becomes a nonstandard powder.
規格外れの粉末とはいえ組成は高品位のロジウムであるため、単純に廃棄物として取り扱うのはもったいない。また、上記のゴム製のヘラなどで加える程度の解砕力ではなく、より強い力で粉砕して細粒化することも容易に想起できるが、この場合は粉砕作業に伴って不純物が混入するおそれがあるため、好ましくない。したがって、上記のような規格外れ粉末は、図2に示したフローの最初の工程に戻して、投入原料として難溶性残渣に混入して再利用するしかなく、コスト面で不利になるという問題があった。このように、規格外れ粉末の発生の抑制が求められていた。 Although it is a nonstandard powder, its composition is high-quality rhodium, so it is a waste to simply treat it as waste. In addition, it can be easily recalled that the pulverization force is not as high as that applied by the rubber spatula, but it can be easily pulverized into fine particles. In this case, impurities may be mixed with the pulverization operation. This is not preferable. Therefore, the above-mentioned nonstandard powder has to be returned to the first step of the flow shown in FIG. 2 and mixed into a hardly soluble residue as a raw material for reuse, which is disadvantageous in terms of cost. there were. Thus, suppression of generation | occurrence | production of off-standard powder was calculated | required.
本発明は、このような状況を解決するためになされたものであり、規格外れ粉末の発生を抑制しつつ、高品位ロジウム粉を回収できる方法を提供することを課題とする。 This invention is made | formed in order to solve such a condition, and makes it a subject to provide the method which can collect | recover high quality rhodium powder, suppressing generation | occurrence | production of off-standard powder.
本発明者らは、上記第1段の加熱焙焼を行う前に、ロジウムブラックの粒径を調整することにより上記課題の解決ができることを見出し、本発明を完成した。即ち、本発明が提供する高品位ロジウム粉の回収方法は、白金族元素を含有する難溶性残渣を鉄と共に還元焙焼した後、硫酸で浸出することによって脱鉄し、得られた浸出残渣を塩酸と過酸化水素水とで溶解し、その溶解液をロジウム精製し、得られたロジウムブラックに対して200℃より高く400℃以下の温度で前処理としての加熱焙焼を行った後、600〜800℃の不活性ガス雰囲気中で第1段目の加熱焙焼を行い、得られた焙焼生成物を湿式粉砕した上で不純物を洗浄除去した後、900〜1100℃の不活性ガス雰囲気中で第2段目の加熱焙焼を行うことを特徴としている。 The present inventors have found that the above problem can be solved by adjusting the particle size of rhodium black before performing the first stage of heating and roasting, and have completed the present invention. That is, the method for recovering high-grade rhodium powder provided by the present invention is a method in which a poorly soluble residue containing a platinum group element is reduced and roasted together with iron and then de-ironed by leaching with sulfuric acid. After dissolving in hydrochloric acid and hydrogen peroxide solution, the solution was rhodium purified, and the obtained rhodium black was heated and roasted as a pretreatment at a temperature higher than 200 ° C. and lower than 400 ° C., and then 600 The first stage of heating and roasting is performed in an inert gas atmosphere at ˜800 ° C., and the obtained roasted product is wet pulverized, and then the impurities are washed and removed. Among them, the second stage heating and baking is performed.
上記本発明の高品位ロジウム粉の回収方法においては、前記溶解液に含まれる鉄の大部分をジブチルカルビトールで抽出し、その抽出残液をロジウム精製することが好ましい。また、前記前処理としての加熱焙焼と第1段目の加熱焙焼との間で焙焼生成物を篩解砕し、第1段目の加熱焙焼に供給する焙焼生成物の粒径を、目開き1mm篩下のサイズとすることが好ましい。 In the method for recovering high-grade rhodium powder of the present invention, it is preferable to extract most of the iron contained in the solution with dibutyl carbitol and purify the extracted residue by rhodium. In addition, the roasted product particles obtained by pulverizing the roasted product between the heat roasting and the first stage heat roasting as the pretreatment and supplying the first stage heat roasting The diameter is preferably set to a size of 1 mm mesh sieve.
本発明によれば、規格外れ粉末の発生を抑制することができるので、その工業的価値は極めて大きい。 According to the present invention, generation of off-standard powder can be suppressed, and thus its industrial value is extremely large.
以下、本発明の高品位ロジウム粉の回収方法の一具体例を図1を参照しながら説明する。先ず還元焙焼工程11において、白金族元素を含有する難溶性残渣を鉄と共に還元焙焼し、可溶性の鉄合金を含む焙焼生成物を得る。次に硫酸浸出工程12において、焙焼生成物に硫酸を混合して鉄を浸出し、浸出液と浸出残渣に分離する。次に溶解工程13において、浸出残渣を塩酸と過酸化水素水とに溶解して溶解液を得る。
Hereinafter, a specific example of the method for recovering high-quality rhodium powder of the present invention will be described with reference to FIG. First, in the
この溶解液中にはロジウムと合金化していた鉄が溶解しているため、これを分離除去することが望ましい。そこで、溶解液をDBC抽出工程14に供給し、ここで溶解液をジブチルカルビトール(DBC)に接触させ、溶解液中に残存する鉄の大部分をDBCで抽出して分離除去するのが好ましい。DBCでの抽出条件としては、塩酸濃度4〜6N、酸化還元電位800〜900mV以上であることが、鉄の抽出率が高くなるので望ましい。また、DBCは金も抽出するため、同時に除去することが出来る。 Since iron dissolved in rhodium is dissolved in the solution, it is desirable to separate and remove it. Therefore, it is preferable to supply the solution to the DBC extraction step 14 where the solution is brought into contact with dibutyl carbitol (DBC), and most of the iron remaining in the solution is extracted and separated by DBC. . As extraction conditions in DBC, a hydrochloric acid concentration of 4 to 6 N and an oxidation-reduction potential of 800 to 900 mV or more are desirable because the iron extraction rate is increased. Further, since DBC also extracts gold, it can be removed at the same time.
次にロジウム精製工程15において、溶解液あるいはDBC抽出工程14で溶解液を抽出処理する場合はその抽出残液をロジウム精製し、ロジウムブラックを得る。ロジウム精製工程15で得られるロジウムブラックは湿潤な状態であり、そのまま真空乾燥した場合は、比表面積12〜14m2/g程度の微細な粉末となる。この湿潤状態のロジウムブラックを、後述する第1段加熱焙焼を行う前に前処理加熱工程16に供給し、前処理の加熱焙焼を行う。その際、第1段加熱焙焼の温度よりも低い温度、具体的には200℃より高く400℃以下の温度で加熱焙焼を行う。得られた焙焼生成物は、必要に応じて前処理篩解砕工程17において、篩解砕、即ち解砕と例えば目開き1mmの篩別とを行ってもよい。
Next, in the
200℃より高く400℃以下の温度で加熱焙焼する理由は、200℃以下では比表面積があまり変化しないからである。尚、300℃以上で加熱焙焼する場合は、前述した比表面積12〜14m2/g程度の微細な粉末を充分に無くすことができるのでより好ましい。一方、400℃以下にすることで当該微細な粉末が強固に焼結することを抑えることができる。 The reason for heating and baking at a temperature higher than 200 ° C. and lower than 400 ° C. is that the specific surface area does not change much below 200 ° C. In addition, when heating and baking at 300 degreeC or more, since the fine powder with the specific surface area of 12-14 m < 2 > / g mentioned above can fully be lose | eliminated, it is more preferable. On the other hand, it can suppress that the said fine powder sinters firmly by setting it as 400 degrees C or less.
前処理の加熱焙焼に要する時間は、被焙焼物の投入量や炉のサイズによって異なるが、被焙焼部の温度が処理温度に到達してから20〜80分程度保持することが好ましい。20分未満であれば、前処理としての加熱焙焼の効果が不充分であり、80分より長いと過焼結がおこるおそれがあるからである。 Although the time required for heating and roasting in the pretreatment varies depending on the amount of the material to be baked and the size of the furnace, it is preferable to hold for about 20 to 80 minutes after the temperature of the portion to be baked reaches the processing temperature. This is because if it is less than 20 minutes, the effect of heat roasting as a pretreatment is insufficient, and if it is longer than 80 minutes, oversintering may occur.
次に、上記前処理としての加熱焙焼が行われたロジウムブラックを、第1段加熱工程18に供給し、600〜800℃の不活性ガス雰囲気中で第1段目の加熱焙焼を行う。これにより、粉末の比表面積は0.7〜1.4m2/g程度になる。続いて、湿式粉砕・洗浄工程19に供給し、湿式粉砕すると共に洗浄によりナトリウムや塩素などの不純物を除去する。湿式粉砕処理及び洗浄処理された粉末に対しては、必要に応じて篩解砕を行ってもよい。
Next, the rhodium black subjected to the heat roasting as the pretreatment is supplied to the first
次に、第2段加熱工程20に供給し、900〜1100℃の不活性ガス雰囲気中で第2段目の加熱焙焼を行う。これにより、製品の粒度まで粗粒化されると同時に、湿式粉砕では除去できない酸素が解離される。最後に、実質的な検査工程としての篩解砕工程21に供給し、目開き1mmの篩別を行って製品ロジウム粉末を得る。
Next, it supplies to the 2nd
尚、前処理加熱工程16における加熱焙焼は、第1段加熱工程18及び第2段加熱工程20と同様に、アルゴンなどの不活性ガス雰囲気中で行うことが望ましい。その理由は、ロジウムの粉末は酸化されやすいからである。また、これら加熱焙焼は、いずれも石英製の反応管内で行うことが好ましい。更に、各加熱焙焼後の冷却は、例えば一晩掛けて徐冷される炉冷によって行うのが好ましい。これにより、再酸化を防止することができる。
In addition, as in the first
このように、第1段階の加熱焙焼を行う前に、前処理として、比較的低い温度条件の下で加熱焙焼を行うことにより、その後の工程での粉砕が困難な粗粒化した規格外れの粉末が生じにくくなる。即ち、上記前処理を施すことによって、ロジウム精製工程15によって得られる比表面積12〜14m2/g程度の微細な粉末を、強固に焼結させることなく、その後の工程で粉砕可能な程度までの比較的緩やかな程度で焼結させることができる。これに加えて、同時に、第1段階の加熱焙焼に投入される中間物中に、比表面積12〜14m2/g程度の微細な粉末を実質的に含まないようにすることができる。例えば、適切に温度条件を設定することによって、この中間物の比表面積を、およそ6〜9m2/g程度にすることができる。
Thus, before performing the first stage of heating and roasting, as a pretreatment, by performing heating and roasting under relatively low temperature conditions, the coarsened standard that is difficult to grind in the subsequent process It becomes difficult to produce a loose powder. That is, by performing the pretreatment, the fine powder having a specific surface area of about 12 to 14 m 2 / g obtained by the
前処理によってこのような顕著な効果が現れる理由としては、発明者らは次のように推定している。即ち、加熱焙焼前のロジウムブラックは、前述したように比表面積12〜14m2/g程度の微細な粉末であるため、前処理を行うことなく第1段階の加熱焙焼を行った場合は、比表面積が約10分の1程度まで低減し、粗粒化が生じる。その結果、引き続いて行われる処理において、適切な粒度制御が行われにくくなり、粗粒化した粉末が粉砕されることなくそのまま残留するものと考えられる。 The inventors presume that the reason why such a remarkable effect appears by the preprocessing is as follows. That is, since the rhodium black before heating and roasting is a fine powder having a specific surface area of about 12 to 14 m 2 / g as described above, when the first stage of heating and roasting is performed without pretreatment. The specific surface area is reduced to about 1/10, and coarsening occurs. As a result, it is considered that appropriate particle size control is difficult to be performed in the subsequent processing, and the coarsened powder remains as it is without being pulverized.
特に、ロジウム精製工程15における微妙な条件変動により、ロジウムブラックの比表面積が14m2/gの上限近傍、即ち、想定されている粒度範囲のうち最も微細な粉末に変動したり、粒度分布が微細な方向に広がったりする場合がある。このような場合は、第1段階の加熱焙焼時に、より多くの微細な粉末が強固に焼結すると考えられる。
In particular, due to subtle variation in conditions in the
発明者らは、上記したロジウムブラックを得る工程とは多少相違する方法によって得たロジウムブラックを用いて実験を行い、上記本発明の効果の現れる原因を推定した。具体的には、真空乾燥したロジウムブラックを5つの試料(各10g)に分け、これら5つの試料をアルゴン気流中にて、それぞれ、200、400、600、800、900℃まで昇温し、1時間保持する焙焼処理を行った。その後、徐冷し、得られた焙焼物の比表面積を測定した。その測定結果を、焙焼処理前のロジウムブラックの比表面積と共に下記表1に示す。尚、比表面積はマイクロトラック装置により測定した。 The inventors conducted an experiment using rhodium black obtained by a method slightly different from the above-described process for obtaining rhodium black, and estimated the cause of the effect of the present invention. Specifically, rhodium black that has been vacuum-dried is divided into five samples (10 g each), and these five samples are heated to 200, 400, 600, 800, and 900 ° C. in an argon stream, respectively. A roasting process was carried out for a period of time. Then, it annealed and measured the specific surface area of the obtained roasted material. The measurement results are shown in Table 1 below together with the specific surface area of rhodium black before roasting treatment. The specific surface area was measured with a microtrack apparatus.
この表1の結果より、焙焼温度が上昇すると、得られる粒子の比表面積が減少することが分かった。特に、焙焼温度が600℃を超えると、急激に粒成長が促進された。一方、400℃程度までであれば600〜800℃の焙焼時と比較して、比表面積の低下が少ない状態で乾燥粉を得ることが可能であることがわかる。更に、200℃の焙焼時には、真空乾燥品と比較して比表面積の変化があまりないことがわかる。 From the results shown in Table 1, it was found that the specific surface area of the obtained particles decreases as the roasting temperature increases. In particular, when the roasting temperature exceeded 600 ° C., grain growth was rapidly promoted. On the other hand, it can be seen that when the temperature is up to about 400 ° C., it is possible to obtain a dry powder in a state where the decrease in specific surface area is small as compared with the time of roasting at 600 to 800 ° C. Further, it can be seen that there is not much change in specific surface area at the time of baking at 200 ° C. as compared with the vacuum-dried product.
このように、第1段階の加熱焙焼を行う前に、前処理として、第1段加熱焙焼の温度よりも低い温度、具体的には200℃より高く400℃以下の温度で加熱焙焼することにより、規格外れ粉末発生を少なくすることができ、適切に条件設定を行った場合は、規格外れ粉末の量を約10分の1にすることができる。 Thus, before performing the first stage heating roasting, as a pretreatment, the heating roasting is performed at a temperature lower than the temperature of the first stage heating roasting, specifically at a temperature higher than 200 ° C. and not higher than 400 ° C. By doing so, the generation of out-of-standard powder can be reduced, and when the conditions are set appropriately, the amount of out-of-standard powder can be reduced to about 1/10.
以下、実施例1、2及び比較例により、本発明をより詳細に説明する。まず、実施例1、2及び比較例に共通して使用するロジウムブラックを製造した。原料としては、下記表2に示す組成の難溶性残渣を使用した。 Hereinafter, the present invention will be described in more detail with reference to Examples 1 and 2 and Comparative Examples. First, rhodium black used in common with Examples 1 and 2 and the comparative example was manufactured. As a raw material, a hardly soluble residue having a composition shown in Table 2 below was used.
(還元焙焼工程11)
先ず、難溶性残渣2.5kgと、鉄粉7.5kgをロッドミルにて混合して混合粉とし、この混合粉を黒鉛ルツボに入れて蓋をし、電気炉にて1000℃まで加熱した。昇温後3時間保持し、その後15時間程度放冷した。この還元焙焼を3バッチ行い、合計30kgの焙焼生成物を確保し、これを全量粉砕機にて粉砕した。
(Reduction roasting process 11)
First, 2.5 kg of a poorly soluble residue and 7.5 kg of iron powder were mixed with a rod mill to form a mixed powder. The mixed powder was put in a graphite crucible, covered, and heated to 1000 ° C. with an electric furnace. The temperature was raised for 3 hours and then allowed to cool for about 15 hours. Three batches of this reduction roasting were performed to secure a total of 30 kg of roasted product, and this was pulverized in a whole pulverizer.
(硫酸浸出工程12)
次に、上記粉砕した焙焼生成物を脱鉄するために希硫酸での浸出を行った。即ち、溶解槽に水120リットルと薄硫酸(70%)40リットルを張り、ここに上記還元焙焼工程11で得られた焙焼生成物を徐々に添加した。焙焼生成物30kgを装入した後、2時間撹拌した。その結果、添加した鉄22.5kgの約60%(13.7kg)を除去できた。尚、鉄溶解後に得られる浸出残渣は容易に空気酸化するため、濾過により浸出液と浸出残渣とを分離した後は、浸出残渣を直ちに槽内に戻し、湿潤な状態を保った。
(Sulfuric acid leaching process 12)
Next, in order to remove iron from the pulverized roasted product, leaching with dilute sulfuric acid was performed. That is, 120 liters of water and 40 liters of thin sulfuric acid (70%) were placed in the dissolution tank, and the roasted product obtained in the
(溶解工程13)
次に、上記槽内に装入されている脱鉄後の浸出残渣に、濃塩酸150リットルを添加し、撹拌しながら70℃まで昇温した後、過酸化水素水30リットルを徐々に添加した。このとき液温は100℃近くまで上昇した。過酸化水素水の添加後は冷却し、濾過により残渣を除去した。得られた溶解液(液量150リットル)のロジウム浸出率は約96%であり、Irは87%及びRuは83%の浸出率であった。
(Dissolution step 13)
Next, 150 liters of concentrated hydrochloric acid was added to the leaching residue after deironing that was charged in the tank, the temperature was raised to 70 ° C. while stirring, and then 30 liters of hydrogen peroxide was gradually added. . At this time, the liquid temperature rose to nearly 100 ° C. After the addition of aqueous hydrogen peroxide, the mixture was cooled and the residue was removed by filtration. The rhodium leaching rate of the obtained solution (150 liter) was about 96%, Ir was 87%, and Ru was 83%.
(DBC抽出工程14)
前述したように大半の鉄は硫酸浸出工程12で脱鉄されているものの、上記溶解液には依然として約60g/リットルの鉄が含まれている。そこで、この鉄を除去して効率よくロジウム精製を行うために、溶媒抽出による脱鉄を実施した。溶媒にはDBCを使用し、ミキサセトラにて処理した。その結果、溶解液中の鉄を、60g/リットルから0.03g/リットルまで除去することができた。
(DBC extraction process 14)
As described above, most of the iron has been deironed in the sulfuric
(ロジウム精製工程15)
次に、上記抽出残液を、加熱濃縮処理、亜硫酸ナトリウム添加による亜硝酸中和処理(中和終点のpH=6)、硫化ナトリウム添加による硫化処理(温度=常温、硫化ナトリウム添加量/Rh量=50g/kg)を経て、塩化アンモニウム添加による澱物ケーキを生成(塩化アンモニウム添加量/Rh量=2.5kg/kg)し、蟻酸還元処理(温度80℃、蟻酸添加量/Rh量=2.5リットル/kg)によって、ロジウム量として約3.5kgの湿潤状態のロジウムブラックを得た。
(Rhodium purification step 15)
Next, the above extraction residue is heated and concentrated, nitrite neutralization treatment by adding sodium sulfite (pH of neutralization end point = 6), sulfidation treatment by adding sodium sulfide (temperature = room temperature, sodium sulfide addition amount / Rh amount) = 50 g / kg) to form a starch cake by adding ammonium chloride (ammonium chloride addition amount / Rh amount = 2.5 kg / kg), formic acid reduction treatment (temperature 80 ° C., formic acid addition amount / Rh amount = 2) 0.5 liter / kg), a rhodium black in a wet state with an amount of rhodium of about 3.5 kg was obtained.
このロジウムブラックを小分けして、それぞれ1kgのロジウムブラック試料とし、これらロジウムブラック試料を以下に示す実施例1、2及び比較例の方法で加熱焙焼した。加熱焙焼後は、実質的な検査工程である目開き1mmの篩別を行う篩解砕工程21に付した。
The rhodium black was subdivided into 1 kg rhodium black samples, and these rhodium black samples were heated and roasted by the methods of Examples 1 and 2 and Comparative Examples shown below. After the heating and roasting, it was subjected to a
[実施例1]
前処理の加熱焙焼処理を行うため、1mの均熱帯をもつ石英製の管状炉で、350℃、30分保持した後(前処理加熱工程16)、一晩炉冷した。次に、第1段目の加熱焙焼を行うため、上記管状炉で、700℃、30分保持した後(第1段加熱工程18)、一晩炉冷し、取り出した焙焼物に対して湿式粉砕及び水洗浄を行った(湿式粉砕・洗浄工程19)。更に、第2段目の加熱焙焼として、上記管状炉で、1000℃、30分保持した後(第2段加熱工程20)、一晩炉冷した。その結果、検査工程では3gが規格外れ粉末となった。
[Example 1]
In order to perform the pre-treatment heating and roasting treatment, the tube was kept at 350 ° C. for 30 minutes in a quartz tube furnace having a soaking zone of 1 m (pre-treatment heating step 16), and then cooled in the oven overnight. Next, in order to perform the first stage heating and roasting, after holding at 700 ° C. for 30 minutes in the tubular furnace (first stage heating step 18), the furnace is cooled overnight, and the roasted material taken out is then removed. Wet grinding and water washing were performed (wet grinding / washing step 19). Further, as the second stage heating and roasting, the tube furnace was held at 1000 ° C. for 30 minutes (second stage heating step 20), and then cooled in the furnace overnight. As a result, 3 g was out of specification powder in the inspection process.
[実施例2]
第1段目の加熱焙焼の前に目開き1mm篩を通過させる程度の力を加えて解砕し、その全量を目開き1mm篩に通過させたこと(前処理篩解砕工程17)以外は実施例1と同様にして処理を行った。その結果、検査工程では規格外れ粉末は発生しなかった。
[Example 2]
Prior to the first stage of heating and roasting, it was pulverized by applying a force enough to pass through a 1 mm sieve sieve, and the entire amount was passed through a 1 mm sieve sieve (pretreatment sieve crushing step 17). Were processed in the same manner as in Example 1. As a result, out-of-standard powder was not generated in the inspection process.
[比較例]
前処理の加熱焙焼処理(前処理加熱工程16)を行わなかった以外は実施例1と同様にして処理を行った。その結果、検査工程では30gの規格外れ粉末が発生した。
[Comparative example]
The treatment was performed in the same manner as in Example 1 except that the pretreatment heating and baking treatment (pretreatment heating step 16) was not performed. As a result, 30 g of nonstandard powder was generated in the inspection process.
これら実施例1、2及び比較例の結果から、第1段目の加熱焙焼の前に前処理としての加熱焙焼処理を適用することにより、規格外れ粉末の量を10分の1以下に減らすことができ、前処理としての加熱焙焼処理に加えて前処理としての篩解砕処理を行うことによって規格外れ粉末の発生をほぼゼロにできることが分かった。 From the results of these Examples 1 and 2 and Comparative Example, the amount of out-of-specification powder was reduced to 1/10 or less by applying the heat roasting treatment as a pretreatment before the first stage heat roasting. It was found that the generation of off-standard powder can be made almost zero by performing a sieve crushing treatment as a pretreatment in addition to a heating roasting treatment as a pretreatment.
11 還元焙焼工程
12 硫酸浸出工程
13 溶解工程
14 DBC抽出工程
15 ロジウム精製工程
16 前処理加熱工程
17 前処理篩解砕工程
18 第1段加熱工程
19 湿式粉砕・洗浄工程
20 第2段加熱工程
21 篩解砕工程
11
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009187700A JP5423230B2 (en) | 2009-08-13 | 2009-08-13 | How to recover high-quality rhodium powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009187700A JP5423230B2 (en) | 2009-08-13 | 2009-08-13 | How to recover high-quality rhodium powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011038165A JP2011038165A (en) | 2011-02-24 |
JP5423230B2 true JP5423230B2 (en) | 2014-02-19 |
Family
ID=43766211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009187700A Active JP5423230B2 (en) | 2009-08-13 | 2009-08-13 | How to recover high-quality rhodium powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5423230B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6780448B2 (en) * | 2016-11-02 | 2020-11-04 | 住友金属鉱山株式会社 | How to recover high-grade rhodium powder |
CN109082520A (en) * | 2018-07-25 | 2018-12-25 | 华南理工大学 | A method of silver being recycled in electrical contact from scrapping |
CN113087027A (en) * | 2021-04-14 | 2021-07-09 | 成都光明派特贵金属有限公司 | Rhodium powder dissolving method |
CN114134335A (en) * | 2021-10-18 | 2022-03-04 | 英特派铂业股份有限公司 | Method for recovering rhodium in rhodium-containing nitrite wastewater |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996017097A1 (en) * | 1994-12-01 | 1996-06-06 | Prior Engineering Ag | Material beneficiation process and device |
JP3946798B2 (en) * | 1996-09-30 | 2007-07-18 | 田中貴金属工業株式会社 | Method for producing highly crystalline platinum powder |
JP3763286B2 (en) * | 2002-05-01 | 2006-04-05 | 住友金属鉱山株式会社 | How to recover high-quality rhodium powder |
JP4313361B2 (en) * | 2005-12-05 | 2009-08-12 | 日鉱金属株式会社 | Method of chlorinating Ru and / or Rh |
JP4188381B2 (en) * | 2006-03-31 | 2008-11-26 | 日鉱金属株式会社 | Recovery method of rhodium |
-
2009
- 2009-08-13 JP JP2009187700A patent/JP5423230B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011038165A (en) | 2011-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6780448B2 (en) | How to recover high-grade rhodium powder | |
JP5376437B2 (en) | Method for recovering ruthenium from materials containing ruthenium or ruthenium oxide or ruthenium-containing noble metal concentrates | |
EP2169085B1 (en) | Method of separating rhodium from platinum and/or palladium | |
JP4313361B2 (en) | Method of chlorinating Ru and / or Rh | |
KR101685931B1 (en) | Recovering method of concentrated precious metals using copper containing wastes | |
JP6030005B2 (en) | Method for recovering platinum group elements | |
JP5021331B2 (en) | Method for recovering platinum group metals from waste | |
JP5423230B2 (en) | How to recover high-quality rhodium powder | |
WO2017037625A1 (en) | A method and process of recovering metal values from waste monolithic ceramic capacitors | |
EP3132874B1 (en) | Method for producing nickel powder having low carbon concentration and low sulfur concentration | |
JP2009203486A (en) | Method for recovering ruthenium from scrap containing ruthenium | |
JP2015105413A (en) | Method for manufacturing gold powder with high bulk density | |
JP2009209422A (en) | Method for leaching lead anode-slime with chlorine | |
JP4715598B2 (en) | Chloride leaching method of lead electrolysis slime | |
CN1132946C (en) | Noble metal smelting slag wet metallurgical process | |
JP6786280B2 (en) | Treatment method for ruthenium-containing substances and recovery method for ruthenium | |
JP2010222612A (en) | Refining method for refining and recovering ruthenium | |
JP3763286B2 (en) | How to recover high-quality rhodium powder | |
CN111118289B (en) | Method for recovering and treating silver tungsten carbide graphite waste | |
KR101817079B1 (en) | process of recovering Platinum group metal from waste sludge generated from refining process of precious metal ore | |
JP2017133084A (en) | Method of treating gold and silver slag | |
JP7006332B2 (en) | How to make gold powder | |
JP5315103B2 (en) | Method for concentrating and recovering ruthenium | |
RU2398900C1 (en) | Method of extracting palladium from wastes of electron raw material | |
JP2004035968A (en) | Method for separating platinum group element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120806 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131023 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131029 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131111 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5423230 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |